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Abstract

An alternative strategy to solve the subproblems of the Method of Moving Asymp-

totes (MMA) is presented, based on a trust-region scheme applied to the dual of the

MMA subproblem. At each iteration, the objective function of the dual problem is

approximated by a regularized spectral model. A globally convergent modification to

the MMA is also suggested, in which the conservative condition is relaxed by means of

a summable controlled forcing sequence. Another modification to the MMA previously

proposed by the authors [Optim. Methods Softw., 25 (2010), pp. 883-893] is recalled to

be used in the numerical tests. This modification is based on the spectral parameter for

updating the MMA models, so as to improve their quality. The performed numerical ex-

periments confirm the efficiency of the indicated modifications, especially when jointly

combined. This report contains all the global convergence results and the complete set

of numerical and graphical elements that sustain our performance analysis.
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1 Introduction

This study proposes a new strategy for solving the subproblems of the Method of Moving

Asymptotes (MMA) by means of its dual formulation, using a trust-region technique. The

MMA is a very popular method within the structural optimization community and applies

to the inequality constrained nonlinear programming problem with simple bounds as follows:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , m,

xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n,

(1)

where x = (x1, . . . , xn)T ∈ IRn is the vector of the variables, xmin
j and xmax

j are given real

numbers for each j and f0, f1, . . . , fm are real-valued twice continuously differentiable func-

tions.

The original version of the MMA [14] was introduced in 1987 by Svanberg, as a gener-

alization of the convex linearization method (CONLIN) [8], without global convergence. In

1995, Svanberg [15] proposed a globally convergent version. Several other MMA versions have

appeared since then, see for instance [4, 18, 20, 21] and references therein. In 1998, Svanberg

[16] developed a primal-dual interior-point method for solving the subproblems, in which a

sequence of relaxed Karush-Kuhn-Tucker (KKT) conditions are solved by Newton’s method.

In 2003, Ni [13] proposed a globally convergent algorithm that combines the method of mov-

ing asymptotes with a trust-region technique, in order to solve bound-constrained problems.

In its more recent version [17], the MMA was merged into the Conservative Convex and

Separable Approximation (CCSA) class of methods, which are globally convergent.

In the current work, the dual problem associated with the MMA subproblem is stated

and analyzed. The explicit expression of the dual objective function is accessible due to the

separability of the rational models of the MMA. The intrinsic features of such a function

are highlighted, namely being concave and continuously differentiable. The discontinuities

of the second-order derivatives are discussed as well. Motivated by such features, we have

proposed a trust-region approach for solving the dual of the MMA subproblem by means of

a quadratic model that has a spectral regularization term. The solution of the trust-region

subproblem has a closed form.

Another contribution of this work is related to the conservative condition responsible

for defining the current outer iterate and ensuring the global convergence of the method.

A relaxed conservative condition is proposed, based on a summable controlled forcing se-

quence [11], so that the maintenance of global convergence of the MMA algorithm with this
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modification is proved.

In the numerical experiments, a third modification of the MMA previously proposed by

the authors [9] is incorporated, based on the spectral parameter for the updating of a key

parameter of the method, that ensures strict convexity of the model functions. The second-

order information provided by the spectral parameter is included in the model functions

that define the rational approximations of both the objective function and the nonlinear

constraints at the beginning of each iteration, so as to improve the quality of the models.

The computational results corroborate the proposed modifications, especially when jointly

combined.

The structure of this report is as follows. In Section 2, the basic ideas of the MMA are

presented. The proposed modifications to the MMA - the spectral updating and the relaxed

conservative condition - are described and the modified algorithm is summarized in Section 3.

In Section 4, the complete theoretical analysis of global convergence of the proposed algorithm

is given. A discussion of the dual problem associated with the MMA subproblem is provided

in Section 5, together with details of our trust-region approach applied to the dual of the

MMA subproblem. The numerical results are presented in Section 6, and final remarks, in

Section 7, conclude the text.

2 The Method of Moving Asymptotes

Following Svanberg’s approach [14], artificial variables y = (y1, . . . , ym)T are introduced in

problem (1), so that the following enlarged problem is addressed:

minimize f0(x) +

m∑

i=1

(ciyi + 1
2
diy

2
i )

subject to fi(x) − yi ≤ 0, i = 1, . . . , m,

x ∈ X, y ≥ 0,

(2)

where X = {x ∈ IRn; xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n} and ci and di are real numbers such

that ci ≥ 0 and di > 0 for i = 1, . . . , m. The constants ci must be chosen large enough so that

the variables yi are zero at the optimal solution, in case the original problem has a nonempty

feasible set and fulfills a constraint qualification (e.g. Mangasarian-Fromovitz [12]).

The 2002 version of MMA for solving problem (2) performs outer and inner iterations.

The indices (k, ℓ) are used to denote the ℓ-th inner iteration within the k-th outer iteration.

To start, it is necessary to choose x(1) ∈ X, and then to compute y(1), obtaining an initial

feasible estimate (x(1), y(1)) for problem (2).
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Thus, given (x(k), y(k)), a subproblem is generated and solved. This subproblem is ob-

tained from (2), replacing the objective function and the functions that define the inequality

constraints by separable strictly convex models g
(k,ℓ)
i . Moreover, the original box is reduced,

being defined around the current point with the aid of the parameter σ(k). This subproblem

is given next

minimize g
(k,ℓ)
0 (x) +

m∑

i=1

(ciyi + 1
2
diy

2
i )

subject to g
(k,ℓ)
i (x) − yi ≤ 0, i = 1, . . . , m,

x ∈ X(k), y ≥ 0,

(3)

for k ∈ {1, 2, 3, . . .} and ℓ ∈ {0, 1, 2, . . .}, where

X(k) = {x ∈ X | xj ∈ [x
(k)
j − 0.9σ

(k)
j , x

(k)
j + 0.9σ

(k)
j ], j = 1, . . . , n}. (4)

The vector σ(k) = (σ
(k)
1 , . . . , σ

(k)
n )T contains strictly positive parameters and its updating is

done as in [17], where each vector σ(k) belongs to a compact set S as follows:

S =
{
σ ∈ IRn | σmin

j ≤ σj ≤ σmax
j , j = 1, . . . , n

}
, (5)

where σmin
j and σmax

j are given real numbers such that 0 < σmin
j < σmax

j < ∞.

Denoting the optimal solution of subproblem (3) by (x̂(k,ℓ), ŷ(k,ℓ)), at the ℓ-th inner it-

eration, if the conservative condition holds at x̂(k,ℓ) for all functions of the problem, that

is,

fi(x̂
(k,ℓ)) ≤ g

(k,ℓ)
i (x̂(k,ℓ)), ∀ i ∈ {0, 1, . . . , m}, (6)

then we set (x(k+1), y(k+1)) = (x̂(k,ℓ), ŷ(k,ℓ)), and the k-th outer iteration is completed, after ℓ

inner iterations. Otherwise, if g
(k,ℓ)
i (x̂(k,ℓ)) < fi(x̂

(k,ℓ)) for at least an index i ∈ {0, 1, . . . , m},

another inner iteration must be performed. The model for the function fi is maintained the

same for the index i such that the approximation is conservative in x̂(k,ℓ), that is, g
(k,ℓ)
i (x) ≡

g
(k,ℓ+1)
i (x). For the indices for which the approximation g

(k,ℓ)
i does not fulfill the conservative

condition (6) in x̂(k,ℓ), the model is modified so that the new approximation g
(k,ℓ+1)
i may

satisfy the conservative condition in x̂(k,ℓ+1).

It is worth mentioning that the conservative condition is demanded for both the objective

function and the constraints, producing, with regards to problem (2), strict reduction of the

objective function value and feasible iterates, respectively.

In the MMA, the approximating functions are stated as
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g
(k,ℓ)
i (x) =

n∑

j=1

(
p

(k,ℓ)
ij

u
(k)
j − xj

+
q
(k,ℓ)
ij

xj − l
(k)
j

)
+ r

(k,ℓ)
i , (7)

where the poles of the moving asymptotes l
(k)
j and u

(k)
j are

l
(k)
j = x

(k)
j − σ

(k)
j and u

(k)
j = x

(k)
j + σ

(k)
j ,

and the coefficients p
(k,ℓ)
ij , q

(k,ℓ)
ij and r

(k,ℓ)
i are given by

p
(k,ℓ)
ij = (σ

(k)
j )2 max

{
0,

∂fi

∂xj
(x(k))

}
+

ρ
(k,ℓ)
i σ

(k)
j

4
, (8)

(9)

q
(k,ℓ)
ij = (σ

(k)
j )2 max

{
0,−

∂fi

∂xj
(x(k))

}
+

ρ
(k,ℓ)
i σ

(k)
j

4
, (10)

(11)

r
(k,ℓ)
i = fi(x

(k)) −
n∑

j=1

(
p

(k,ℓ)
ij + q

(k,ℓ)
ij

σ
(k)
j

)
. (12)

Within an outer iteration k, the only difference between two inner iterations are the values

of the parameters ρ
(k,ℓ)
i . These parameters are strictly positive, so that all the approximating

functions g
(k,ℓ)
i are strictly convex and every subproblem has a single global optimum. The

updating of parameters ρ
(k,ℓ)
i is the one suggested in [17], and included here for further

reference. For ℓ = 0, the following values are used:

ρ
(1,0)
i = 1, (13a)

ρ
(k+1,0)
i = max{0.1 ρ

(k,ℓ̂(k))
i , ρmin

i }, (13b)

where ℓ̂(k) is the number of inner iterations needed within the k-th outer iteration, and ρmin
i

is a fixed strictly positive number, such as, 10−5.

At each inner iteration, the updating of ρ
(k,ℓ)
i is based on the solution of the most recent

subproblem. If g
(k,ℓ)
i (x̂(k,ℓ)) < fi(x̂

(k,ℓ)) the value ρ
(k,ℓ+1)
i is chosen so that

g
(k,ℓ+1)
i (x̂(k,ℓ)) = fi(x̂

(k,ℓ)),

which provides ρ
(k,ℓ+1)
i = ρ

(k,ℓ)
i + δ

(k,ℓ)
i where

δ
(k,ℓ)
i =

fi(x̂
(k,ℓ)) − g

(k,ℓ)
i (x̂(k,ℓ))

w(x̂(k,ℓ), x(k), σ(k))
. (14)
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Thus we obtain

ρ
(k,ℓ+1)
i = min{10 ρ

(k,ℓ)
i , 1.1 (ρ

(k,ℓ)
i + δ

(k,ℓ)
i )} if δ

(k,ℓ)
i > 0,

ρ
(k,ℓ+1)
i = ρ

(k,ℓ)
i if δ

(k,ℓ)
i ≤ 0.

(15)

The model functions g
(k,ℓ)
i are first-order approximations to the original functions fi at

the current estimate, that is, conditions

g
(k,ℓ)
i (x(k)) = fi(x

(k)) and ∇g
(k,ℓ)
i (x(k)) = ∇fi(x

(k)) (16)

must hold for all i = 0, 1, . . . , m. Another condition that must be satisfied by the approxi-

mating functions is separability, that is,

g
(k,ℓ)
i (x) = g

(k,ℓ)
i0 +

n∑

j=1

g
(k,ℓ)
ij (xj).

Such a property is crucial in practice, because the Hessian matrices of the approximations

are diagonal ones, allowing us to address large-scale problems. The model proposed in [17]

satisfies such a condition with g
(k,ℓ)
i0 = r

(k,ℓ)
i and

g
(k,ℓ)
ij (xj) =

(
p

(k,ℓ)
ij

u
(k)
j − xj

+
q
(k,ℓ)
ij

xj − l
(k)
j

)
.

What is more, the approximating functions g
(k,ℓ)
i of the MMA subproblem satisfy (cf.

