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Abstract

Let (M, g) be any Riemannian manifold. Our goal is to show that if g
and Ricci tensor rg are no locally constant, if, locally, their product is non-
negative (respectively, non-positive), and if its scalar curvature sg is non-
negative (respectively, non-positive), then (M, g) is an Einstein manifolds.
This result is a generalization of the characterization for compacts Einstein
manifolds given by Hilbert [3].
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1 Introduction

Let (M, g) be a Riemannian manifold. Let us denote the Ricci tensor field by
rg and the scalar curvature by sg. M is called an Einstein manifold if, for every
vector fields X, Y on M , there exists a constant such that

rg(X, Y ) = λg(X, Y ).

We call the metric g of Einstein metric.
When M is a smooth compact manifold, Einstein manifolds can be char-

acterized characterized variationally, via the Hilbert action on the space of all
unit volume metrics. More exactly, g is an Einstein metric if and only if it is a
cirtical point of normalized Hilbert fuctional. The best general reference here is
the [1].

Let x ∈ M and (U, x1, . . . , xn) be a local coordinate system around x. If g
is an Einstein metric whit non-negative constant λ, a natural consequence in U
is

rg,ijgij ≥ 0, (1)

where rg,ij and gij , for i, j = 1, . . . n, are the coordinates of rg and g in U . In
the case that g is an Einstein metric whit non-positive constant λ, we have in
U that

rg,ijgij ≤ 0. (2)

We will use these natural assumptions to prove our main Theorem. Furthermore,
we will need the following assumption under the metrics.
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(I) Throughout the paper, any metric g on a smooth manifold M is not locally
constant.

Using stochastic analisys on manifolds, we show the following result for any
Riemannian manifold.

Theorem : Let M be a smooth manifold and g a metric on M which satisfy
(I).

1. If the Ricci tensor field rg is not locally constant, if it, locally, satisfy (1)
and if the curvature scalar sg is a non-negative constant, then (M, g) is
an Einstein manifold.

2. If the Ricci tensor field rg is not locally constant, if it, locally, satisfy (2)
and if the curvature scalar sg is a non-positive constant, then (M, g) is an
Einstein manifold.

2 Stochastic tools

In the following we always consider a complete probability space (Ω,F , P) en-
dowed with a filtration (Ft)t≥0. We begin for introduce the three most im-
portants process for stochastic analisys in manifolds. See for instance [2] for a
complete study about these process. From now on the term smooth means of
class C∞.

Definition 2.1 Let M be a smooth manifold. A continuos M -valued process
Xt is called semimartingale if, for each smooth f on M , the real-valued process
f ◦Xt is a semimartingale.

Let Xt be a semimartingale on M and b be a bilinear form on M . Let
(U, x1, . . . , xn) be a local coordinate system on M . In this coordinate b is written
as bijdxi⊗ dxj , where bij are smooth function on U . The integral of b along Xt

is defined, locally, by∫
b(dX, dX) =

∫
bij ◦Xtd[Xi, Xj ]t, (3)

where Xi
t = x1 ◦Xt.

Using this definition has sense the following definition of martingales in
smooth manifolds.

Definition 2.2 Let M be a smooth manifold with a connection ∇. A semi-
martingale Xt in M is called a martingale if, for every smooth f ,

f ◦Xt − f ◦X0 −
∫

Hessf(dX, dX)

is a real local martingale.
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In the sequel, we define Brownian motion in a smooth manifold. We observe
that Theorem 2.1, 2.2 and 2.3 that follows from definition are general. So they
do not depende of our assumption about the metric.

Definition 2.3 Let (M, g) be a Riemannian manifold. Given (Ω,F , P, (Ft)t≥0),
a M -valued process Bt is called a g-Brownian motion in (M, g) if Bt is continuos
and adapted and, for every smooth f,

f ◦Bt − f ◦B0 −
1
2

∫
∆gf ◦Btdt

is a local martingale.

Given a point x in (M, g), there always exists a g-Brownian motion Bt is M ,
starting at x, defined on [0, ζ[ for some complete probability space (Ω,F , P, (Ft)t≥0)
and some stopping time ζ > 0.

