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Abstract

This paper presents an improved version of the generalized variance |S| control
chart for multivariate process dispersion monitoring, based on the Cornish-Fisher for-
mula for non-normality correction of the usual normal based 3-sigma limits chart. The
exact sample distribution of |S| doesn’t have a simple known form for dimension p > 2,
and we show here that the information from its 3r.d and 4t.h order moments or cumulants
are sufficient for a satisfactory approximation.

The performance of this corrected control chart is compared (in terms of false
alarm risk) with the original normal based chart and the exact distribution based chart
(for p = 2 and p = 3) where in the last case (p = 3), the exact distribution is obtained
by simulation methods. This study shows that the control limits corrections do remove
the drawback of excess of false alarm associated with the traditional normal based |S|
control chart. Finally, the proposed new chart is illustrated with a numerical example
of application with real data.

KEY WORDS: Cornish-Fisher, False Alarm, Generalized Variance, Multivariate
Process, Variability Monitoring.

1 INTRODUCTION

The modern statistical process control took place when Walter A. Shewhart (1926) de-

veloped the concept of a control chart based on the monitoring of the process mean level (X̄

chart) and process dispersion (R or S charts). In the multivariate setting (Fuchs and Kenett,

1998), the basic monitoring tools for process level and process variability, are respectively

the Hotelling T 2 statistic (Hotelling, H., 1931, 1947) and the statistics based on the sample

variance-covariance S matrix.

The two more important and used statistics based on S, for process variability mon-

itoring and testing, are the likelihood-ratio LR and the generalized variance |S| (Wilks, S.,

1932; Anderson, T.W., 1958; Alt, F.A., 1984; Aparisi, F. et al, 1999).

The study of control charts for process variability monitoring based on the |S| statistic

has received attention in the literature (for instance, Alt, F.A., 1984; Aparisi, F. et al, 1999;

Djauhari, M.A., 2005 and others), and is the object of the present paper.
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Although this statistic is considered simpler than the LR for applications in control

charts, there are two drawbacks in its use for process monitoring. One is about its theoretical

properties (see Johnson and Wichern, 1982 or Aparisi et al, 1999) and the other is practical,

about its computational implementation. The theoretical limitations can be alleviated with

the joint use of |S| and univariate charts (see Alt, F.A., 1984). And how to overcome the

practical difficulty is shown here in detail.

The question is that the exact distribution of the sample |S| does not have a simple form

for dimension p > 2 (Mathai, A.M., 1972; Pham-Gia and Turkkan, 2008) and it is common

to approximate it by normal distribution, as in Djauhari, M.A.(2005) and others, considering

a sort of 3-sigma limits (Shewhart) control charts. However, this sort of approximation, al-

though used in practice, is very bad, since it has a very serious drawback: it produces a severe

increase in the false alarm risk (what is shown in this paper at section 4).

The solution we present here is to work with a good approximation to the exact dis-

tribution of |S|, correcting its non-normality through the Cornish-Fisher formula (Cornish &

Fisher, 1960; Lee & Lee, 1992). The information provided by the 3r.d and 4t.h order moments

or cumulants of the |S| sample distribution will be sufficient for a satisfactory approximation,

avoiding the drawback of false alarm increase.

The organization of the paper is the following. The standard normal based |S| control

chart and corresponding moments formulae are reviewed at section 2. The new |S| control

chart based on Cornish-Fisher correction is presented at section 3 with special emphasis to the

cases of dimensions p = 2 and p = 3. A false alarm comparative study to show the advantages

of the new chart in relation to the traditional chart, is presented at section 4 where the exact

reference distribution, in the case of p = 3, is obtained by simulation. The proposed new

chart is illustrated with a numerical example of application with real data at section 5. Final

comments and conclusions are presented at section 6, followed by the references.