[17])

g
(k,ℓ)
i (x) = vi(x, x(k), σ(k)) + ρ

(k,ℓ)
i w(x, x(k), σ(k)), i = 0, 1, . . . , m, (17)

where vi(x, ξ, σ) and w(x, ξ, σ) are real-valued functions defined on the set D given by

D = {(x, ξ, σ) | ξ ∈ X, σ ∈ S, x ∈ X(ξ, σ)} , (18)

with S is defined in (5) and X(ξ, σ) is a subset of X given by

X(ξ, σ) = {x ∈ X | xj ∈ [ξj − 0.9σj , ξj + 0.9σj ], j = 1, . . . , n} . (19)

The aforementioned definitions and notation will be used in the convergence analysis of the

algorithm (Section 4).

In the section that follows, a brief analysis of the second-order information of the model

functions and its connection with the spectral parameter will motivate a strategy for updating

6



the parameters ρ
(k,0)
i , i = 0, 1, . . . , m (cf. [9]). The relaxed conservative condition is presented

together with the summarized algorithm.

3 Modifications to the MMA

In this section, we propose modifications to the MMA, based on the spectral parameter,

used in the updating of the parameter ρ
(k,ℓ)
i , and on relaxing the conservative condition.

The second-order information provided by the spectral parameter is included in the model

functions g
(k,ℓ)
i that define the rational approximations of the objective function and of the

nonlinear constraints at the beginning of each iteration. The motivation for proposing such

an idea came from the numerical observation that Svanberg’s original updating stalls for

some problems, not making significant progress in the solution of the sequence of solved

subproblems. By improving the quality of the approximations such a drawback was overcome.

Moreover, the idea preserves the global convergence property of the CCSA class, as proved

in Section 4. This proposal was previously presented in [9]. The conservative condition is

relaxed by means of a summable controlled forcing sequence, so that the maintenance of

global convergence is proved. The algorithm that combines both of these ideas is explicitly

presented.

3.1 Second-order information and the spectral parameter

Evaluating the non-mixed second-order partial derivatives of the model function g
(k,ℓ)
i given

in (7) at the current iteration point x(k), we obtain the following expression:

∂2g
(k,ℓ)
i

∂x2
j

(x(k)) =
2
∣∣∣ ∂fi

∂xj
(x(k))

∣∣∣

σ
(k)
j

+
ρ

(k,ℓ)
i

(σ
(k)
j )2

. (20)

Recalling that the functions g
(k,ℓ)
i are already first-order approximations of the original func-

tions fi at the current iteration point x(k), as stated in (16), the model will improve if we

demand that
∂2g

(k,ℓ)
i

∂x2
j

(x(k)) =
∂2fi

∂x2
j

(x(k)) (21)

for all j = 1, . . . , n. If we somehow approximate the non-mixed second-order derivatives of

the functions fi, and use the relationship (20), we may devise a new strategy for updating

the parameters ρi. Our choice for approximating the derivatives is based on the spectral

parameters, as detailed next.
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From the Mean Value Theorem of the Integral Calculus we know that, given a continuously

differentiable function f : IRn → IR we have that f(y) = f(x) + ∇f(x + α(y − x))T (y − x),

for some α ∈ (0, 1). Moreover, if f is twice continuously differentiable, then ∇f(y) =

∇f(x) +
∫ 1

0
∇2f(x + α (y − x)) dα (y − x). By setting s = y − x, the scalar

η =
sT t

sTs
, (22)

where t = ∇f(y) −∇f(x) = (
∫ 1

0
∇2f(x + αs) dα)s defines a Rayleigh quotient with respect

to the average Hessian matrix (
∫ 1

0
∇2f(x + αs) dα). Such quotient has its value between

the smallest and the largest eigenvalue of the average Hessian matrix, what motivates the

terminology spectral parameter for (22). Thus, if we require that the Hessian of the functions

fi are approximated by scalar matrices, we might say that ηI, with η given in (22) is the

matrix of such type that best approximates the average Hessian.

In the MMA context, the idea is to use the spectral parameter (22) as an approximation

to the non-mixed second-order derivatives, that is

∂2fi

∂x2
j

(x) ≈ ηi, ∀j. (23)

Such approximation will be used in the beginning of each outer iteration to obtain ρ
(k,0)
i , thus

improving the quality of the model functions.

The points used to compute the direction s are the current estimate and the previous

one, that is, s(k) = x(k) − x(k−1). It is also necessary to compute vectors t
(k)
i = ∇fi(x

(k)) −

∇fi(x
(k−1)), so that

η
(k)
i =

(s(k))T t
(k)
i

(s(k))T s(k)
, i = 0, 1, . . . , m. (24)

The motivation for using the spectral parameter in the MMA comes from the need of avoiding

computing second-order derivatives of the original functions fi, i = 0, 1, . . . , m, due to the

intrinsic involved cost. Therefore, a possible way to use second-order information without an

excessive overload is to approximate the Hessian by cheap matrices with a simple structure,

scalar matrices in this case.

Combining (20), (21) and (23) for ℓ = 0 we obtain

η
(k)
i ≈

2
∣∣∣ ∂fi

∂xj
(x(k))

∣∣∣

σ
(k)
j

+
ρ

(k,0)
i

(σ
(k)
j )2

, ∀j = 1, . . . , n.
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Now, ρ
(k,0)
i may be computed based on the solution of the following least-squares problem:

minimize

n∑

j=1

(
ρi + bij − η

(k)
i (σ

(k)
j )2

)2

ρi

(25)

where

bij = 2 σ
(k)
j

∣∣∣∣
∂fi

∂xj
(x(k))

∣∣∣∣ . (26)

As the objective function of problem (25) is a quadratic in ρi, it follows that its minimizer

ρ∗
i is given by

ρ∗

i =
1

n

n∑

j=1

(
η

(k)
i (σ

(k)
j )2 − bij

)
, (27)

and it will be conveniently used in our algorithm.

3.2 Relaxing the conservative condition

We have noticed in the numerical investigation that the strict conservative condition, de-

manded by Svanberg [17] and defined in (6), many times generates assembling and solution

of additional subproblems, without significative progress towards the solution, especially in

the initial iterations. To overcome this drawback, we decided to relax the conservative con-

dition as follows: we say that the relaxed conservative condition holds at the iterate x̂(k,ℓ)

if

fi(x̂
(k,ℓ)) ≤ g

(k,ℓ)
i (x̂(k,ℓ)) + µk max

{
1,
∣∣∣g(k,ℓ)

i (x̂(k,ℓ))
∣∣∣
}

, (28)

for all i ∈ {0, 1, . . . , m}, where
∞∑

k=1

µk ≤ µ < ∞. (29)

Therefore, the sequence {µk}
∞
k=1 goes to zero as the external iterations progress so that the

conservative condition (6) is more relaxed in the beginning of the generated sequence, and

ultimately achieved in the end. Naturally, the original conservative condition is obtained if

µk ≡ 0, ∀k.

In Figure 1 we illustrate an example where the original conservative condition (6) is

violated, and for µk sufficiently large the relaxed conservative condition (28) is verified. To

simplify the notation, we set

µ̄k,i = µk max
{

1,
∣∣∣g(k,ℓ)

i (x̂(k,ℓ))
∣∣∣
}

. (30)

A simple way to relax the conservative condition would be fi(x̂
(k,ℓ)) ≤ g

(k,ℓ)
i (x̂(k,ℓ)) +
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x(k)

f0

g
(k,ℓ)
0

x̂(k,ℓ)

Figure 1: Example in which the original conservative condition is violated and the relaxed
conservative condition is verified if µk is large enough.

µk g
(k,ℓ)
i (x̂(k,ℓ)) = (1 + µk)g

(k,ℓ)
i (x̂(k,ℓ)). However, if g

(k,ℓ)
i (x̂(k,ℓ)) is zero or negative, the conser-

vative condition is not relaxed. Therefore, the term µ̄k,i ensures that there is a relaxation,

regardless the value or the signal of the approximation g
(k,ℓ)
i at x̂(k,ℓ). The absolute value in

(30) is necessary for the case where the value g
(k,ℓ)
i (x̂(k,ℓ)) is negative, whereas the maximum

is essential for the case where g
(k,ℓ)
i (x̂(k,ℓ)) is zero. The chosen value 1 does not affect the

magnitude of the relaxation since if |g
(k,ℓ)
i (x̂(k,ℓ))| is less than 1 in the early iterations, where

µk can still be large, so we have a large relaxation, which is desired; and if |g
(k,ℓ)
i (x̂(k,ℓ))| is

less than 1 in the final iterations, the value of µk will be small, so that the relaxation will be

small.

The conservative condition (6) provides strict reduction of the objective function value and

feasible iterates for problem (2). Hence, by relaxing it, the outer iterates may be infeasible

with respect to problem (2), specially in the beginning of the sequence, and its objective

function value may increase, but in a controlled way.

When it comes to the global convergence analysis, it is worth mentioning that in [17],

the sequence {F0(x
(k), y(k))}∞k=1, where F0(x, y) = f0(x) +

∑
(ciyi + 1

2
diy

2
i ), is monotonically

decreasing and bounded below, being thus convergent. Adopting the relaxed conservative

condition (28), despite losing the monotonic pattern, such a sequence is still convergent due

to (29). Moreover, the reasoning of [17] remains valid based on the fact that µk → 0 as

k → ∞, as detailed in Section 4, so that the global convergence is maintained. The actual

choice for the sequence {µk}
∞
k=1 is provided in Section 6, together with the description of the

numerical results.
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3.3 The modified MMA algorithm

The MMA with the proposed modifications is presented next, for a given initial estimate

x(1) ∈ X. The artificial variables y were omitted on purpose, for simplicity, so the whole

process is presented just with the original variables x ∈ IRn. Moreover, we have highlighted

our modifications; by removing them, Svanberg’s original algorithm is obtained.

Algorithm 1: Method of the Moving Asymptotes with spectral updating and

relaxed conservative condition

Step 1. Initialization

Define ρ
(1,0)
i = 1 as in (13a) for i = 0, 1, . . . , m.

Set k = 1.

Step 2. Stopping criterion

If x(k) verifies the KKT conditions of the problem (2),

stop and take x(k) as the solution.

Step 3. Computation of the parameters ρ
(k,0)
i and σ

(k)
j and the asymptotes l

(k)
j and u

(k)
j

Set ℓ = 0.

If k > 1, compute

s(k) = x(k) − x(k−1),

t
(k)
i = ∇fi(x

(k)) −∇fi(x
(k−1)) for i = 0, 1, . . . , m,

η
(k)
i = min

{
ηmax

i , max

{
ηmin

i ,
(s(k))T t

(k)
i

(s(k))T s(k)

}}
for i = 0, 1, . . . , m,

bij as in (26), for i = 0, 1, . . . , m and j = 1, . . . , n,

ρ∗
i as in (27) for i = 0, 1, . . . , m.

For each i = 0, 1, . . . , m, if ρ∗
i > 0, set ρ

(k,0)
i = ρ∗

i .

Otherwise, compute ρ
(k,0)
i as in (13b).

Compute σ
(k)
j for j = 1, . . . , n as in [17].

Compute l
(k)
j = x

(k)
j − σ

(k)
j and u

(k)
j = x

(k)
j + σ

(k)
j , for j = 1, . . . , n.

11



Step 4. Generation and solution of the subproblem

Compute the coefficients p
(k,ℓ)
ij , q

(k,ℓ)
ij and r

(k,ℓ)
i , for i = 0, 1, . . . , m and j = 1, . . . , n

as in (8), (10) and (12), respectively.

Define the approximating functions g
(k,ℓ)
i , for i = 0, 1, . . . , m as in (7).

Solve the subproblem (3), obtaining x̂(k,ℓ).

Step 5. Test the relaxed conservative condition

Compute µk such that {µk}
∞
k=1 satisfies (29).

