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Abstract

Let P (M,G) be a principal fiber bundle and E(M,N,G, P ) be an
associate fiber bundle. Our interested is to study harmonic sections of
the projection πE of E into M . Our first purpose is to give a stochastic
characterization of harmonic section from M into E and a geometric
characterization of harmonic sections with respect to its equivariant
lift. The second purpose is to show a version of Liouville theorem for
harmonic sections and to prove that section M into E is a harmonic
section if and only if it is parallel.
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1 Introduction

Let πE : (E, k) → (M, g) be a Riemannian submmersion and σ be a section
of πE , that is, πE ◦M = IdM . We know that TE = V E ⊕ HE such that
V E = ker(πE∗) and HE is the horizontal bundle ortogonal to V E. C. Wood
has studied the harmonic sections in many context, see [14], [15], [16], [17],
[18]. To recall, a harmonic sections is a minimal section for the vertical
energy functional

E(σ) =
1
2

∫
M
‖vσ∗‖2vol(g),

where vσ∗ is the vertical component of σ∗. Furthermore, in [14], Wood
showed that σ is a minimizer of the vertical energy functional if

τ v
σ = tr∇vvσ∗ = 0,

1The research of S. Stelmastchuk is partially supported by FAPESP 02/12154-8.
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where ∇v is the vertical part of Levi-Civita connection on E, since πE has
totally geodesics fibers. Wood called σ a harmonic section if τ v

σ = 0.
In this work, we drop the Riemannian submersion condition of πE and

we mantain the fact that TE = V E ⊕ HE and that M is a Riemmanian
Manifold. Let ∇E be a symmetric connection on E, where E is not necessar-
ily a Riemannian manifold. About these conditions we can define harmonic
sections in the same way that Wood, only observing that ∇v is vertical
componente of ∇E . There is no compatibility between ∇E and Levi-Civita
connection on M .

Furthermore, we restrict the context of our study. Let P (M,G) be a
Riemannian G-principal fiber bundle over a Riemannian manifold M such
that the projection π of P into M is Riemmanian submmersion. Suppose
that P has a connection form ω. Let E(M,N,G, P ) be an associated fiber
bundle of P with fiber N . It is well know that ω yields horizontal spaces on
E. Our goal is to study the harmonic sections of projection πE .

Let F : P → N be a differential map. We call F a horizontally harmonic
map if τF ◦ (H ⊗ H) = 0, where H is the horizontal lift from M into P
associated to ω.

Let σ be a section of πE . It is well know that there exists a unique
equivariant lift Fσ : P → N associated to σ. Our first purpose is to give an
stochastic characterization for the harmonic section σ and the horizontally
harmonic map Fσ. From these stochastic characterizations we show that
a section σ of πE is harmonic section if and only if Fσ is a horizontally
harmonic map. This result is an extension of Theorem 1 in [14].

For our second purpose we consider P (M,G) endowed with the Kaluza-
Klein metric, M and G with the Brownian coupling property and N with
the non-confluence property. About these conditions we show a version
of Liouville Theorem and a version of result due to T. Ishiara in [5] to
harmonic sections. As applications of our Liouville Theorem we can show
the following. If we suppose that M is complete Riemmanian manifold with
nonnegative Ricci curvature and its tangent bundle TM is endowed with the
Sasaky metric, then the harmonic sections σ of πTM are the 0-section. In the
same way we can construct an ambient for Hopf fibrations, with Riemannian
structure, such that harmonic sections are the 0-section.

2 Preliminaries

In this work we use freely the concepts and notations of P. Protter [12], E.
Hsu [4], P. Meyer [9], M. Emery [2] and [3], W. Kendall [8] and S. Kobayashi
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and N. Nomizu [6]. We refer the reader to [1] for a complete survey about
the objects of this section.

Let (Ω,F , (Ft)t≥0, P) be a probability space which satisfies the usual hy-
pothesis (see for example [2]). Our basic assumptions is that every stochastic
process are continuos.

