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Abstract

This paper presents simpler alternative formulae and procedures of implementa-
tion to deal with the relative range statistic (moments, distribution and quantiles) used in
the construction of range control charts for process dispersion monitoring. The Tippett’s
integral formulae for sample relative range moments and distribution are revisited and
simpler new alternative expressions are proposed together with an easy computational
implementation procedure based on it’s relation with the Tukey maximum studentized
range statistic.

Also, such proposed methods are applied in the assessment of the range chart per-
formance considering false alarm comparison between exact control limits charts versus
normal approximated versions (3-sigma Shewhart procedure), which show the serious
drawbacks of such misplaced control limits. These much simple tools introduced here,
we believe, will permit the presentation of R control charts more transparently and
without unrealistic normal approximations or blind dependence on tables, avoiding the
serious limitations of such “ad hoc” practice.

KEY WORDS: Exact Control Limits, False Alarm, R Control Charts, Relative Range,
Tippett’s integrals, Tukey Statistic.

1 INTRODUCTION

It can be said that the birth of modern statistical process control took place when

Walter A. Shewhart developed the concept of a control chart based on the monitoring of

process mean level (X̄ chart) and process dispersion (R or S charts). However, it was Leonard

Tippett that studied in detail the sample Range Statistic R and it’s relative version W = R/σ

(moment formulae and sampling distribution), providing the necessary statistical background

for the R chart, which has been the most used tool for monitoring process variability since

then. For original references, see Shewhart, W.A.(1926) and Tippett, L.H.R.(1925); for actual

corresponding references see, for instance, Montgomery, D.C.(2008) and David, H.A.(1981).

Although (for typical small samples at least, say n ≤ 8, as usual) there is no great loss

of statistical efficiency in using the sample range R (instead of the sample standard deviation

S) for monitoring or estimating process variability, however, there are certainly two very
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important drawbacks with the Shewhart-Tippett procedures (which are used until nowadays)

for monitoring variability. And how to overcome them is the object of the present paper.

The two drawbacks are the following:

1. The “lack of simplicity” of the Tippett’s integral formulae for moments and distribution

of W = R/σ (E(W ), V (W ), F (w), f(w), presented at section 2) is evident. It’s too

much formulae, some expressions are not very simple, most formulae deductions are

not straight, there are some shortcomings with their implementation (tables, software),

etc. Some of these implementation shortcomings (W distribution) are vital, since the

tables available (for instance, Pearson, E.S. and Hartley, H.O., 1943; Harter, H.L., 1960;

Harter, H.L. and Balakrishnan, N., 1997) were not designed specificaly for quality control

applications (where α = 0.0027 or 0.0020 and not 0.05 or 0.01 as usual in the tables).

2. The inadequacy of approximating the R distribution by normal (the 3-sigma limits

proposed by Shewhart and used by it’s followers until nowadays) is also evident. The

domain of R (positive) and the shape (skew) are totally different in a normal distribution,

what causes the “problem of misplace control limits” (see Alwan, L.C. and Roberts,

H.V., 1995).

In fact, we can consider the second drawback just as a consequence of the first; if the

distribution of W was not easy to implement at that time (in the second decade of the XX

century), a normal approximation was an easier or practical alternative found by Shewhart.

The two main consequences of these drawbacks are:

1. the use of misplaced control limits in the R control chart (with significant inflation of

false alarm probability and difficulty in the lower limit specification), which is recognized

by some authors (for instance, Alwan, L.C. and Roberts, H.V.,1995; Alwan, L.,2000, and

others), neglected by others, and no definitive simple solution presented; this point will

be discussed in more detail at sections 3 and 4 of this paper.

2. the lack of transparency or “ad hoc” way in the presentation of range control charts

in the main textbooks about the subject (see instance, Montgomery, D.C., 2008; Ryan,

T.P., 1989; Devor, R.E. et al,2007; Grant, E.L. and Leavenworth, R.S.,1996,; Kenett, R.

and Zachs, S.,1998 and others); this ocurrs perhaps because the Tippett’s theory is not

simple enough. Some other authors try to present some theoretical background for the

R chart (see Burr, I.W.,1974; Alwan, L.,2000; Costa, A.F.B. et al,2004), but without

full success.

In order to overcome these difficulties, we reformulate drastically the Tippett’s formu-

lae, reducing the number and complexity of them and giving a simple way of implementation,

exploring a simple relationship that exists between the statistics relative range and Tukey

maximum studentized range for multiple comparison tests. For details about this last statis-

tic, see Tukey, J.W.,1953, or Copenhaver, M.D. and Holland, B.,1988.