If the relaxed (28) conservative condition is not verified for some index i ∈ {0, 1, . . . , m}

then, for such an index

Update the parameters ρ
(k,ℓ)
i as in [17], set ℓ = ℓ + 1 and go to Step 4.

Otherwise, set x(k+1) = x̂(k,ℓ), k = k + 1 and go to Step 2.

The main differences between our approach and the MMA version of 2002 [17] are the

computation of the parameters ρ
(k,0)
i in the beginning of each outer iteration and the relaxed

conservative condition of Step 5. The spectral parameters used in Step 3, namely η
(k)
i ,

i = 0, 1, . . . , m, are the projections of
(
(s(k))T t

(k)
i

)
/
(
(s(k))T s(k)

)
in the interval [ηmin

i , ηmax
i ],

with 0 < ηmin
i < ηmax

i < +∞. This safeguard is adopted to avoid negative or positive, but

either too small or too large values for η
(k)
i . The actual choice for the sequence {µk}

∞
k=1 is

provided in Section 6, together with the description of the numerical results.

The global convergence of Algorithm 1 is analyzed in the next section.

4 Theoretical analysis of global convergence

This section contains the convergence properties of the method, combining the spectral up-

dating and the relaxed conservative condition, and described in Algorithm 1.

A given point (x, y) ∈ IRn×IRm is a KKT point of the problem (2) if and only if there are

Lagrange multipliers which together with (x, y) satisfy the KKT conditions of the problem.

To characterize the solutions of the problem (2), we will show that it is equivalent to the

following nonsmooth problem:

minimize f0(x) +
m∑

i=1

(
cif

+
i (x) + 1

2
di

(
f+

i (x)
)2)

subject to x ∈ X,

(31)

12



where f+
i (x) = max{0, fi(x)} and X is the compact set:

X = {x ∈ IRn; xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n}.

The formulation (31) will not be used for solving problem (2), but solely to show that the

problem (2) admits a global solution. The artificial variables yi may be eliminated from the

problem (2). The resulting problem is exactly (31). The following proposition establishes

the equivalence between the solutions of the problems (2) and (31).

Proposition 1. The pair (x̂, ŷ) is a global optimal solution of problem (2) if and only if x̂

is a global optimal solution of problem (31), where ŷi = f+
i (x̂), i = 1, . . . , m.

Proof: It is easy to see that if x ∈ X then (x, f+(x)) is feasible for (2). Moreover, if (x, y) is

feasible for (2) then yi ≥ f+
i (x) for all i = 1, . . . , m, and consequently

f0(x) +

m∑

i=1

(
cif

+
i (x) +

di

2
(f+

i (x))2

)
≤ f0(x) +

m∑

i=1

(
ciyi +

di

2
y2

i

)
. (32)

Now, let (x̂, ŷ) be the global optimal solution of problem (2) and x ∈ X be an arbitrary

feasible point for (31). Since (x, f+(x)) is feasible for (2), we have that

f0(x̂) +

m∑

i=1

(
cif

+
i (x̂) +

di

2
(f+

i (x̂))2

)
≤ f0(x̂) +

m∑

i=1

(
ciŷi +

di

2
ŷ2

i

)

≤ f0(x) +
m∑

i=1

(
cif

+
i (x) +

di

2
(f+

i (x))2

)
.

Conversely, if x̂ is a global optimal solution of problem (31), then x̂ ∈ X, and consequently

(x̂, f+(x̂)) is feasible for (2). On the other hand, if (x, y) is feasible for (2), we have that x is

feasible for (31), and, by (32), we have that

f0(x̂) +
m∑

i=1

(
cif

+
i (x̂) +

di

2
(f+

i (x̂))2

)
≤ f0(x) +

m∑

i=1

(
cif

+
i (x)i +

di

2
(f+

i (x))2

)

≤ f0(x) +

m∑

i=1

(
ciyi +

di

2
y2

i

)
. �

The next proposition ensures that the problem under consideration is well formulated.
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Proposition 2. There is at least one global optimal solution of problem (2).

Proof: From the continuity of the objective function of problem (31) in the compact set X,

it follows that the problem (31) admits at least one global optimal solution. Therefore, from

Proposition 1, the problem (2) also admits at least one global optimal solution. �

The following result establishes that the feasible set of problem (2) verifies a constraint

qualification.

Proposition 3. If (x̂, ŷ) is an optimal solution, local or global, of problem (2), then there

are Lagrange multipliers which together with (x̂, ŷ) satisfy the KKT conditions for such a

problem.

Proof: Consider the Arrow, Hurwicz and Uzawa constraint ([2], see also [3, p.329]): let x∗

be a local minimizer of problem

minimize f(x)

subject to g1(x) ≤ 0, . . . , gm(x) ≤ 0,
(33)

where f and gi are continuously differentiable real-valued functions. If there is a vector

d ∈ IRn such that

∇gi(x
∗)T d < 0, ∀ i ∈ A(x∗)

where A(x) is the index set of the active constraints of the problem (33) in x, for any x ∈ IRn,

then there are Lagrange multipliers which together with x∗, satisfy the KKT conditions of

the problem (33).

Such a constraint qualification is a particular case of the well-known Mangasarian-Fromo-

vitz constraint qualification ([12], see also [3, p.329]) for the inequality constrained problem,

and it holds for problem (2). Indeed, assume that (x̂, ŷ) is an optimal solution of problem

(2) and construct a corresponding vector d = (dx, dy) ∈ IRn × IRm as follows:

(dx)j =





1, if x̂j = xmin
j

−1, if x̂j = xmax
j , j = 1, . . . , n,

0, otherwise

(dy)i = 1 +
n∑

j=1

∣∣∣∣
∂fi

∂xj

(x̂)

∣∣∣∣ , i = 1, . . . , m.

As a result, the inner product of d and the gradient vector, calculated at (x̂, ŷ), of any active

constraint in problem (2) is strictly negative. Hence there exists a Lagrange multiplier vector

that together with (x̂, ŷ) satisfies the KKT conditions of problem (2). �

Let Ω be the set of KKT points of the problem (2). Such a set is nonempty, as established

in Propositions 2 and 3. Let ||Ω− (x(k), y(k))|| denote the Euclidean distance from the point
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(x(k), y(k)) to the set Ω, i.e.,

||Ω − (x(k), y(k))|| = inf
(x,y)∈Ω

{||(x, y) − (x(k), y(k))||}.

Theorem 1. If the Algorithm 1 is applied to a problem of the form (2), then

||Ω− (x(k), y(k))|| → 0 as k → ∞.

In other words, every limit point of the sequence generated by the Algorithm 1 is a KKT

point of the problem (2). To prove Theorem 1, some preliminary results are needed.

In the first lemma we prove that Algorithm 1 is well-defined, that is, the relaxed conser-

vative condition is verified after a finite number of inner iterations.

Lemma 1. In each outer iteration k, only a finite number ℓ of inner iterations are needed

until fi(x̂
(k,ℓ)) ≤ g

(k,ℓ)
i (x̂(k,ℓ)) + µ̄k,i for all i, where µ̄k,i is given by (30).

Proof: By Taylor’s theorem we have

g
(k,ℓ)
i (x̂(k,ℓ)) = g

(k,ℓ)
i (x(k)) + ∇g

(k,ℓ)
i (x(k))T p +

1

2
pT∇2g

(k,ℓ)
i (x(k) + t1p)p

and

fi(x̂
(k,ℓ)) = fi(x

(k)) + ∇fi(x
(k))T p +

1

2
pT∇2fi(x

(k) + t2p)p

for some t1 ∈ (0, 1), some t2 ∈ (0, 1) and p = x̂(k,ℓ) − x(k). From (17) we obtain

∇2g
(k,ℓ)
i (x) = ∇2

xxvi(x, x(k), σ(k)) + ρ
(k,ℓ)
i ∇2

xxw(x, x(k), σ(k))

and using (16) we get

g
(k,ℓ)
i (x̂(k,ℓ)) − fi(x̂

(k,ℓ)) + µ̄k,i =
1

2
pT∇2g

(k,ℓ)
i (x(k) + t1p)p −

1

2
pT∇2fi(x

(k) + t2p)p + µ̄k,i

=
1

2
pT∇2

xxvi(x
(k) + t1p, x

(k), σ(k))p

+
ρ

(k,ℓ)
i

2
pT∇2

xxw(x(k) + t1p, x
(k), σ(k))p

−
1

2
pT∇2fi(x

(k) + t2p)p + µ̄k,i.

But ∇2
xxvi(x, ξ, σ) ≥ 0, ∀(x, ξ, σ) ∈ D, and so

g
(k,ℓ)
i (x̂(k,ℓ)) − fi(x̂

(k,ℓ)) + µ̄k,i ≥
ρ

(k,ℓ)
i

2
pT∇2

xxw(x(k) + t1p, x
(k), σ(k))p

−
1

2
pT∇2fi(x

(k) + t2p)p + µ̄k,i.
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Dividing both sides by ‖p‖2 we have

1

‖p‖2

(
g

(k,ℓ)
i (x̂(k,ℓ)) − fi(x̂

(k,ℓ)) + µ̄k,i

)
≥

ρ
(k,ℓ)
i

2‖p‖2
pT∇2

xxw(x(k) + t1p, x
(k), σ(k))p

−
1

2‖p‖2
pT∇2fi(x

(k) + t2p)p +
µ̄k,i

‖p‖2
.

Defining

δ(X) ≡ sup
x,y ∈X

‖x − y‖,

it holds that ‖p‖ ≤ δ(X) and so

1

‖p‖2

(
g

(k,ℓ)
i (x̂(k,ℓ)) − fi(x̂

(k,ℓ)) + µ̄k,i

)
≥

ρ
(k,ℓ)
i

2‖p‖2
pT∇2

xxw(x(k) + t1p, x
(k), σ(k))p

−
1

2‖p‖2
pT∇2fi(x

(k) + t2p)p +
µ̄k,i

δ(X)2
.

Considering the worst case for which the relaxed conservative condition is satisfied, we define

the scalars τ and κi such that

τ = min
x,ξ,σ,h

{ hT∇2
xxw(x, ξ, σ)h | (x, ξ, σ) ∈ D, h ∈ IRn, hT h = 1}, (34)

κi = max
x,h

{ hT∇2fi(x)h | x ∈ X, h ∈ IRn, hT h = 1}, (35)

with the set D given in (18).

As all the sets under consideration are compact, the minimum and maximum values in

expressions (34) and (35), respectively, are well defined. The scalar κi is finite because the

Hessian matrix ∇2fi(x) is continuous in X. The scalar τ is finite and strictly positive because

the Hessian matrix ∇2
xxw(x, ξ, σ) is positive definite and continuous in all its arguments.

Hence, a sufficient condition for the inequality g
(k,ℓ)
i (x̂(k,ℓ)) + µ̄k,i ≥ fi(x̂

(k,ℓ)) to hold is

that

ρ
(k,ℓ)
i τ +

2µ̄k,i

δ(X)2
≥ κi.

But each time that g
(k,ℓ)
i (x̂(k,ℓ)) + µ̄k,i < fi(x̂

(k,ℓ)), the corresponding ρ
(k,ℓ)
i is increased by

at least a factor 1.1 (see (15)). This can be done only a finite number of times, for each i,

before ρ
(k,ℓ)
i τ + 2µ̄k,i/δ(X)2 ≥ κi is satisfied. (Note that, for a fixed k, the values ρ

(k,ℓ)
i are

nondecreasing in ℓ). �

As a consequence of Lemma 1, only outer iterations need to be considered in the analysis
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of global convergence. Therefore, the following shorter notations will be used:

ℓ̂(k) = the number of inner iterations needed within the k-th outer iteration,

ρ
(k)
i = ρ

(k,ℓ̂(k))
i and g

(k)
i (x) = g

(k,ℓ̂(k))
i (x).