2 The Normal-based |S| Control Chart

2.1 The Sample |S| and Its Basic Properties

(i) notation and definition: Let (X1, X2, ..., Xn) be a random sample from a p-variate

normal with parameters µ and Σ, for n = 2, 3, ... and p = 2, 3, .... Then, the statistics sample

mean X̄ and sample variance-covariance matrix S, are:

X̄ =
1

n

n∑
i=1

Xi ; S =
1

n− 1

n∑
i=1

(Xi − X̄)(Xi − X̄)T

The sample generalized variance, is |S| = det(S), where det is the determinant function.

(ii) distribution: From Anderson, T.W. (1958, 1984), it is known that,

|S| ∼ |Σ|
(n− 1)p

Z1Z2...Zp where Zk ∼ χ2
n−k independent, k = 1, 2, ..., p
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As a consequence, when p = 2, we have (Alt, F.A., 1984; Aparisi, F. et al, 1999), |S| ∼
|Σ|

4(n−1)2
(χ2

2n−4)2. For p > 2, the |S| distribution can be obtained numerically by simulation

of S, using a Wishart generator algorithm (Smith & Hocking, 1972) through the software

Matlab or R for instance.

Also, since each of the p chi-square variables in the distribution of |S| can be expressed in

terms of the meijer G function (Springer, M., 1979), with density given by

hZi
(z) =

1

2 Γ(n−i−1
2

)
G

1 0

0 1

(
z
2
| (n−i−2)

2

)
i = 1, 2, ..., p ,

then, the product of these independent G functions is given by

h(y) =
1

2p

(
p∏
i=1

1

Γ(n−i−1
2

)

)
G

p 0

0 p

(
y
2p | (n−3)

2
, (n−4)

2
, ..., (n−p−2)

2

)
, y > 0

where Y = Z1Z2...Zp . See Springer, M. (1979) for the definition and properties of the G

function.

It can be implemented, using the recent version of the Symbolic Math Toolbox of Matlab.

The exact quantile of interest for the one-sided |S| control chart is the value y0 = |Σ|x0

(n−1)p such

that ∫ xo

0

h(y)dy = 1− α

(iii) moments (ordinary and central): From the general expression above for |S|, and

using moment formulas for χ2 r.v., it is obtained the rt.h (ordinary) moment formulae:

αr = E (|S|r) =

(
2

n− 1

)pr
|Σ|r

p∏
k=1

Γ(r + n−k
2

)

Γ(n−k
2

)

In particular, the first four ordinary moments are given by:

α1 = E (|S|) =
(n− 2)

(n− 1)
|Σ| ; α2 = E

(
|S|2

)
=

(n+ 1)n(n− 2)

(n− 1)3
|Σ|2

α3 = E (|S|3) =
(n+ 3)(n+ 2)(n+ 1)n(n− 2)

(n− 1)5
|Σ|3

α4 = E (|S|4) =
(n+ 5)(n+ 4)(n+ 3)(n+ 2)(n+ 1)n(n− 2)

(n− 1)7
|Σ|4

The central moments are given by:

µk = E (|S| − µ)k =
k∑
r=0

αr

(
k

r

)
(−µ)k−r ; for k = 1, 2, 3, 4, we have,

µ = α1 = E (|S|) , µ2 = α2 − α2
1 = V ar (|S|)

µ3 = α3 − 3α1α2 + 2α3
1 , µ4 = α4 − 4α3α1 + 6α2α

2
1 − 3α4

1

(iv) cumulants: From the Cumulants Generating Function (logarithm of the moments

generating function), with the central moments previouslly standardized, we have:

K1 = µ∗ =
α1

σ
, K2 = µ∗2 =

µ2

σ2
, K3 = µ∗3 =

µ3

σ3
, K4 = µ∗4 − 3µ∗22 =

µ4

σ4
− 3

(µ2

σ2

)2
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where σ =
√
µ2.

