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Abstract

Let (X5, 0) be a one-sided transitive subshift of finite type, where the set
of symbols is given by a finite spin set S, and the admissible transitions are
represented by an irreducible directed graph G C Sx S. Let H : Eg — Rbea
locally constant function and, given 3 > 0, let gy be the Gibbs-equilibrium
probability measure associated to the observable —SH. It is known, by us-
ing abstract considerations, that {ugm}s>o converges as f — 400 to a H-
minimimizing probability measure or ground state ufﬂn. For weighted graphs
with a small number of vertices, we describe here an algorithm (similar to
Puiseux algorithm) that gives the explicit form of pfl; .

1 Introduction and main results

The purpose of this article is to present, for specific interaction energy function
H, rigourous results on the convergence of Gibbs measures {ugp}s when the
temperature T = 57! of the system goes to zero. The limit measures thus obtained
are called ground states. For most part of the article, the dynamical system is
represented by a one-dimensional lattice, or more generally by a transitive subshift
of finite type (EJ(E,O'), in which some edges may not follow a given edge. The
exclusion rule is given by an irreducible finite directed graph G C S x S. The set
S of vertices of G represents the possible states of the system at each site. We say
that the interaction energy function H has long range if it depends on the whole
configuration; we say H has short range if it depends only on two adjacent sites.

Our first goal in section 2 is to improve results on the convergence of Gibbs
measures for a certain class of long range interaction energy functions H; we use
there the language of ergodic optimization theory. More precisely, we prove the
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convergence of Gibbs potentials ®gy as f — 400 when the H-minimizing non-
wandering set Q(H) (see definition 5) admits a unique irreducible component of
maximal entropy. Our second aim is to understand the zero-temperature phase
diagram for short range interaction energy functions. It is known that [7, 9, 17],
for short range interactions, the family of Gibbs measures {;151}3 converges to a
unique invariant probability measure called ground state. We present in section 3
the beginning of an algorithm, valid for any weighted directed graph, that describes
precisely all possible ground states. We collect all proofs both for general subshift
of finite type systems and for weighted directed graphs in sections 4 and 5. We
discuss in section 6 the complete phase diagram for all nonsymmetric complete
graphs on 3 symbols. We discuss in section 7 the complete phase diagram of ground
sates at zero-temperature for the BEG model: a specific model well studied in solid
state physics.

We close this introduction by showing on what sort of phase diagram we obtain
in the case of the one-dimensional Blume-Emery-Griffits model. The BEG model
was initially developed in order to understand the phase transition of mixte sys-
tems with two isotopes He® and He* (see [5]). In particular, it exibits a tricritical
point of transition, a first-order and a second-order phase transitions. Our pur-
pose in this introduction is to describe the zero-temperature phase diagram of the
one-dimensional BEG model at the level of ground states. A complete discussion
on ground states for one-dimensional Ising models can be found in [14]. There are
also examples of ground states for more than one dimension (see, for instance, the
case of the bidimensional Blume-Capel model in [8]).

We consider a one-dimensional spin system with nearest neighbor interaction
given by the hamiltonian

H(x)=-J xia;j—KZx?x?—i-AZx?,
(i.5) (i.5) ‘

where z; € S = {—1,0,+1} represents a possible state at the site i.

Figure 1: The schematic Blume-Emery-Griffiths model.

For each positive temperature 7' = 7!, there exists a unique Gibbs measure,
which may be obtained by Ruelle transfer operator method. We first write H in
terms of a unique energy function per site Ho, that is, H = .., Ho(x;, iy1),
where

A
Hy(x,y) = —Jxy — Ka%y? + 5

In BEG model, a site having a state +1 represents an atom He?, a site having a
state 0 represents He3. The constant J is supposed to be positive for ferromagnetic

(z* +9°).
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systems and negative for antiferromagnetic systems. The constant K takes into
account the isotopic interaction, A may be interpreted as a chemical potential. An
external magnetic field could be added and would give an additional hamiltonian
h~, z;. We do not consider this term in this introduction. Even so, we emphasize
that the algorithm to be described applies without changes in all these cases,
ferromagnetic or antiferromagnetic, with or without external magnetic field.
Ruelle transfer operator method tells us that the Gibbs measure at temperature
T = 3~ ! is a Markov chain on the finite state space S, defined by an irreducible
transition matrix [Qs(z, y)]m/ g and a stationary probability vector [m5(x)]

D () Pp(x)
2 yes P5() ()’

where exp(—/Fp) denotes the maximal eigenvalue of the transfer operator g,
represented here by a matrix indexed by S x S,

Ls=[Ls(@,y)l, esr Lo(@,y) =exp(=FHo(z,y)),

z€eS’

) exp [— B(Ho(y, x) — Fp)], ma(x) :=

Usle,y) = Dp(x)

and [Pg(z)]zes ([Pj()]zes) denotes its left (right) eigenvector

> Lpla,y)®(y) = e TFHOL(2), D Dp(a)Ls(n,y) = TP By(y),
yeSs z€eSs

normalized by >, o Pp(z) = 3 ,c5Ph(z) = 1, @g(z) > 0, ®5(x) > 0. Notice
that in the definition of Qg(x,y), the order of (x,y) has been interchanged in
Hy(y,x). Notice also that Fj is also called the free energy in the physics literature.

In BEG model, by numbering the state space S = {s1, 52,53}, s1 = —1, 59 =0
and s3 = +1, and by changing the parameter 5 to € = exp(—/3), we are left to study
a singular perturbation of a one-parameter family of matrices M, = [A(x, y)e*(®¥)],
where

111 —J-K+A A J-K+A
A=1]1 11 and a= %A 0 %A
111 J-K+A A —-J-K+A

We summarize the set of possible interactions between two consecutive sites z;
and z;y1 by a (directed) graph G C S x S weighted by the principal exponent
a(z,y) as explained in figure 2. We also indicate in this figure the mean of a along
all simple cycles.

We will show that pgp converges to a Markov chain pll. characterized by an
initial law 7 and a transition matrix () that we describe in figures 3 and 4.

Each region of the plane (J, K) represents the limit phase or ground state:
each box indicates the initial law, the transition matrix and the beginning of the
Puiseux series expansion of the free energy. The three phases of dimension 2
correspond to the case where all exponents 0, %A, —J—-—K+A,J— K+ A and
1(J — K +2A) are distinct.

For instance, when J — K + A < 0 and J < 0, corresponding to the upper left
part of the phase diagram, the smallest exponent is J — K + A and the ground
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0
Mean of a along simple cycles:

A A
2//// \2 cycles of order 1 | 0, (—=J — K + A)
< cycles of order 2 | A, (J — K + A)
C@ J-K+A cycles of order 3 %(J — K +2A)
-J-K+A -J-K+A

Figure 2: Graph of interactions and minimizing cycles in BEG model.

state uf. is equal to the uniform distribution on the intermittent configuration
-oo—1,41,—1,41,-- -, more precisely, because we fix an origin, it is equal to a
periodic probability measure of period 2:
% 1
Hopin, = §5<~~+1|—1+1~~> + §5<~~—1|+1—1~~>-

The ground state is pure and made of atoms with alternate spins +1. We show,
for example, that the initial law 73, the maximal eigenvalue Ag and the transition
matrix ()3 admit an expansion of the following form

1/2 1/2
g ~ 2 28(=J+K-A/2)| 5 | 0 . g = e BFs o~ BJ—K+A)
1/2 1/2
28 9.—2B8(—J+K—-A/2) 1 0o 0 1
Qp~ |1/2 e BEIHE=2) /9| = [1/2 0 1/2
1 2¢—2B(—J+K-A/2) 28] 1 0 0

We notice that, in the region J—K+A > 0 and —J — K+ A > 0, independent
of the sign of J, the ground state is pure with only the presence of He3.

2 A dynamical system approach

We consider a one-sided transitive subshift of finite type (EJCS,O'), where S is a
finite set of vertices and G C S x S is an irreducible directed graph representing
the admissible transitions from one vertex to another. The main objects are
described by a dynamical system and a Holder observable that will play the role
of an interaction energy function,

EE = {x = (mk)kZO € SN : (mk,ka) eG,Vke lN},
o:35L =38, oz, x1,20,...) = (21,32,...),
H:3L—R

Here EZ’; is the set of configurations compatible with the transitions given by the

graph G, and o is the left translation. We will use the notation x £ y to indicate
the admissible transition (x,y) € G between two vertices x,y € S. We denote by
C, any cylinder of length n, that is, a set of configurations x € EJCS whose first n



Description of some ground states by Puiseux technics 5

K
112 (/) 0 } 121 o o
1(/)2 112 g 102 1212 o 12 0172 0 1/2
—FIT (=J+K-A)IT 0 1/2 0 1/2 1/2 0 0 1
e =e +... 121172 o 1/2 e—F/T:eu+1<—A)/r+m
g SOy
12][o o 1 12][1 o o
oo 10 oo 10
12|t 0 o 12/l0 o 1
—F/T_l-+e—ZJ/T+ A “FIT _q 4 29I,
1/3][0 0 1 : 1/3][1 0 o
1730 1 0 Sy LN\G 130 1 o |J
/3|1 0 O _ZA+ZA """"""" /31|10 0 1
e—F/T:i_I_z Ay, e FIT—] 404121
[i2fi2 0 12] .
3& 0 [[1/4 12 1/4 1
>y 120112 0 12 .
QL " _Fl Al . \Y;
VL e M=242& 4"+ . qu
>< ¥
W \’
N
1/4][o 0 1 olfflo 1 o 1/4][1 0 o
1/2llo0 1 0 1o 1 0 1/2][o0 1 0
1/4{[1 0 0 offo 1 0 1/4{l0 0 1
e =124 e T =142V e T =142

Figure 3: Phase diagram of the BEG model at zero temperature for A > 0. The Markov

chain structure of the ground state and the Puiseux series expansion of the free energy is
shown for each phase.

. .. .- .. G . G . G G .
symbols are prescribed by admissible transitions ig — i1 — i3 — ... = ip—1. We

use Cy,(z) or [zg,...,Ty—1] for a cylinder prescribed by zg 4 x] 4.8 Ty if
z is any allowed configuration. We call C,,(G) = {Cy(z) : x € S5} the set of all
cylinders of length n.

The transitivity of (Xf,0) (in an equivalent way, the irreducibility of G)
guarantees the uniqueness of the Gibbs-equilibrium measure pp associated to
a Holder observable H : Eg — R. Recall also that Eg is a compact metric
space equiped with the distance d(z,y) = 1 if 9 # yo and d(z,y) = (%)” if
TO = Y0y --->Tn—-1 = Yn—1, Tn 7# Yn. Let £, H : EZ’; — R be continuous observables
which will play the role of interaction energy functions. Let us recall Ruelle’s
definition of the pressure of an observable ¥ (which shall be seen as E + SH).

Definition 1. Let W : EJ(E — R be a continuous observable. We call pressure of W
the real value

Pres(V¥) := max {Ent(,u,) — /\I/ dp : pe M(Eg,U)},

where M(E+, o) denotes the set of o-invariant Borel probability measures on ¥,
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Figure 4: Phase diagram of the BEG model at zero temperature for A > 0. Numbers
in parenthesis indicate the weigth of each indecomposable (ergodic) Markov chain which
contributes to the ground state.

and Ent(u) denotes the Kolmogorov-Sinai entropy of o with respect to p

1
Ent(s) := lim ) ;@:(G) —p[C] T [ o).

More generally, for any o-invariant Borel probability measure p or o-invariant
compact set ), we call relative pressure with respect to v or €2, respectively,

Pres(U, u) := Ent(p) — /\II du,
Presq(¥) := max {Pres(lll,u) : € M(XZS,0) and supp(p) C Q}
We say that p € M(EE, o) has relative maximal pressure in Q2 for ¥ if

Presq(W¥) = Pres(¥, u) and supp(u) C Q.

Definition 2. We call Gibbs measure associated to ¥ a o-invariant Borel proba-
bility measure gy on Eg satisfying

n—1
i [Cr () Aexp< Z \I!oa —|—Pres(\I/)]>, Verg, Vn>1.
k=0
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The notation a,(x) < by(x) is a shortcut to C~a, () < by(z) < Can(x) for some
constant C > 0 independent of n and x.

It is known that, for any given Holder observable W : Eg — R, there exists a
unique Gibbs measure pg, which is also the unique o-invariant Borel probability
measure with maximal pressure:

Pres(V) = Pres(¥, py) > Pres(¥, p), VpeMEL, o)\ {po}.

For E. H : Eg — R Hoélder observables, we are interesting in the convergence
(with respect to the weak™® topology) of upism as 8 tends to 4+o0, that is, as the
temperature T = 37! of the system goes to zero.

Question 3. What are the possible weak™ limits of ppypn as f tends to +oo ?
Is there a unique limit ¢ How can one characterize them in an effective way ¢

We collect in this section several general facts related to these questions. We
will show in the next section how to improve these results when H has short range.
An immediate observation tells us that all possible weak™ limits of {154 gn } 5 need
to be minimizing:

Definition 4. Let H : Eg — R be a continuous observable. We say that a o-
invariant Borel probability measure piyin is H-minimizing if

/H(m) dftmin(z) = min { /H($) du(x) @ pe M(EE,O‘)} = H.

The constant H = [ H () dpimin(x) is called the minimizing ergodic value of H.
The set of H-minimizing probability measures is denoted by Mmm(EJGr, o, H).

It is also easy to prove that the support of all weak™ limits of {{1p45mH}g need
be included into the H-minimizing non-wandering set Q(H ), whose definition is
recalled below.

Definition 5. Let H : ZZ’; — R be a continuous observable. The H-minimizing
non-wandering set is defined by

QH) = {zeTE:¥e>0,3n21, 3263 s L
n—1

d(w,z) < ¢, d(z,0"(2) < e and | Y [H 0 o"(z) — H]| < e}.
k=0

We remark that Q(H) is a compact o-invariant set.

We now recall some general facts about the set of all possible weak™ limits of
{1e+sm}ts. When the temperature is not zero, it is standard to introduce the free
energy instead of the Ruelle pressure:

Fy(B, H) = ;Pres(E + BH).

A weak* limit of a converging subsequence of {{1g4 805400 is called a ground
state.
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Proposition 6. [11] Let H : 5 — R be a Hilder observable. A o-invariant
Borel probability measure p is H-minimizing if, and only if, its support supp(u)
is included into Q(H). Equivalently,

Monin(3G, 0, H) = {pn € M(E5, 0) = supp(p) C Q(H)}.

As we will see in section 3, for a short range energy function H, the existence
of several minimizing measures is not unusual. The next proposition states that,
by freezing the system, the Gibbs measures accumulate on special minimizing
measures. Similar results have been obtained in other contexts (see, for instance,
[3] or [15, 18]).

Proposition 7. [11, 17] Let E,H : EJ(S — R be Hélder observables. Then
any ground state fimin (any accumulation point of {pupy+sm}tp) is H-minimizing,
Supp(tmin) C QH) and pmin has relative mazimal pressure in Q(H). More pre-
cisely, when  — 400,

Pres(E + BH) + BH — Presq(m)(E),

/H dppysn — H = /H dbmin,

Pres(E, upipn) — Presqm)(E) = Pres(E, fimin)-

In particular, the free energy Fg(E, H) = —%P(E + BH) converges to the min-
imizing ergodic value H. If Q(H) supports a unique measure i, with mazimal
pressure Popy(E), then {upypn}tp converges to fimin.