This means that the subproblem used at the k-th (outer) iteration to calculate the next

iteration point (that is, whose optimal solution should satisfy the relaxed conservative con-

dition) is the following:

minimize g
(k)
0 (x) +

m∑

i=1

(ciyi + 1
2
diy

2
i )

subject to g
(k)
i (x) − yi ≤ 0, i = 1, . . . , m,

x ∈ X(k), y ≥ 0,

(36)

with X(k) given in (4). The optimal solution of the subproblem (36) is the new iterate

(x(k+1), y(k+1)). Note that fi(x
(k)) = g

(k)
i (x(k)) and fi(x

(k+1)) ≤ g
(k)
i (x(k+1)) + µ̄k,i for all

i = 0, 1, . . . , m.

In the next lemma, an upper bound for the parameters ρ
(k)
i , i = 0, 1, . . . , m is established.

The spectral parameter is employed in the proof.

Lemma 2. For each i = 0, 1, . . . , m, there is a finite number ρmax
i such that ρ

(k)
i ≤ ρmax

i for

all outer iterations k.

Proof: From the proof of Lemma 1, if ρ
(k,0)
i τ + 2µ̄k,i/δ(X)2 ≥ κi for all k, then the relaxed

conservative condition always hold. Thus, for the outer iterations k for which the values

ρ
(k,0)
i generated by Algorithm 1 are computed from (13b), an upper bound for ρ

(k)
i is ρmax

i =

ρ
(1,0)
i = 1. For the outer iterations k for which the values ρ

(k,0)
i are computed by the expression

ρ∗
i =

1

n

n∑

j=1

(
η

(k)
i (σ

(k)
j )2 − bij

)
for i = 0, 1, . . . , m, that rests upon the spectral parameter, as

ηmin
i ≤ η

(k)
i ≤ ηmax

i , σmin
j ≤ σ

(k)
j ≤ σmax

j and bij ≥ 0 for all i = 0, 1, . . . , m and j = 1, . . . , n,

an upper bound for ρ
(k)
i is ρmax

i = max{1, ηmax
i σ̂2} where σ̂ = max

j
{σmax

j }.

Now, as ℓ̂(k) is the number of inner iterations needed within the k-th outer iteration,

the parameter ρ
(k,ℓ̂(k))
i = ρ

(k)
i was in charge for the fulfillment of the relaxed conservative

condition, whereas such a condition was not verified for the parameter ρ
(k,ℓ̂(k)−1)
i . Thus

ρ
(k,ℓ̂(k)−1)
i τ + 2µ̄k,i/δ(X)2 < κi.

From (15) we conclude that ρ
(k,ℓ+1)
i ≤ 10ρ

(k,ℓ)
i for each inner iteration ℓ inside the outer
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iteration k, and so:

ρ
(k)
i = ρ

(k,ℓ̂(k))
i ≤ 10 ρ

(k,ℓ̂(k)−1)
i < 10

(
κi

τ
−

2µ̄k,i

τδ(X)2

)
< 10

κi

τ
. (37)

Thus, the effective upper bound for ρ
(k)
i is

ρmax
i = max

{
1, ηmax

i σ̂2, 10
κi

τ

}
. �

It is worth noting that the upper bound for ρ
(k)
i computed in (37) is the same obtained by

Svanberg in [17]. Although the theoretical upper bound for ρ
(k)
i did not decrease by relaxing

the conservative condition, in practice, as µ̄k,i > 0, ∀k and τ > 0, smaller values for ρ
(k)
i are

used in each outer iterations k, so that fewer inner iterations are necessary inside each outer

iteration. The impact of this modification will be clear in the section of the numerical results.

Let the set Q be defined by

Q = {ρ ∈ IRm+1 | 0 < ρmin
i ≤ ρi ≤ ρmax

i , i = 0, 1, . . . , m}.

Note that the lower bounds ρmin
i for the parameters ρi must be strictly positive, because it

is the nonnegativity of such parameters that provides strictly positive coefficients pij and qij

simultaneously, so that both asymptotes are active in the MMA approximation.

Let the functions Fi be defined, for x ∈ X and y ∈ IRm, by

F0(x, y) = f0(x) +

m∑

i=1

(ciyi + 1
2
diy

2
i ),

Fi(x, y) = fi(x) − yi, i = 1, . . . , m.

Then the problem (2) can be written as

minimize F0(x, y)

subject to Fi(x, y) ≤ 0, i = 1, . . . , m,

x ∈ X, y ≥ 0.

(38)

Let the functions Gi be defined, for (x, ξ, σ) ∈ D, ρ ∈ Q and y ∈ IRm, by

G0(x, y, ξ, σ, ρ) = v0(x, ξ, σ) + ρ0 w(x, ξ, σ) +
m∑

i=1

(ciyi + 1
2
diy

2
i ),

Gi(x, y, ξ, σ, ρ) = vi(x, ξ, σ) + ρi w(x, ξ, σ) − yi, i = 1, . . . , m.
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Note that each function Gi is continuous on the set on which it is defined.

Let the problem PSUB(ξ, σ, ρ) be defined, for given (ξ, σ, ρ) ∈ X×S×Q, as the following

problem in the variables (x, y):

minimize G0(x, y, ξ, σ, ρ)

subject to Gi(x, y, ξ, σ, ρ) ≤ 0, i = 1, . . . , m,

x ∈ X(ξ, σ), y ≥ 0,

(39)

with X(ξ, σ) defined in (19). Then, the subproblem (36) is equivalent to the problem

PSUB(x(k), σ(k), ρ(k)).

The next two lemmas are presented as in [17]. They are concerned with the solution of

problem PSUB(ξ, σ, ρ), labeled by (39), and the relaxed conservative condition is not used

in their proofs.

Lemma 3. For each given ξ ∈ X, σ ∈ S and ρ ∈ Q, there is a unique optimal solution of

PSUB(ξ, σ, ρ). This solution is also the only KKT point of PSUB(ξ, σ, ρ).

Proof: The existence of an optimal solution follows by arguments similar to those in the

proof of Proposition 2. The uniqueness follows from the fact that the problem obtained by

eliminating y is strictly convex in x. Consider the Slater constraint qualification (see e.g. [3,

p.331]): let x∗ be a local minimizer of the problem

minimize f(x)

subject to g1(x) ≤ 0, . . . , gm(x) ≤ 0,
(40)

wheref and gi are continuously differentiable real-valued functions. Assume that the func-

tions f and gi are convex and there is a feasible point x̄ such that

gi(x̄) < 0, ∀ i ∈ A(x∗)

where A(x) defines the index set of the active constraints of the problem (40) in x, for any

point x ∈ IRn. Then there exist Lagrange multipliers such that, together with x∗, satisfy the

KKT conditions of the problem (40).

Now, given a vector d such that ∇gi(x
∗)T d < 0, ∀i ∈ A(x∗) then there exists a point x̄

such that gi(x̄) < 0, ∀i ∈ A(x∗). Thus, setting d as in the proof of Proposition 3, the Slater’s

constraint qualifications are fulfilled for the convex problem PSUB(ξ, σ, ρ). Therefore, the

KKT conditions are both necessary and sufficient conditions for a global optimum. �

For the unique optimal solution of PSUB(ξ, σ, ρ) to be the unique KKT point of

PSUB(ξ, σ, ρ), it would be enough that such a solution verified some constraint qualifica-
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tion, like the one of Arrow, Hurwicz and Uzawa (used in the proof of Proposition 3). The

Slater’s constraint qualifications suits better because the functions Gi, i = 1, . . . , m are con-

vex. Hence, (x(k+1), y(k+1)) is the only KKT point of PSUB(x(k), σ(k), ρ(k)).

Lemma 4. For each given σ ∈ S and ρ ∈ Q the following holds: a given point (x̂, ŷ) is a KKT

point of the problem (2) if and only if (x̂, ŷ) is a KKT point of the subproblem PSUB(x̂, σ, ρ).

Proof: For a given x̂ ∈ X, let B(x̂, ǫ) = {x ∈ IRn | ||x − x̂|| < ǫ}, and note that there is

an ǫ > 0 such that X ∩ B(x̂, ǫ) = X(x̂, σ) ∩ B(x̂, ǫ). This implies that (x̂, ŷ) is the optimal

solution of (the strictly convex problem) PSUB(x̂, σ, ρ) if and only if (x̂, ŷ) is the optimal

solution of PSUB(x̂, σ, ρ) with the simple bound constraints x ∈ X(x̂, σ) replaced by the

(looser) simple bound constraints x ∈ X. Further, the following holds for i = 0, 1, . . . , m:

Gi(x̂, ŷ, x̂, σ, ρ) = Fi(x̂, ŷ),

∂Gi

∂xj

(x̂, ŷ, x̂, σ, ρ) =
∂Fi

∂xj

(x̂, ŷ),

∂Gi

∂yi

(x̂, ŷ, x̂, σ, ρ) =
∂Fi

∂yi

(x̂, ŷ, ).

These observations imply that (x̂, ŷ) is a KKT point of the subproblem PSUB(x̂, σ, ρ) if and

only if (x̂, ŷ) is a KKT point of the problem (38). �

In particular, if (x(k+1), y(k+1)) = (x(k), y(k)), then (x(k), y(k)) is a KKT point of the problem

(2), and then the algorithm should be stopped. From now on, it is therefore assumed that

(x(k+1), y(k+1)) 6= (x(k), y(k)) for all k.

Whenever the conservative condition (6) is verified for the problem (2) and the solution

of a subproblem is accepted as the next outer iterate, one ensures the strict reduction of the

objective function values, that is,

f0(x
(k+1)) +

m∑

i=1

(
ci y

(k+1)
i + 1

2
di (y

(k+1)
i )2

)

≤ g
(k,ℓ)
0 (x(k+1)) +

m∑

i=1

(
ci y

(k+1)
i + 1

2
di (y

(k+1)
i )2

)

< g
(k,ℓ)
0 (x(k)) +

m∑

i=1

(
ci y

(k)
i + 1

2
di (y

(k)
i )2

)

= f0(x
(k)) +

m∑

i=1

(
ci y

(k)
i + 1

2
di (y

(k)
i )2

)
.

(41)
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Moreover, it guarantees feasible iterates with respect to problem (2), that is, for i = 1, . . . , m,

fi(x
(k+1)) − y

(k+1)
i ≤ g

(k,ℓ)
i (x(k+1)) − y

(k+1)
i ≤ 0. (42)

Thus, the original conservative condition (6) provides strict reduction in the objective

function value F0 and feasible iterates for the problem (38). In the next lemma we prove

that, when it comes to the relaxed conservative condition (28), the outer iterates of problem

(38) might be infeasible and the values F0 might increase, but in a controlled way.

Lemma 5. The infeasibility of each generated iteration point with respect to problem (38) is

controlled as follows: Fi(x
(k), y(k)) ≤ µ̄k−1,i for i ≥ 1 and k ≥ 2. Furthermore,

F0(x
(k+1), y(k+1)) < F0(x

(k), y(k)) + µ̄k,0 for k ≥ 1.

Proof: The initial estimate (x(1), y(1)) is feasible by construction. Thus, for i ≥ 1 we have

Fi(x
(k+1), y(k+1)) ≤ Gi(x

(k+1), y(k+1), x(k), σ(k), ρ(k)) + µ̄k,i ≤ µ̄k,i,

respectively from the relaxed conservative condition, and the feasibility of problem

PSUB(x(k), σ(k), ρ(k)). Besides,

F0(x
(k+1), y(k+1)) ≤ G0(x

(k+1), y(k+1), x(k), σ(k), ρ(k)) + µ̄k,0

< G0(x
(k), y(k), x(k), σ(k), ρ(k)) + µ̄k,0

= F0(x
(k), y(k)) + µ̄k,0,

where the first inequality holds due to the relaxed conservative condition, the second due to

Lemma 3 and the assumption that (x(k+1), y(k+1)) 6= (x(k), y(k)) for all k, and the equality

comes from the fact that the models are first order approximations to the original functions

at the current estimate. �

Lemma 5 is distinct from Lemma 7.6 of [17] because by relaxing the conservative condition

the outer iterates are no longer feasible with respect to the original augmented problem.