2.2 Normal |S| Control Chart: Limits and False Alarm Risk

(i) limits: From the moments formulae of section 2.1, the 3-sigma control limits for the |S|
chart, in the case of p = 2, is given by,

E(|S|)± 3
√
V ar(|S|) = |Σ|

(
b1 ± 3

√
b2

)
, where b1 =

(n− 2)

(n− 1)
and b2 =

(n− 2)(4n− 2)

(n− 1)3

In the general p-dimensional case, we have the same expression for the control limits,

LCL = |Σ|
(
b1 − 3

√
b2

)
; UCL = |Σ|

(
b1 + 3

√
b2

)
but now, b1 and b2 are given by,

b1 =
1

(n− 1)p

p∏
i=1

(n− i) ; b2 = b1

[
p∏
i=1

(n− i+ 2)

(n− 1)p
− b1

]
obtained from the general moment formula of section 2.1, after some algebra (see also,

Djauhari, M., 2005).

The corresponding empirical limits are given by

LCL = |̂Σ|
(
b1 − 3

√
b2

)
; UCL = |̂Σ|

(
b1 + 3

√
b2

)
where |̂Σ| = |S̄|/b1 and S̄ is the matrix of average variances and average covariances based

on the m calibration samples (phase I). These formulae will be applied in the two numerical

examples presented at section 5.

(ii) false alarm α risk: In the case of p = 2, we have the exact distribution for |S| in simple

form (given at 2.1 (ii)), where |Σ| = |Σ0| under H0: Σ = Σ0.

The reference value for α is the usual 0.0027, which is pre-fixed. However, the actual α

risk, is given by

α risk = P(Reject H0 |H0 is true) = 1− P(LCL ≤ |S| ≤ UCL |H0 is true)

= 1− P
(
|Σ0|

(
b1 − 3

√
b2

)
≤ |Σ0|

4(n− 1)2

(
χ2

2n−4

)2 ≤ |Σ0|
(
b1 + 3

√
b2

))
= 1−

[
Fχ2

2n−4

(
2(n− 1)

√
b1 + 3b

1/2
2

)
− Fχ2

2n−4

(
2(n− 1)

√
b1 − 3b

1/2
2

)]
For p > 2, the α risk is obtained numerically, by simulation of |S|, as shown at section 4.

3 The Cornish-Fisher Corrected |S| Control Chart

3.1 The Control Limits

In order to better approximate the exact distribution of the sample |S| statistic, we

correct its non-normality (skewness and kurtosis) using the information from the 3r.d and
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4t.h order cumulants of |S| (K3 and K4 from section 2.1 (iv)), through the Cornish-Fisher

expansion formula (Cornish & Fisher, 1960; Lee & Lee, 1992).

In this formula, the p-quantile of |S|∗ = |S|−µ
σ

, denoted q|S|∗(p), is corrected, starting

from the p-quantile of Z ∼ N(0, 1), denoted qZ(p), as follows:

q|S|∗(p) ≈ qZ(p) +K3
q2
Z(p)− 1

6
+K4

q3
Z(p)− 3qZ(p)

24
−K2

3

2q3
Z(p)− 5qZ(p)

36

Since |S| = µ+ σ|S|∗ , then q|S|(p) = µ|S| + q|S|∗(p)σ|S| = b1 |Σ|+ q|S|∗(p)
√
b2 |Σ|2 , and

the quantile formula is: q|S|(p) = |Σ|
[
b1 + q|S|∗(p)

√
b2

]
, where p = α0

2
= 0.00135 and

p = 1− α0

2
= 0.99865 will give the control limits of the chart.