The organization of the paper is the following. After this introduction, we revisit
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and analyse the Tippett’s formulae at section 2. In section 3 it’s presented the new simpler

formulation and in section 4 it’s presented one application or illustration involving a false

alarm analysis. Final discussions and conclusions are presented at section 5, followed by the

references.

2 Tippett’s Formulae Revisited

2.1 Basic Notation and Background

Let’s consider the following basic notation, definitions and background results about

order statistics and moments:

(i) notation: X1, X2, ..., Xn are iid (independent and identically distributed) random vari-

ables with distribution function F (x), forming a (simple) random sample of the continuous

characteristic X, and X(1), X(2), ..., X(n) are the corresponding order statistics. In practice,

the important case is when X ∼ Normal, when F (x) = Φ(x), but moderate departures from

normality are acceptable in this context (Burr, I.W., 1967; Brown, R.A., 1974).

(ii) definitions: R = X(n)−X(1) is the sample range or amplitude, and, for r = 1, 2, ..., n−1,

Sr = X(r+1)−X(r) are the “spacings”, such that R =
∑n−1

r=1 Sr. Also, W = R/σ is the sample

relative range, where σ is the standard deviation of X. The mean and standard deviation of

W will be represented by d2 = E(W ) and d3 =
√
V (W ).

(iii) distribution of order statistics: Fr(x), for r ∈ {1, 2, ..., n}, is the distribution

function of the rt.h order statistic X(r), such that

Fr(x) =
n∑

i=r

(
n

i

)
F i(x) (1− F (x))n−i

since Fr(x) = P
(
X(r) ≤ x

)
= P (r or more values of Xi ≤ x); which is a sum of binomial

probabilities. Also, using a similar reasoning but now in two dimensions, it can be obtained

the joint distribution function of X(r), X(s), r < s, as

Gr, s(x, y) =
n∑

j=s

j∑
i=r

(
n

i, j − i

)
F i(x)[F (y)− F (x)]j−i[1− F (y)]n−j

that is, the former binomial sum now became a trinomial sum. For details, see David, H.A.

(1981).

(iv) moments in terms of distribution functions: E(X) in terms of F (x) is given by

E(X) =

∫ ∞
0

(1− F (x))dx−
∫ 0

−∞
F (x)dx

which is a more convenient expression for dealing with order statistics than the more usual

way in terms of it’s density. It can be verified integrating by parts (see Feller, W.,1966, pg

148 or Mood, A.M.; Graybill, F.A. and Boes, D.C., 1974, pg 65). If X is non-negative, as is

the case of the relative range W , by the last formula, E(W ) =
∫∞

0
(1− F (w))dw, where F (w)

is the distribution function of W , since the second integral is null.
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In the case of second order moments, the formula for variances-covariances in terms of

distribution functions, is given by

Cov(X, Y ) =

∫ ∞
−∞

∫ ∞
−∞

(G(x, y)− F (x)F (y)) dx dy

where G(x, y) is the joint distribution function of X and Y .

This formula is credited originally to Hoeffding, W.(1940) and is also discussed, for in-

stance, in Jones, M.C. and Balakrishnan, N.(2002) and Cuadras, C.M. (2002).

The expressions for Fr(x) and E(X) will be used (section 2.2) in the construction of the

first Tippett formula, and the expression above for E(W ) will be used in section 3.

(v) moments of spacings: the first order moment, E(Sr) = E(X(r+1) − X(r)) can be ob-

tained using the formula for E(X) given at (iv) and the expression for Fr(x) given at (iii),

resulting (after simple algebra), in

E(Sr) =

∫ ∞
−∞

(
n

r

)
F r(x)[1− F (x)]n−rdx

This result (originally presented by Pearson, K.,1902) is the first step in the obtaintion of

the Tippett formula for E(W ), which is shown in detail at section 2.2.

The second order moment, E(Sr Ss) = E
(
(X(r+1) −X(r))(X(s+1) −X(s))

)
(which is used

in the proof of Tippett’s formula for V (W )) is obtained (after some tedious algebra) using

the formula for Cov(X, Y ) in (iv) and the expression for Gr, s(x, y) in (iii), resulting in a sort

of trinomial formula, given by

E(Sr Ss) =

∫ ∞
x

∫ y

−∞

(
n

r, s− r

)
F r(x)[F (y)− F (x)]s−r[1− F (y)]n−sdx dy

which can be seen as an extension of the binomial formula for E(Sr), and is presented in Jones,

M.C. and Balakrishnan, N.(2002).