Moreover, the objective function values of problem (38) for the generated sequence does not

strictly decrease any longer. In spite of that, as we will show, since the elements of the

sequence µ̄k,i, defined in (30), go to zero as k → ∞, the feasibility and strict reduction of the

objective function are both asymptotically fulfilled.

Indeed, let the functions g̃i, for (x, ξ, σ) ∈ D and ρ ∈ Q, be defined by

g̃i(x, ξ, σ, ρ) = vi(x, ξ, σ) + ρi w(x, ξ, σ).
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Each function g̃i is continuous on the compact set on which it is defined. Therefore,

|g
(k,ℓ)
i (x̂(k,ℓ))| ≤ max{g̃i(x, ξ, σ, ρ)|(x, ξ, σ) ∈ D, ρ ∈ Q} ≤ M < ∞,

for all k and i, and consequently {µ̄k,i} is summable and thus convergent to zero.

Lemma 6. All the iteration points (x(k), y(k)) remain in a compact set.

Proof: Each iterate x(k) belongs to the compact set X. If x ∈ X is held fixed in problem

(36), the following problem is obtained in the variable y ∈ IRm

minimize M +
m∑

i=1

(
ciyi + di

2
y2

i

)
y

subject to Ni − yi ≤ 0, i = 1, . . . , m,

y ≥ 0,

(43)

where M = g
(k)
0 (x) and Ni = g

(k)
i (x), for i = 1, . . . , m.

Note that problem (43) is separable, being thus equivalent to m unidimensional problems

minimize ciyi + di

2
y2

i
yi

subject to Ni − yi ≤ 0,

yi ≥ 0.

(44)

Observe that (44) has a unique optimal solution yi = max{0, Ni} = max{0, g
(k)
i (x)} = g+

i (x),

because ci > 0 and di > 0, ∀i ∈ {1, . . . , m}.

Holding x(k+1) ∈ X(k) fixed, we obtain y
(k+1)
i = max{0, g

(k)
i (x(k+1))}. Hence,

0 ≤ y
(k+1)
i ≤ g

(k)
i (x(k+1)) = g̃i(x

(k+1), x(k), σ(k), ρ(k))

≤ max{g̃i(x, ξ, σ, ρ) | (x, ξ, σ) ∈ D, ρ ∈ Q}. �

As a consequence of Lemma 6, the sequence {(x(k), y(k))}∞k=1 has at least one convergent

subsequence. Thus, there is a point (x∗, y∗) and an infinite subset K of the positive integers

such that {(x(k), y(k))} → (x∗, y∗) as k ∈ K and k → ∞.

Further, since the sequence {(σ(k), ρ(k))}k∈K (with K from above) stays in the compact

set S × Q, there is a point (σ∗, ρ∗) ∈ S × Q and an infinite subset K̃ ⊆ K such that

(σ(k), ρ(k)) → (σ∗, ρ∗) as k ∈ K̃ and k → ∞.

Next, from Lemma 6, the sequence {(x(k+1), y(k+1))}k∈K̃ (with K̃ from above) also has

at least one convergent subsequence. Thus, there is a point (x̄, ȳ) and an infinite subset
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K̄ ⊆ K̃ ⊆ K such that {(x(k+1), y(k+1))} → (x̄, ȳ) as k ∈ K̄ and k → ∞.

In [17], the whole sequence of objective function values of problem (2), namely

{F0(x
(k), y(k))}∞k=1, is convergent because it is monotonically decreasing and bounded be-

low. By adopting the relaxed conservative condition, we have lost the strict decreasing of

the values F0, as established in Lemma (5). Despite that, the sequence {F0(x
(k), y(k))}∞k=1

generated by Algorithm 1 is convergent as well, as proved in the next result.

Lemma 7. The sequence {F0(x
(k), y(k))}∞k=1 is convergent.

Proof: Given an arbitrary ǫ > 0, since {µ̄k,i} is summable, there is a k0 ∈ IN such that

∞∑

κ=k0

µ̄κ,0 ≤
ǫ

2
.

Since {(x(k), y(k))} remains in a compact set, and F0 is a continuous function, we have

that {F0(x
(k), y(k))} is bounded. Let F ∗ be the smallest limit point of {F0(x

(k), y(k))}, i.e.

F ∗ = lim inf F0(x
(k), y(k)) ∈ (−∞,∞).

By definition of lim inf there exists some k1 ≥ k0 such that F0(x
(k), y(k)) > F ∗ − ǫ

2
for all

k ≥ k1. Moreover, there is k2 ≥ k1 such that |F0(x
(k2), y(k2)) − F ∗| ≤ ǫ

2
.

For an arbitrary k ≥ k2 we have two possibilities: either F0(x
(k), y(k)) ≤ F0(x

(k2), y(k2)) or

F0(x
(k), y(k)) > F0(x

(k2), y(k2)). In the first case it is clear that |F0(x
(k), y(k)) − F ∗| ≤ ǫ

2
. In

the second one, we use Lemma 5 to ensure that

F0(x
(k), y(k)) ≤ F0(x

(k−1), y(k−1)) + µ̄k−1,0

≤ F0(x
(k−2), y(k−2)) + µ̄k−1,0 + µ̄k−2,0

...

≤ F0(x
(k2), y(k2)) +

k−1∑

κ=k2

µ̄κ,0

≤ F0(x
(k2), y(k2)) +

∞∑

κ=k2

µ̄κ,0.

Since, by hypothesis, F0(x
(k), y(k)) − F0(x

(k2), y(k2)) > 0, we have that |F0(x
(k), y(k)) −

F0(x
(k2), y(k2))| ≤ ǫ

2
, and then

|F0(x
(k), y(k)) − F ∗| ≤ |F0(x

(k), y(k)) − F0(x
(k2), y(k2))| + |F0(x

(k2), y(k2)) − F ∗| ≤
ǫ

2
+

ǫ

2
. �
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In the next two lemmas we prove that the objective function values at the limit points

coincide.

Lemma 8. F0(x
(k), y(k)) → F0(x

∗, y∗) as k → ∞ (not only for k ∈ K).

Proof: From Lemma 7 the sequence {F0(x
(k), y(k))}∞k=1 is convergent, that it,

F0(x
(k), y(k)) → F ∗

0 as k → ∞, for some real number F ∗
0 . But since F0(x

(k), y(k)) → F0(x
∗, y∗)

as k ∈ K and k → ∞, it follows that F ∗
0 = F0(x

∗, y∗). �

Lemma 9. F0(x̄, ȳ) = F0(x
∗, y∗).

Proof: From Lemma 8 it follows that F0(x
(k+1), y(k+1)) → F0(x

∗, y∗) as k ∈ K̄ and k → ∞.

But since (x(k+1), y(k+1)) → (x̄, ȳ) as k ∈ K̄ and k → ∞, from the continuity of F0 it also

holds that F0(x
(k+1), y(k+1)) → F0(x̄, ȳ) as k ∈ K̄ and k → ∞. �

In the next lemma we show that the unique optimal solution of the strictly convex problem

(39) with parameters (ξ, σ, ρ) = (x∗, σ∗, ρ∗) is given by the limit point (x̄, ȳ).

Lemma 10. (x̄, ȳ) is the unique optimal solution of the problem PSUB(x∗, σ∗, ρ∗).

Proof: Since x(k+1) ∈ X(x(k), σ(k)) and Gi(x
(k+1), y(k+1), x(k), σ(k), ρ(k)) ≤ 0, it follows, by

letting k ∈ K̄ and k → ∞, that x̄ ∈ X(x∗, σ∗) and Gi(x̄, ȳ, x∗, σ∗, ρ∗) ≤ 0 for i ≥ 1. Thus,

(x̄, ȳ) is a feasible solution of PSUB(x∗, σ∗, ρ∗). Let (¯̄x, ¯̄y) be an arbitrary feasible solution of

PSUB(x∗, σ∗, ρ∗), so that ¯̄x ∈ X(x∗, σ∗) and Gi(¯̄x, ¯̄y, x∗, σ∗, ρ∗) ≤ 0 for i ≥ 1. We must show

that G0(x̄, ȳ, x∗, σ∗, ρ∗) ≤ G0(¯̄x, ¯̄y, x∗, σ∗, ρ∗).

For τ = 1, 2, 3, . . . , let

¯̄x(τ) = ¯̄x + α(τ)(x∗ − ¯̄x), (45a)

¯̄y(τ) = ¯̄y +
1

τ
(1, . . . , 1)T . (45b)

If α(τ) = 0 then, for i ≥ 1,

Gi(¯̄x
(τ), ¯̄y(τ), x∗, σ∗, ρ∗) = vi(¯̄x

(τ), x∗, σ∗) + ρ∗w(¯̄x(τ), x∗, σ∗) − ¯̄y
(τ)
i

= Gi(¯̄x, ¯̄y, x∗, σ∗, ρ∗) − 1
τ
≤ − 1

τ
.

It is therefore possible to choose the scalar α(τ) such that 0 < α(τ) < 1/τ and

Gi(¯̄x
(τ), ¯̄y(τ), x∗, σ∗, ρ∗) ≤ −

1

2τ
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for i ≥ 1. Then (¯̄x(τ), ¯̄y(τ)) is in the interior of the feasible set of PSUB(x∗, σ∗, ρ∗). In

particular, ¯̄x(τ) is in the interior of X(x∗, σ∗). This implies that for each τ , there ex-

ists an integer K(τ) such that, for all k ∈ K̄ with k > K(τ), ¯̄x(τ) ∈ X(x(k), σ(k)) and

Gi(¯̄x
(τ), ¯̄y(τ), x(k), σ(k), ρ(k)) ≤ 0 for i ≥ 1. For all these k ∈ K̄ with k > K(τ) it then holds

that G0(¯̄x
(τ), ¯̄y(τ), x(k), σ(k), ρ(k)) ≥ G0(x

(k+1), y(k+1), x(k), σ(k), ρ(k)), because (x(k+1), y(k+1)) is

the optimal solution of PSUB(x(k), σ(k), ρ(k)).

Now, for each τ , let the integer k(τ) ∈ K̄ satisfy k(τ) > max{τ, K(τ)} and let τ → ∞.

Then, by the construction (45), we have (¯̄x(τ), ¯̄y(τ)) → (¯̄x, ¯̄y) and by the taken subsequence

(x(k(τ)+1), y(k(τ)+1)) → (x̄, ȳ) and (x(k(τ)), σ(k(τ)), ρ(k(τ))) → (x∗, σ∗, ρ∗). Thus,

G0(x̄, ȳ, x∗, σ∗, ρ∗) ≤ G0(¯̄x, ¯̄y, x∗, σ∗, ρ∗). �

The lemma that comes next relates the limit points of the subsequences {(x(k), y(k))}k∈K

and {(x(k+1), y(k+1))}k∈K̄, with K̄ ⊂ K.

Lemma 11. (x̄, ȳ) = (x∗, y∗).

Proof: From Gi(x
(k), y(k), x(k), σ(k), ρ(k)) = Fi(x

(k), y(k)) ≤ µ̄k−1,i for i ≥ 1 and k ≥ 2, it

follows that Gi(x
∗, y∗, x∗, σ∗, ρ∗) ≤ 0 for i ≥ 1, by letting k ∈ K̄ and k → ∞. Further, by

definition, x∗ ∈ X(x∗, σ∗). Thus, (x∗, y∗) is a feasible solution of PSUB(x∗, σ∗, ρ∗).