Definition 2.1 Let M be a differential manifold. Let X be a process stochas-
tic with valued in M . We call X a semimartingale if, for all f smooth on
M , f(X) is a real semimartingale.

Let M be a differential manifold endowed whit symmetric connection
∇M . Let X be a semimartingale in M and θ be a 1-form on M defined
along X. We denote the Itô integral on M along the semimartingale X by∫ t
0 θd∇

M
Xs. Let b ∈ T (2,0)M defined along X. We denote the quadratic

integral on M along the semimartingale X by
∫ t
0 b (dX, dX)s.

Let M and N be differential manifolds endowed with symmetric connec-
tions ∇M and ∇N , respectively. Let F : M → N be a differential map and
θ be a section of TN∗. We have the following geometric Itô formula:∫ t

0
θ d∇

N
F (Xs) =

∫ t

0
F ∗θ d∇

M
Xs +

1
2

∫ t

0
β∗F θ (dX, dX)s, (1)

where βF is the second fundamental form of F (see [1] or [13] for the defini-
tion of βF ).

Definition 2.2 Let M be a differential manifold endowed with symmetric
connection ∇M . A semimartingale X with values in M is called a ∇M -
martingale if

∫ t
0 θ dMXs is a real local martingale for all θ ∈ Γ(TM∗).

Definition 2.3 Let M be a Riemannian manifold equipped with metric g.
Let B be a semimartingale with values in M , we say that B is a g-Brownian
motion in M if B is a ∇g-martingale, where ∇g is the Levi-Civita connection
of g, and for any section b of T (2,0)M we have that∫ t

0
b(dB, dB)s =

∫ t

0
tr bBsds. (2)

From (1) and (2) we deduce the useful formula:∫ t

0
θd∇

N
F (Bs) =

∫ t

0
F ∗θd∇

g
Bs +

1
2

∫ t

0
τ∗F θBsds, (3)

where τF is the tension field of F .
From formula (2) and Doob-Meyer decomposition it follows that F is an

harmonic map if and only if it sends g-Brownian motions to∇N -martingales.
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Definition 2.4 Let M be a differential manifold endowed with symmetric
connection ∇M . M has the non-confluence of martingales property if for ev-
ery filtered space (Ω,F , (Ft)t≥0, P), M -valued martingales X and Y defined
over Ω and every finite stopping time T such that

XT = YT a.s. we have X = Y over [0, T ].

Example 2.1 Let M = V be a n-dimensional vector space with flat con-
nection ∇n. Let X and Y be V -valued martingales. Suppose that there are
a stopping time τ with respect to (Ft)t≥0, K > 0 such that τ ≤ K < ∞ and
Xτ = Yτ . Then straightforward calculus shows that Xt = Yt for t ∈ [0, τ ].

Definition 2.5 A Riemmanian manifold M has the Brownian coupling prop-
erty if for all x0, y0 ∈ M we can construct a complete probability space
(Ω,F , P), a filtration (Ft; t ≥ 0) and two Brownian motions X and Y , not
necessarily independents, but both adapted to filtration such that

X0 = x0, Y0 = y0

and
P(Xt = Yt for some t ≥ 0) = 1.

The stopping time T (X, Y ) = inf{t > 0;Xt = Yt} is called coupling time.

Example 2.2 Let M be a complete Riemannian manifold. In [7], W.
Kendall has showed that if M is compact or M has nonnegative Ricci cur-
vature then M has the Brownian coupling property.

Let M be a Riemmanian manifold with metric g. Consider X and Y
two g-Brownian motion in M which satisfies the Brownian coupling property
and X0 = x, Y0 = y, where x, y ∈ M . Denote by T (X, Y ) their coupling
time. The process Ȳ is defined by

Ȳt =
{

Yt , t ≤ T (X, Y )
Xt , t ≥ T (X, Y ).