2.2 Relative Range Moments

2.2.1 The First Tippett’s Integral: d2 Mean Formula

Let’s first calculate E(Sr) and after that join the spacings,

E(Sr) = E(X(r+1) −X(r)) = E(X(r+1))− E(X(r))

=

[∫ ∞
0

(1− Fr+1(x))dx−
∫ 0

−∞
Fr+1(x)dx

]
−
[∫ ∞

0

(1− Fr(x))dx−
∫ 0

−∞
Fr(x)dx

]
=

∫ ∞
−∞

[Fr(x)− Fr+1(x)] dx =

∫ ∞
−∞

(
n

r

)
F r(x) [1− F (x)]n−r dx

Now, joining the spacings, and interchanging sum and integral, we have

E(R) = E(
n−1∑
r=1

Sr) =
n−1∑
r=1

E(Sr) =

∫ ∞
−∞

n−1∑
r=1

(
n

r

)
F r(x) [1− F (x)]n−r︸ ︷︷ ︸

p(r)

dx

=

∫ ∞
−∞

[
n∑

r=0

p(r)− p(0)− p(n)

]
dx =

∫ ∞
−∞

[1− [1− F (x)]n − F n(x)] dx
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Now, since W = R/σ, considering Z = X/σ, we have

E(W ) =
1

σ

∫ ∞
−∞

[1− [1− FZ(z)]n − F n
Z (z)]σdz =

∫ ∞
−∞

[1− [1− FZ(z)]n − F n
Z (z)] dz (I)

where FZ(z) = Φ(z) in the normal case. This mean depends only on n and is known in the

literature (see for instance, Montgomery, D.C., 2008 or SAS/QC R© 9.2 User’s Guide, 2008) as

the d2 constant or d2(n).

2.2.2 The Second Tippett’s Integral: d3 Standard Deviation Formula

Let’s use the formula for E(Sr Ss) from 2.1 - (v) after joining the spacings to form the

range R,

E(R2) = E

[
(
n−1∑
r=1

Sr)(
n−1∑
s=1

Ss)

]
= 2

n−1∑
r=1

n−1∑
s=1

E(Sr Ss) = 2

∫ ∞
x

∫ y

−∞

n−1∑
r=1

n−1∑
s=1

ars

where ars is the trinomial expression (section 2.1-v), such that
n−1∑
r=1

n−1∑
s=1

ars =
n∑

r=0

n∑
s=0

ars −
n∑

s=0

a0s −
n∑

r=0

arn + a0n

= 1− [1− F (x)]n − F n(y) + [F (y)− F (x)]n ; then

E(W 2) = 2

∫ ∞
u

∫ v

−∞

{
1− [1− F (u)]n − F n(v) + [F (v)− F (u)]n

}
du dv (II)

where u = x/σ and v = y/σ. Then, d3 =
√

E(W 2)− d 2
2 and, in the normal case we have

F (u) = Φ(u), F (v) = Φ(v), the cdf of the standard normal.

2.3 Relative Range Distribution

2.3.1 The Third Tippett’s Integral: Distribution Function for W

FW (w) = P(W ≤ w) = P
(
(X(n) −X(1))/σ ≤ w

)
= P(X(n) ≤ X(1) + σ w)

From the total probability theorem in continuous version, we have,

FW (w) = EX

[
P(X(n) ≤ X(1) + σ w |X(1) = xk)

]
, k = 1, 2, . . . , n

FW (w) = EX [P (∪n
k=1(All (n− 1) remainingXj ∈ [x, x+ σ w]))]

FW (w) = EX [nPn−1(x ≤ Xj ≤ x+ σ w)], since the events are independents in

j and excludent in k; then, FW (w) = n
∫∞
−∞ [F (x+ σ w)− F (x)]n−1 f(x) dx

where, in the normal case, F (x) = Φ(x) and f(x) = ϕ(x) from the standard normal random

variable, resulting

FW (w) = n

∫ ∞
−∞

[Φ(x+ w)− Φ(x)]n−1 ϕ(x) dx (III)

2.3.2 The Fourth Tippett’s Integral: Density Function for W

fW (w) =
d

dw
FW (w) = n

∫ ∞
−∞

d

dw

{[
F (x+ σ w)− F (x)