The next proposition gives a class of examples where {{ g4 gp}s converges to
a unique minimizing measure.

Proposition 8. [11] For any o > 0, the set of a-Hélder H admitting a unique
H -minimizing probability measure is generic in C“. Thus {{tp4+sm}5 converges to
0 UNIQUE iy for generic a-Hélder H .

Gibbs measures have a different functional characterization in terms of the
Ruelle transfer operator. They are also called equilibrium measures.

Definition 9. We call Ruelle transfer operator associated to a Hélder observable
v Eg — R the operator Ly acting on Holder functions f : EJGr — R as follows

Cof@= 3 MWLy, Vaoesg,
y:o(y)=z
where the summation is taken among all preimages of © by o.

It is well known that, by extending the standard Perron-Frobenius theory for
nonnegative matrices, the Ruelle transfer operator £¢ admits similar “right and
left eigenvectors” that we recall in the following proposition.
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Proposition 10. [6, 20, 21] Let U : 5}, — R be a Hilder observable. Then there
exist a unique left eigenmeasure, or Borel probability measure vy on EE, a uUNiQuUe

normalized right eigenfunction, or positive Hélder function @y : EJ& — R, such
that

L*,I,V\y = epres(‘lj)%y, L\yq)\y = ePres(\I/)(I)le and /(I)\y dV\y =1.

Moreover, gy = ®yryg is a Gibbs measure and the unique o-invariant probability
that mazimizes the pressure for W among all o-invariant probabilities.

We have seen in proposition 7 that {—%P(E + BH)}s converges to H and
that any weak™® limit of {upygm}g is H-minimizing. It would be interesting to
obtain similar characterizations for limit points of {® g, sm}s or {vE+sm}s. Such
a characterization exists for {®p 5 }s: any limit point of {—% In®pigu}sis a
calibrated sub-action. Let us first recall the definition of a sub-action.

Definition 11. Let H : EJGF — R be a continuous observable. We call sub-action
with respect to H any continuous function V : EE — R such that

Voo(z)—V(z)<H(z)—H, VazeXf.
We call calibrated sub-action any sub-action V' which in addition satisfies
V(y) =min{V(z)+ H(z)— H : z € S5, o(z) =y}, VyeZf.
Similarly to proposition 29 of [11], we obtain easily the following proposition.

Proposition 12. Let £, H : ZE — R be Holder observables. Let ®pygm be the
right eigenfunction of Lpypm, let Prygn = exp(—BVeign). Then {Veigu}g is
uniformly bounded and has a uniform Hélder norm. Moreover, any accumulation
function of {Viygmu}s is a calibrated sub-action with respect to H.

If Q(H) supports a unique probability measure pufl. ~with relative maximal
pressure Presq g (E), then upigg — piL - although Min (X4, 0, H) may not be
reduced to a single measure. We nevertheless do not known whether {Vggp}g
converges or not. We intend to establish the “projective” convergence of {Vggm}s
in the particular case where 2(H) can be split into disjoint irreducible components
with a unique component of maximal pressure. The splitting up of Q(H) into
components uses the following notion of Peierls barrier.

Definition 13. Let H : Eg — R be a Héolder observable. We call Peierls barrier
the function h(x,y) defined on Zgy X Zg by

h(z,y) :=lim liminf S;(z,v),

e—0 n—+oo

where

i
L

Se(x,y) = inf{ (H—H)oo"(2) : d(z,x) < e and d(c™(2),y) < e}.
0

e
Il



10 EDUARDO GARIBALDI AND PHILIPPE THIEULLEN

The Peierls barrier may be infinite. If x € Q(H), h(x,y) is finite and Holder
with respect to y € XF. Notice that Q(H) = {z € £}, : h(z,z) = 0}. Let us
recall how the minimizing non-wandering set Q(H) can be partitioned into closed
invariant sets, which uniquely characterize sub-actions.

Definition 14. [13] We say that two points x, y of Q(H) are equivalent, and
we write x ~ y, whenever h(z,y) + h(y,z) = 0. Equivalent classes are called
irreducible components. Irreducible components are o-invariant and compact.

We now state the main result of this section.

Theorem 15. Let E,H : 5}, — R be Holder observables. Assume that Q(H) =
QoUU. .. UQ, admits a finite decomposition into disjoint irreducible components
Q, and

Presq i) (E) = Presq,(E) > Presq, (E) > ... > Presq, (E).

Let ®pypp = exp(—pVEipm) be the normalized right eigenfunction of the Ruelle
transfer operator Lpigp. Then uniformly in y € Zg, for any fized xo € g,

lim Veysu(y) — Vessu(zo) = h(zo,y), Yy € B
B——+o0
Notice that, in the above theorem, {{1g45m}s may not converge to a unique
H-minimizing measure. Indeed, any weak* limit has a support in ¢ which may
contain many minimizing measures. Notice also that the convergence of {Vg.gm}s
(as a sequence of functions) depends only on the converge of {Viigm(zo)}s for
any fixed xg € .

3 A matrix approach to ground state theory

We say that the interaction energy function H : EZ’; — R has finite range if
it only depends on two consecutive symbols H(x) = H(zo,z1). By allowing a
larger number of vertices in another irreducible finite directed graph G’, an energy
function of the form H(zo,...,z4-1) can be described by the framework we are
going to develop. The main consequence of this strong assumption on the energy
function is that the problem of zero-temperature phase diagram is reduced to a
problem of singular perturbation of matrices of Puiseux type.

We consider a finite state space S and an irreducible directed graph G C S x S
weighted by an energy function {exp[—ﬁH(w,y)]}xgy, where x,y are particular

states in S and = 5 y denotes an admissible transition given by the graph G. We
prefer to introduce a new parameter € := exp(—[3), which goes to zero when /3
tends to 400, and a one-parameter family of transfer matrices [Mc(z,y)](z4)esx5>
adapted to G, defined by

{ Mc(z,y) := exp[-BH(z,y)] = "¥), ¥ (2,y) € G,
M(z,y) :=0, V(z,y) € G.
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Notice that M, is a Perron-Frobenius matrix, that is, a matrix with nonnegative
entries. Let A¢ 1= pgpec(Me) > 0 be its spectral radius. Because of the irreducibility
of G, A\¢ is an eigenvalue of multiplicity 1. Let [Le(x)]zes and [Re(z)]zes be the
left and right eigenvector of M, for the eigenvalue A,

ZLG(:U)ME(x,y) = AcLe(y), Vye€eS,
TE€S

ZME(xay)Re(y) = AR(z), Vawebs,
yeSs

normalized by > .o Le(z)Re(z) =1 and ) .o Re(x) = 1. Notice that Le(x) > 0
and R.(z) > 0 for all z € S. Let

Re(y)

Te(z) = Le(z)Re(z) and  Qc(z,y) == Me(x,y)m,

Vax,yesS.

The Ruelle transfer operator used in the dynamical approach of section 2 is
strongly related to a basic eigenvalue problem that we recall in the following
remark.

Remark 16. Assume H(z) = H(wo,z1) has short range. Let ®gy : F — R
be the right eigenfunction of Lgy and vgy be the left eigenmeasure of Lgp. Let

par(dr) = Pgp(x)vgu(dx) be the normalized Gibbs-equilibrium measure associ-
ated to BH. Then

i. ®gp(z) = Le(z0), V = = (z0,21,...) € Tf.
1. VBH([xo]) = RE(QZ()), Y xg€S.

1. pgH 15 a Markov chain on Zg with initial law 7. and transition matriz Q..
For any cylinder of size d+ 1, one has

/LgH([a}(), L1y - ,l‘d]) = LE<HT0) [H?;&Me(l'i, xi+1)]R5(xd)/)\g.

We are interested in describing the possible limits of {(7¢, Q¢)}e—0 that we
also call ground states. In an equivalent way, we want to describe all possible
limits of the eigenvalue {\¢}—0 and the projective eigenvectors { L (z)/Lc(y)}c—o
and {R¢(x)/Re(y)}eso. As in the dynamical system approach, the ground states
are localized in a minimizing subgraph similar to the minimizing non-wandering
set Q(H) recalled in definition 5. We first begin by restricting the class of the
one-parameter family of matrices we want to study. We introduce the notion of
one-parameter family of Puiseux type in two steps.

Definition 17. Let G C S x S be a (not necessarily irreducible) directed graph
and { M }eso be a one-parameter family of matrices indexed by S. The graph G
is said to be weighted by M if Mc(z,y) = 0 whenever (x,y) ¢ G. The weighted
graph (G, M) is said to be of exact Puiseux type if there exist a nonnegative matrix
[A(z,Y)]zyes and an extended real-valued matriz [a(x, )]y yes such that

i. V(z,y) € G, A(z,y) =0, a(z,y) = 400 and M. (z,y) = 0.
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it. V (z,y) € G, A(z,y) >0, a(z,y) € R and

M(z,y) = A(xjy)ea(x,y) +0(€a(x,y)).

We say shortly M, ~ Ae®.

We call G-path of length n > 1 in S, any sequence (zo,...,x,) such that
(g, xk+1) € G,V k =0,...,n — 1. The support of a G-path (zo,...,x,) is the
subset {(zg, k1) : K = 0,...,n — 1} C G. A cycle of length n > 1 is a G-
path (zg,...,x,) in S such that x,, = z9. We call off-diagonal cycle any cycle
(xo,x1,...,2pn) such that z; # x;41 for all i = 0,...,n — 1. A simple cycle is a
cycle (xo, ..., z,) such that z; # x; for all 0 < i # j < n. Aloop is a cycle (zg, z1)
of length 1 Where (a:o, x1) € G and xg = x1. We call mean exponent of a cycle the
real number + i) S a(xz,xzﬂ)

Definition 18. Suppose that (G, M.) is an irreducible weighted graph of exact
Puiseux type with M, ~ Ae®.

i. We call minimizing mean exponent of (G, M) the real number

n—1

a —mln{ g a(xi, xiy1) :n>1, (xo,...,xn) s a cycle }
=0

We call minimizing cycle any cycle of mean exponent a.

it. We call minimizing subgraph the graph Gumin C Smin X Smin, where Smin 1S
the set of states belonging to some minimizing cycle and Gumin 1S the union
of supports of all minimizing cycles.

1. We call dominant spectral coefficient of M, the spectral radius of Amin
a = sup{|A| : X € spec(Amin)} = pspec(Amin),
where Apin = [A(z,y)1a,,.,, (T, Y)]zyes. Notice that & > 0.

Notice that a may be obtained by minimizing on the finite set of simple cy-
cles. Although we start with an irreducible graph, G, may not be any more
irreducible; G is nevertheless semi-irreducible as explained below.

Definition 19. A graph G C S x S is said to be semi-irreducible if there exist
a partition S = S1 U ... U Sy and irreducible subgraphs G; C S; X S; such that
G = G1U...UGy. Note that in G there is no transition from x; € S; to xj; € S;
for any 1 <i +# j <d. The subgraphs G; are called the irreducible components of
G.

Lemma 20. Let (G, M,) be an irreducible weighted graph of exact Puiseuz type.
Then the minimizing subgraph G, is semi-irreducible.

In the language of dynamical system, when (G, M) is of exact Puiseux type,
G min describes the minimizing non-wandering set (a) introduced in definition 5.
More precisely:
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Lemma 21. Let G be an irreducible directed graph and FE, H : EJGF — R be short
range observables. Let M, = Ae® = [exp(E(z,y))e! @V 1g(z,y)]syes. Then
(G, M,) is of exact Puiseux type and satisfies:

i. The minimizing mean exponent of (G, M) is equal to the minimizing ergodic
value of H, namely, a = H.

it. The minimizing non-wandering set Q(H) is a subshift of finite type

Q(H) = {z € T : (a0, Tr41) € Gruin, V k> 0} = BF

min

iti. The splitting up of QUH) into irreducible components (see definition 1)
corresponds to the splitting up of Gmin into irreducible components {Gi}?zl:
QH) =N (H)U...UQq(H), where
Qz(H) = {JJ S EE : (xk,a:kﬂ) S Gi, Vk> 0}.

iv. The relative pressure of E to Q(H) is related to the dominant spectral coef-
ficient of M. by & = exp[Presqg)(E)].

We now complete the notion of one-parameter family of Puiseux type.

Definition 22. Let G C S x S be an irreducible directed graph. We call off-
diagonal graph the subgraph of G defined by GU := G\{(z,z) : x € S}. Notice that
G°f is again irreducible. If (G, M,) is a weighted graph, we denote Meoﬁ(:c,y) =
Mé(x7 y)]lGaﬁ(fE, y)
Definition 23. Following the definition 17, we say that an irreducible weighted
graph (G, M) is of general Puiseuz type if

i. The irreducible off-diagonal weighted graph (G°U, Meoﬁ) is of exact Puiseur

type. Let aop be the minimizing mean exponent of (GF, Meoﬁ).

it. For each (z,y) ¢ G, A(z,y) =0 and a(z,y) = +oo (by convention).
iii. For allxz € S, (x,x2) € G and one of the two estimates holds
M. (x,z) = o(e®0) (by convention: A(x,r) =0, a(z,r) = +o0) or
M (z,z) = Az, 2)e? @) 4+ o(e @) Az, z) > 0, a(z,z) < Qoff-
Let G* .= G\ {(z,x2) € G : A(z,z) = 0} and M} (z,y) := M(z,y)lg-(z,y).
Notice that G* is an irreducible directed graph and (G*, M) becomes a weighted

graph of exact Puiseuz type. We call minimizing mean exponent a of (G, M.) the
minimizing mean exponent of (G*, M}). Let G* . be the minimizing subgraph of

min
G* and
A:mn = [A($7 y)]lGjnm (.%', y)]m,ye,&
We call dominant spectral coefficient & the spectral radius of Ay . . We call dom-

inant subgraph G the subgraph of G defined by the union of all irreducible compo-

nents of G}, of dominant spectral coefficient.
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Notice that the only difference between the two notions of Puiseux type is
that, in the weakest definition, M, may possess a diagonal term (positive or not)
of the form o(e%#). We will see soon that that these terms are negligible in the
computation of the spectral radius of M.. Notice also that

a = min{aqg a(z,x) : x € S}.