3.2 The Chart Performance: False Alarm α Risk

For dimension 2, since |S| ∼ |Σ|
4(n−1)2

(χ2
2n−4)2, we have

α risk = P(Reject H0 |H0 is true) = 1− P(LCL ≤ |S| ≤ UCL |H0 is true)

= 1− P(
[
b1 + q|S|∗(α/2)

√
b2

]
︸ ︷︷ ︸

CF1

|Σ0| ≤
|Σ0|

4(n− 1)2

(
χ2

2n−4

)2 ≤
[
b1 + q|S|∗(1− α/2)

√
b2

]
︸ ︷︷ ︸

CF2

|Σ0|)

= 1− P
(

2(n− 1)
√
CF1 ≤ χ2

2n−4 ≤ 2(n− 1)
√
CF2

)
α risk = 1−

[
Fχ2

2n−4

(
2(n− 1)

√
CF2

)
− Fχ2

2n−4

(
2(n− 1)

√
CF1

)]
where CF1 is the lower CF quantile for |S| and CF2 is the upper CF quantile for |S|.

For dimension greatter than 2, the false alarm risk should be obtained numerically by

simulation.

4 False Alarm Comparative Study

4.1 The case of dimension 2

From previous sections (2.2 and 3.2), we have obtained the expressions for the exact

false alarm risk for the traditional normal-based |S| chart and the Cornish-Fisher corrected

|S| chart, which are

α risk (normal) = 1−
[
Fχ2

2n−4

(
2(n− 1)

√
b1 + 3b

1/2
2

)
− Fχ2

2n−4

(
2(n− 1)

√
b1 − 3b

1/2
2

)]
α risk (CF corrected) = 1−

[
Fχ2

2n−4

(
2(n− 1)

√
CF2

)
− Fχ2

2n−4

(
2(n− 1)

√
CF1

)]
The ideal exact-distributed |S| chart, taken as a reference, has obviously α risk = α0,

the pre-fixed risk of type-I (reject H0 when H0 is true), that is considered as the usual 0.0027.

The comparison results, are presented in form of table and graphics as well, as a function of

the sample size n, for two-sided and one-sided charts.

The table below (Table 1) shows the false alarm risks for two-sided charts for n from 3

to 60, and after that, the same results are presented graphically (Fig. 1).
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Table 1: α risk (two-sided)
n Normal Approx. Cornish− Fisher n Normal.Approx. Cornish− Fisher
3 0.01971 0.00061 9 0.01737 0.00225
4 0.02081 0.00096 10 0.01670 0.00392
5 0.02042 0.00117 15 0.01409 0.00467
6 0.01968 0.00130 20 0.01234 0.00395
7 0.01888 0.00139 30 0.01014 0.00336
8 0.01810 0.00144 60 0.00719 0.00297

ref. 0.00270 0.00270 ref. 0.00270 0.00270

Figure 1: α risk of |S | exact versus approximated normal versus Cornish-Fisher

From the table and figure above, it is clear that our corrected chart presents false alarm

risks much closer to the reference risk (α0 = 0.0027) than the traditional normal-based chart.

If we consider only the upper risk (probab. of crossing the upper limit when H0 is

true), since it is the more important, the comparative results are even stronger, in favor of

the corrected chart, as shown in Figure 2 below.

Figure 2: Upper α risk of |S | exact versus approximated normal versus Cornish-Fisher
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And in this case, only one term of correction in the Cornish-Fisher formula is sufficient.

In this way, in the one-sided chart (only upper limit), we use only one correction term,

and the results are presented below, at Table 2 and Figure 3.

Table 2: α risk (one-sided)
n Normal Approx. Cornish− Fisher n Normal Approx. Cornish− Fisher
3 0.01971 0.00100 9 0.01737 0.00259
4 0.02081 0.00161 10 0.01670 0.00265
5 0.02042 0.00198 15 0.01409 0.00281
6 0.01968 0.00222 20 0.01234 0.00285
7 0.01888 0.00239 30 0.01014 0.00287
8 0.01810 0.00250 60 0.00719 0.00284

ref. 0.00270 0.00270 ref. 0.00270 0.00270

Figure 3: α risk (one-sided) of |S | exact versus approximated normal versus Cornish-Fisher

From the table and figure above we can see that the correction (just one term) produce

excellent results, where the excess of false alarm is substantially reduced, almost eliminated

for n ≥ 8 say.

