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Abstract. We provide an algorithm for studying invariant tori fulfilled of
periodic orbits of a perturbed system which emerge from the set of periodic
orbits of an unperturbed linear system in p : q resonance. We illustrate the
algorithm with an application.

1. Introduction and statement of the results

One of the main problems in general perturbation theory is to detect how persis-
tent are some given properties. In other words we want to translate some dynamical
properties from the unperturbed system to the perturbed one. Frequently the un-
perturbed system is linear and the objects to be continued to the perturbed system
are equilibria, periodic orbits or invariant tori. Bifurcations appear when the non
persistence occurs.

Our goal in this note is to provide an algorithm for studying the invariant tori
fulfilled of periodic orbits of the perturbed system which emerge from the set of
periodic orbits of the unperturbed system.

We consider the four-dimensional linear center

(1) ẋ = Ax,

where

A =




0 −p 0 0
p 0 0 0
0 0 0 −q
0 0 q 0


 ,

where x = (x, y, z, w) ∈ R4, and p and q are coprime positive integers. Clearly
all orbits of system (1) are periodic with the exception of its unique singular point
located at the origin of coordinates. We say that the periodic orbits of this center
are in resonance p : q.

We perturb system (1) as follows

(2) ẋ = Ax + εF (x),

where ε ∈ (−ε0, ε0) is a small parameter and F : U → R4 is a C2 map defined on
an open subset U of R4 containing the origin.
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The algorithm, for studying the invariant tori fulfilled of periodic orbits of the
perturbed system (2) which emerge from the set of periodic orbits of the unper-
turbed system (1), is based in a classical result for studying the periodic orbits of a
differential system using the averaging theory. As an application of this algorithm
we shall prove the following result. As usual we denote the circle by S1 = R/(2πR).

Theorem 1. Consider the differential system

(3)

ẋ = −y − ε(z + 1)
(

y + 2w +
4x

x2 + y2

)
,

ẏ = x + εy

(
w + 1− 2

x2 + y2

)
,

ż = −2w,

ẇ = 2z + ε(y + 1)w
(

2
w2 + z2

− 1
2

)
,

defined in

{x = (x, y, z, w) ∈ R4 : x 6= (x, y, 0, 0) and x 6= (0, 0, z, w)},
and where ε ∈ (−ε0, ε0) is a small parameter. The unperturbed system (3) with
ε = 0 is a linear center in R4 whose periodic orbits are in resonance 1 : 2. For
ε 6= 0 sufficiently small the perturbed system (3) has a 2-dimensional invariant
torus fulfilled of periodic orbits which tend to the torus

(4) {(x, y, z, w) ∈ R4 : x2 + y2 = 6 + 4 cos ϕ, z2 + w2 = 4 with ϕ ∈ S1},
when ε → 0.

In section 2 we present the result of the averaging theory that we need. The
algorithm for studying the invariant tori fulfilled of periodic orbits of the perturbed
system (2) is described in section 3. Finally in section 4 we prove Theorem 1.

2. Basic result on averaging theory

The key tool for proving the algorithm is the averaging theory. For a general
introduction to the averaging theory and related topics see the books [1, 3, 4, 5].
But the result that we shall use is presented in what follows.

We consider the differential system

(5) ẋ(t) = εF (t,x(t)) + ε2R(t,x(t), ε),

with x ∈ U ⊂ Rn, U a bounded domain and t ≥ 0. Moreover, we assume that
F (t,x) and R(t,x, ε) are T–periodic in t.

The averaged system associated to system (5) is defined by

(6) ẏ(t) = εf(y(t)),

where

(7) f(y) =
1
T

∫ T

0

F (s,y)ds.

The next theorem says us under which conditions the singular points of the av-
eraged system (6) provide T–periodic orbits of system (5). For a proof see Theorem
2.6.1 of [4], Theorems 11.5 and 11.6 of [5], and Theorem 4.1.1 of [2].
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Theorem 2. We consider system (5) and assume that the vector functions F , R,
DxF1, D2

xF1 and DxR are continuous and bounded by a constant M (independent
of ε) in [0,∞) × U with −ε0 < ε < ε0. Moreover, we suppose that F and R are
T–periodic in t, with T independent of ε.