From F0(x
(k+1), y(k+1)) ≤ G0(x

(k+1), y(k+1), x(k), σ(k), ρ(k))+µ̄k,0, it follows, again by letting

k ∈ K̄ and k → ∞, that F0(x̄, ȳ) ≤ G0(x̄, ȳ, x∗, σ∗, ρ∗).

By definition, F0(x
∗, y∗) = G0(x

∗, y∗, x∗, σ∗, ρ∗). From Lemma 9 it then follows that

G0(x
∗, y∗, x∗, σ∗, ρ∗) ≤ G0(x̄, ȳ, x∗, σ∗, ρ∗). But since (x̄, ȳ) is the unique global optimal solu-

tion of PSUB(x∗, σ∗, ρ∗), it then follows that (x∗, y∗) = (x̄, ȳ). �

By combining the previous results, the next lemma characterizes the stationarity of the

limit point generated by Algorithm 1.

Lemma 12. (x∗, y∗) is a KKT point of the problem (2).

Proof: It follows from Lemmas 3, 4, 10 and 11. �

Finally, in the following we prove the global convergence result of Algorithm 1.

Proof of Theorem 1: Assume that the statement in Theorem 1 is false. Then there is an

ǫ > 0 and an infinite subset K0 of the integers such that

||(x, y) − (x(k), y(k))|| ≥ ǫ for all (x, y) ∈ Ω and every k ∈ K0. (46)
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Then, as a consequence of Lemma 6, the sequence {(x(k), y(k))}k∈K0
has at least one conver-

gent subsequence. Thus, there is a point (x̂, ŷ) and an infinite subset K̄0 ⊆ K0 such that

(x(k), y(k)) → (x̂, ŷ) as k ∈ K̄0 and k → ∞.

But then, by letting (x̂, ŷ) play the role of (x∗, y∗) in the above lemmas, in particular

from Lemma 12, it follows that (x̂, ŷ) is a KKT point of the problem (38) and thus it is also

a KKT point of the original problem (2). As a result, (x̂, ŷ) ∈ Ω. By letting (x, y) = (x̂, ŷ)

in (46), a contradiction has been established. Therefore, the statement in Theorem 1 cannot

be false, it must be true. �

In the section that follows, a brief analysis of the dual of the MMA subproblem and its

properties will motivate a new strategy for solving the MMA subproblems.

5 Solving the MMA subproblems: interior-point meth-

ods versus a trust-region strategy

In this section, we propose a new strategy for solving the MMA subproblems by means of the

associated dual problem, using a trust-region technique. This new strategy is an alternative

for both approaches already devised by Svanberg: the dual and the primal-dual interior-point

ones. The dual approach is based on Lagrangian relaxation duality and was implemented

with a linesearch technique [14]. In the primal-dual interior-point approach, a sequence of

relaxed KKT conditions are solved by Newton’s method [16]. We have devised a regularized

quadratic model for the dual subproblem with the solution expressed in a closed form.

To simplify the notation, we omit the indices k and ℓ of the outer and inner iterations,

respectively. We denote the bounds of the variables by the values αj and βj , i.e., αj =

max { xmin
j , x

(k)
j − 0.9σ

(k)
j } and βj = min { xmax

j , x
(k)
j + 0.9σ

(k)
j }, for j = 1, . . . , n, so that

the box constraints of the MMA subproblems are: αj ≤ xj ≤ βj for j = 1, . . . , n and yi ≥ 0

for i = 1, . . . , m.

Initially, we show how to obtain an explicit expression of the dual objective function,

thereby generating the dual problem corresponding to the MMA subproblem. We highlight

some properties associated with the dual function. Then, we propose a trust-region scheme

and present the algorithm.

5.1 The dual problem associated with the MMA subproblem

Considering only the main constraints, since the simple box and the non-negativity con-

straints will be incorporated in the minimization process, the Lagrangian corresponding to
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subproblem (3) is given by:

L(x, y, λ) = g0(x) +
m∑

i=1

λigi(x) +
m∑

i=1

(
ciyi + 1

2
diy

2
i

)
−

m∑

i=1

λiyi

=
n∑

j=1

Lj(xj , λ) + r0 + λT r +
m∑

i=1

(
ciyi + 1

2
diy

2
i − λiyi

)

where r = (r1, . . . , rm)T , pj = (p1j , . . . , pmj)
T , qj = (q1j , . . . , qmj)

T ,

Lj(xj , λ) =
p0j + λT pj

uj − xj
+

q0j + λT qj

xj − lj
,

and λ = (λ1, . . . , λm)T is the vector of Lagrange multipliers.

The dual objective function W is defined, for λ ≥ 0, as follows:

W(λ) = min
x, y

{L(x, y, λ); αj ≤ xj ≤ βj, yi ≥ 0, ∀i, ∀j} (47)

= r0 + λT r +
n∑

j=1

Ŵj(λ) +
m∑

i=1

W̃i(λ)

where

Ŵj(λ) = min
xj

{Lj(xj , λ); αj ≤ xj ≤ βj}, j = 1, . . . , n, (48)

W̃i(λ) = min
yi

{ciyi + 1
2
diy

2
i − λiyi; yi ≥ 0}, i = 1, . . . , m. (49)

Note that the separability of the MMA primal approximations allows the Lagrangian function

L(x, y, λ) to be written as the sum of n + m individual functions and therefore, the (n + m)-

dimensional minimization problem (47) can be split into the n + m minimization problems

(48) and (49). The use of the minimum instead of the infimum in expressions (47)-(49)

is justified by the existence of the minimizers of (48) and (49). The expressions of these

minimizers, which we denote by xj(λ) and yi(λi), respectively, are:

xj(λ) = max
{
αj , min

{
βj, x

∗

j (λ)
}}

, for j = 1, . . . , n, (50)

where

x∗

j (λ) =
(p0j + λT pj)

1/2lj + (q0j + λT qj)
1/2uj

(p0j + λT pj)1/2 + (q0j + λT qj)1/2
(51)

and

yi(λi) = max

{
0,

λi − ci

di

}
, for i = 1, . . . , m. (52)
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Note that xj : IRm → IR and yi : IR → IR are continuous functions of λ, but not differentiable

at the points λ such that xj(λ) = αj and xj(λ) = βj, for all j = 1, . . . , n, and λi = ci, for

all i = 1, . . . , m, respectively. Because there are explicit expressions for the minimizers xj(λ)

of (48) and yi(λi) of (49), there is also an explicit expression for the dual objective function

(47), which is:

W(λ) = r0 + λT r +
n∑

j=1

(
p0j + λT pj

uj − xj(λ)
+

q0j + λT qj

xj(λ) − lj

)

+
m∑

i=1

(
ciyi(λi) + 1

2
di y

2
i (λi) − λi yi(λi)

)
.

Thus, the dual problem corresponding to the MMA subproblem (3) is given by

maximize W(λ)

subject to λ ≥ 0.
(53)

Once the dual problem (53) is solved, the optimal solution of the MMA (primal) subproblem

(3) is obtained by replacing the dual optimal solution in the expressions of xj(λ) and yi(λi).

5.2 Properties of the dual function

Before proposing our approach to solve the dual problem (53) corresponding to the MMA

subproblem (3), we comment on some properties associated with the dual function W.

First, note that the function W : IRm → IR is concave, since it is the pointwise minimum

of a collection of functions which are linear in λ. Moreover, it is continuous because xj(λ)

and yi(λi) depend continuously on λ and lj < αj ≤ xj(λ) ≤ βj < uj. More than that, the

function W is continuously differentiable and its first-order partial derivatives with respect

to the dual variables λi are given by the constraints of the primal subproblem evaluated at

xj(λ) and yi(λi), i.e.,

∂W

∂λi

(λ) = gi(x(λ)) − yi(λ) =
n∑

j=1

(
pij

uj − xj(λ)
+

qij

xj(λ) − lj

)
+ ri − yi(λi),

for all i = 1, . . . , m and λ ∈ IRm, as stated in Proposition 6.1.1 of [3]. Note that, although y

does not belong to a compact set, the existence of the minimizer (52) justifies the usage of

such a proposition.

Since the dual problem can be written explicitly, and the associated primal problem

displays a relatively simple algebraic form, the second-order partial derivatives of the dual
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function can be written in a closed form:

∂2W

∂λi∂λk

(λ) =
n∑

j=1

[(
pij

(uj − xj(λ))2
−

qij

(xj(λ) − lj)2

)(
∂xj

∂λk

(λ)

)]
− y′

i(λi),

where we have abused on the notation by refereing to ∂xj/∂λk(λ), as xj(λ) is not differentiable

at all points. The value of such a derivative assumed by a free variable xj(λ), i.e., αj <

xj(λ) < βj, may be different from the value of this derivative when the variable xj(λ) is

fixed, i.e., xj(λ) = αj or xj(λ) = βj , which is obviously zero. This means that the second

derivatives of the dual function are discontinuous whenever a free primal variable becomes

fixed, or vice versa. From the primal-dual relationships (50), we see that the dual space is

partitioned in several regions separated by second-order hypersurfaces of discontinuity. These

surfaces are defined by x∗
j(λ) = αj and x∗

j (λ) = βj , where x∗
j (λ) is given by (51).

5.3 Trust-region method

In this subsection we present a strategy to solve the dual subproblem of the MMA, using a

trust-region scheme. Consider then the dual problem corresponding to the MMA subproblem

as the minimization of function W (λ) subject to no other constraints than non-negativity

requirements on the dual variables:

minimize W (λ)

subject to λ ≥ 0,
(54)

where W (λ) = −W(λ). The quadratic model for the function W , adopted at each iteration

k̄ of the trust-region algorithm is:

mk̄(λ) = W (λ(k̄)) + ∇W (λ(k̄))T (λ − λ(k̄)) + 1
2
η(k̄)‖λ − λ(k̄)‖2

2, (55)

where η(k̄) is the spectral parameter associated with the function W at the current iterate,

that is,

η(k̄) =
(s(k̄))T t(k̄)

(s(k̄))T s(k̄)
(56)

with

s(k̄) = λ(k̄) − λ(k̄−1) and t(k̄) = ∇W (λ(k̄)) −∇W (λ(k̄−1)).

The second-order term in the quadratic model mk̄ can be interpreted as a quadratic regular-

ization term of a linear model of the function W in the proximal sense, where the spectral

parameter η(k̄) has the flavour of an adaptive regularization parameter [10]. This inter-
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pretation justifies the second-order term of the model, since the Hessian matrix ∇2W is

discontinuous. Furthermore, models similar to (55) have been considered, as in [1] where the

quadratic term of the model includes the spectral parameter in order to speed up a procedure

based on the projected gradient, and in [19] where spherical quadratic convex approximations

are employed in gradient-only optimization methods.

At each iteration k̄, we should minimize the model mk̄ subject to a trust region and to

the nonnegativity of the dual variables. Any norm may be used to define the trust region,

but since the feasible set of (54) is an orthant, the choice || · ||∞ fits better in the sense that

the constraints of the trust-region subproblem are simple-bounded ones.

Therefore, we obtain the problem

minimize mk̄(λ)

subject to λ(k̄) ≤ λ ≤ λ
(k̄)

,
(57)

where λ
(k̄)
i = max{0, λ

(k̄)
i − ∆(k̄)}, λ

(k̄)

i = λ
(k̄)
i + ∆(k̄) and ∆(k̄) > 0 is the trust-region radius.

The solution λ̂ ∈ IRm of problem (57) is given by the closed form

λ̂ = min

{
λ

(k̄)
, max

{
λ(k̄), λ(k̄) −

1

η(k̄)
∇W (λ(k̄))

}}
. (58)

A model algorithm based on the trust-region framework is given next for completeness.