4.2 The case of dimension 3

In this case, the α risks were obtained by simulation of the |S| sample distribution,

through a Wishart random generator (algorithm AS53, from Smith & Hocking, 1972) available

in the Matlab software, considering around N = 1 million samples for each sample size n.

Before the study with dimension 3, we have tested the simulator in the case of dimension 2,

where we know the exact distribution. This distribution depends on the Σ parameter, and we

have considered, without loss of generality, that Σ =
(

1 ρ

ρ 1

)
, where the particular ρ value

(ρ = 0.5 and 0.75 in the figures) does not have impact on the degree of approximation.

Just to illustrate the excellence of the method, with n = 10 and N = 106, we can not

distinguish between the exact PDF of |S| and the simulated PDF, as show at Figure 4 below.
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Figure 4: PDF of |S| (p=2) exact versus simulated - n = 10, N = 1 million and p = 2

Based on this test, we have adopted the value N = 106. For dimension 3, we have

considered just the one-sided (upper limit) chart, and CF correction with only one term. The

results are shown bellow, at Table 3, where the quantiles from the 3 methods are presented,

and Figure 5 (false alarm risk).

Table 3: Quantiles (one-sided)
n Exact(sim.) Normal Approx. CF n Exact(sim.) NormalApprox. CF

4 2.68949 1.03849 5.50433 9 2.42403 1.30405 2.59090
5 2.89698 1.23081 4.23237 10 2.29517 1.29008 2.41570
6 2.82795 1.29575 3.54973 15 1.89068 1.21041 1.90241
7 2.68866 1.31462 3.11760 20 1.64740 1.14353 1.64311
8 2.53757 1.31384 2.81575 30 1.38473 1.04938 1.37043

From the table above, we can see that the Cornish-Fisher quantiles are closer to the

exact quantiles than the normal ones; in particular, for n = 15 or more, the Cornish-Fisher

approximation is very good.

Figure 5: α risk (one-sided) of |S| exact versus approximated normal versus Cornish-Fisher through simu-
lations (N = 1 million samples for each sample size n)
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From the figure above, we can see that this one term CF correction reduces almost all

the excess of false alarm present in the normal-based chart.

5 Numerical Illustrations

5.1 An Example with p = 2

In order to illustrate the application of our corrected |S| chart with real data, we con-

sider an adaptation of the example 11.1 from Montgomery, D.C. (2008).

The tensile strength and diameter of a textile fiber are two important quality charac-

teristics that are to be jointly controlled. The quality engineer has decided to use n = 10 fiber

specimens in each sample. He has taken 20 preliminary samples shown at Table 4 below.

Table 4: Variability data for the textile fiber example - p=2
k S2

1k S2
2k S12k |Sk| k S2

1k S2
2k S12k |Sk|

1 1.25 0.87 0.80 0.4475 11 1.45 0.79 0.78 0.5371
2 1.26 0.85 0.81 0.4149 12 1.24 0.82 0.81 0.3607
3 1.30 0.90 0.82 0.4976 13 1.26 0.55 0.72 0.1746
4 1.02 0.85 0.81 0.2109 14 1.17 0.76 0.75 0.3267
5 1.16 0.73 0.80 0.2068 15 1.48 1.07 0.82 0.9112
6 1.01 0.80 0.76 0.2304 16 1.74 1.27 0.83 1.5209
7 1.25 0.78 0.75 0.4125 17 1.80 1.42 0.70 2.0660
8 1.40 0.83 0.80 0.5220 18 1.42 1.00 0.79 0.7959
9 1.19 0.87 0.83 0.3464 19 1.31 0.89 0.76 0.5883
10 1.17 0.86 0.95 0.1037 20 1.29 0.85 0.68 0.6341

Based on the table above (preliminary samples), taking the average of the variances

and covariances, we obtain an estimate of Σ, given by

S̄ =

(
S̄2

1 S̄12

S̄2
2

)
=

(
1.3085 0.7885

0.8880

)

which result in |S̄| = 0.5402. The constants b1 and b2 are given by

b1 =
(n− 2)

(n− 1)
= 0.8889 and b2 =

(n− 2)(4n− 2)

(n− 1)3
= 0.4170

since n = 10. As |S̄| is a biased estimator of |Σ| we consider its bias-corrected version (see

Djauhari, M.A., 2005), given by |̂Σ| = |S̄|/b1 = 0.5402/0.8889 = 0.6077, as the corresponding

numerical value for |Σ| in the control limits expression.