]n−1}
f(x) dx
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fW (w) = n(n− 1)

∫ ∞
−∞

[
F (x+ σ w)− F (x)

]n−2

f(x+ σ w) f(x) dx

where, in the normal case, F (x) = Φ(x) and f(x) = ϕ(x) from the standard normal

random variable, resulting

fW (w) = n(n− 1)

∫ ∞
−∞

[
Φ(x+ w)− Φ(x)

]n−2

ϕ(x+ w)ϕ(x) dx (IV)

2.4 The Common Use of the 4 Tippett’s Integrals

In order to make clear the importance in the quality control context of these 4 integral

formulae (eqs. I, II, III, IV) introduced originally by Tippett, L.H.C. (1925) and used or

referenced till nowadays, we resume here some of it’s main practical applications.

The d2 relative range mean is used in the (unbiased) estimation of the process standard

deviation σ based on the range statistic R, which is given by σ̂ = R/d2(n) in the case of just

one sample of size n, or σ̂ = R/d2(n) where R = 1
m

(R1 + ... + Rm) in the case of using m

samples of size n. Therefore, the d2 element apears in the Shewhart 3-sigma X and R control

charts limits formulas.

The d3 relative range standard deviation is used in the limits expression for the Shewhart

3-sigma R control chart (see for instance, Montgomery, D.C., 2008, Ch. 6).

The expression for FW (w), the distribution function of the relative range statistic, is

used in the construction of exact limits R control charts and its density fW (w) is usefull if we

want to see the density shape involved in the R control chart.

The drawbacks of these formulas and its implementation, as well as simpler alternative

formulas, are presented and discussed in the next section.

3 A More Efficient and Simpler Formulation

3.1 Tippett’s Formulae Analysis and It’s Reformulation

Let’s enumerate the 4 main specific drawbacks in using the Tippett’s integrals formulae

(eqs. I to IV at section 2) as a theoretical background for the range control chart (limits

specification). They are:

(i) four specific integrals formulae are (unnecessarily) too much formulae.

(ii) the first two moment formulae have long deductions, involving some measure theory

results (expressions for moments in terms of F (x) in 2.1 (iv)).

(iii) some of the integrals are too long, notably formulae II and IV; in particular, formula

II requires a jacobian transformation before a numerical integration routine (like Quadpack,

Piessens, R. et al, 1983) can be applied.

(iv) the more important or essential formulae (eq. III) that gives the relative range dis-

tribution function (it’s inverse or quantile function gives the exact chart limits) has limited
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implementation facilities (tables, software) available in practice.

In order to overcome such drawbacks, we introduce here a reformulation strategy for such

formulae based on the following elements:

(i) we keep only formulae III (relative range distribution function) in our new proposed for-

mulation, since this is the only essential element, and discard all the other formulae, without

any loss of information.

(ii) for the moments of W , and its mean E(W ) in particular, we don’t need any specific for-

mula, since a generic and much simpler relation valid for any non-negative continuous random

variable X, like E(X) =
∫∞

0
(1− F (x))dx, known from basic probability and statistics books

(Mood, Graybill and Boes, 1974) is sufficient to obtain E(W ) from F (w); its proof is simple

and is presented in section 3.2.

(iii) for the practical (computer) implementation of formulae III for F (w), instead of using

directly a numerical integration routine like Quadpack (Piessens, R. et al, 1983), we explore

a simple relation that exists between the relative range statistic and the Tukey maximum

studentized range statistic (see Tukey, J.W.,1953; Copenhaver and Holland, 1988; Ferreira,

D. et al, 2007). In fact, the first is a limiting case of the second. Since this last statistic (dis-

tribution function and quantile function) is implemented in some (not all but some) statistical

software (as for instance the free R software), we can just use such facilities, with the proper

adaptations (details in section 3.3).

(iv) if we want to see the shape (density) of our sample relative range W , instead of differenc-

ing F (w) analytically (formulae IV), we can do this numerically for instance by Richardson

method (Fornberg and Sloan, 1994) through the R software (see the “grad” function of pack-

age “numDeriv” through the CRAN webpage or Crawley, M.J., 2007 for instance) or other

software such as Matlab for instance.

3.2 Simpler Formulae for Range Moments

Instead of specific formulae for the relative range moments (Tippett’s formulae I and

II) we consider simpler generic formulae for moments (in terms of distribution function) valid

for any non-negative continuous random variable.