From lemma 20, the minimizing subgraph G . is equal to a disjoint union of

irreducible subgraphs: G}, = G7U... UG}, where S1U...U Sy is a partition of

rin and G C S; x S;. By just permutating indices, we may consider that the
first r subgraphs G} have dominant spectral coefficient &. In order to do that, we
adapt the notation and we say that G; C .5; x S; has dominant spectral coefficient

if the restricted matrix A%, = [A(z,y)1g, (, Y)l:yes, has spectral radius a.
Main notations 24. Suppose (G, M) is an irreducible weighted graph of general
Puiseux type. Let Gy C 81 x S1,...,G, C 8, x 8,, 1 < r < d, be the set
of irreducible components of G¥ ..~ of dominant spectral coefficient &. Let G :=
G1U...UG, be the dominant subgraph, and S := S1U...US, be the set of vertices
of G. Denote Go = G\ G and Sy = S\ S. We write M, as a (r +1) x (r + 1)

block matriz in the following way

ij=1 M @p_ MP
07 )

§:1M€] M

Meoo = [Me(~ray)]:p,y€SO; Mzo = [Mﬁ(xay)]xegi,yeso’ ng = [Me($ay)]x650,y€§j,
and Meij = [MG(x’y)]m,yegiXSj’ Vi<ij<r.

e —

We call dominant matriz A the diagonal matriz obtained by keeping only the sub-
matrices A% . with dominant spectral radius

All L. 0
A= [A(x7 y)]lé(.%', y)]w,yeg - . ’
0 --- A
A~ (A 9010, (5,05, = Ains ¥ 1= Lot

By convention all matrices AV, 1 <i# j <r, are equal to 0. Notice that
Ae :=sup{|A| : X € spec(Me)} = pspec(Me)

is an eigenvalue of mutiplicity 1 and unique on the circle {|\| = A.}. Let Le and
R be the left and right eigenvectors of M, associated to the largest eigenvalue A,

Le= @] Li® LY, Re=a]_R.® R,
> L(@)Re(z) =1, and »_ Re(z) =1,

€S zE€S

where Le 1s a row vector and R, a column vector. Consider thus

r(2) = Lo(x)Re(a), Qulr,y) = W and (. ) = 7 (2)Qu(x,y).
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For each i = 1,...,r, @ = pspec(Aii) is an eigenvalue of multiplicity 1 admit-
ting a unique positive left row eigenvector [L’(m)]me 5, and a unique right column
eigenvector [R'(x)],cg, satisfying

L'A"=a L', A"R'=a R,
> Li@)R'(x)=1, and Y Ri(z)=1.
:L“ES»; xES’i

Let @, Q% and [i; be defined on G; as follows
A% (2, y)R'(y)

7(@) = PR @), @(y) = =2 50 piley) =7 ()@ ()

We extend fi; on G\ G; by 0.

In the language of dynamical system, the main known result in this setting is
recalled in the following theorem.

Theorem 25. [7, 17, 9] Let E, H : EJCS — R be short range observables defined
on a tramsitive subshift of finite type Eg given by an irreducible directed graph G.
Let ppipu be the Gibbs measure associated to E + BH. For € = e P, consider
M, = [A(z,y)e®@Y)], yes the transfer matriz, where

{ a(r,y) = H(z,y) and A(z,y) =eP@¥ | VY (z,y) € G,

a(z,y) = +o0 and A(z,y) =0, v (z,y) € G.

We recall that ppi s weights each cylinder [xo, ..., zn] € Chi1(G) as
n—1

g0, ,@al) = Le(wo) | [T Melwr aisn) | Bean) /32
k=0

Let G1,...,G, be the dominant irreducible components of Gumin. Let [i; be the
Gibbs measure associated to E restricted to Eg,

n—1

fii([zo, - -, 2n]) = Li(20) [ I1 Aii(xk,ajk+1)}]?i(xn)/d", ¥ [%0, . . Zn] € Cos1(Gy).
k=0

Then, the family {pp+pH}p converges to

T
EH . _ s =S P,
Hinin = ln_ppsn = 3 e
1=

EH _  EH A r BEH _
where ¢; " = p, 0 (Gi) >0 and Y )¢, = 1.

The existence of the limit in theorem 25 is the main point and was proved by
Brémont in [7] using semi-algebraic technics. Leplaideur in [17] gave a dynamical
proof and has identified the limit as a barycenter of minimizing measure of maximal
pressure. Akian, Bapat and Gaubert (see [1, 2]) using min-plus methods have
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obtained similar results. Chazottes, Gambaudo and Ugalde in [9] gave a more
algorithmic proof. Nekhoroshev has obtained [19] the convergence to a ground
state for generic one-dimensional spin systems with nearest neighbors interaction.
Chazottes and Hochman in [10] showed a counter-example for the convergence of
Gibbs measures associated to a long range interaction.

We intend to partially extend theorem 25 to the case of irreducible weighted
graphs (G, M) of general Puiseux type. We explain the first two steps of an
algorithm based on Puiseux-series expansions. These two steps are enough to
describe the limits lim._,g Te = Tmin and lime_9 Q¢ = Qmin for matrices of small
dimension. The main difficulty is to identify which irreducible components of

rin SUPPOTt fimin. The first step consists in writting M, in a normal form; this
step makes use of the notion of correctors (equivalent to the notion of sub-actions
introduced in definition 11). The second step consists in aggregating all the states
in the same irreducible component, obtaining thus a new weighted graph with a
lower dimension.

Definition 26. Suppose that (G, M) is a weighted graph of general Puiseux type,

M. ~ Ae®, G . is the minimizing subgraph of G*, and @ is the minimizing mean

exponent of (G, M.). We call corrector any function v : S — R such that
CL(IE,y) ZU(y)—'U(x)—FC_L, v (x,y) €G".
The corrector is said to be backward or forward calibrated if

v(y) +a= minx:(z,y)EG* {v(@) +alz,y)}, YVyesS (backward),
v(T) — @ =maxy. g yeq-1v(Y) —a(z,y)}, YxeS (forward)

It is said to be separating if

a\r,y —v(y)—v(m)—i—d, v <$,y) EG;’L’L'TH
a(z,y) >v(y) —v(z)+a, V(z,y) € G\ G

It is easy to show that separating correctors exists. We just want to make clear
that this notion is a key part to understand the singular perturbations of Perron
matrices.

Lemma 27. The notations being given in definition 26, there exist (not necessarily
unique) backward or forward calibrated correctors. There exist (not necessarily
unique) separating correctors. The difference of two correctors is constant on each
irreducible component.

The first step of the algorithm is described below.

Algorithm 28 (I. Reduction to a normal form). Let (G, M) be an irreducible
weighted graph of general Puiseux type, M ~ Ae®. From main notations 24, recall
the partition of S into dominant and non dominant indices: S = U;’Zlgi U Sp.
For v : S — R a separating corrector, denote A (v) := diag[e"® : z € S] and
a(z,y) == a(x,y) +v(r) —v(y) —a >0 for all (x,y) € G*. Then
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o M, := A (v)MA(v)" e @ = A

min

+ N, and N, = o(1);

o A¥. = [j(é]l 10)], where A := diag[A¥ : i = 1,...,7] is the diagonal matriz
of dominant matrices 1_21”', and D is a nonnegative matriz indexed by So such
that pspec(D) < pspec(AM) = ... = pspec(A™");

° (G"ﬁ , M:ﬁ ) is an irreducible weighted graph of exact Puiseuz type;
o V(z,y) € GU, M(z,y) ~ Az, y)e" ™), A(z,y) >0, a(z,y) > 0.

Wa say that (G, M,) is a normal form of (G, Me). Let ég and R denote the left
and right eigenvectors of M for Ae := pspec(Me). Then A = A€ % and

Le(z) = e @ L(z) and Re(z) =@ R (z), Vzes.

The following proposition extends proposition 7 in the sense that we admit a
more general form of transfer matrix.

Proposition 29. Let (G, M,) be an irreducible weighted graph of general Puiseux
type. Then

1. Ae ~ Qe?;

i pie(x,y) — 0 for all (z,y) & G, me(z) — 0 for all x € Sp;

iii. any accumulation measure fi of (fe)eso is of the form =" i(G;)i;.

We recover the fact that, if G}, admits a unique irreducible component of
dominant spectral coefficient (r = 1), then pe — fi1, me(z) — 7'(z) for all z € Sy
and 7 (z) — 0 elsewhere.

The second step of the algorithm is an operation of aggregation.

Algorithm 30 (II. Reduction to an aggregated form). Let (G, M) be an
irreducible weighted graph of general Puiseux type. Assume that (G,M.) is a
normal form of (G, M¢). We write

T — Zj=1]~\zg f:}MeiO = A0 + N,
e MY M 0o DT

(Notice that A(z,y) = A2, Y)a(2y)—0 for all x,y € S=51U...US,.) The right
etgenvector R. is solution of the system

S, LR+ R
Sy MY RI + NMORO
As pspec(J\;IGOO) — Pspec(D) < @ ~ Ae, RS can be written linearly with respect to Ré
We thus obtain
IS
S (817 + NP5 — 319510V B = A
j=1
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We take the scalar product of each equation by the left eigenvector L. We extract
the dominant term A and obtain a new weighted graph (G(l),Me(l)) indexed by
SW .= {1,...,r} defined in the following way. Fori # j, let P(i,7) denote the set
of G-admissible paths x = (xq, ..., T,) such thatn > 1, 29 € S, x1,...,Tp_1 € So
and x, € S’j. Then

o foralli#j, (i,5) € GU if, and only if, P(i,j) # 0;

o foralli=1,....r, (i,i) € GY (by convention);
o M0, j) = L (NZ + MO = N2°) 1 ) L

The new eigenvalue problem is related to the previous one by

> MG HRV(G) = A —a)RMG), RO()=L'R, Vi=1,..r
j=1

We say that (GO, Me(l)) is an aggregated form of (G, M.). Note that y_;_, Rgl)(i)
may not be equal to 1.

Proposition 31. Let (G, M) be an irreducible weighted graph of general Puiseux
type. Let (G(l),Me(l)) be its aggregated form defined by the separating corrector
v:S —= R Ifa(z,y) = a(z,y) + v(x) —v(y) —a for all (x,y) € G* and x =
(zo,...,xn) belongs to P(i,7), denote a(zx) := Z?;ol a(zi, xiy1). Then
1. (G(l)oﬁ, Me(l)oﬁ) s an irreducible weighted graph of eract Puiseuz type, with
Me(l)off ~ A(l)ea(l), where, for all (i,7) € Gl

aM (i, §) := min {a(z) : z € P(i,j)} and

Z Ei(xo)ﬂz;éA(xk, $k+1)Rj(£L‘n)'
an(z)—1 ’

A(l) (7‘7 .7) =
=(x0y,Tn )EP(4,5)
a(z)=aV (i,5)

ii. foralli=1,...,r and x,y € S;,

~

Li(z) €@ Li(x)
Ly ~ e T

i —v(x) pi
—~ and Re'(w) ~ & }?(x) :
() Ri(y) W Ri(y)

iii. foralli#je€{l,...,r} and x € S;,
Qe(z,y) =+ 0, VyeS;USy,  Qclz,y) = Q"(z,y), Vye S

Notice that no estimate is given in the previous proposition for the quotients
Ri(z)/Rl(y) if z € S; and y € Sj.
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Algorithm 32 (ITI. Induction). Assume by induction one can prove

(), .
E%ﬁl~¢nmﬁémwh Vi=1,...,r
Re7(4)
for some real coefficients YV (i,j) = v (5,41)"" > 0 and <M (i,5) = —cW(j,1).
Notice that proposition 31.ii easily implies
Rﬁl(x) ~EE) R, viel,...n Vaess
RV LR

Let G’ be the graph containing either (x,x) for x € Sy or (xg,xy) if (xo, ..., xy) I8

a path of GN(Sy x Sp) such that D(xy, xp+1) > 0. Let M! = (A — M)~L. Then
(G', M) is a weighted graph of exact Puiseuz type (see lemma 48). It follows that
RQ(HC) _ i(j‘ﬁ . MEO)—IMGOJ’ Rl

(1)
(2) ~ /M (@)e @
Rgl)(l) j=1 Rgl)(l)

for some coefficients YV (z) > 0 and ¢V (z) € R. One thus may obtain
R(x)
Re(y

)
for some real coefficients y(x,y) = v(y,z)"' > 0 and c(x,y) = —c(y,z). The
normalization ), g Re(x) = 1 then implies
1

~y(z,y)e@Y) . Vayes,

R (x) = ~p(x)e® . Vel with

R
ZyES R gz%

-1
p(z) = ( E ’y(y,x)) and r(x) :=maxc(z,y).
yeS
y=arg max c(z,y)

Similar equivalences can be written for Le(x) and Qc(x,y). In particular, the limits
lime 0 me(x) and lime_0 Qc(x,y) exist for all x,y € S.

4 Proofs of results stated in section 2

We begin by proving the results of section 2 for a transitive subshift of finite type
(Eg, o) defined by an irreducible directed graph G on a finite state space S. Let
E H: Eg — R be two Holder functions. Proposition 7 has been noticed many
times as in [11, 17]. We nevertheless give the proof of this proposition in order to
point out the following inequalities.

Lemma 33. For any 8 > 0, Presqs)(E) < Pres(E + 8H) + BH < Pres(E). If
LE+sH 15 the Gibbs-equilibrium measure of E 4 BH, then

0< ﬁ(/Hd,uE+5H - fI) < Pres(E) — Presqmy(E), and

Presq)(E) < Ent (up+sn) — /E dpp+pH-
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Proof. On the one hand, if pmiy is any H-minimizing probability with relative
maximal pressure in Q(H), then

Presq ) (E) — SH = Ent(imin) — /E dp — BH =
= Ent(fmin) — /(E + BH) dpimin < Pres(E + SH).

On the other hand,
Pres(E + fH) = Ent(up1pm) — /(E + SH)dppypgn, either

< Ent(up+ipn) — /E dupysn — BH, or

< Pres(E) — B/H dpupysu < Pres(E) — fH.

Proof of proposition 7. We first remark
_ 1
0< /H dupspar — H < E[Pres(E) — Presq ) (£)]

implies that {[H dugipn}s converges to H as 8 — 400 and that any weak*
limit of {ptp18m } g is actually minimizing for H. Let jo be a weak™® accumulation
probability. We next observe that the upper semi-continuity of the entropy map
B+ Ent(pp4pm) implies

PreSQ(H) (E) > Ent(/V%O) - /E dﬂoo

> lém sup (Ent(/«LE-i-,BH) — /E d/LE+ﬁH> > PI"QSQ(H) (E)
—+00

All inequalities in the previous estimate are therefore equalities and lim sup should
be understood as a limit. O

The rest of this part is now devoted to the proof of theorem 15. We first give
some complements on the Peierls barrier. As usual, define the Birkhoff sum of an
observable U : Eg — R as

n—1
SpU(z) = Z\I! ook(x), Vxe .
k=0

Lemma 34. Let h(z,y) be the Peierls barrier introduced in definition 13.
i. The function h : Eg X Eg — RU {400} is lower semi-continuous.

i. If V: 3§ = R is a continuous sub-action, V(y) — V(z) < h(z,y).
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ii. For any x € Q(H), h(z,-) : S5 — R is Holder (and finite).
iv. For any x,y,z € X5, hix,z) < h(x,y) + h(y, 2).

v. For anyy € X5, h(-,y) : Eg — RU {+00} is a coboundary of H — H,

(H — H)(x) + h(o(z),y) = h(z,y), Va,y€TL.

vi. For any z € X}, 0™(z) € Q(H) = h(z,0"(z)) = Sp(H — H)(z).

Proof. Ttems i, ii, 41 and v are well known and have been discussed, for instance,
in [11, 12, 13].

Item v. Suppose € € (0,1). If 2’ is close to o(x), d(z',0(x)) < €, one can
find z close to z, d(z,z) < €/2, such that o(z) = 2’. Hence, if osci(H,n) :=
sup {H(z) — H(y) : d(z,y) <n}, then

S/h (@) < (H — H)(x) + S(o(x),y) + osci (H, ¢/2).
Conversely, if d(z,z) < €, then d(o(z),0(x)) < 2¢. Therefore
Sn(@,y) > (H = H)(z) + Sy (0 (x),y) — osc1(H, ).