Algorithm 2: A trust-region approach applied to the dual of the MMA subprob-

lem

Given λ(1), ∆(1) > 0, 0 < υ < ω < 1, 0 < γ0 ≤ γ1 < 1 ≤ γ2, for k̄ = 1, 2, . . . until convergence

1. Compute η(k̄) using (56) and λ̂ as in (58).

2. Compute W (λ̂) and

θk̄ =
W (λ(k̄)) − W (λ̂)

mk̄(λ
(k̄)) − mk̄(λ̂)

.

3. Set

λ(k̄+1) =

{
λ̂, if θk̄ > υ

λ(k̄), otherwise.

4. Set

∆(k̄+1) ∈





[∆(k̄), γ2∆
(k̄)], if θk̄ ≥ ω [very successful iteration]

∆(k̄), if υ < θk̄ < ω [successful iteration]

[γ0∆
(k̄), γ1∆

(k̄)], otherwise. [unsuccessful iteration]
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Concerning the implementation of this model algorithm, some comments are in order:

1) The expression defined by θk̄ in Step 2 measures the agreement between the model

function mk̄ and the objective function W . More precisely, it is the ratio between the

actual reduction of the function and the reduction predicted by the model.

2) In the first iteration of our algorithm, to compute the spectral parameter η(1), we

need another estimate λ(0) distinct from the initial estimate λ(1). This estimate λ(0) is

computed by perturbing λ(1), i.e., λ(0) = λ(1) + ε. In the numerical tests, we have used

ε = 10−3.

3) To obtain λ̂ we must take a step, from λ(k̄), of length 1/η(k̄) in the direction −∇Wk̄.

It is true that the value of the spectral parameter η(k̄) will never be negative, since the

function W is convex (we have already seen that W is concave). However, to avoid very

small (positive) or too large values for η(k̄), we project it in the interval (ηmin, ηmax),

where 0 < ηmin < ηmax < +∞. The adopted values were ηmin = 10−3 and ηmax = 103.

4) In our algorithm, whenever the current estimate changes, we take Wk̄+1 = W (λ̂), but

it is necessary to evaluate the gradient at the new point.

5) In the numerical implementation we have used λ(1) = (0, . . . , 0)T and the initial trust-

region radius was set as ∆(1) = 0.1‖∇W (λ(1))‖. The trust-region updating rule pre-

sented in the Algorithm 2 is based on Sections 3.2.4 and 3.3.4 of [5], as well as the

choices of the parameters γ0, γ2, υ and ω, among others that have not appeared here.

All these choices also fit the recommendations of [6].

Despite not being our primary motivation, it is worth mentioning that (58) coincides with

the first Spectral Projected Gradient (SPG) trial point (cf. [3]) for problem (54) within the

bound constraints of (57). For further details on the SPG, see also [4] and references therein.

Instead of adopting the linesearch procedure of the SPG algorithm, we use a trust-region

scheme. As usual in methods that employ spectral gradients, better practical results are

obtained by not imposing sufficient functional decrease at every iteration. In this sense, the

acceptance condition of the Step 3 provides a nonmonotone decrease for the function W

because θk̄ > υ may be seen as the relaxed Armijo-like condition

W (λ̂) < W (λ(k̄)) + υ∇W (λ(k̄))T (λ̂ − λ(k̄)) +
υ

2
η(k̄)||λ̂ − λ(k̄)||22,

whenever mk̄(λ
(k̄)) > mk̄(λ̂).
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6 Numerical Results

This section is concerned with the description of the computational tests of modified ver-

sions of the MMA, based on the spectral updating, the relaxed conservative condition, and

our trust-region approach applied to the dual of the MMA subproblem. The code was im-

plemented in Matlab and the experiments were run in a Mac Pro with two Xeon E5462

processors of 2.8 Ghz and 12 GB of RAM memory (without multiprocessing).

Two families of academic problems were addressed, parameterized by the number of

variables n > 1, and suggested in [17]. Their general structure resembles that of topology

optimization problems, namely nonconvex problems with a large number of variables, up-

per and lower bounds on all variables, and a relatively small number of general inequality

constraints.

Problem 1 has a strictly convex objective function and nonlinear constraints defined by

means of strictly concave functions, so that the feasible region is nonconvex. Problem 2, on

the other hand, has a strictly concave objective function and the functions that define the

feasible region are strictly convex. They are stated as

Academic Problem 1:

minimize f0(x) = xT Sx

s.t. f1(x) =
n

2
− xT Px ≤ 0,

f2(x) =
n

2
− xT Qx ≤ 0,

−1 ≤ xj ≤ 1, j = 1, . . . , n.

(59)

Academic Problem 2:

minimize f0(x) = −xT Sx

s.t. f1(x) = xT Px −
n

2
≤ 0,

f2(x) = xT Qx −
n

2
≤ 0,

−1 ≤ xj ≤ 1, j = 1, . . . , n.

(60)

where the square matrices S, P and Q of dimension n are symmetric and positive definite.

Their elements are given by

Sij =
2 + sen(4παij)

(1 + |i − j|) lnn
, Pij =

1 + 2αij

(1 + |i − j|) lnn
, Qij =

3 − 2αij

(1 + |i − j|) lnn
,
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where αij = (i + j − 2)/(2n − 2) ∈ [0, 1] for all i and j. The feasible starting points

for Problems 1 and 2 are x(1) = (0.5, . . . , 0.5)T ∈ IRn and x(1) = (0.25, . . . , 0.25)T ∈ IRn,

respectively.

The problem dimension n varied in {100, 500, 1000, 2000} for both problems. Problems 1

and 2 are formulated as in (1), so they were initially written in the format (2) with di = 1

and ci = 1000, for i = 1, . . . , m. These choices have produced y ≡ 0 for each outer iterate.

To establish the stopping criteria, note that the KKT conditions of the considered prob-

lems may be stated as follows, using the notation a+ = max{0, a} and a− = max{0,−a}:

(1 + xj)

(
∂f0

∂xj
(x) + λ1

∂f1

∂xj
(x) + λ2

∂f2

∂xj
(x)

)+

= 0, j = 1, . . . , n,

(1 − xj)

(
∂f0

∂xj
(x) + λ1

∂f1

∂xj
(x) + λ2

∂f2

∂xj
(x)

)−

= 0, j = 1, . . . , n,

fi(x)+ = 0, i = 1, 2,

λifi(x)− = 0, i = 1, 2,

λi ≥ 0, i = 1, 2,

−1 ≤ xj ≤ 1, j = 1, . . . , n.

The 2n + 4 equalities displayed previously may be concisely stated as rϕ(x, λ) = 0, ϕ =

1, . . . , 2n+ 4. As a by-product of the strategies employed to solve the problems, the inequal-

ities of the KKT system are always fulfilled by the primal and dual variables, xj and λi,

respectively. The outer loop finishes successfully whenever x and λ are such that

1

n

2n+4∑

ϕ=1

(rϕ(x, λ))2 ≤ 10−10.

The sequence {µk}
∞
k=1 used in (28) to relax the conservative condition was chosen as

follows:

µk =
Nk

(k + 1)1.1
,

with

N1 = ||r(1)
ϕ ||2, N2 = min{||r(1)

ϕ ||2, ||r
(2)
ϕ ||2},

and for k ≥ 3

Nk = min
{
||r(k−2)

ϕ ||2, ||r
(k−1)
ϕ ||2, ||r

(k)
ϕ ||2

}
,

where r
(k)
ϕ ≡ rϕ(x(k), λ(k)) is the residue of the KKT conditions of problem (2) at the k−th

outer iteration. To ensure that the sequence Nk is bounded, we take Nk = min{Nk, Nmax}.
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However, the value Nmax, set at 1012 in the numerical tests, was never reached. In this way,

the sequence {µk}
∞
k=1 naturally fulfills the assumption (29).

Three strategies were adopted to solve the problems: in Strategy 1 the spectral pa-

rameter was used to update the parameters ρ
(k,ℓ)
i at the beginning of each outer iteration; in

Strategy 2 the relaxed conservative condition (28) was employed as the acceptance criterion

so that the solution of the MMA subproblem becomes the next outer iterate; in Strategy 3

both strategies 1 and 2 are combined.

We have compared eight distinct instances: Svanberg’s primal-dual approach (PD), our

dual trust-region approach (TR), and the combination of these approaches with each of the

three strategies described above.

The numerical results corresponding to the Academic Problems 1 and 2 are given in

Tables 1 and 2, respectively. In each entry of the table we report:

Outer iterations (Additional inner iterations); CPU time.

The total number of solved subproblems is the sum of the outer and the additional inner

iterations. The reported CPU time is the average of ten runs of the algorithm. Such results

are schematically depicted in Figures 2 and 3 for Problem 1 and in Figures 4 and 5 for

Problem 2.

Analyzing these results, we have noticed that the strategies that used the dual trust-

region approach are competitive in terms of the demanded number of iterations, and more

efficient when it comes to the CPU time spent, in comparison with those that rely upon the

primal-dual approach.

Among the instances that used the dual trust-region approach, we have observed that in

most of the cases Strategy 1 usually needs slightly more outer iterations to reach convergence

than the pure algorithm without any modification. However, the amount of additional inner

iterations decreases in a larger proportion, so that for both problems, the total number of

solved subproblems is smaller for the spectral strategy than for the method without further

modifications.

Analyzing Strategy 2, for Problem 1, we have noticed that despite the increase in the

number of outer iterations, the additional inner iterations demanded were so few that the

total number of solved subproblems is even smaller than in Strategy 1. For Problem 2,

although the additional amount of inner iterations performed is not so small, all in all, the

total effort decreases when compared with Strategy 1 and with the original algorithm.

Focusing now on Strategy 3, the results obtained were excellent. The number of both

outer and additional inner iteration decreased by a large amount, and consequently the CPU

time spent is the least among the four instances that used the dual trust-region approach for

solving the MMA subproblem.
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n Svanberg’s PD Strategy 1 PD Strategy 2 PD Strategy 3 PD
100 104(135); 4.1267 108(101); 3.8254 132(59); 3.8818 97(11); 2.1315
500 147(185); 49.666 153(138); 45.977 158(36); 36.454 115(0); 23.287
1000 174(222); 214.74 179(162); 197.36 223(40); 184.98 128(0); 96.354
2000 185(229); 868.98 189(185); 819.99 368(82); 1206.3 138(0); 404.32

n Dual TR Strategy 1 TR Strategy 2 TR Strategy 3 TR
100 106(134); 2.0159 103(96); 1.7122 121(63); 1.9412 99(9); 1.1947
500 151(184); 45.821 156(147); 42.304 150(39); 32.617 105(0); 19.804
1000 177(214); 204.46 180(161); 186.98 223(28); 172.34 124(0); 90.175
2000 186(232); 857.63 190(186); 802.26 274(60); 866.71 123(0); 353.22

Table 1: Numerical results for Problem 1.

n Svanberg’s PD Strategy 1 PD Strategy 2 PD Strategy 3 PD
100 218(265); 11.553 222(198); 12.949 189(158); 6.9761 199(60); 6.3205
500 392(415); 130.99 392(317); 121.86 353(280); 105.12 357(97); 86.954
1000 438(437); 566.14 443(337); 475.37 416(350); 459.24 418(142); 378.66
2000 479(503); 2208.1 477(379); 2084.9 442(423); 1947.3 452(185); 1678.3

n Dual TR Strategy 1 TR Strategy 2 TR Strategy 3 TR
100 223(268); 3.8960 224(204); 3.4818 189(154); 2.9401 201(89); 2.6735
500 389(430); 109.26 390(339); 100.49 355(284); 90.385 353(123); 74.973
1000 441(434); 469.01 445(379); 450.50 417(351); 423.04 410(153); 346.09
2000 481(505); 2081.4 487(450); 2008.4 445(422); 1861.9 443(241); 1603.6

Table 2: Numerical results for Problem 2.
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Figure 2: Dimension × Outer iterations (left) and Dimension × Inner iterations (right), for
Problem 1.
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Figure 3: Dimension × log10(CPU time), for Problem 1.