The mean formula (see 2.1 (iv)) for W , is given by E(W ) =
∫∞

0
(1− F (w))dw

Proof: Consider
∫∞

0
(1− F (w))dw =

∫∞
0

[∫∞
w
f(s) ds

]
dw

Integrating by parts, where u is the element in brackets and dv = dw, then, du =

−f(w)dw and v = w. Therefore,
∫∞

0
(1− F (w))dw = [w

∫∞
w
f(s) ds]∞0 +

∫∞
0
wf(w) dw

Since the second integral is E(W ) and the first one is null at 0, the proof is complete,

since limw→∞ w
∫∞

w
f(s) ds ≤ limw→∞

∫∞
w
s f(s) ds = 0, and the first integral (non-negative)

is zero.

Although we don’t need other moments of W than the mean for building exact limits
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R control charts (and we don’t recommend the use of 3-sigma R chart), however, for com-

pleteness, we present here the expression of the second moment of W , which is given by,

E(W 2) =

∫ ∞
0

(1− F (w))dw2 = 2

∫ ∞
0

w(1− F (w))dw

which is obtained by a sort of “chain rule” starting from the mean formula (see for instance

Mardia, K.V., 1965 or Mardia, K.V. and Thompson, J.W., 1972).

In this way, we simplify drastically Tippett’s formula II by the expression above. Also,

obviously, we have that d3 =
√

E(W 2)− d2
2. This expression is used in the present paper

(section 4) only for calculating the 3-sigma limits R control chart in order to show the very

bad false alarm properties of such “ad hoc” procedure.

3.3 Practical Computer Implementation of F (w) and its Inverse

A simple way to implement the F (w) distribution (instead of using numerical integra-

tion routines like Quadpack for instance) is to explore pre-existing available implementations.

However, specific implementations for the relative range distribution in the quality control

context, as mentioned before, aren’t very frequent. On the other way, some implementations

for the studentized range distribution (Tukey statistic) are available in some important soft-

wares (as for instance the R free software and the SAS package) since it has a more central

place in statistics (multiple comparison tests of means in one-way or two-way ANOVA).

Therefore, a natural way to take advantage of such available facilities, is to explore

the close relationship between the two statistics and corresponding distributions. Since, by

definition, the relative range is W = R/σ, with degree of freedom n (numerator), and the

studentized range is W ∗ = R/S, with the same degree of freedom in the numerator, and

d.f.= m in the denominator, then as m → ∞, the sample standard deviation S converges in

probability to σ and the two statistics became equivalent. In other words, W is a limiting

case of W ∗ when the denominator d.f. is infinity, and FW ∗(w∗) coincide with FW (w) in the

limit.

Of course this is an almost obvious result or property but little explored in practice,

since the two statistics are used in different areas of statistics, with different contexts of in-

terpretation. A simpler and more well known result like that is the convergence of a central

student-ratio statistic to a standard normal variable.

Therefore, if we have the Tukey statistic distribution (for one-way ANOVA) imple-

mented in some software, such that FW ∗(w∗) = FW ∗(w∗, n,m) for given values of the ar-

guments (w∗ is a quantile and n, m are degrees of freedom), then FW (w) ≡ FW (w, n) =

FW ∗(w∗ = w, n,∞) where w is the given quantile and n is the sample size (in the quality

control context). In the ANOVA context n would be the number of pairs of means and m

would be the sample size or replications.

For instance, using the R free software through its function ptukey(w∗, n, m) with

arguments as above, we obtain FW (w, n) just considering m = ∞, for a given quantile w

and sample size n. In practice however, we need its inverse, the quantile function, such that
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FW (w0) = p for some probability or risk p, where w0 is the quantile we want (control chart

limit).

Considering the R software, we use the function qtukey(p, n, m) just making m =∞,

where p is a given probability (in practice, p = α/2 and 1 − α/2) and n is the sample size.

The α value (false alarm risk) used in practice is 0.0027, common in the USA, or 0.0020,

common in Europe. The numerical methods used in such couple of functions of R software

are respectively numerical integration (Quadpack) and secant method (see Piessens, R. et al,

1983; Brent, R.P., 1973 and the CRAN webpage).

4 False Alarm Study of Range Control Charts

In the last two sections we have revisited the traditional Tippett’s integral formulae

(used mainly in the construction of Shewhart R charts) and presented a simpler alternative

way to work with the range statistic (usefull for the construction of exact limits R charts).