There exists the following Lévy characterization for g-Bronwnian motion in
manifolds (see Theorem 5.18 in [2]).

Theorem 2.1 A M -valued semimartingale Bt is a Brownian motion if and
only if it is a martingale and, for every smooth functions f and h,

[f ◦Bt, h ◦Bt] =
∫

g(grad f(Bt), gradh(Bt))dt.

In the sequel, we characterize stochastically the constant scalar curvature.

Theorem 2.2 Let (M, g) be a Riemannian manifold. The scalar curvature sg

is constant if and only if, for every g-Brownian motion Bt, sg(Bt)− sg(B0) is
local martingale.

Proof: Suppose that the scalar curature sg is constant. Then ∆gsg = 0. From
Definition 2.3 we conclude that

sg(Bt)− sg(B0)

is a real local martingale, where Bt is any g-Brownian motion.
Conversely, suppose that, for every g-Brownian motion Bt, sg(Bt)− sg(B0)

is a real local martingale. Thus, applying the expectation E we see that

E[sg(Bt)− sg(B0)] = E[sg(B0)− sg(B0)] = 0.

Therefore sg(Bt) = sg(B0), P-almost sure. Since Bt is an arbitrary g-Brownian
motion, it follows that sg is constant. �

The following Lemma, which demonstration is found in [2, Lemma 5.20], is
fundamental below.

Lemma 2.3 If Bt is a g-Brownian motion, then , for every bilinear form b,∫
b(dB, dB) =

∫
tr b(Bt)dt
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Let us denote B the subspace of symmetric bilinear forms on a smooth
manifold M . Let g be a metric on M which satisfy (I). For any local coordinate
system (U, x1, . . . , xn) we define

Bg+ := {b ∈ B : b is no constant on U and bij(y)gij(y) ≥ 0,∀y ∈ U}

and

Bg− := {b ∈ B : b is no constant on U and bij(y)gij(y) ≤ 0,∀y ∈ U}.

It is clear that Bg+ 6= ∅ and Bg− 6= ∅. We observe that Bg+ and Bg− are defined
over all local coordinate system.

Proposition 2.4 Let (M, g) be a Riemannian manifold such that g satisfy (I).

1. Let b, b′ ∈ Bg+. If
∫

b(dB, dB) =
∫

b′(dB, dB), for every g-Brownian
motion Bt, then b = b′.

2. Let b, b′ ∈ Bg−. If
∫

b(dB, dB) =
∫

b′(dB, dB), for every g-Brownian
motion Bt, then b = b′.

Proof: 1. Let b, b′ ∈ Bg and (U, x1, . . . , xn) be a local coordinate system on
M . In this coordinate, the components bij and b′ij of b and b′, respectively,
satisfy

bijgij ≥ 0 b′ijgij ≥ 0.

Since bij and b′ij are smooth, in some coordinate system (U ′, x1, . . . , xn) we have
that bij − b′ij ≥ 0 or b′ij − bij ≥ 0. So

(bij − b′ij)gij ≥ 0 or (b′ij − bij)gij ≥ 0 (4)

Suppose that bij−b′ij ≥ 0 in (U ′, x1, . . . , xn). Thus, from (3), for any g-Brownian
motion Bt with intial value B0 in U ′, we see that

n∑
ij=1

∫
(bij − b′ij)(Bt) d[Bi, Bj ] = 0.

From Theorem 2.1 we conclude that

0 =
n∑

ij=1

∫
(bij − b′ij)(Bt) g(gradxi, gradxj)dt =

n∑
ij=1

∫
(bij − b′ij)(Bt)gij(Bt)dt.

(5)
In the second equality we use the musical isomorphism (see page 30 in [1]) to
show that g(gradxi, gradxj) = gij in U ′.