In relative terms, denoting respectively by subS and subM the total number of sub-

problems solved using Svanberg’s algorithm and using the modifications of Strategy J PD

(J = 1, 2, 3), Dual TR, and Strategy J TR (J = 1, 2, 3), we have computed the ratios

subM/subS. (61)

Similarly, using cpuS and cpuM to denote, respectively, the total CPU time demanded by

Svanberg’s algorithm and by the one with the modifications of Strategy J PD (J = 1, 2, 3),

Dual TR, and Strategy J TR (J = 1, 2, 3), we obtain

cpuM/cpuS. (62)
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Figure 4: Dimension × Outer iterations (left) and Dimension × Inner iterations (right), for
Problem 2.
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Figure 5: Dimension × log10(CPU time), for Problem 2.

The relative measures (61) and (62) were calculated with the values provided in Ta-

bles 1 and 2, and the results are presented in Tables 3 and 4. The obtained percentages put

each strategy in perspective with respect to the performance of Svanberg’s original algorithm,

both in terms of the number of solved subproblems, as well as the CPU time demanded.

The results present in Tables 5 and 6 were produced by randomly generating ten initial

points within the simple bounds of the problems, for each of the dimensions under consid-

eration. Thus, forty tests for Problem 1 and forty tests for Problem 2 were solved. Each

strategy was used for solving these tests, and the three values between round brackets are

the minimum, average and maximum number of solved subproblems, respectively, followed

by the average of the CPU time demanded, given in seconds. The results corroborate the

previous ones. It is important to note that for each test, including the aforementioned, with
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Strat. 1 PD Strat. 2 PD Strat. 3 PD Dual TR Strat. 1 TR Strat. 2 TR Strat. 3 TR
n Sub CPU Sub CPU Sub CPU Sub CPU Sub CPU Sub CPU Sub CPU

100 87% 93% 80% 94% 45% 52% 100% 49% 83% 41% 77% 47% 45% 29%
500 88% 93% 58% 76% 35% 47% 101% 92% 91% 85% 57% 66% 32% 40%
1000 86% 92% 66% 86% 32% 45% 99% 95% 86% 87% 63% 80% 31% 42%
2000 90% 94% 109% 139% 33% 47% 101% 99% 91% 92% 81% 100% 30% 41%

Table 3: Relative measures for Problem 1.

Strat. 1 PD Strat. 2 PD Strat. 3 PD Dual TR Strat. 1 TR Strat. 2 TR Strat. 3 TR
n Sub CPU Sub CPU Sub CPU Sub CPU Sub CPU Sub CPU Sub CPU

100 87% 112% 72% 60% 54% 55% 102% 34% 89% 30% 71% 25% 60% 23%
500 88% 93% 78% 80% 56% 66% 101% 83% 90% 77% 79% 69% 59% 57%
1000 89% 84% 88% 81% 64% 67% 100% 83% 94% 80% 88% 75% 64% 61%
2000 87% 94% 88% 88% 65% 76% 100% 94% 95% 91% 88% 84% 70% 73%

Table 4: Relative measures for Problem 2.
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the initial point from the literature, all the strategies achieved the same optimal solution.

In Figures 6 and 7 we depict the performance profiles [7] of the results corresponding to

the generated tests: forty for Problem 1 and forty for Problem 2. For each figure, the graph

on the left is concerned with the number of solved subproblems, whereas the graph on the

right, with the CPU time spent. From Figure 6, we notice that Strategies 3 PD and 3 TR

are the most efficient. We can also observe that both approaches for solving the subproblems

are competitive, when compared pairwise with each of the three strategies. From Figure 7 it
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Figure 6: Performance profile for Problem 1. Vertical axis: ρs(τ)
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Figure 7: Performance profile for Problem 2. Vertical axis: ρs(τ)
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n Svanberg’s PD Strategy 1 PD Strategy 2 PD Strategy 3 PD
100 (231, 279.2, 413); 5.1826 (161, 228.6, 368); 4.3418 (123, 147.9, 183); 3.3030 (111, 130.1, 161); 2.8220
500 (326, 446.5, 1226); 67.241 (274, 382.4, 1053); 60.529 (192, 232.2, 370); 44.728 (145, 174.9, 274); 36.003
1000 (370, 507, 1422); 279.46 (316, 445.6, 1305); 255.54 (237, 332.1, 736); 226.88 (165, 231.9, 717); 171.81
2000 (437, 583.8, 1271); 1233.5 (372, 511, 1116); 1124.1 (336, 387.5, 478); 1058.2 (188, 222.7, 346); 653.87

n Dual TR Strategy 1 TR Strategy 2 TR Strategy 3 TR
100 (235, 293.4, 434); 2.3654 (172, 232.6, 397); 1.9872 (125, 158.9, 215); 1.6097 (96, 113.1, 139); 1.2376
500 (364, 475.2, 1113); 63.320 (278, 412.6, 1081); 57.844 (179, 216.8, 317); 37.463 (142, 171.1, 263); 31.956
1000 (388, 524.8, 1413); 275.56 (348, 479.4, 1423); 259.92 (246, 291.1, 372); 191.83 (168, 265.4, 987); 186.42
2000 (456, 701.2, 1296); 1445.0 (397, 620.2, 1250); 1324.6 (347, 407.2, 551); 1060.4 (193, 272.9, 450); 782.24

Table 5: Further results for Problem 1.

n Svanberg’s PD Strategy 1 PD Strategy 2 PD Strategy 3 PD
100 (309, 426.2, 889); 15.254 (260, 360.6, 837); 16.674 (175, 271.9, 630); 7.0938 (120, 199.7, 457); 7.1492
500 (486, 648.4, 892); 103.42 (372, 535.3, 779); 90.732 (327, 481, 736); 81.545 (235, 355.1, 578); 68.591
1000 (634, 950, 2109); 557.76 (513, 792.2, 1862); 498.71 (483, 743.5, 1470); 455.17 (316, 567.3, 1098); 389.21
2000 (716, 880.8, 1045); 1918.1 (613, 731.1, 899); 1703.4 (564, 712.9, 884); 1649.3 (407, 539.3, 744); 1396.0

n Dual TR Strategy 1 TR Strategy 2 TR Strategy 3 TR
100 (332, 438.8, 884); 3.2094 (255, 370.1, 835); 2.8255 (175, 273.7, 652); 2.2557 (131, 214.6, 487); 1.9409
500 (506, 651.4, 882); 87.161 (410, 566.5, 788); 79.360 (337, 492.7, 749); 71.515 (266, 402, 629); 63.489
1000 (634, 1021.6, 2155); 537.43 (560, 879.2, 1911); 484.79 (503, 822, 1509); 459.16 (402, 682.4, 1312); 409.51
2000 (690, 941.8, 1196); 1984.1 (617, 828.6, 1016); 1822.4 (578, 831.7, 1425); 1828.0 (476, 683.1, 931); 1618.7

Table 6: Further results for Problem 2.
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is evident that Svanberg’s PD is more efficient in terms of the number of solved subprob-

lems. Nevertheless, when it comes to the CPU time spent, the strategies that rely upon

the dual trust-region approach were more efficient. Figure 8 contains the results of both

Problems 1 and 2.
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Figure 8: Performance profile for Problems 1 and 2. Vertical axis: ρs(τ)

7 Conclusions

We have proposed a new strategy for solving the MMA subproblems by means of its dual

formulation, using a trust-region technique. This alternative approach deals with the dual

problem associated with the MMA subproblem, that is a maximization problem of a concave

function under nonnegativity constraints. We have taken advantage of the dual objective

function properties, such as being concave and continuously differentiable up to first-order,

together with the existence of a closed form for the solution of the subproblem obtained with

a regularized spectral model within a trust-region scheme. Such a globalization strategy

was the key point in recasting, in a simpler way, the dual approach originally adopted by

Svanberg [14], and replaced by the primal-dual approach [16]. We have also presented a

modification for the MMA, based on relaxing the conservative condition by means of a

summable controlled forcing sequence, so that the maintenance of global convergence is

proved. Another modification for the MMA, previously proposed by the authors, was recalled

to be used in the numerical tests. It is based on the spectral parameter for updating the

parameters ρ
(k,ℓ)
i , so as to improve the quality of the MMA models.

The numerical experiments revealed that the suggested dual approach is simpler and

41



more efficient than Svanberg’s primal-dual strategy for solving the family of test problems

under consideration. Indeed, we have noticed that the performance of our dual trust-region

approach was quite similar to the one of Svanberg’s primal-dual approach in terms of the

employed number of iterations, but when it comes to the CPU time demanded, our approach

was by far superior. Additionally, the performances of both the trust-region dual and the

primal-dual approaches were improved in an increasing pattern with the addition of each

suggested modification, namely using the spectral updating (Strategy 1), the relaxed conser-

vative condition (Strategy 2) and the combination of these two ideas (Strategy 3), pointing

out the potential contribution of such modifications for the original algorithm.
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[7] E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance

profiles, Math. Program., 91 (2002), 201–213.

[8] C. Fleury and V. Braibant, Structural optimization: A new dual method using mixed

variables, Internat. J. Numer. Methods Engrg., 23 (1986), 409–428.

[9] M.A. Gomes-Ruggiero, M. Sachine and S.A. Santos, A spectral updating for the method

of moving asymptotes, Optim. Methods Softw., 25(6) (2010), 883–893.

[10] O. Güler, New proximal point algorithms for convex minimization, SIAM J. Optim.,

2(4) (1992), 649–664.

[11] D.H. Li and M. Fukushima, A derivative-free line search and global convergence of

Broyden-like method for nonlinear equations, Optim. Methods Softw., 13(3) (2000),

181–201.

[12] O.L. Mangasarian and S. Fromovitz, The Fritz John necessary optimality conditions

in the presence of equality and inequality constraints, J. Math. Anal. Appl., 17 (1967),

37–47.

[13] Q. Ni, A globally convergent method of moving asymptotes with trust region technique,

Optim. Methods Softw., 18(3) (2003), 283–297.

[14] K. Svanberg, The method of moving asymptotes - a new method for structural optimiza-

tion, Internat. J. Numer. Methods Engrg., 24 (1987), 359–373.

[15] K. Svanberg, A Globally Convergent Version of MMA without Linesearch, In: Rozvany

G.I.N., Olhoff N. (eds.) Proceedings of the First World Congress of Structural and

Multidisciplinary Optimization, (1995), 9–16.

[16] K. Svanberg, The Method of Moving Asymptotes - Modelling aspects and solution

schemes, Lecture Notes for the DCAMM course Advanced Topics in Structural Opti-

mization, (1998), 24p.

[17] K. Svanberg, A class of globally convergent optimization methods based on conservative

convex separable approximations, SIAM J. Optim., 12 (2002), 555–573.

[18] H. Wang and Q. Ni, A new method of moving asymptotes for large-scale unconstrained

optimization, Appl. Math. Comput., 203 (2008), 62–71.

[19] D.N. Wilke, S. Kok and A.A. Groenwold, The application of gradient-only optimiza-

tion methods for problems discretized using non-constant methods, Struct. Multidiscip.

Optim., 40 (2010), 433–451.

43



[20] W.H. Zhang and C. Fleury, A modification of convex approximation methods for struc-

tural optimization, Comput. & Structures, 64 (1997), 89–95.

[21] C. Zillober, Global convergence of a nonlinear programming method using convex ap-

proximations, Numer. Algorithms, 27 (2001), 256–289.

44


	Introduction
	The Method of Moving Asymptotes
	Modifications to the MMA
	Second-order information and the spectral parameter
	Relaxing the conservative condition
	The modified MMA algorithm

	Theoretical analysis of global convergence
	Solving the MMA subproblems: interior-point methods versus a trust-region strategy
	The dual problem associated with the MMA subproblem
	Properties of the dual function
	Trust-region method

	Numerical Results
	Conclusions