Therefore, it’s easier now to work with exact limits R charts than with the traditional 3-sigma

R charts based on Tippett’s moments formulae.

Now, in this section, we apply the procedures proposed in the last section to show the

serious drawbacks of using Shewhart (3-sigma normal approx. limits) R charts in terms of

false alarm inflation. In fact, although such false alarm inflation is recognized by some authors

(for instance see Alwan, L.C., 2000 or Alwan, L.C. and Roberts, H.V., 1995) we show that

this drawback is worse than is admitted in the literature.

Before the presentation of the false alarm study itself we show preliminarly (see Figs. 1a

and 1b below) the shape (probability density) of the sample relative range statistic involved

in both charts (exact and normally approximated) versions.

Figure 1: W Density Function: Exact vs Approx. Normal - n=3

The exact density was built from numerical derivate of the W distribution (through

functions “ptukey” and “grad” of package “numDeriv”, from the R software).

From Figure 1a above it’s not difficult to see that the gaussian model isn’t a very good

approximation to the sample range distribution (density). In particular, it shows that small
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quantiles (like α/2 = 0.00135) which correspond to LCL (low control limits) in the R control

charts, aren’t only quite different, but the normal approximation is totally inconsistent with

the positive domain of the range statistic, causing obvious drawbacks, among others, the im-

possibility to detect variability decrease (eventual process improvement). Also, from Figure

1b (which focus the densities upper tails) we can see that big quantiles (as 1−α/2 = 0.99865)

are under approximated, which is another drawback (increase in control chart false alarm).

In order to show in more detail the comparison of the two versions of the R chart (ex-

act limits versus normal approx.) we present initially a numerical illustration of false alarm

directly through the control chart itself. After that, it’s presented a false alarm comparative

study (in terms of alpha risk and Average Run Length - ARL), as a function of the sample

size n. One key aspect of our comparative study, is that we compare the two different im-

plementations of the R chart considering not only the overall risk of false alarm (crossing the

UCL or LCL under H0) but also the upper risk separatelly (crossing the UCL under H0).

In this study and illustration, we consider two different reference values for the α risk

(probability of false alarm under the null hypothesis of stable variance σ = σ0): α0 = 0.0027

and α0 = 0.0020, which are commonly used by the QC community in the USA and Europe

respectively.

The Shewhart 3-sigma normal limits for the range is given by

E(R)± 3σR = σd2 ± 3σd3 = (d2 ± 3d3)σ , what means that in practice

LCL = max{0, (d2(n)− 3d3(n))σ} and UCL = (d2(n) + 3d3(n))σ

where in numerical applications, σ is estimated from m calibration samples (for instance,

σ̂ = R̄/d2 where R̄ = (R1 + ...+Rm)/m and m is large, say m ≥ 30).

Under H0 : σ = σ0, the false alarm probability of this 3-sigma R chart is given by,

α risk = 1− P(LCL ≤ R ≤ UCL) = 1− P(σ0(d2 − 3d3) ≤ σ0W ≤ σ0(d2 + 3d3))

= 1− [FW (d2(n) + 3d3(n))− FW (d2(n)− 3d3(n))]

if we consider α0 = 0.0027; for α0 = 0.0020 we have 3.09 instead of 3 in the expression above.

Also, consequently the upper α risk of false alarm, will be given by,

upper α risk = 1− FW (d2(n) + 3d3(n))

The corresponding Average Run Length (average number of samples until the first

apearance of false alarm) will be, ARL(0) = (α risk)−1, and upperARL(0) = (upper α risk)−1

since we have a Bernoulli-Geometric process involved.

In order to illustrate the real possibility of false alarm (at a pre-fixed α0 value) not

by chance only but by the non-exactness of the normal approximated Shewhart limits, we

present two numerical examples of cases of control charts with two-sided limits (one crossing

approx. UCL and other crossing approx. LCL), both with sample size n = 5, at Figure 2(a,

b) below, for α0 = 0.0027 and one case of one-sided (upper limit only) control chart (Figure

3a and 3b) for α0 = 0.0027 and 0.0020. In all the charts of Figures 2 and 3, the “vertical dot

line” indicate the separation of phase I (m calibration samples), used in the estimation of σ,

and phase II, where the new sample range values are confronted with the control limits.
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Figure 2: R Control Chart - Two-Sided, n=5, α0 = 0.0027

Figure 3: R Control Chart - One-Sided, n=2

Figure 2a shows a hypotetical false alarm given by the Shewhart control chart where

in fact it shouldn’t be an alarm if we calculate the limits exactly. Inversely, Figure 2b shows

a situation of non-alarm by the Shewhart chart (non-detection of improvement) when in fact

it’s detected by the exact limits control chart.