(a) If a ∈ U is a singular point of the averaged system (6) such that det(Dxf(a)) 6=
0 then, for |ε| > 0 sufficiently small there exists a unique T–periodic solu-
tion xε(t) of system (5) such that xε(0) → a as ε → 0.

(b) If the singular point a of the averaged system (6) is hyperbolic then, for
|ε| > 0 sufficiently small, the corresponding periodic solution xε(t) of system
(5) is hyperbolic and of the same stability type as a.

3. The algorithm

In this section we describe the algorithm for studying the invariant tori fulfilled
of periodic orbits of the perturbed system (2) which emerge from the set of periodic
orbits of the unperturbed system (1).

Doing a rescalling of the independent variable by q, we can assume that the
linear part of the differential system (2) is given by the matrix




0 −n 0 0
n 0 0 0
0 0 0 −1
0 0 1 0


 ,

where n = −p/q.
Let F = (F1, F2, F3, F4). Then changing the variables (x, y, z, w) to (r, θ,R, ϕ)

by

x = r cos θ, y = r sin θ, z = R cos
(

θ +
(1− n)

n
ϕ

)
, w = R sin

(
θ +

(1− n)
n

ϕ

)
,

system (2) is transformed into the system

(8)

ṙ = εG1(r, θ,R, ϕ),
θ̇ = n + εG2(r, θ,R, ϕ),
Ṙ = εG3(r, θ,R, ϕ),
ϕ̇ = n + εG4(r, θ,R, ϕ),

with
G1 = ε

[
cos θ F 1(r, θ, R, ϕ) + sin θ F 2(r, θ, R, ϕ)

]
,

G2 = n + ε
1
r

[
cos θ F 2(r, θ, R, ϕ)− sin θ F 1(r, θ, R, ϕ)

]
,

G3 = ε

[
cos

(
θ +

(1− n)
n

ϕ

)
F 3(r, θ, R, ϕ) + sin

(
θ +

(1− n)
n

ϕ

)
F 4(r, θ, R, ϕ)

]
,

G4 = n + ε
n

1− n

[
1
R

(
cos

(
θ +

(1− n)
n

ϕ

)
F 4(r, θ, R, ϕ)−

sin
(

θ +
(1− n)

n
ϕ

)
F 3(r, θ,R, ϕ)

)
+

1
r

(
sin θ F 1(r, θ, R, ϕ)− cos θ F 2(r, θ, R, ϕ)

)]
,
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where

F k(r, θ, R, ϕ) = Fk

(
r cos θ, r sin θ,R cos

(
θ +

(1− n)
n

ϕ

)
, R sin

(
θ +

(1− n)
n

ϕ

))
,

for k = 1, 2, 3, 4.
We change the independent variable t in system (8) by taking θ as the new

independent variable. Thus system (8) becomes

(9)

dr

dθ
= εG1(r, θ, R, ϕ) +O(ε2),

dR

dθ
= εG3(r, θ, R, ϕ) +O(ε2),

dϕ

dθ
= 1 + ε

(
G4 −G2

)
(r, θ,R, ϕ) +O(ε2),

From the last equation of system (9) we have that any solution (r(θ), R(θ), ϕ(θ))
of system (9) is of the form ϕ(θ) = θ + ϕ0 +O(ε). Substituting this expression of
ϕ(θ) into system (9), it reduces to

(10)

dr

dθ
= εG1(r, θ, R, θ + ϕ0) +O(ε2),

dR

dθ
= εG3(r, θ, R, θ + ϕ0) +O(ε2).

Now we shall study the periodic orbits of system (10) applying to it Theorem 2
of the averaging theory. So we compute the averaged system of system (10) and we
get

(11)

dr

dθ
= εg1(r,R, ϕ0),

dR

dθ
= εg3(r,R, ϕ0),

where

gk(r,R, ϕ0) =
1
2π

∫ 2π

0

Gk(r, θ, R, θ + ϕ0), k = 1, 3.