(4)

It is imediatelly that Ȳ0 = y0.

Proposition 2.1 Let M be a Riemannian manifold with metric g. Suppose
that M has the Brownian coupling property. Let X, Y be two g-Brownian
motions in M which satisfies the Brownian coupling property. Then the
process Ȳ is a g-Brownian motion in M .

Proof: It is a straightforward proof from definition of Brownian motion.
�
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3 Harmonic sections

Let P (M,G) be a principal fiber bundle over M and E(M,N,G, P ) be an
associate fiber bundle to P (M,G). We denote the canonical projection from
P × N into E by µ, namely, µ(p, ξ) = p · ξ. For each p ∈ P , we have the
map µp : N → E defined by µp(ξ) = µ(p, ξ). Let σ : E → M be a section
of projection πE , that is, πE ◦ σ = IdM . There exists a unique equivariante
lift Fσ : P → N associated to σ which is defined by

Fσ(p) = µ−1
p ◦ σ ◦ π(p). (5)

The equivariance property of Fσ is given by

Fσ(p · g) = g−1 · Fσ(p), g ∈ G.

Let us endow P and M with Riemmanian metrics k and g, respectively,
such that π : (P, k) → (M, g) is a Riemmanian submmersion. Let ω be
a connection form on P . We observe that the connection form ω yields a
horizontal structure on E, that is, for each b ∈ E, TbE = VbE⊕HbE, where
VbE := Ker(πEb∗) and HbE is the horizontal subspace done by ω on E (see
for example [6], pp.87). We denote by v : TE → V E and h : TE → HE
the vertical and horizontal projection, respectively.

Let ∇M denote the Levi-Civita connection on M and ∇E be a symmetric
connection on E. We follow B. O’Neill in [11] to define the Fundamental
tensor T for vector fields X and Y on E by

TXY := h∇E
vXvY + v∇E

vXhY.

We are interested in connections ∇E such that T ≡ 0. We observe that
when πE is a Riemannian submmersion the condition T ≡ 0 is equivalent to
πE has totally geodesic fibers.

We denote by ∇v the vertical component of connection ∇E on TE, that
is, for X, Y vector fields on E we have

∇v
XY = v∇E

X(vY ).

Let us denote ∇x the induced connection of ∇E over fiber π−1
E (x) for all

x ∈ M . We endow N with a connection ∇N such that, for each p ∈ P , µp

is an affine map over its image, the fiber π−1
E (x) with π(p) = x.

Let σ be a section of πE . Write σ∗ = vσ∗+hσ∗, where vσ∗ and hσ∗ are
the vertical and the horizontal component of σ∗, respectively. The second
fundamental form for vσ∗ is defined by

βv
σ = ∇̄v ◦ vσ∗ − vσ∗ ◦ ∇M ,
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where ∇̄v is the induced connection on σ−1E. The vertical tension field is
given by

τ v
σ = trβv

σ.

In the following we extend the definition given by C. M. Wood [15] of
harmonic section.

Definition 3.1 1. A section σ of πE is called harmonic section if τ v
σ = 0;

2. A differential map F : P → N is called horizontally harmonic if
τF ◦ (H ⊗H) = 0, where H is horizontal lift from M into P .

Definition 3.2 1. Let θ ∈ TE∗. We call θ a vertical form if θ(X) = 0 for
every horizontal vector field on E.
2. A E-valued semimartingale X is called a vertical martingale if, for every
vertical form θ on E,

∫ t
0 θd∇

v
Xs is a real local martingale.

Let us denote by βv
µ the second fundamental form with respect to product

connection ∇P×N and vertical connection ∇v, that is,

βv
µ((X1, ζ1), (X2, ζ2)) = ∇̄v

(X1,ζ1)µ∗(X2, ζ2)− µ∗

(
∇P×N

(X1,ζ1)(X2, ζ2)
)

for X1, X2 vector fields on P and ζ1, ζ2 vector fields on N .