In this way, the control limits for the 3 charts (normal-based, CF corrected and exact)

in the two-sided case, are given by:

(i) normal-based: LCL = max
{

0, |̂Σ|
(
b1 − 3

√
b2

)}
= 0 , UCL = |̂Σ|

(
b1 + 3

√
b2

)
= 1.7176

(ii) CF corrected: LCL = q|S|(0.00135) = max
{

0, |̂Σ|
[
b1 + q|S|∗(0.00135)

√
b2

]}
= 0.0388

UCL = q|S|(0.99865) = |̂Σ|
[
b1 + q|S|∗(0.99865)

√
b2

]
= 2.7095
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(iii) exact limits: LCL = |̂Σ|(qχ2
2n−4(0.00135))

2/4(n− 1)2 = 0.0321

UCL = |̂Σ|(qχ2
2n−4(0.99865))

2/4(n− 1)2 = 2.7583

A chart with the 3 control limits and the data is presented at Figure 6 below.

Figure 6: |S| Control Chart - Two-sided, p = 2

From the figure it is clear that the correct limit (from the exact chart) is not reached,

and therefore the alarm from the normal-chart should be considered false at the pre-fixed

α0 level. This drawback does not happen with the Cornish-Fisher corrected chart since it

practically represent the exact limit chart.

Now, if we consider the one-sided case, the upper limit for the 3 charts, are given by:

(i) normal-based: UCL = |̂Σ|
(
b1 + qZ(0.9973)

√
b2

)
= 1.6321

(ii) CF corrected: UCL = q|S|(0.9973) = |̂Σ|
[
b1 + q|S|∗(0.9973)

√
b2

]
= 2.4679

(iii) exact limit: UCL = |̂Σ|(qχ2
2n−4(0.9973))

2/4(n− 1)2 = 2.4602

The figure 7b below illustrate this situation, where the CF corrected chart practically

coincide with the exact limit chart, avoiding the false alarm drawback that happens with the

traditional normal-approximated |S| control chart. In this case, the figure shows that there

is no sign of problems with the process variability (see also figures 8a and 8b) nor with the

process level (figure 7a) expressed through the Hotelling statistic.
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Figure 7a: Hotelling T 2 Control Chart - One-Sided, p = 2

Figure 7b: |S| Control Chart - One-sided, p = 2

Figure 8a: S2
1 Control Chart - One-Sided Figure 8b: S2

2 Control Chart - One-Sided

5.2 An Example with p = 3

In order to illustrate the application of the proposed |S| corrected chart when p = 3,

we consider one adaptation of case 1 of Fuchs & Kenett (1998) where some simulations were
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made from the original multivariate data in order to get samples of size n = 15.

These original data are from a capability study of a process to produce aluminium bolts,

which were used as base to generate 70 simulated samples of dimension p = 3. A sketch of

aluminium bolt and the variables measured (X1, X2, X3) is presented in the picture below.

Figure 9: Aluminium bolt sketch and the measured variables

The first 30 samples (from the total of 70) were generated by simulation from the

first 5 original samples, in order to be used as calibration samples for the phase I (control

chart implementation). From these original samples, it was obtained the parameters (means,

variances and covariances) used in the simulation, shown at table 5 below.