Assume that for every ϕ0 ∈ S1 the averaged system (11) has a singular point
(r(ϕ0), R(ϕ0)) such that

(12) det

(
∂(g1, g2)
∂(r,R)

∣∣∣∣
r=r(ϕ0),R=R(ϕ0))

)
6= 0.

Then, applying Theorem 2 to the ϕ0-parametric differential system (10), we get
that system (10) for ε 6= 0 sufficiently small and for each ϕ0 ∈ S1 has a unique
periodic orbit (

r
(
θ; (r(ϕ0), R(ϕ0))

)
, R

(
θ; (r(ϕ0), R(ϕ0))

))
,

such that(
r
(
0; (r(ϕ0), R(ϕ0))

)
, R

(
0; (r(ϕ0), R(ϕ0))

)) → (r(ϕ0), R(ϕ0)) when ε → 0.

Going back to differential system (9), we obtain that this system for ε 6= 0 suffi-
ciently small has a continuous family of periodic orbits depending on the parameter
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ϕ0 ∈ S1, i.e. we get that system (9) has an invariant torus fulfilled of periodic or-
bits. Consequently the differential systems (8) and (2) (which are the same system
(9) in other variables) have an invariant torus fulfilled of periodic orbits.

This completes the algorithm for detecting invariant torus fulfilled of periodic
orbits of system

4. Proof of Theorem 1

In this section we apply the algorithm described in section 3 to the differential
system (3). For this system n = 1/2 and system (8) becomes

ṙ = −ε
1
4r

(
6− r2 + (r2 + 2) cos(2θ) + 2R cos(ϕ− θ) + 4R cos(ϕ + θ)+

2R cos(ϕ + 3θ) + r(2R sin ϕ + r sin(2θ) + 2R(r cos(ϕ + 2θ) sin θ+

R cos θ sin(2(ϕ + θ)) + sin(ϕ + 2θ)))
)
,

θ̇ =
1
2

+ ε
1

2r2
sin θ

(
2R cosϕ + (r2 + 2) cos θ + 2R cos(ϕ + 2θ)+

r(2R(R cos(ϕ + θ) + 1) sin(ϕ + θ) + r(sin θ + R sin(ϕ + 2θ)))
)
,

Ṙ = −ε
1

4R

(
R2 − 4

)
(r sin θ + 1) sin2(ϕ + θ),

ϕ̇ =
1
2

+ ε

(
− 1

8R2
(R2 − 4)(r sin θ + 1) sin(2(ϕ + θ))−

1
2r2

sin θ
(
2R cos ϕ + (r2 + 2) cos θ + 2R cos(ϕ + 2θ)+

r(2R(R cos(ϕ + θ) + 1) sin(ϕ + θ) + r(sin θ + R sin(ϕ + 2θ)))
))

.

Now we write system (9):
(13)

dr

dθ
= −ε

1
4r

(
6− r2 + (r2 + 2) cos(2θ) + 2R cos(ϕ0) + 4R cos(2θ + ϕ0)+

2R cos(4θ + ϕ0) + r(2R sin(θ + ϕ0) + r sin(2θ) + 2R(r cos(3θ + ϕ0) sin θ+

R cos θ sin(2(2θ + ϕ0)) + sin(3θ + ϕ0)))
)

+O(ε2),

dR

dθ
= −ε

1
4R

(
R2 − 4

)
(1 + r sin θ) sin2(2θ + ϕ0) +O(ε2).

Computing the averaged system of system (13), as it is indicated in (11), we get

(14)

dr

dθ
= ε

1
2r

(r2 − 6− 2R cos ϕ0),

dR

dθ
= −ε

R2 − 4
4R

.

The unique singular point of system (14) with r and R positive is

r =
√

6 + 4 cos ϕ0, R = 2.

For this singular point the determinant (12) is always −1/2 independently of ϕ0.
In short from the last part of the algorithm it follows the statement of Theorem

1.
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