Item v is proved by taking liminf, . first and lim._,q afterwards.
Item vi. From the previous item, we have by induction

Sn(H — H)(x) + h(c"(2),y) = h(z,y).
If y=0"(x) € Q(H), then h(y,y) = 0 and item vi is proved. O

From now on the minimizing non-wandering set Q(H) can be decomposed into
a disjoint union of irreducible components Q(H) = QpU. ..U, (see definition 14).
Each €; is necessarily closed and invariant. We fixed once for all z7 € €;. We
recall that Q; = {z € ¥} : h(z,2}) + h(z},2) = 0} and that, for any i # j,
h(x}, x%) + h(z}, z7) > 0.
Lemma 35. Assume Q(H) = Qo U ... UQ, is a disjoint union of irreducible
components. Let V : Eg — R be any continuous sub-action. Then

i. The quantities hy (i, j) := h(z},x7) — V(x}) + V(z]) are nonnegative and

independent of the choice of x} € ;.
i. hy(i,i) =0 for alli=0,1,...,r.
iii. If hy(0,5) = 0 for all j = 1,...,r and V is a calibrated sub-action, then

V(y) = V(z) = h(z,y) for all z € Qy and y € B, that is, V is unique
provided V (xq) is known for some xy € Q.
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Proof. Ttem i. Let hy (z,y) := h(z,y) —V(y)+V(z) > 0 for all z,y € I/;. Hence,
x ~ yif, and only if, hy (z,y)+hy(y,x) = 0if, and only if, Ay (x,y) = hy (y,z) = 0.
Suppose z, 2", y,y € Q(H) satisfy z ~ 2’ and y ~ y'. Because of lemma 34.7v,

hy(z,y) < hy(x,2") + hy (2’ y) = hy (2, y).

Equivalently hy(2',y) < hy(z,y) and thus hy(z',y) = hy(z,y). For the same
reason, hy (z',y) = hy(2',y"). We just have proved hy (z,y) = hy (', ).

Item 7. It is immediate from the definition of hy .

Item 44. From [4, 12], calibrated sub-actions have the following characteriza-
tion V(y) = min{V(z) + h(z,y) : = € Q(H)} for all y € =f. Then, for any fixed
o € Qp, on the one hand,

V(y) = min min[V(x) + h(z,y)]

J=0,...,r x€QY;
> 'n(r)lin Helgl [V(z) = V(o) + h(z,x0)] + V(z0) + h(x0,y)
J=0,...,r z€Q;

= V(zo) + h(z0,y).

On the other hand, because V is a sub-action, h(zg,y) > V(y) — V(zp). We have
proved that V(y) = V(z) 4+ h(z,y) for all z € Qy and y € T/, O

Let ®pipn = exp(—pVeipn) and vpig, be, respectively, the eigenfunc-
tion and the eigenmeasure of the Ruelle transfer operator Lpgy, normalized
by [®pipndvessn = 1. We know that {Vgism}s has uniform sup-norm and
uniform Hélder norm. Let Vo, be any accumulation point in the C° topology.
Proposition 12 tells us that Vi, is calibrated. We assume that Presq,(E) >
Presq,u..uq, (E). We want to prove that Vo (y) — Voo (z) = h(z,y) for any = € Qo
and y € EJ(';’ which will show that, for any fixed xy € Qo,

Vit+sr (y) — Verpa (z0) = Voo (y) — Vo(xo), uniformly in y € Eg.
That convergence will indeed follow from lemma 35.4% and the next lemma.

Lemma 36. Let V : Zg — R be any sub-action and hy(i,j) be defined as in
lemma 35. Assume, for_anyj =1,...,r, there exists it = 0,1,...,7r, i # j, such
that hy(i,7) = 0. Then hy(0,5) =0 forall j=1,...,r.

Proof. Assume by contradiction that hy(0, 1) > 0 for some j; = 1,...,7. Define
J:={j=1,...,7 : hy(0,5) > 0}. Notice that if j; € J and hy (ja, 1) = 0 for
some jo = 0,1,...,7, jo # j1, then necessarily jo # 0 and js € J. By hypothesis,
one can therefore construct a sequence ji, js,... € J such that

. =hv(js,j2) = hv(j2,51) =0 and jri1 # jr-

Because the number of irreducible components is finite, there exist two distinct
indices s < t such that hy(ji,ji—1) = ... = hv(Jsi1,Js) = 0 and js = j;. We
obtain, for instance, hy (js, jss1) = 0 = hy(jsi1,Js), which is in contradiction
with Q;_ ., # Q.. O
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In order to be able to apply the initial assumption of lemma 36, we fix from
nowonj=1,...,7, Q=Q;and Q = Ui»;$2;. Clearly, Q) and Q are disjoint closed
invariant sets and Presq(E) > Presg(E). We want to show that

min{h(z,y) — Voo (y) + Vao(z) : 2 € Qand y € Q} = 0.
We begin by introducing some notations.

Notations 37. Let V : EJGF — R be any Hélder sub-action. Consider the function
hV(way) = h(l‘,y)—V(y)—FV(l’) 207 V%yEEJr,

which is the Peierls bgrrigr of the observable Hy := H —H —V oo +V > 0.
Assume that Q(H) = QUQ is a disjoint union of two closed o-invariant sets with
Q irreducible. For e > 0, denote

Ky (Q,e) :={z e XLt 3ye Q st hy(z,y) <e}

We will need to approximate Press(£) by the pressure of E restricted to
transitive subshifts of finite type ¥4 D Q which decrease to €2. In order to introduce
them, the following notion will be useful.

Definition 38. A closed o-invariant set 0 C Zg s said to be quasi-transitive if,
or any x,y €, for any € > 0, there exist z € % and an integer n > 0 such that
G

d(z,x) <e, d(c™(z),y) <e and d(c"(2),Q) <e, YEk=0,1,...,n.

Lemma 39. Any isolated irreducible component Q of Q(H) (there exists an open
set U containing 2 such that U N Q(H) = Q) is quasi-transitive.

Proof. Let V be any Holder separating sub-action, namely, a Holder sub-action
such that H,*(0) = Q(H) (for details, see [13]). For € > 0, let U and U, be
neighborhoods of size € of Q(H) and £, respectively. Assume e is sufficiently small
enough so that if z € U, and k > 1 is the first time such that o*~1(2) e U,
and o%(z) ¢ U, then o%(z) ¢ U.. Let n > 0 sufficiently small enough so that
{z € £} : Hy(z) < n} C U.. Since Q is irreducible, given z,y € €, there exist
infinitely many positive integers n and points z, € ZE such that

d(zn,z) <€, d(c"(zn),y) <e and S,Hy(zn) <n.
Since 2, € U. and Hy o o (zn) < m, then o¥(z,) € U.,.Vk=0,1,...,n. d

Lemma 40. Let Q be a quasi-transitive closed o-invariant set. Let ﬁd~be the
union of all cylinders B = [xo,21,...,24-1] of length d such that BN Q # 0.
Consider g = {z € X%, : 0™(x) € Uy, ¥V n >0} D Q. Then

i (id, o) is bi-Hélder conjugate to a transitive subshift of finite type.
11. There exists a constant C’d > 0 such that

Crt< Z exp[—Sn(E + Presg (E))(2)] < Ca, YyeXg Vn>0.
Z‘Eid
o™ (z)=y
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iti. limg, o0 Presg (E) = Presg(E).

Proof. Ttem i. Let S(d) be the set of cylinders [zo, ...,2q-1] which have a non-
empty intersection with . Let G(d) C S(d) x S(d) be the graph defined by the
transitions

G(d ,

G
(20, ..\ Ta—1] ), .., 2) & (z1,...,2q-1) = (2}, ...,2)_;) and z4_1 = 2.

Let 22 (@) be the subshift of finite given by the graph G(d (d). Thus Z &) is transitive

since € is quasi-transitive and ¥ T is bi-Holder conjugate to P by the conjugacy

G(d)
{[1'87 R 95371]%20 — {‘/E(T)L}TLZO-

Item ii. This estimate is true for any transitive subshift of finite type, being
invariant under topological conjugacy.

Item 7. Since Q C X4, we have on the one hand Presg(E) < Presg (E).
On the other hand, if jiy; denotes the equilibrium measure associated to the ob-
servable E : ¥; — R and fico denotes an accumulation point of {fig}d—+co, then
supp(fice) C € and

lim sup Presg, (E) = lim sup Ent (f1q) /E dfig

d—+o0 d—+00

< Ent(fico) — /E dfice < Presg(E).
We have proved that Presg (E) — Presg(E). O

Lemma 41. Consider the decomposition Q(H) = QU as in notations 37. For a
Hilder sub-action V : £, — R, assume min{hy (z,y) 12 € Q and y € Q} > ¢ > 0.
Then

i. KV(Q,G) is closed, invariant and disjoint from Q. Moreover,

S, Hy(z)<e, YazeKy(Qe),VYn>0.

i. If U D Q is open and disjoint from Q, then

sup card{j =0,1,...,n—1 : o/(z) €U} < +oc.
z€Ky (Qe), n>1

(Every orbit of Kv(Q,€) stays most of the time in U.)

iii. If C(n) = sup{ Z exp[—Sp(E + Presg(E))(x)] 1 y € Q} for
zeKy (Qe), o™ (x)=y
every n > 1, then limsup,,_, % In é(n) <0.
Proof. For simplicity, denote K = Ky, (Q, €).
Item i. Since h(z,y) is lower semi-continuous and Q is compact, we deduce
that K is closed. From lemma 34.v, we have

hV(U(‘T)hy) < HV(‘T) + hv(O'(IL'),y) = hV(xvy)a v T,y € EE
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In particular, hy (z,y) < € = hy(o(x),y) < €, which shows that K is invariant.
Iterating this last formula, we also obtain

SnHV(x) < SnHV(‘T) + hv(O'n(I‘),y) < hV(xay)v v T,y € EJGr

Hence, S, Hy (z) is uniformly bounded on n > 0 and z € K.
Item ¢i. Suppose by contradiction there exist a sequence of points {xy, },>1 of
K such that
card{j =0,1,...,n: 0’ (z,) ¢ U} — 4o0.

Let ng > m1 > --- be a sequence of positive real numbers decreasing to 0. Let
{Bi(n0)}: be a finite cover of K'\U by balls of radius 79. One of these balls contains
infinitely many points of {o7(z,) : j = 0,1,...,n, n > 1}. More precisely, there
exist a subsequence {Zy,(n)}n>1 (With ko : N — N increasing) and a ball B, of
radius 79 such that

card{j =0,1,...,ko(n) : aj(xko(n)) € B;,} — +o0.

By covering B;, by balls {B;(n:1)}; of radius 7, one can extract a second subse-
quence {Zpgok, (n) }n>1 (With k1 : N — N increasing) and choose one of these balls
B;, so that

card{j = 0,1,..., koo ki(n) : Uj(a:kookl(n)) € B;,} — +o0.

We continue by induction. Let k7(n) = kg o...okj(n) and z be an accumulation
point of {B;;};>0. Let

_ J J J J —LJ
0=sp <81 <. <1 < Spign) = K (n)
be the successive times {sf };i(ln)fl such that o (Tgi(n)) € Bi;. By construction

7 (n) — +o0. Notice that

7 (n)—1 )
J
D Sy 00T (@hsn)) = Sy Hv (2hsn)) < €
1=0
Therefore, for infinitely many indices j, one can consider z; := O'S{(.’L'kj(n)) and
nj = s, — s for some l =1,...,77(n) — 1 in such a way that S, Hy(z;) — 0.

As zj,0"(2j), 2z € B;; and diam(B;;) — 0, we have proved that z € Q(H) = QuUQ.
Since z € K\ U and K \ U is disjoint from Q and Q, we obtain a contradiction.

Item iii. Let S(d) be the set of non-empty cylinders of £ of size d and
G(d) € S(d) x S(d) be the graph whose transitions are given by

G(d G
[zo, ..., Tq-1] o (20,2 & (21,...,0q-1) = (2},...,2);_1) and z4_1 = /).
Denote the oscillation of the Birkhoff sums of E by

oscn(E) = sup{S, E(|yz)) — SnE(|7y)) :

’Y,I,y
G(d G(d
Y=V_p...U_9U_1, V_1 LQ z and v_q LZ v},
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where |yx) is the concatenation of a finite G(d)-admissible path v = v_,, ... v_2v_3

in S(d) and a point x in EJCS, and v_q Cﬁg x just denotes v_1 Cﬁ; [0y ..., Tq-1]
Hence, if v_; = [vgi,...,vd_gl] € S(d),i=1,...,n, then

lvz) = (v°,,,..., 0%, 20, 21,...) € .

/

More generally, if y =v_,,...v_y and v/ =o', ...v" | are G(d)-admissible paths

of length n and n’, we say that v can be concatenated to ' if v_1 (ﬁ; v’ ,,. Write
then v/ =v_p...o0" ... 0 ;.

As in the proof of lemma 40.i, we also consider S(d) the set of vertices
(20, ... ,24_1] € S(d) such that [zg,...,zq_1] NQ # O and the subgraph G(d) =
G(d)NS(d) x S(d). We choose once for all a finite set Fd of G(d)- admissible paths

which connects all vertices of S(d) to all vertices of S(d). Given y € €, each
inverse branch of order n of y can be written as = = |yy), where y = v_, ... v_1 is

G(d

a G(d)-admissible path and v_; L; vo := [Yo, - - -, Yd—1]. We partition v into sub-
paths so that alternatively ~9; is a path in S(d) and 72,41 is a path in S(d) \ S(d).
More precisely, we consider 7 = 7, ...7170 as concatenation of paths v; of length
n; (possibly ng =0 if v_; & S(d) and ~p is the empty path) in such a way that

Y0 = V_(ng) - - - V—(1) is a path in S(d),

Y1 = V_(ng4ny) - - - V—(no+1) 15 a path in S(d) \ S(d),

Y2 = V_(—ngtni4ng) - - V—(no+ni+1) 15 @ path in S(d), et cetera.
We associate to each such an inverse branch v a new path 4 in S(d) of the form
¥ = 9 ... %0, given by the concatenation of paths 4; of length n; such that Jo; = v9;

and each sub- path Y2i+1 outside S (d) has been replaced by a sub-path 72,41 =
V(R binisn) -+ » V— (oot tiing+1) 1L S(d) chosen in T'y so that

- G(d G(d }
U (fg+...4i1g;+1) U_ (Ro+...+72i) and v_ (fo+...+M2i+1+1) U_ (Ro+...+N2i41) "

Let n =ng+ ny ...+ 7, be the length of the path 4. Denote z; = |vivi—1 ... YY)
and Z; = |¥%i-1 - - - Joy). We want to compare

E(lvy)) ZsmEa:Z and  SiE(|7 ZSWE

Either ~; corresponds to a path outside S(d), then
Sni B () > S5 E(%;) — (ni + 73) [ B oo

or ; corresponds to a path inside S (d), then 3; = v;, Z; and x; have the same
symbols during a period n; = n;,

Sn, E(x;) > Si, E(%i) — oscy, (E).
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Let Ly be the maximal length of paths in I';. Then

E(lvy) = SaB(17y)) = Y ni(1+ La)|[Ellee — Y, sup, oscy(E

i odd i even

Since card{i : i even} < card{i: i odd} +1<2) . .47, we obtain

SnE(1vy)) = SaB(17y)) = [(1+ La) | Ellsc + 2s5up,, 05¢a(E)] Y ns.
i odd

We assume from now on that the inverse branch z = |yy) belongs to K. From
item 44, we know that >, i4ni < N, is bounded by a constant independent of x
and n which only depends on the neighborhood of Q, Uy = U{C : C' € S(d)} for
d sufficiently large enough. Notice that

Z n; < Z Ly < Z n;Lg < NgLyg.

i odd i odd i odd

We obtain in particular 7 = >, _,7; € [n — Ny,n+ Ndf/d].