Table 5: Parameters used in the simulation - p = 3
k µ1k µ2k µ3k S2

1k (10−4) S2
2k (10−4) S2

3k (10−4) S12k (10−4) S13k (10−4) S23k (10−4)

1 9.997 9.986 9.989 3.81 6.54 4.21 2.78 1.55 2.26
2 9.997 9.993 9.989 3.64 8.35 4.27 1.86 0.46 1.39
3 10.001 9.991 9.985 4.12 5.69 4.41 1.12 1.57 1.49
4 9.998 9.988 9.992 4.03 3.74 3.46 1.46 1.83 2.76
5 10.003 9.990 9.989 3.67 6.57 4.49 1.50 1.02 2.50

The multivariate normal samples simulated based on the parameters above (table 5)

were multiplied by 100, and then computed the |S| statistics for each sample; as shown at

table 6 below.

Table 6: Generated values of the sample |S| statistic - p = 3
Sample k S2

1k S2
2k S2

3k S12k S13k S23k |Sk|
1 6.7046 6.7999 5.5515 5.7386 2.8837 3.3595 49.2486
2 4.6107 12.4917 2.5024 5.8136 1.8154 3.2702 38.1021
3 4.2813 4.7268 3.2870 3.1535 1.9047 1.4954 25.0735
. . . .
. . . .

30 5.5042 7.4888 3.9771 3.2764 1.3976 2.2112 99.9524
Sum 127.1023 185.485 121.2132 59.5676 43.9286 59.0504
Mean 4.2367 6.1828 4.0404 1.9856 1.4643 1.9683 71.6842

From the table margins (mean values), it is obtained the “average generalized variance
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matrix” given by

S̄ =

 S̄2
1 S̄12 S̄13

S̄2
2 S̄23

S̄2
3

 =

 4.2367 1.9856 1.4643

6.1828 1.9683

4.0404


resulting that |S̄| = 71.6842. Since |S̄| is a biased estimator of |Σ|, the control limits are

corrected by the constants (section 2.2),

b1 =
(n− 2)(n− 3)

(n− 1)2
= 0.7959 and b2 =

(n− 2)(n− 3)6

(n− 1)3
= 0.3411

Then, the control limits (normal, CF corrected and exact), considering |̂Σ| = |S̄|/b1,

are given by

(i) normal-approximated: UCL = |̂Σ|
(
b1 + qZ(0.9973)

√
b2

)
= 218.030

(ii) Cornish-Fisher corrected: UCL = |̂Σ|
[
b1 + q|S|∗(0.9973)

√
b2

]
= 342.680

(iii) exact limit: UCL =
|̂Σ|x0

(n− 1)p
= 339.876

where x0 = 10355 was obtained integrating numerically the h(y) density (section 2.1 (ii))

using the “meijerG” function from the Matlab Symbolic Math Toolbox version 5.

From figure 10b below it is clear that the alarm from the normal chart should be

considered a false alarm at the established α risk of 0.0027, since the exact limit is not

reached by any point. The CF corrected chart does not present this drawback since its UCL

practically coincide with the exact limit.

Therefore, the figure shows that there is no evidence of process change in variability

(see also figure 10c for the univariate charts) as well as no change in the process level (figure

10a) as expressed by the Hotelling statistics.

Figure 10a: Hotelling T 2 Control Chart - One-Sided, p = 3
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Figure 10b: |S| Control Chart - One-Sided, p = 3

Figure 10c: Univariate Variance S2 Control Chart

6 Final Comments and Conclusions

This paper has presented a simple correction in the traditional |S| control chart for

multivariate process dispersion monitoring based on the Cornish-Fisher expansion formula.

For the very important case of a one-sided chart, the correction is based on only one term

involving the 3r.d order moment or cumulant, with a very simple implementation.

At the same time, the gain in terms of practically eliminating the false alarm drawback

of the traditional |S| chart is enormous. With this new chart we can now control the false

alarm risk at the pre-fixed level, avoiding the serious consequences of an incontrolled increase

of this risk. We have presented the full details specifically for the cases of dimensions 2 or 3,

but the method is general, and valid for higher dimensions.
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