In resume, the two charts of Figure 2 show that, the use of misplaced control limits

can cause unnecessary false alarm (that could be avoided) or can cause the non-detection of

decrease in dispersion (process improvement) which could be detected using proper limits.

Figures 3a and 3b show also false alarms given by Shewhart charts that could be avoided

using correct limits, with the difference that now the charts are “one-sided”, with UCL only.

Now, after these previous illustrations of the possible drawbacks of using misplaced

control limits in the range chart, lets quantify the damage of these approximations in terms of

false alarm risk and average run length (see the formulae previously obtained in this section

for such measures of chart performance).

Figure 4a below shows the real false alarm for the Shewhart chart as a function of

the sample size n, confronted with the constant false alarm given by the exact limits chart

(where α0 = 0.0027 or 0.0020), where the increase in false alarm is evident, mainly for small

n. Alternatively, from Figure 4b, we can see the price we pay in terms of decrease of average
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run length (expected number of samples before the ocurrence of a false alarm) when we use

misplaced control limits.

Figure 4: α risk and ARL: Exact vs Approx. Normal Limits

Now, in order to show the real performance of Shewhart R chart in more detail, we

analyse the false alarm risk by crossing the UCL only, which is the more important case in

practice and the more fair way to compare the charts, because there is no LCL (is zero) for

one of them in small samples. This upper false alarm risk is presented at Figure 5a below

(α0 = 0.00135 and 0.0010) and the corresponding ARL(0) at Figure 5b.

Figure 5: Upper α risk and ARL: Exact vs Approx. Normal Limits

From Figure 5a above it’s clear that the real increase of false alarm when considering

the upper case isolated is bigger than when considering both (upper and low) together at

Figure 4a. The same can be seen in terms of ARL, by comparing Figures 4b and 5b, since

the last figure shows stronger differences between exact versus approx. approaches.

In order to give the exact numbers of false alarm risk of Shewhart R charts and its

percentual increase in relation to the exact limits chart and corresponding ARL values (con-

sidering risks together and separated), we present Table 1a and b below, respectively for

α0 = 0.0027 and 0.0020.
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Table 1a: α risk and derivatives - Approx. Normal (α0 = 0.0027)

n total total ARL(0) upper upper upper

risk risk ∆ risk risk ∆ ARL(0)

2 0.00915 238.89% 109 0.00915 577.78% 109

3 0.00584 116.30% 171 0.00584 332.59% 171

4 0.00495 83.33% 202 0.00495 266.67% 202

5 0.00460 70.37% 217 0.00460 240.74% 217

6 0.00445 64.81% 225 0.00445 229.63% 225

7 0.00438 62.22% 228 0.00438 224.44% 228

8 0.00435 61.11% 230 0.00435 222.22% 230

9 0.00435 61.11% 230 0.00434 221.48% 230

10 0.00437 61.85% 229 0.00434 221.48% 230

15 0.00449 66.30% 222 0.00444 228.89% 225

ref. 0.0027 - 370 0.00135 - 740

Table 1b: α risk and derivatives - Approx. Normal (α0 = 0.0020)

n total total ARL(0) upper upper upper

risk risk ∆ risk risk ∆ ARL(0)

2 0.00780 289.88% 128 0.00780 679.76% 128

3 0.00484 142.10% 206 0.00484 384.20% 206

4 0.00406 103.26% 246 0.00406 306.53% 246

5 0.00377 88.39% 265 0.00377 276.77% 265

6 0.00364 81.81% 275 0.00364 263.63% 275

7 0.00358 78.86% 279 0.00358 257.71% 279

8 0.00355 77.75% 281 0.00355 255.37% 281

9 0.00355 77.70% 281 0.00355 254.95% 281

10 0.00356 78.24% 280 0.00356 255.63% 281

15 0.00367 83.58% 272 0.00365 264.60% 274

ref. 0.0020 - 500 0.0010 - 1000

From table 1a, we see that the α risk of false alarm for the Shewhart chart, instead of

keeping constant at α0 = 0.0027 (as in the exact limit control chart), it can have an expres-

sive inflation, ranging from around 60% to near 240%, depending on the sample size n. For

instance, for very small samples, say n = 2 or 3 (what isn’t very uncommon in practice), the

actual false alarm risk is more than 2 or 3 times the reference risk α0. Equivalently, from this

table, the expected number of samples before a false alarm, called Average Run Length or

ARL(0) (which value is 370 for the exact limit chart) will be reduced by the same percentages

that the risk increases; for instance, for n = 2 we have ARL(0) = 109 instead of 370, what

isn’t a nice expectation to have so frequent false alarms.