In the previous construction, we associate to each inverse branch = = |yy) € K
of length n of y a new inverse branch £ = |Jy) of length 7n for the subshift of
finite type (f]d,a) as defined in lemma 40. Since the association x — & is not
injective, we want to bound from above the cardinal of each fiber. Hence, if 4 has
lenght 72 > 3Ny, fix a partition I, U...U Iy of {—#,...,—1} into r + 1 disjoint
consecutive intervals, with r € {1,..., 3Nd} in order to determine a decomposition
¥ = Jr ... 7o such that 4; has lenght card(/;). The possible v = 7, ... 0 associated
to 4 = 4, ... 40 must have lenght n € [ — NyLg, 7+ Ny and each ;1 has lenght
at most Ny. The cardinal of each fiber is thus bound from above by

o Na N, 3N e 5
[Nd(Ld+1)+1}<Z(card(5))k) > (T) < O 3N
k=1 r=1

for some constant C’& depending only on d. Let

Clf = Clexpl((1 + La)|| Elloo + 25up, osc,(E)) N-

Then
_ ~ ’n-i-NdZd
Z exp[—SpE(z)] < CY n3Na Z Z exp|—SiE(T)].
zeK, on(z)=y n=n—Ny Z€%4, o™ (Z)=y

Denote C"f' := C"[Ny(Lg+1)+1]Cy eXp[Ndf]dPresid(E)], where Cy is the positive
constant given by lemma 40.4i. Therefore, we get

Z exp|—SpE(z)] < C’él" n3Na exp[nPresid(E)].
zeK, on(z)=y
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Since Press, (E) — Presq(E), we finally obtain

lim sup 1 In (sup{ Z exp|[—Sp (L + Presg(E))(x)] 1 y € Q}) <0.

n
nohee zeK, om(z)=y

O

In order to prove theorem 15, we summarize in the following proposition the

main technical result, which consists in relating the pressure of disjoint parts of the

minimizing non-wandering set 2(H) and the levels of the Peierls barrier h(zx,y)
between these parts.

Proposition 42. Let E, H : ZJGF — R be Hélder observables. Assume Q(H)
can be written as a disjoint union Q(H) = QU Q of two closed invariant sets.
Assume Q is irreducible. Let Vs, be any accumulation point (in the C° topology)
of {VE+8H }s—+00 where iy = exp(—Vgipm) is the right eigenfunction of the
Ruelle operator Lgygp normalized by [®pi sy dvpygn = 1. Then

Presq(E) > Presq(E) = min _h(z,y) — Voo(y) + Voo(z) =0
z€Q, yeQ

Proof. By contradiction, we suppose that

min _hy,_(x,y) > € > 0.
e, ye

Let K = Ky (Q, €) as in notation 37. We consider ®p gy as an eigenfunction of
L%, sy for some n = n(B3) that will be chosen later. Given y € €2, we thus have

1= > exp[—BSu(H — H— Veipm oo+ Veipu)(z)]

xGEJGr, o (z)=y

exp[—S, E(x)] exp|—n(Pres(E + SH) + BH)).
We split this sum into two parts
I = Z o, I = Z
zeSE\K, om(z)=y zeK, o™ (z)=y

We choose 8 large enough so that ||[Veism — Velloo < 1n, with 1 < € to be
determined. From lemma 34.vi, we have S, Hy._(z) = hy._(z,y), which yields

Su(H — H = Vpipn 00+ Vpspn ) (2) = by, (2,y) = 2| Veran — Vaolloo-
We recall from lemma 33 the following inequalities
Presq iy (E) < Pres(E + SH) + SH < Pres(E).

We also recall how to compute the pressure using a counting argument on inverse
branches (C' = exp[2||VE||oo])

C ! exp[nPres(E)] < Z exp|—SpE(z)] < Cexp[nPres(E)].

J?EEE, o (z)=y
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Therefore, the first part can be bounded from above in the following way
€
I' < Z exp[—,8§} exp[—Sn E(x)] exp[—nPresq ) (E)],
zezg\K, on(z)=y
< Cexp[—ﬁg] exp[n(Pres(E) — Presq g (E))].
The second part is bounded from above using the estimate of lemma 41.4:
1" < Z exp[ﬂg]exp[—SnE(x)] exp[—nPresq i) (E)],

zeK, on(z)=y

< C(n) exp[ﬂg] exp[n(Presg (E) — Presq(E))].
We now choose 1 and n = n(3) so that

€
—55 + n(Pres(E) — Presqm) (E)) < —ng,

Bg — n(Presq(E) — Presg(E)) < —ng,

that is, /2 < Presg(F) — Presg(E) and

n/2 n €/2
Presg(E) — Presg(E) — /2 <3< Pres(E) — Presq(E) +1/2’

We thus have obtained, for a subsequence n — 400,
1=1+1"< (C+C(n) exp[—ng] 0,

which is clearly a contradiction. O

Proof of Theorem 15. As before, we fix an accumulation point Vo, of the se-
quence {Veigm}g—+oo. Let Q(H) = Qo U...Q, be a disjoint union of irreducible
components. By hypothesis, Presq,(E) > Presq,u..q,(F). For j = 1,...,7, de-
note @ = U;j»;Q and Q = Q;. Since Presg(E) > Presg (E), proposition 42
implies hy._(i,7) = 0 for some i # j. Lemma 36 shows that hy._(0,5) = 0 for all
j=1,...,r. Since V, is calibrated, lemma 35.77 implies finally

W0, y) = Voo (y) = Veo(20), ¥ 20 € Qo, ¥y € 3.
If g € Qp is fixed, the sequence {Veisu(-) — Ve4su(20)}s—+00 has a unique
accumulation point h(xo,-) and therefore converges. O
5 Proofs of results stated in section 3

We study in this section the algorithmic aspects of singular perturbations of Perron
matrices of Puiseux type. We start with a weighted irreducible graph (G, M) of
(general) Puiseux type (recall definition 23) and we write formally M, ~ Ae“.
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The first step of the algorithm consists in conjugating M, by a diagonal matrix
diag[e"®) : z € S] so that all entries in S x S\ G* . are negligeable with respect
to €. The construction of the corrector v(x) is performed in two steps: v(zx) is a
calibrated corrector in the first step and separating in the second one. A Peierls
barrier hq(z,y) between two vertices is introduced as in definition 13.

Definition 43. Let G C S x S be an irreducible graph and a : G — R be a weigth
on each edge. The Peierls barrier (associated to a) between two vertices x,y € S
1s defined by

n—1

ha(z,y) —mm{z a(Tg, Trpe1) —a) :n > 1,
=0
(xo,...,2n) is a G-admissible path, o =z and x, = y}

Notice that it is enough to minimize on simple path: thanks to the choice of
the constant @, each cycle (zo,...,x,) satisfies 33—y (a(zg, zp11) — @) > 0 and
may be eliminated from the sum.

We summarize several properties of hy(z,y). Item vi of the following lemma
gives the definition of the irreducible components of G,,;, and proves lemma 20.

Lemma 44. Suppose (G, M,) is an irreducible graph of exact Puiseux type, with
M, ~ Ae®, and hq(x,y) is the Peierls barrier associated to a : G — R. Then

i. ¥ (zo,...,Tn) G-admissible path, he(xo,zy) < Zz;é(a(xk,ackﬂ) —a).
it. YV x,y,2 €8S, ho(z,2) < ho(z,y) + ha(y, 2).
iti. Vx €8, ho(x,z) > 0.

. Vo €S, holr,z) =0 x € Spn.

v. A cycle has a support in Gy if, and only if, it is minimizing.

V. Gin 18 semi-irreducible and its irreducible components are given by the
equivalence classes of the relation

V' 2,y € Smin, T~a Y S ha(x,y) + ha(y7x) =0

< x and y belong to the same minimizing cycle.

Proof. Items ¢, i, 7i and iv are obvious from the definition of A,.
Item v. By the definition of Gy, the support of all minimizing cycle is

included in Gypj,. Conversely, let (zg,...,x,) be a cycle of Gpin. Each (zg, xp11)
is the initial segment of a minimizing cycle (z(’)“, e ,z];k) with pr > 2, zé‘ =z, and
2§ = z41. The union of the supports of these minimizing cycles can be written
as a union of the supports of two (a priori not minimizing) cycles (zg, z1,...,xy)
and
-1 -1 _n-2 -2 0 0
(Y051 Ygn) = (B1 7 s 2y 2L e 2 s Bl Zpy)
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of length ¢, = po + ...pn—1 — n. Since

n—1 pk—l n—1 Q7L_1
0=3 "> (alzf,2f) —a) = > (alwr, zp1) — @) + Y (alyr, yrs1) — @),
k=0 i=0 k=0 k=0
both cycles (zo,...,z,) and (Yo, .., Yq,) are indeed minimizing.

Item vi. Consider the relation on Sy,;n: © ~4 v if, and only if, x and y belong
the support of the same minimizing cycle of length > 1. Since the union of two
minimizing cycles with a common point is again a minimizing cycle, the previous
relation is an equivalence relation. If x ~, y, then there exists a minimizing cycle

(o, ..., 2pn) such that z = xg and y = x; for some 0 < i < n. Therefore,
i—1 n—1

0 S ha(l‘,.’E) S ha($,y)+ha(y7$) S (a($k,$k+1)—@)+2(a($k, ij-i-l)_a) - 05
k=0 k=i

and hq(x,y) + ha(y,x) = 0. Conversely, suppose hq(z,y) + ha(y, ) = 0. So each

minimum hg(z,y) or he(y,x) is reached by a G-admissible path (zo,...,x;) or
(Xiy ..., Tpn), with xg = x, z; = y and z, = y. Then (zo,...,x,) is a minimizing
cycle containing both x and y. O

In the framework of a dynamical system where the weighted graph (G, M)
is given by M.(z,y) = exp(E(z,y))e@¥1q(x,y) for two short range potentials
E H: Zg — R, we show that the two notions of minimizing non-wandering set
Q(H) and minimizing subgraphs coincide. Let a(z,y) = H(x,y) if (z,y) € G and
a(x,y) = oo otherwise.

Proof of Lemma 21. Ttem i. Let x = (z9,21,...) € EJ(S- Since G is irreducible,
there is a G-admissible path joining z,, to wo, (z(,2T,...,zy ) of length p;, at
most the cardinal of S. Then (yo,...,Yn+p,) = (T0s- -+ Tn-1,2(,---,Tp ) is a
cycle and
1 n—1 n+pn—1
H = inf liminf — Hocd"(z)= inf liminf a(yk, > a.
zenf, nooo nz (z) zext n—+too N+ py Z (s Yiet1) =
k=0 G k=0

The converse H < a is obtained by taking a periodic point x = (zo, . .., 7,)> with

(o, ..., 2Tn) & minimizing cycle.

Item di. Let h(x,y) = lime_o liminf,,_, 4 S5 (x, y) be the Peierls barrier intro-
duced in definition 13. We first show that h(z,y) > hq(zo,y0) for any z,y € X7,
Indeed, for e sufficiently small, for any z = (2o, z1,...) € L, satisfying d(z,z) < e
and d(c™(z),y) < €, we have zp = x and z,, = yp and therefore St (z,y) > hq(x,y).
Let x = (o, x1,...) € Q(H). Since 0 = h(z,x) > hq(zo,x0) > 0, To € Smin-
Hence 0" (x) € Q(H) implies x,, € Syip, for any n. Moreover,

0= h(z,r) = (H — H)(x) + h(o(z),z)
> (a(xo, 1) — a) + ha(z1,20) > ho(x0,21) + hal(21,20) > 0.
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In particular, (a(zg,z1) — @) + ha(z1,20) = 0. By choosing a path (y1,...,yn)

joining 1 to zp which realizes the minimum in h,(z1, o), we obtain a minimizing

cycle (xo, 21,2, ..., Yn). We have just proved (zg,x1) € Gpin and more generally

(g, +1) € Gmin. Thus, Q(H) C Egmm. Conversely, suppose x € Egmm. Let

n>1and k=0,...,n— 1. Then any (zj,xk+1) is the beginning of a minimizing
k

cycle (mlg,xlf,...,xpk) with pr > 2. Consider z, the periodic point of period

Gn =po+ ...+ pp—1+n given by

_ n—1 n—1 n—2 n—2 0 0 \oo
Zn = (T0y o 1] e Ty T e Ty gy T x, )

e Ty
Then d(zp,x) — 0 when n — +oo and ZZ”:Bl(a(zk,zkH) —a) = 0. We have
proved that = € Q(H).

Item 1. We first show that, if = = (zg, z1,...),y = (Yo, 91,...) € Q(H), then
x ~ y if, and only if, zg ~4 yo. Indeed, on the one hand,

x~y < h(x,y)+ h(y,z) =0= hq(zo,y0) + ha(yo, zo) = 0 < o ~4 Yo

On the other hand, suppose z¢ ~q yo. Since (g, Tg+1), Yk, Ykr1) € Gmin for all
k=0,...,p—1, by transitivity we have that x, ~, yo and y, ~, xo. For infinitely
many m and n, one can find a Gp;,-cycle of length ¢ = 2p + m + n containing
both (zo,...,zp—1) and (yo, ..., yp—1) of the following form

($07 <oy Tp—152py -5 Zp+m—15Y05 - - - s Yp—1, Z2p+m; - - - 722p+m+n)'

Let z € ngm be the corresponding periodic point. For any € > 0, if p is large
enough, for infinitely many m and n, one has

d(z,0) <e, do™™(2)y) <€ d@PT(2),2) < e,
2p+m+4n—1

Spim(@,y) + Spin(y2) < > (H—H)oo"(z) =0.
k=0

By taking lim inf when m — oo and n — oo first and lim when ¢ — 0, one obtains
h(z,y) + h(y,z) = 0, that is, z ~ y. Since Gpn is equal to the disjoint union of
irreducible components G; C S; X S; with no transition from S; to S; when i # j,
Q(H) = Egmm is equal to the disjoint union of Q;(H) = Za. The equivalence
between x ~ y and xy ~, yo shows that Qi(H),...,Q4(H) are the irreducible
components of Q(H).

Item 4v. The pressure of E restricted to Q(H) is equal to the maximum
of the pressure of E restricted on each Q;(H). It is well known (see, for in-
stance, [20]) that the two notions of spectral radius «; of the matrix A%, =
[eE@W16, (2,9)]zyes; and the pressure of E restricted to Ea coincide: «; =
exp[Presq, ;) (F)] and & = max;<j<q o; = exp[Presq g (E)]. O

The first step of the algorithm consists in finding a normal form for M,. This
step is done using a diagonal matrix diag[e“(x) :x € S) where v : § — Ris a
separating corrector. We prove the existence of such a corrector.
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Proof of Lemma 27. Given z* € S,,;,, consider
u(x) := he(2",2), Vaes,

where h, is the Peierls barrier associated to a introduced in definition 43. Items i
and 4 of lemma 44 and the fact that the Peierls barrier between two vertices
is realized by a G-admissible path easily show that u is a backward calibrated
corrector. Let G C S1 X S1,...,Gg C Sq x S4 be the irreducible components of
the minimizing subgraph Gin C Smin X Smin. Denote Sy = S\ (S1U...U Sy).
We consider then

a(z,y) = a(z,y) —u(y) +u(z) —a>0, Vaz,yecsh.