As, in U ′, each term of (5) is non-negative we have
∫

(bij−b′ij)(Bt)gij(B)dt =
0, i, j = 1, . . . , n. Since dt is the Lebegue measure and (bij − b′ij)(Bt)gij(Bt)
is continuos for each ω ∈ Ω, bij(Bt) = b′ij(Bt). Because Bt is any g-Brownian
motion with intial value B0 in U ′ we conclude that bij = b′ij in U ′. As at each
x ∈ M we can found some neighborhood with condition (4) we conclude that
b = b′.
2. The proof is similar to proof of item 1. �

4



Corollary 2.5 Let (M, g) be a Riemannian manifold such that g satisfy (I).
Let b ∈ Bg. If

∫
b(dB, dB) = 0, for every g-Brownian motion Bt, then b = 0.

The next example shows the necessity of assumptions (I) under the metrics
and the non-constancy of bilinear symmetric forms.

Example 2.1 Let R3 and (x1, x2, x3) a global coordinate system to R3. Con-
sider the canonical metric g on R3. Then, it follows that g = dx1⊗ dx1 + dx2⊗
dx2 + dx3 ⊗ dx3. Let b, b′ be two diferent symmetric bilinear forms given by

[bij ] =

 1 2 3
2 1 4
3 4 1

 [b′ij ] =

 1 4 2
4 1 3
2 3 1

 .

It is clear that bijgij ≥ 0 and b′ijgij ≥ 0 for i, j = 1, 2, 3. Thus b, b′ ∈ Bg+. But,
for every Brownian motion Bt in R3, we have that∫

b(dB, dB) =
∫

b′(dB, dB).

In the same way, we can take β = −b and β′ = −b′ and to show that β, β′ ∈ Bg−.
Again, for every Brownian motion Bt in R3, we have that∫

β(dB, dB) =
∫

β′(dB, dB).

3 Einstein manifolds

We begin recalling the definition of Ricci tensor field for a metric and Einstein
Manifold.

Definition 3.1 The Ricci curvature tensor r of a Riemannian manifold (M, g)
is the 2-tensor

rg(X, Y ) = tr (Z → R(X, Z)Y ),

where tr denotes the trace of the linear map Z → R(X, Z)Y .

Definition 3.2 A Riemannian manifold (M, g) is Einstein if there exists a real
constant λ such that

rg(X, Y ) = λg(X, Y ).

We call the metric g of Einstein metric.

Now we prove the main Theorem.

Theorem 3.1 Let M be a smooth manifold and g a metric on M which satisfy
(I).

1. If the Ricci tensor field rg is in Bg+ and the curvature scalar sg is a
non-negative constant, then (M, g) is an Einstein manifold.
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2. If the Ricci tensor field rg is in Bg− and the curvature scalar sg is a
non-positive constant, then (M, g) is an Einstein manifold.

Proof: 1. Let (M, g) be a Riemannian manifold. Suppose that the scalar
curvature is a non-negative constant, that is, there exists a constant λ ≥ 0 such
that sg(x) = λ for all x ∈ M . If n is dimension of M , then

sg(x) =
λ

n
n.

As n = tr g we have

sg(x) =
λ

n
tr g(x).

Applying this equality about an arbitrary g-Brownian motion Bt in M we obtain

sg(Bt) =
λ

n
tr g(Bt).

We now integrate in t each trajectory of Bt, that is,∫
sg(Bt)dt =

∫
λ

n
tr g(Bt)dt.

From Lemma 2.3 we conclude that∫
r(dB, dB) =

∫
λ

n
g(dB, dB). (6)

Since λ ≥ 0, we obtain λ
ng ∈ Bg+. Because Bt is any g-Brownian motion, from

Proposition 2.4, item 1., we conclude that

r =
λ

n
g. (7)

Thus (M, g) is an Einstein manifold, which complete the proof.

2. The proof is similar to proof of item 1. The differences are that to conclude
(7) from (6) we use Proposition 2.4, item 2., and the fact that if λ ≤ 0, then
λ
ng ∈ Bg−.

�
Similarly, we can use Corollary 2.5 and prove the following.

Corollary 3.2 Let M be a smooth manifold and g a metric on M which satisfy
(I). If the Ricci tensor field rg is in Bg and the curvature scalar sg ≡ 0, then
(M, g) is a Ricci-flat manifold.
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