However, the more important measure of performance in practice and the more fair way
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to compare the charts, is through the amount of false alarm risk by crossing the upper control

limit. This is also given by table 1a, which shows an even higher increase. The upper risk

increase (inflation) ranges from around 220% to near 580%, that is, from 3 to almost 7 times

the reference risk of 0.00135 (given by the exact limit chart), depending on the sample size.

Equivalently, the reduction of the average number of samples before an upper false alarm, can

range from 3 to almost 7 times the reference ARL(0) = 740 (exact limit case for any sample

size); in this more extreme case, it reduces to 109 when n = 2, what is obviously a serious

drawback of the Shewhart chart to have so frequent false alarms.

Table 1b (α0 = 0.0020) shows even stronger results than the last table, where the total

α risk in the Shewhart chart can reach almost 4 times (290%) more than the reference risk

of 0.0020 associated to the exact chart. However, the stronger result of this table, is that

the upper α risk of the Shewhart chart supper an inflation that ranges from around 280% to

680% (that is, 3.5 to almost 8 times) in relation to the reference risk of 0.0010 (exact chart),

depending on the sample size.

In summary, if we consider this more adequate measure of chart performance (false

alarm upper risk and not the total risk), we can see from these two tables (1a and 1b) that

the risk inflation in the Shewhart chart ranges from a minimum for 4 or 5 times the risk of the

exact limit chart, to almost 7 or 8 times more, depending on the sample size and the pre-fixed

α0 risk, if 0.0027 or 0.0020. Therefore, the false alarm drawbacks of 3-sigma range charts are

much more serious than previously supposed according to the QC literature.

Finally, we present below at table 2, the quantiles of the W distribution for small sam-

ples, for two-sided and one-sided limits, with α0 = 0.0027 and 0.0020. With all the facilities

provided in this paper, we expect that the QC practitioner can now use range control charts

with exact limits and not with misplaced (3-sigma) limits, avoiding these serious drawbacks.

Table 2: W Quantiles for Small Samples - α0 = 0.0020 and 0.0027

n α/2 α 1− α 1− α/2
0.0010 0.00135 0.0020 0.0027 0.9980 0.9973 0.9990 0.99865

2 0.00177 0.00239 0.00354 0.00478 4.37025 4.24261 4.65351 4.53274

3 0.06024 0.07000 0.08522 0.09903 4.79802 4.67870 5.06345 4.95017

4 0.19945 0.22055 0.25166 0.27838 5.05319 4.93846 5.30880 5.19966

5 0.36739 0.39653 0.43836 0.47338 5.23478 5.12314 5.48375 5.37740

6 0.53474 0.56899 0.61747 0.65751 5.37531 5.26597 5.61933 5.51506

7 0.69135 0.72885 0.78144 0.82451 5.48964 5.38211 5.72975 5.62713

8 0.83483 0.87439 0.92957 0.97450 5.58582 5.47978 5.82273 5.72146

9 0.96551 1.00641 1.06322 1.10929 5.66870 5.56391 5.90291 5.80277

10 1.08458 1.12634 1.18417 1.23093 5.74143 5.63772 5.97331 5.87416
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5 Final Discussion and Conclusions

We have presented in this paper three main results that are useful respectively in the

theoretical study, computer implementation and practical application of the range control

chart for monitoring process variability.

The first point was a drastic simplification in the Tippett’s theory (background for range

control charts), keeping only the formula for F (w), which is the simplest one, and substituting

specific moments formulae for much simpler generic expressions as the case of E(W ). In this

way, it’s now easy to study exact limits range control charts.

The second point was to show a simple way to implement computationaly F (w) explor-

ing its relation with the Tukey studentized range distribution, available in some important

statistical software. In this way there is no more problem of shortage of tables or other means

of implementation.

The third point was to show that the drawbacks of using 3-sigma (Shewhart) range

control charts based on normal approximation are extremely serious in terms of false alarm

inflation. In this way we expect that we have convinced that is much better to consider the

exact limits charts.
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