Notice that the mean of @ on any minimizing cycle is zero and therefore a(x,y) = 0
whenever (z,y) € Gpin. We introduce a new directed graph. The set of vertices S
is made of classes of two kinds: a class [z] reduced to one point for all x € Sy and
d classes [G1]...[G4] where all vertices in each G; are identified into one vertex.
For any = € S, we note by [z] the class containing x. Let G C S x S be the graph
whose transitions are defined as follows

G .~
2] = [yl <= [zl # [yl and minfa(z’,y') : 2 € [z], 4/ € [y} = 0.
The main observation is that there is no cycle in G and we can define a decreasing
“height” function n: S — [0, €] as small as we want so that 7 is constant on each
class [z] and

2] Sy = n(@)>nly), Vayes.

We claim that, for € small enough,
v(r) :=u(x)+n(x), Yezel

is a separating corrector for a(x,y) or equivalently n(z) is a separating corrector
for a(x,y). Indeed, on the one hand, if (z,y) € Gin,  and y belong to the same
irreducible component of G, n(x) = n(y) and a(x,y) = 0 = n(y) — n(x). On the
other hand, if (z,y) € G \ Gnin, we discuss two cases. In the first case, ([z], [y])
is not an edge of G. This implies a(x,y) > 0 since (,y) ¢ Gmin. We choose then
€ > 0 such that a(x,y) > n(y) — n(x). In the second case, ([z],[y]) is an edge of
G. Since 7 is decreasing along the edges, a(z,y) > 0 > n(y) — n(z) independently
of . As S is finite, the number of constraints on € is finite. ]

In order to prove proposition 29, we recall some notions of entropy and pressure
for graphs weighted by Perron matrices.

Definition 45. Let G C S x S be a directed graph weighted by a Perron matriz
(M (x,y)]zyes. We call transshipment any a probability measure p(x,y) on G

such that m(y) == > cqm(z,y) = > cgm(y,x), for all y € S. The entropy of a
transshipment p is given by

m?
But(e) = 3 —pla,y)n A28
(z,y)€G
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We say the transshipment p is supported by M if M (z,y) = 0 implies p(z,y) = 0.
In this case, the pressure of M with respect to v is given by

Pres(M,p) := Ent(n) + Y plw,y) In M(z,y).
(z,y)EG

We recall that, if G is irreducible and X = pspec(M), then Pres(M,p) < InA
for any transshipment p supported by M, with equality if, and only if, u(x,y) =
L(z)M(x,y)R(y)/\, where [L(x)]zes and [R(z)|zes are the left and right eigen-
vectors of M for the eigenvalue .

We shall also use a known result on the perturbation of the spectrum of ma-
trices. See Kato’s monography [16] for more elaborate statements.

Lemma 46. For any matriz M € Mat(n,C), for any € > 0, there exists n > 0
such that, if H € Mat(n,C) and ||H|| < n, then spec(M + H) C spec(M) + B,
where B denotes the disk of radius € centered at 0. In particular, M — pgpec(M)
is continuous on Mat(n,C).

Proof of proposition 29. Notice that it is enough to assume M, is written in a
normal form

Ao .

M, = NI+ N, N = {0 D] A= diag[AM, .., A, @ = papecl A7),

where A” is nonnegative irreducible, D is nonnegative with pspec(D) < @, and
N¢ = o(1). We also assume M, is nonnegative by changing if necessary M, to
M, — nld where ne = 0 A min{M,(z,z) : x € S}. Notice that L. and R, do not
change and that n. = o(1).

Let thus G be the subgraph of G defined by (z,y) € G < A(x,y) > 0 or
D(z,y) > 0. Let M.(z,y) = M.(z,y) if (z,y) € G, M.(z,y) = M:/'*(z,y) if
(z,y) € G\ G. On the one hand, we remark that

In A = Pres(M,, jic) = Pres(M,, ) + Z pre(,y) In M2 (2, y) <
(z.y)€G\G

<In pspec(Me) + Z pe(,y) In Mel/Q(l’vy) <In PSpEC(Me)'
(2,9)€G\G

Consider now G (an irreducible component of G? i, of dominant spectral coefi-

cient &) weighted by MM (z,y) = M,(x, y)1g, (z,y). Let 4} be the transshipment
defined on G by

lli (z,y) = ﬁi (x)MEH(x, y)Ri (y)/pSPeC(M€11)7
and extended by 0 on G\ G1. Then, on the other hand, one has

In A > Pres(Men,ﬂi) =1In /’SPeC(Men)'



Description of some ground states by Puiseux technics 35

Lemma 46 tells us that pspeC(Me) ~ pspeC(MEH) ~ . Hence, the two previous
inequalities show that A\e ~ @ (item i), as well as p(z,y) — 0 whenever (z,y) € G.
They also show that any accumulation point fi of (p)e>o has maximal pressure

Ina = 15% In A, < ll_r)l(l) [Ent(,ue) + Z A pe(z,y) In Me(x,y)| = Pres(M, i) < Ina.
(z,y)eG
(The first inequality comes from the fact that In M(x,y) < 0 if (z,y) € G\ G.

Notice also that i has support on G’) For G the dominant subgraph, let jis and
fien be the induced transshipments on G and G \ G, respectively. Since

na = Pres(M1, i) = f(C)Pres(A. fig) + i(G \ G)Pres(D. fign ).

we obtain fi(G A\ G) = 0, that is, p(z,y) — 0 whenever (z,y) € G (item ii).

Consider 7(z) = Zye&- fi(x,y)/i(G;) for any z € S;. Let ji; be the induced
transshipment on Gy, ji;(z,y) = ji(z,y)/i(G;) whenever i(G;) # 0. The main
remark is the following coboundary property

:L"ES'Z' wGS‘i (I,y)ES'Z’XS'i

Then 1115( - Z;:l /_L(G'L)Pres(‘zluv :al) and

T - _ fi(a,y) (A%(x,y)R'(y)/ R (z)
Pres(A", ;) = 7(x In - ~ .
@w= 3 @ T (e mm )
z€S; ye
7t (z)#0
Each sum over y € S; is bounded from above by
n (Y 4w, y)R(y)/Ri(x)) = Ina,

yeS;

with equality if, and only if, fi;(x,y)/7(z) = A%(x,y)R'(y)/(aR(x)), Yy € S;.
We thus have proved (whether or not 7;(z) = 0)

By summing over z, using the fact that p; is a transshipment, we obtain that
[ “(x)/R'(x)] s, is a left cigenvector of A” for the eigenvalue @. In particular, if
7i(x) # 0 for some z € S;, T(y) # 0 for all y € S; and

7(y) = L'(y)R'(y), pslz,y) = L'(2) A" (2,y)R'(y) /av.
(Item 417 is proved.) O

Before proving proposition 31, we give some complements to the theory of
series of equivalences.
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Lemma 47. Let (An)n>0 be a sequence of positive numbers and (Ap(€))n>0 be
a sequence of functions. We assume that A, = O(d"™) for some 6 € (0,1) and

(An(e)/An)l/n — 1 as € = 0 uniformly in n > 0. Then

D An(e) ~ > Ay

n>0 n>0

Proof. Denote hy,(€) := (An(€)/Ay) Ym 1. Let n € (0,1) be small enough so that
0(1+n) < 1. Fix a constant C' > 0 such that A, < C¢", for all n > 0. Choose a
positive integer IV large enough so that

Q=)D An<nd A, and C Y "(1L+n)"<n)_ An

n>N n>0 n>N n>0

For e small enough, one has (1 —7) 2711\/;01 Ay < ZnN;()l Ap(e) < (1+mn) ZnN;()l Ay,
as well as hy,(€) < n uniformly in n, which in particular yields

DA <D Al <C Y (14"
n>N n>N n>N
Considering all these inequalities, for all € small enough, we obtain that
(L=20) Y A <D An(e) <(1+20) ) An.
n>0 n>0 n>0
O
In the following lemma, we extend the notion of weighted graph (G, M) of

general Puiseux type to the case in which G is not irreducible and we show that
the resolvant is of exact Puiseux type.

Lemma 48. Let (G, M) be a (not necessarily irreducible) weighted graph. Assume
M. = D+ N, where D is nonnegative, pspec(D) < 1, Ne = o(1). Suppose (G, M)
is of general Puiseux type in the following sense:

0 if (z,y) ¢ G,

M, (2, y) = Az, y)e®@¥) if (x,y) € G and = # v,
Ac(z,y) if (x,z) € G, x =y and D(z,z) > 0,
o(1) if (x,z) € G, x =y and D(z,z) =0,

where Ac(z,y) ~ A(z,y) > 0 and a(x,y) > 0 in the second and third cases, and
by convention A(x,y) =0 and a(x,y) = 400 in the other cases. Let P(x,y) be the
set of G-admissible paths x = (xo,...,xy) of length n > 1 such that xo = x and
xn =y. Consider the directed graph

G ={(z,z) : € S}U{(z,y) €S xS : Pz,y) # 0}

and define M! := (Id— M.)~t. Then (G', M!) is a weighted graph of exact Puiseuz
type. More precisely,

Ml(z,y) =0 (v,y) ¢ G and Ml(z,y) ~ A'(2,9)e” ™Y & (z,y) € G,
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. 0 fr=y
th ! 5 == ) \V/ ’ € Gl;
with @'(z,y) {min {a(z) : z € P(z,y)} ifzx#y (@y)
and A/(‘Ta y) = :H-(m:y) + E H?:(%)_lA(m’bxi-f—l); v (.CC, y) € G/;

z€P(z,y)  a(z)=a’ (z,y)
where n(x) is the lenght of the path z € P(x,y) and a(z) = Z?:(%)fl a(Ti, Tiy1).
(By convention A'(xz,y) =0 and a'(x,y) = +o00 for all (x,y) € G'.)

Proof. Part 1. We first assume that (G, M,) is of exact Puiseux type,

0 Y (z,y) ¢ G,

Me s =
(#:3) {Axx,y)eaw Y (2y) €6,

where A (z,y) ~ A(z,y) > 0 and a(z,y) > 0 if (z,y) € G, A(z,y) = 0 and
a(z,y) = +oo if (z,y) € G. Note that D(x,y) > 0 if, and only if, a(x,y) = 0.
Since pspec(Me) converges to pspec(D) < 1, (Id — M) is invertible and

M’:L'y ZMnxy)_]l(z v) Z Hz 0 $1,$l+1)
n>0 2eP(z,y)

Since M, is a nonnegative matrix, M/ is nonnegative too. Moreover,
Ml(z,y)=0 <= z#y and Pz,y)=0 <+ (z,y)¢G".
For (z,y) € G', let P(x,y, k) be the subset of paths z € P(z,y) such that
k=card{i=0,...,n(z) — 1 : a(z;,xit1) > 0}.

If x € P(x,y,k) and k > 1, then a(x) takes a finite number of distinct values ay,

0 < kamin < ag,1 < g2 < - < Qg p, < kamaz,

with @y, := min{a(z, y) : a(z,y) > 0} and ameq = max{a(z,y) : a(z,y) < +o0}.
Notice that the set of exponents {ay; : £ > 1, 1 <[ < pi} is finite on each
bounded interval. Let P(x,y,k,[) be the subset of paths € P(z,y, k) such that
a(z) = ax,;. By developing all products M, one obtains

€

Msl(xa y) = ]]-(x:y) + Z Hl 0 l’zaszrl)
z€P(x,y,0)

+ZZ( Z Hn(z) Ae(ﬂﬁi,xiﬂ))e“k»l.

k>1 =1 zeP(z,y,k,l)

Let P(x,y,0,0) := P(z,y,0) by convention and P, (x,y, k,l) be the set of paths
z € P(x,y, k,1) of length n(x) = n. Denote

- -1 - -1
Appi(€) = Y M Adws i), Angei= Y Az, miga).
z€Py, (I,y,k},l) z€Pp (:c,y,k:,l)
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We use lemma 47 to show that Zn21 Api(e) ~ Zn21 Ay, 1 (one only considers
terms (n, k,l) such that P, (z,y,k,0) # 0). Since pspec(D) < 1, there exists a
positive matrix [D(z,y)]|s,yes such that

pspec(D) <1 and  D(w,y) > D(z,y), Vaz,y€S.
Since A(z,y) = D(x,y) whenever D(x,y) > 0, one obtains
max A

~)k§l~?"(w7y)(

min D

An,k,l S Z H?:_()lD(CCi, :L'Z'_H) ( w> k_

2€Pn (2,y,k,0) min D

Choose & such that pspec(D) < & < 1. Then D™(z,y) = O(5"), and in particular
Ap ki =0(6"). Given n € (0,1), for € small enough,
(1 =n)A(z,y) < Ac(z,y) < (1 +n)A(z,y), V(z,y) €.

For all non empty set Py, (z,y, k,1),

—1
D wePn (wykd) Himo Ae(Ti; Tit1)

—1
Zzeﬁ’n(m,y,k,l) H?:o A(:cl-, $i+1)

(I—-m)"< <(1+n)"

We have thus obtained (An,k7l(e)/An7k7l)l/n — 1 uniformly in n.
We now show that the rest of the series

Re(= 33 (3 Anpate)) e

k>K =1 n>1

is negligible with respect to the first non zero term (3, ~; An k1)e™t. More pre-
cisely, we show that, for any a > 0, there exists K > 1 such that Rx(e) = o(€?) as
¢ — 0. Indeed, let d be the dimension of the matrix M, then p, < d** and

M QmaXA Amin k Kamin __
Ryc(e) < k;{ (;HD H) (d e ) < Oxe = o(e?)

as soon as a < Kapmp.
Therefore, M!(z,y) ~ A'(z,y)e” @) for all (z,y) € G'.

Part 2. We now assume that (G, M,) is of general Puiseux type as described in
the statement. We first notice that M/ admits a different expression

1 Id + M\ 1 Id+M, Id+D N,
Mézi(ld—g> where M AT =

2 2 2 27

with pspec(3(Id + D)) < 1 and AN, = o(1). Since (G, 3(Id + M.)) is of exact
Puiseux type, one obtains from part 1 that (G’, M) is of exact Puiseux type.

We now want to determine @’ and A’ in this case. Let A be the diagonal
matrix built from the principal diagonal of N.. Hence,

N.=A.+ N,, Ne(x,a:) =0,Vxelbs.
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Let M, := D+ N, G := G\ {(z,z) : D(z,z) = 0}. Then (G,M,) is of exact
Puiseux type. Moreover,

M/ = (14— M. = A)~" = (1d = MA) TN = S (VA )M,
n>0

where M! := (Id — M,)~'. From part 1, we know that (G’ M) is of exact Puiseux
type. Let a’ and A’ be deﬁned as in part 1 by using (G M, ¢).- Then

M!(z,y) = AlL(z,y)e’ @Y, VazyeS,

with Al(z,y) ~ A'(z,y) > 0if (z,y) € G’ and Al(z,y) = 0if (z,y) & G'. Since G
and G have the same off-diagonal entries, G’ = G'. We show by induction there
exist matrices (By,c)n>1 such that

= Bne(az,y)e“l(x’y) V(z,y) € G
0= Bye(z,y) V(x,y) & G

and

Since (M/A)™ I M! = (M!A)"M!A M, for all x,y € S one has

(M/A)™ M/ (z,y) = > (MIA)"M/(z, 2)Ac(z, 2) M(2,y)
z€S

= Z Bp.e(z,2)Ac(z, 2)AL(2, y)e? @)+ (z),
z€8

If (x,y) € G', then (x,2) € G’ or (2,y) € G' and the above sum is null. Thus by
convention By y1¢(z,y) =0. If (z,y) € G’ and z € S is such that (z,z) € G' and
(z,y) € G', then d'(z,y) < d'(x,2) +d'(z,y). Let

Bpiie(z,y) ZBT“ x,2)Ac(z z)A’(z y)e® '(z,2)+d (z,y)—a (z,y)
z€S

By taking the supremum in z,y € S, we obtain

sup (Bnﬂ,e(x, y)) < sup <Bn7€($, y)) S;l;) (dAE(:):, y)A'(z, y))

x7y x?y

As A. = o(1), we have proved that (B, ((z,y))"/™ — 0 uniformly in n. Besides,

M(z,y) = AL(w,y)e’ @) [1+Z X,G;yy | ~ A@y)e’ @ forall (2,) € &,

and M/(z,y) =0 for all (z,y) € G'. O

Proof of proposition 31. Notice that it is enough to assume (G, M,) is reduced
to a normal form and M, = M, is nonnegative (by possibly substracting 7.ld,
where 7. := 0 Amin{M,(z,z) : x € S} is negligible with respect to A.). We prove
item ¢ at the end.
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Item 7. We only prove the equivalence R!(z)/R!(y) ~ R'(z)/R'(y). We
consider the vector space indexed by S;. The vectors are supposed to be column
vectors. Let us consider the projector onto R* defined by

V — (L'V)R', (V is a column vector),

or as a (square) matrix R'L’. Notice that the kernel {V : L'V = 0} is invariant
by A". The complementary projector is denoted P* := Id — R*L*. We then obtain
a decomposition of A"

At — GRITI 4+ D or D — pii it — Aiipii.
ince A% is irreducible, @ has multiplicit and pspec (D) < a. multiplyin,
Since A" ducible, @ h Itiplicity 1 and pspec(D") By multiplying
by P% the equation
S (WL 4 WO, — N2) W) R = AR
j=1
one obtains
> (= DY) P(NF 4 MO — M) N ) RE = PURL
j=1
(We use the fact that NZ = M when i # j and that~14_1“f’“~: D% Pi.) We first
claim that_Ri /L'R! is bounded, or equivalently that Ri(z)/R!(y) is bounded for
all z,y € S;. Notice that all following terms are nonnegative

MP(z,y) 20 or MP(A— MX) " MY (z,y) > 0.

(The second inequality follows from lemma 48.) By the irreducibility of A%, if
(wo,...,xy,) is a path joining = to y such that A%(zy,zpy1) > 0, then

Ri (o) > HZ;(%M?(%,%H) N HZ;M”(%,%H) >0
Ri(xy,) — AP am

By reversing x and y, we prove the claim. We now claim that all following terms
are negligible

NORL_ o o MG = ) PR
LiE;

LR

o(1).

Notice that these terms are nonnegative, except perhaps jil := N*R!/L!R! which
is negligible because of the first claim. We conclude by observing that all terms
on the left hand side of the following equality are nonnegative and that the right
hand side is negligible

L L(§80sy + 00 — M) IR |
3 HH By MEC MM 5, s gt = o).

j=1



Description of some ground states by Puiseux technics 41

R _ piif
Therefeore, we have proved that —=— — R' = —== = o(1).
L'R! L'R!

Item dis. Let i,5 € {1,...,7}, # € S; and y € S. We have already proved in
the first part that

~ L :Q”("an)a vxayES’ia

=o(l), Vzelbl, Vyes; i+#j,

)
NO(z, ) RO B Mgo<x7y)(zgzl(~f\e~— M) 1MYRL) (y) —o1).

AeRi(x) AR (x)

(In the two last estimates, we use the fact that the sum over y in each case is
negligible.) We then obtain
M. (z,y)R Q'(x,y), Vax,y€eS;,
Qu(ry) = MBI G OHm) Wy €S
0, VaeeS;, YVyeSjUsSy, i#j.
Ttem 4. Let i # j, then M\V(i,j) = L (M:'j + MO, — Mgo)*lMSJ)L%.
We want to show that

o 0 Y (i,5) ¢ GO,
Mg(l)(la.]) = (1) N oMW ( ) 1 . .
A (i, 7)€ B (4, 5) € GU), i #

where Agl)(i,j) = 0 in the first case and AW (i, j) ~ AWM 5) > 0 in the
second one. From item 7, we know that Rﬁ /f/jl:?g ~ RI. Sinceuli/ and R/
have positive coefficients, it is enought to find equivalences to MY (x,y) and
MO, — MO0 (z,y) when z € S; and y € S;. From lemma 48, we
know that (A — M%)~! is of exact Puiseux type on the graph containing ei-
ther {(xl,zl) s xy € So}or {(z1,2p-1) : (21,...,2p—1) is a path of GNSyx So}t,
where G is obtained from G by substractlng all (x z) such that D(z,z) = 0. We
write (A — MOO) Ya,y) ~ a 1A (x,y)e’ @Y. Therefore, for x € S; and y € S,
one has MY (z,y) ~ A(z,y)e*@¥) and

M:O(S\e _ MEOO) lM()j CL‘ y Z A I‘ Z )A(w’y)ea(m,z)+a’(z,w)+a(w,y)‘

ERVISI)

One can see the previous estimate as a sum over paths z of two kinds. Either there
exists a G-admissible path z = (z, 2z, y) (for z = w), or there exists a G-admissible
path z = (zg,...,x,) of lenght n > 3, with g =z, ©1 = 2, 2,1 = w, T, = vy,
such that the intermediate path (zi,...,2,-1) is (G’ N Sy x Sp)-admissible and
realizes the minimun in the definition of a’(z,w). Each one of these terms is of

the form »
(2 A, i) o~ ks elowmin),

The dominant term is obtained by minimizing a(x) over z. O
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6 Complete classification for 3-states spin systems

We consider in this section a full weighted graph of exact Puiseux type on 3 states.
More precisely, for S = {1,2,3}, we consider G = S x S weighted by

M(z,y) = exp[-BH(x,y)] = '™V e=eP Vayes.

We assume (by substracting H) that H has been normalized: H = 0. We are
interested in describing the unique ground state ,ugm obtained (recall the notations
of section 3) as a limit of

Me(x,y)Re(y)>

(7e(2), Qe(z,y)) = (Le(”f)Re(x)’ AR(z)

when € — 0. As it will be clear from the computation, the limit depends from the
possibility to expand each quotient R¢(z)/Rc(y) and L¢(x)/L(y) into a Puiseux
series of an a priori arbitrarily large precision. The algorithm is based on the
dimension of the matrix M.. We will obtain a finite set of possible ground states
pl.and the zero-temperature phase diagram describes all the domains in the
parameter space {H(x,y) : =,y € S} having a fixed ground state puZ. . The di-
mension of this parameter space is a priori 9; we will reduce it to 2 in the following
discussion. We describe each domain according to the number of irreducible com-
ponents of the minimizing subgraph. We use algorithm 28 to conjugate M, to a
simpler matrix M! = A.M.A-', which (by possibly permuting {1,2,3}) takes one
of the following form.

i. A unique dominant irreducible component.

— When the dominant spectral radius & is equal to 1,_Gmm =Gis ifreducible
and there are three possibilities corresponding to S = {1,2,3}, S = {1,2}

and S = {1},
L e 1 € 1 € €
/ /
M =1 & 1|, M'=|1 & €|, M"= | & ¢
! /
1 6a’ €€ @ e e Ec’ ed’ €€
(Notice that all coefficients a,d’, b, ... are positive.)

~ When @ > 1, G = Gp is obtained by replacing in the previous M! any
(but at least one) a,a’,b,... by 0, and in M/ one of the two coefficients a
and/or b by 0 and leaving ¢, ¢, d, ... positive. When & > 1, G C G, With
two irreducible components is obtained by replacing a and/or b in M/ by 0
and ¢ by 0. Notice that we obtain a finite liste of possible &.

ii. Two irreducible components with equal dominant spectral radius:

_ /
a=1, M =] ¢ 1|, or M'= | 1 ¢
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iii. Three irreducible components with dominant spectral radius 1:

1 e ¢
a=1, M =& 1 ¢
A |

In order to simplify notations, we introduce the following convention
a#b=1 if a#b, a#b=2 if a=0.

In the case of one irreducible component with dominant spectral coefficient (r = 1),
me(x) = 0 for all z € S\ S and 7 (x) — 7!(x) for all x € S. For instance, for M/,
M! and M!", respectively, 7. converges to [%, %, %], [%, %,0] and [1,0,0]. We now

treat in detail the two remaining cases 4 and 7.

6.1 Two irreducible components. Part I

We first consider the matrix

1 € ¢

M, = ea/’ e 1|, ad,bb,c,d>0.
b d
€ 1 €

We already know that A ~ 1, Re(2) ~ Rc(3) and L¢(2) ~ L¢(3). We collapse the
two components 2 and 3 and obtain for the right eigenvector

M(l) . 0 (EaRQ + GbR3)/(R2 + R3) - 0 %#béa/\b
© e+ (c“Ry+elRg)/(Ry+ R3)|  |a/#b e Aldeend]”

Note that Me(l) is of exact Puiseux type. Let r and p be the minimizing mean

exponent and the dominant spectral radius of Me(l). Then )\21) =A— 1~ pe,

a/\b—l—a'/\b') R a#beaAb_r L a'#b’ea//\b/_r

r = min (c Ad, — ,
2 R3 p Ls p

We thus obtain a complete formula for the transition matrix

P —aAb+ P b—aNb+
I L 100
Oc ~ %ea—&-a/\b—r € 1 —>ng: 0 0 1],
a#tb b/ +anb—r 1 4 010

p

and for the ground state

@ o wll) (@)@ HY) anpranar
e(3) e(3) p? .

We are left to discuss the value of p according to the choice of the exponents

contributing in the definition of r. We recall that p is the largest eigenvalue of the
(1)

min’

dominant matrix A
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6.1.1 CasecAd<(aAb+a Ab)/2:

In this case, r = c A d,

AW =

min

].

N[ =

0 0 cNd cNd
|:O c#d:|)p_27 Aezl—i_Tﬁd\d"’_-“aru’gin:[oa%v
2

6.1.2 CasecAd>(aAb+a Ab)/2:

In this case, r = $(a Ab+a' AY),

A _[ 0 “?"},p: V)t~ (3,3,

mwn a/ # b/ O ? mwn

6.1.3 CasecAd=(aAnb+a Ab)/2:

In this case, r = c A d,

H 0 anb _c#d (a#b)(a'#V')
Apin = L’Ab’ Céd} : p_4[1+\/1+8(c#d)2}

and the ground state is proportional to
16(atD) @BV /(e
Wl o | [T T+ S(ad0) (@ #) /(e
{1 + \/1 + S(G#b)(a/#b/)/(c#d)Q] 2

_ A(a#b) (a'#Y') / (c#-d)? |
1+ 8(a#b)(a/'#V) /(c#d)? + /1 + 8(a#b) (A #V') [ (c#d)?

or Mgzn ( 1)

We summarize the discussion in figure 5.

6.2 Two irreducible components. Part II

We consider now the matrix

1 e ¢
/
M,= e 1 €|, a,d,bb,cd,d>0.
b’ c d
€ € €

Let [Le(x)]g=1,2,3 and [Re(z)]z=1,2,3 be the left and right eigenvector for the largest
eigenvalue A.. We eliminate the negligible variable x = 3 by substituting L(3)
or R.(3) in the first two equations. We substract the dominant term 1 of A and
obtain

Lgl)M(l) =\, ME(I)REU — )\gl)REI).

€ € €

We summarize the discussion in figure 6.
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a'Ab'
A .
o4
1
)\e:1+c#d EC/\d+'-' “u (l):5+2\3’5 IJ” (1):3
2 o
2(end) ”
“ L 16
ull (1):_’_ H” (l): -
[ min T min FEPNCE
& @ ; \
v/
1EB(I/Z) %O ] 1) | )
X i V=173 Ho(D=27
(1/2) '9<'> ] : - e o
5,
< LS
aAb 23 H(I)_l H(])_ 8
) 2(cAd) > ol 13 Hoa V=15
’ ’ 1 B N
A=1+ Mez‘“““ SNy O’E‘O, asb e

Figure 5: Phase diagram for a 3 x 3 matrix with two irreducible components: part I. In the
left diagram, numbers in parenthesis indicate the weight of each irreducible components.
In the right diagram, the value of pfl; (1) is shown for the case cAd = L(a Ab+a AV).

6.3 Three irreducible components

We consider the matrix

1 e ¢
I
M,=|e 1 €|, a,d,bt,cd >0.
1

We know from propositions 29 and 31 that Ac ~ 1 and Q. — Id. We want
to show that [mc(x)]z=123 = [Le(z)Re(x)]z=1,23 converges to some raw vector
[H. (2)]4=1,23 identified to the ground state as a barycenter of 3 Dirac masses:

i = i (D6 cqoos + il (2002005 + il (3)0<z00.

Thanks to the special form of the matrix, the steps of algorithm 30 are immediate:
Me(l) = M, — 1d, /\El) =X — 1, Lgl) = L. and Rgl) = R.. We want to apply again

algorithm 30 by reducing Me(l) to anormal form as in algorithm 28. We call a(!) the
minimizin ) (1)
g mean exponent of M¢” and A, ;.
(1)
min S 4
Let v : S — R be a separating corrector and M, := Ae(v)Mgl)Aﬁ(v)*le*a( -
Aglzn—i—](fe. Denote L (z) = e_”(z)Lgl)(:p) and R.(z) = e“(”:)Rgl)(x). Proposition 31

tells us that

the matrix associated to the graph

of minimizing cycles. Notice that A admits a unique irreducible component.

o ~ ng;, Vaz,yc S, and L. (z)R(x)—0, Vxe Sy,
e\Y

where L and R are the left and right eigenvectors of the dominant matrix A.
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CA A=1+€“
o
A=1+e S Hoin=15,2,0]
l'lmm [1 0 0] g\
a' i A€:1+2€2b+...
2 H 2 1
umin_[3 37 0]

A gad T . e
a'—zla+a’) : A=+ D eerarey
H _11 1
i _J_)O
?\—1+p(—:2b+... i [2 Z !
o =[1,1+p,0]/(2+p)
V&?’ A =142+
Qo uH. =L 2 0]
o (a+b+c)/2 i 5757
— 20, (&7 1A =1+€
)\E—Hl+2161 gl o 1]
Hnin=l3,3500 | 1 T (a+a)/2 <2¢
1 Y
Ha+
;la+a) (a+‘g+9’l<29
e T Ho =11, 140, 0]/(2+p)\ o b
a "1y I A\ 2b a'—Ya+a') B >
24 AE1+(14V2)E .| @ Talata A=1+eC+
—a | H
all umin:[%’%’ O] umm [0 1 0]

Figure 6: Phase diagram for a 3 x 3 matrix with two irreducible components: part II.
We assume a < a@’. The ground state is a barycenter of the periodic measures d; and ds.

In order to simplify the phase transition diagram, we change the coefficients:

1 1
a:= §(a—|—a'), b= §(b+b'),

= 1’ 1 4 I 1 / 1 /
g.—c—i—z(b b)—|—2(a a'), g.—c+2(b b)+2(a a).

ctcd ct+d atV+c atbtc d+b+d atb+(
Then = , = , = .
2 2 3 3 3 3
We now discuss the different phases according to the coincidence set of multiple
order of minimizing cycles. We discuss only the case ¢ < ¢/. The purely symmetric
case a =a’, b =10, c = ¢ is done in section 7. We show in figure 7 the location of

all possible minimizing cycles.
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Mean along the cycles of order 2 and 3:

cycles of order 2 cycles of order 3
ajfat e\\¢ Fla+d) sa+bV +c)
Lo+ 3@ +b+0)

(c+ )

INO| =D |

Figure 7: Graph of interactions and minimizing cycles of M, — Id.

6.3.1 Case a < min{b, %(g + ), %(g +b+c)}:

01 0 11
aV = q, Agzn =10 0|, \V~e and pff, = [5, 5,0].
0 00
6.3.2 Case b < min{a, %(g + ), %(g +b+c)}:
0 0 1 1 1
a=b A — 1o 0 0|, \V~e and pf, =[50 2]
1 0 0 2 2

6.3.3 Case 3(c+ ') < min{a,b,3(a+b+c)}:

1 0 0 0 1
iV =g(etd), Apl, =10 0 1 MV~ D2 and g, = (0,55
01 0

6.3.4 Case :(a+b+c) < min{a,b,;(c+c)}:

)

1 01 0
a0 = Taipre, AU o 0 1], AD ~elarbrors
3 1 00

o 111
min — [g» ga g]

Notice that the reverse cycle 1 — 3 — 2 — 1 is negligible against the cycle
1 — 2 — 3 — 1 since its exponent is higher.

Leoc [1,1,1), Reoc[1,1,1)F, and p

6.3.5 Case a = %(Q + b+ c¢) < min{b, %(Q +c)}:

010
at = q, AY 11 o 1 , )\S) ~ Ke2,
1 00

f/e X [E27 K, 1]7 RE & [Ha 527 1]T7 and Mern = [1 + K, 1+ K, 1]/(3 + 2’{’)7



48 EDUARDO GARIBALDI AND PHILIPPE THIEULLEN

(1)

where « is the largest eigenvalue of A, :

,, and satisfies K —k—1=0.

6.3.6 Case b= %(g—l— b+ ¢) < min{a, %(g—l—g’)}:

01 1
aM = b, AN — o 0 1 , )\El)wﬁeb,
100

Le o< [k, 1,K%), Reox [k2,1,6]7, and p, =[1+k1,1+k]/(3+2k).
(A(l) admits the same characteristic polynomial as before.)

min

6.3.7 Case %(g—l—g’) = %(Q—I—Q—l—g) < min{a, b}:

(—1(1) =4q, Agrllzn =

_ o O
_ O =

0
1, )\El) ~ /<;e(9+9')/2,
0

Leoc (L% K], Reoc[Lg, k%7, and  pl =[1,1+ k14 K]/(3+25).

6.3.8 Casea=0b< min{%(g—l—g’), %(g—i—g—l—g)}:

a®=q AW —

01 1

1
Lo=11 0 of, AP ~v2e
100
- N 1
Lex [V2,1,1], Reox[vV2,1,1]7, and “gm:[i’i’*}'

6.3.9 Case a = %(Q + ') < min{b, %(g +b+0)}:

1 010
0= dere) A= (10 1], A0~ et
010
~ - 1
LEO([l?\/il]a Rem[la\/ﬁvl]Tv and :urhrgzn:[f 577}'

6.3.10 Case b = %(Q + ) < min{a, %(g +b+co)}:

1 0
a) = —(c+), AN — o
1

= o O

1
1, AW~ 2¢letd)/2)
0

N - 111
Le o [1, 1,\/5], Re o [1,1, \@]T, and ugm = [Z’ T 5}
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6.3.11 Casea=b=3:(a+b+c)<i(c+c):

0 1 1
al) = a, AV — 11 0 1 , )\El) ~ pet,
1 0 0

Leoc[p,1,p],  Reoc[p,p, 1), and  pfl, = (p,1,1]/(2+ p),

where p is the positive root of p*> —2p—1=(p+1)(p> —p—1) = 0.

6.3.12 Casea=1(ct+c)=3%i(a+b+c)<b:

min

1 010
a(l) _ 7(2_‘_2/)’ A(l) =11 0 1 , )\(({1) ~ pe(ngQ/)/Q7
2 1 10

L [p,p,1], Reoc[Lp,pt, and ph, =[1,p,1]/(2+ p).

6.3.13 Caseb=1(c+c)=3%i(a+b+c)<a:

min

) 01 1
aV = (ct+c), AN =10 0 1], A~ peleted2
2 110

L€ X [1apap]7 RE X [p7 17P]T7 and /’Lgln - [17 17p]/(2 —|—,0)

We summarize the preceding discussion in the figure 8.

7 Zero-temperature phase diagram for BEG model

We give in this section a complete description of the zero-temperature phase dia-
gram for the Blume-Emery-Griffiths model. We apply the algorithm proposed in
section 3 to S = {—,0,+}, G = S x S and M (z,y) = oY) for all z,y € S,

where
-J-K+A %A J—-K+A

Hy = A 0 A
J-K+A A —J-K+A

We discuss the different cases according to the choice of the parameters wich
contribute to the minimizing mean exponent a. In all cases, we have

€?Re(=)  €Re(0)  €“Re(+)
€? fb €° Le(_)Re(_) )\ERG(_) AeRe(—) >\§R€(_)
Me = Eb 1 €b , e = LE(O)RE(O) ) Qe = 6)\:1%{6((_0)) )\?EEO(E)) E)\E]]%{Z((—g)) )
€€ € € Le(+)Re(+) “Re(=)  @Re(0)  eRe(+)
AeRe(+)  AeRe(+)  AcRe(+)
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b | A=14y2eetr2y A=1+e
. .
H _[1 11 ! Hpin =102, 1]
ﬁ Honin [4’2:4] (\\/‘ 273
, ol
A =1+pet?4 ) A =14 gelere)2
o .
Hn=(L oo 1l4P) ul =[1,1+k,1+k)/(3+2k)
Q'
a : @x (ct+c")/2
A=1+ke +.. ; <. A =1+pe +...
1 <
p =[1+xk,1+k,1]/(3+2k) | % pl =[1,1, pll(2+p)
§ \x
'\") A :1+€(a+b+£)/3+ \OJG
A=1+e+..| o/ 1 o] (c+c)2 <b
u =[L 1 0] > Hmin=13 5373 w
min— L5257 & ‘
v : A (c+c')2
™ | A=1+V2e5 24
a ‘ %
A=l+pe+.. @«g@\ =151, 1]
Mo =lp, 1, 1]/ (2+p) v ‘
cl T, : A€:1+K€b+...
: o
pn=[1+k,1,1+k]/(3+2k) a
] L -
7% —— (cte)2 .
/ A=14+v2€"+... A=14€"+...
H _11 1 1 A L g1
“min_[E’Z’Z] Honin [2’0’2]

Figure 8: Phase diagram for a 3 x 3 matrix with three irreducible components. We assume
¢ < . The ground state is a barycenter of the three periodic measures 0«10, d<20~ and
J<300~. The constants p and & are solutions of p? —p—1 = 0 and k> —k—1 = 0. The exact

values of these constants are p = 1(1++/5) and k = \‘/%(1 —\/23/27)+ \3/%(1 +4/23/27).

normalized by > .o Le(x)Re(xz) = 1 and ) g Re(x) = 1. Because of the sym-
metry of M, Le = Re and me(x) = R2(z)/ >, R?(z). We also simplify the com-
putation by noticing that R.(—) = Re(+). We recall that Gy, is the minimizing
subgraph and & is the dominant spectral coefficient. We only present the details
of the computations for A > 0, the other situations being analogous.

71 CaseJ —K+A<0,J <O0:

Case: ¢ < min(0, a,b). We know that

a = c, Amin =

= o O
o O O
S O =

Qi

Il

—_

>

[n)

2

o
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and G, has one irreducible component (—) = (+). We aggregate the two
components () by adding R.(%) := R(—) + Re(+) and eliminate the negligi-
ble term R.(0). The new singular eigenvalue problem obtained in algorithm 30,
Me(l)Rgl) = )\gl)REI), is actually reduced to a unique equation with unique un-
known REI) := R.(+£). More precisely,

{(€a+€c)R6(i)+2€bRE(0) = AR (%),

Re(%) + Re(0) = AR(0),
6b (1) 2€2b
€ = (£ (L), e T Ae— C=¢" s
R(0) )\E_IR()<<R() A Ae — € e+)\€_1
which yields
1/2 1/2 1/2
R, ~ ¢ = | JHE-A)2 Te ~ 2e2(=J+K—-A/2)
1/2 1/2 1/2
ca—c 262(b—c) 1 e—2J 262(—J+K—A/2) 1
Qc~ |1/2 ¢ 1/2|=|1/2 e JHE=A 1/2
1 9¢2(b—c)  ca—c 1 2e2(=J+K-A/2) 2]

72 Case —J-K+A<0,J >0:

Case: a < min(0,b, ¢). Gpin has two irreducible components with identical spec-
tral coefficient, (—) <» (—) and (4) < (+), and as before R.(0) < R¢(—) = Re(+).
We thus obtain

1 0 0
a=a, Apin=10 0 0|, a=1, I ~¢%
0 1

0
1/2 1/2 2¢2(b—a)  oma
Re~ |7, mer~ Qe ~ 1/2 e 1)2
1/2 ecma 2¢2(b-a) g

73 Case - J—-—K+A>0,J-—-K+A>0:

Case: 0 < min(a, b, ¢). Gpin has one irreducible component (0) <> (0), @ =1 and
R.(—) = Rc(+) < R(0). We obtain

0 00
a=0, Anmn=10 1 0|, a=1, A ~1,
0 00
1 €
R, ~ 1
1 €
As in case 7.1, we eliminate the negligible term R.(+) and get a new graph G

reduced to a singleton

92 b 2) 2b
% R(0) and A -—1=-— " 2
Ae — (€2 4 €°)

Re(+) = N~ (@@ 1)
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74 Case J — K+ A=0,J<0:

Case: ¢ =0 < min(a,b). We know that

a= 07 Amin =

= o O
O = O

1
o, a=1, A~1,
0

and G, has two irreducible components (—) = (+) and (0) + (0). No state
x € S is a priori negligible. We then aggregate the states (£) by adding R.(%) :=
Rc(+) + Re(—) and obtain a new eigenvalue problem MG(I)REI) = )\gl)REI), where

a b
= o ] w0 [R5 e 0o

We then have to discuss three subcases.

7.4.1 Subcase J < —%A < 0:

Subcase: b < a. The minimizing subgraph ngn has one irreducible component

() = (0) with minimizing mean exponent @) = b and dominant spectral coeffi-
cient at) = V2. We obtain

1//2
1
1/v2
1/4 €? V/2¢b 1

Ae=1+V2 4., 7w~ [1/2], Qe~ |e/vV2 1 €/V2].
1/4 1 V2eb e

and

AW ~v2¢8 RM [ﬂ , Rex

7.4.2 Subcase J = —iA < 0:
Subcase: a = b. Ggm)-n has one irreducible component (+) < (+) = (0) with
dominant spectral coefficient @) = 2 (the spectral radius of [ 1 Z ]), and the

right eigenvector REI) is proportional to [ i ] We obtain /\9) ~ 2¢* and

1/3 e &1
A=142"4+..., Rio~me~|1/3], Qe~ b 1 €
1/3 1 e ¢

7.4.3 Subcase —iA < J<O0:

Subcase: @ < b. The minimizing subgraph ngn has one irreducible component

() < (&) with dominant spectral coefficient @) = 1. We obtain therefore
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AD et R(0) = @ 9R(£) <€ Re(£), \e = 1+ ¢+ ... and

1/2 1/2 @ 2%
Re~ |7, me~ [220-9) | Q. ~ |€*/2 1  €*/2
1/2 1/2 1 2%

75 Case —J —K-+A=0,J>0:

Case: a =0 < min(b, c¢). One then has
1 00
a=0, Apn=10 1 0|, a=1, I~1
0 01

The minimizing subgraph G,,;, has three irreducible components (—) < (—),
(0) <» (0) and (+) > (4). Once again we simplify the proof by noticing that
R.(—) = Re(+), but it is so far not clear which state dominates. The reduction
to an aggregated form consists in simply eliminating the first term of A in the
Puiseux series:

MY =M, —1d, MORD = \Dr® gL =R~ AL =) —1.

The new graph GW has possible minimizing mean exponents a = borec. Let
a® be the associated dominant spectral coefficient. We discuss three subcases.

7.5.1 Subcase 0 < iA < J:

Subcase: b < c. GSLZn has one irreducible component (—) = (0) = (+) with
aV = b. Moreover,

010 1
AN =110 1], aW=v2 RO« |v2
010 1
Then A\e = 14+ v2¢® + ... and
1 1/4 1 V2eb e
R, x \/5 y e ™ 1/2 y o Qe ~ 6b/\/i 1 eb/\/i
1 1/4 e V21

7.5.2 Subcase 0 < %A =J:

Subcase: ¢ = b. The subgraph c\W

min Das one irreducible component (—) = (0) =
(+) = (—) and

01 1 1
AV — 110 1|, aP=2 RO« |1
110 1
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‘We thus obtain

1/3 1 e ¢
Ae=142"4+..., Rio~me~|1/3], Qe~|ed 1 €
1/3 e 1

7.5.3 Subcase 0 < J < %A:

Subcase: ¢ < b. G(l)

+in has one irreducible component (—) = (4) with minimizing
mean exponent a(!) = ¢ and @) = 1. We aggregate the states (%), REI)(:E) =
Rgl)(—) + Rgl)(—i—), and eliminate Rgl)(O) < Rgl)(i) to obtain a third graph

(reduced to a singleton)

ep(l 1 1) (1
CROE) +2RD©0) = AURVE), o2 )
&RY (+) = AR (), OIS
We get Ac =1+4+€“+ ... and
1/2 1/2 1 2% ¢
Re~ ||, me~ |22079 | Qc~ |e/2 1 €2
1/2 1/2 € 2e%ma
76 Case J=0< A<KK:
Case: a = ¢ < min(0,b). One has
1
a=a, Amin= 0], a=2, A~ 2¢
1

—_ O
— o O O

Gmin has one irreducible component (—) <+ (=) = (+) < (+) with minimizing
mean exponent a = a and dominant spectral coefficient & = 2. We again aggregate
the states (£), Re(£) := Re(—) + Re(+), and eliminate R.(0) < R¢(+£) in order
to introduce a new singular eigenvalue problem

26°Re(£) +2e2(0) = ARe(%), 9t 1 2¢2b .y
PR(£) + R(0) = AR.(0), A—1 7€
We thus obtain
1/2 1/2 1/2 20-a)/2 1/2
Re~ |&79/2|, me~ |09 2] 0 Qc~ [1/2 /2 1/2
1/2 1/2 1/2 &b 12

77 CaseJ =0< A=K:

Case: a =c =0 < b. We have

1
a=0, Anpin=10
1

O = O
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Gmin has two irreducible components with spectral coefficients equal to 1 and 2,
whose graphs are (0) <> (0) and (=) « (=) = (+) < (+), respectively. We
aggregate (+) into a unique state R.(%) := Re(—) + Re(+) and obtain

2R (£) +26°R.(0) = AR.(%), o 2¢20 \
SR (£) + R(0) = ARA0), Ae—1 7€
We thus get A\ =2+ 2¢% + ... and
1/2 1/2 1/2 €* 1/2
Re~ | €|, me~ |22, Qc~ |1/4 1/2 1/4
1/2 1/2 /2 € 1/2

We recall that the previous discussion is summarized in figures 3 and 4.
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