Lemma 3.1 Let µp be an affine map, for each p ∈ P . For every point (p, ξ)
in P ×N we have that

(i) if X is a horizontal vector field on E, then µ−1
p∗ (X) = 0;

(ii) ∇̄v
(X1,ζ1)µ∗(X2, ζ2)µ(p,ξ) = ∇x

µp∗(ζ1)µp∗(ζ2), for X1, X2 horizontal vectors
fields on P and ζ1, ζ2 vectors fields on N ;

(iii) βv
µ((X, ζ), (X, ζ))(p,ξ) is a horizontal vector field, where X is a hori-

zontal vector field on P and ζ is a vector field on N .

Proof: (i) The proof is straightforward.
(ii) Using definitions of ∇̄v and T we deduce that

∇̄v
(X1,ζ1)µ∗(X2, ζ2) = Tµp∗(ζ2)µξ∗(X1)− v[µp∗(ζ2), µξ∗(X1)] + v∇E

µp∗(ζ1)µp∗(ζ2).

From (i) and the fact that µp∗ is a diffeomorphism we see that [µp∗(ζ2), µξ∗(X1)]
is not vertical. For this reason and the assumption that T ≡ 0 we conclude
that

∇̄v
(X1,ζ1)µ∗(X2, ζ2) = ∇x

µp∗(ζ1)µp∗(ζ2),
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where ∇x is the induced connection in the fiber π−1
E (x) with π(p) = x.

(iii) Let (p, ξ) ∈ P ×N . Let X be a horizontal vector field on P and ζ be
a vector field on N . From (ii) we see that

βv
µ((X, ζ), (X, ζ))(p,ξ) = ∇x

µp∗(ζ)µp∗(ζ)− µ∗

(
∇P×N

(X,ζ)(X, ζ)
)

,

where π(p) = x. As ∇P×N
(X,ζ)(X, ζ) = ∇P

XX +∇N
ζ ζ we have

βx
µ((X, ζ), (X, ζ))(p,ξ) = ∇v

µp∗(ζ)µp∗(ζ)− µξ∗∇P
XX − µp∗∇N

ζ ζ.

Since µp is an affine map, for each p ∈ P , it follows that

βv
µ((X, ζ), (X, ζ))(p,ξ) = −µξ∗∇P

XX.

As π is a Riemannian submmersion we have

βv
µ((X, ζ), (X, ζ))(p,ξ) = −µξ∗h(∇P

XX),

where h(∇P
XX) is the horizontal componente of ∇P

XX, which completes the
proof. �

Now, we relate the geometric and stochastic concepts of harmonic section
and horizontally harmonic map.

Theorem 3.1 Let P (M,G) be a Riemannian principal fiber bundle endowed
with a connection form ω and M a Riemannian manifold such that the
projection π of P into M is a Riemannian submmersion. Let E(M,N,G, P )
be an associated fiber to P endowed with a connection ∇E such that its
Fundamental tensor T is null. Moreover, suppose that N has a connection
∇N such that µp is an affine map for each p ∈ P . Then

(i) a E-valued semimartingale X is vertical martingale if and only if µ−1
Y ◦X

is a ∇N - martingale in N , where Y = πE(X)h is the horizontal lift of
πE(X) to P ;

(ii) a section σ of πE is harmonic section if and only if, for every g-
Brownian motion B in M , σ(B) is a vertical martingale;

(iii) a equivariant lift Fσ associated to σ, σ a section of πE, is horizontally
harmonic map if and only if, for every horizontal Brownian motion
Bh in P , Fσ(Bh) is a ∇N -martingale.
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Proof: (i) Let X be a semimartingale in E and θ be a vertical form on
E. Let us denote ξ = µ−1

Y ◦X. As X = µ(Y, ξ) we have, by geometric Itô
formula (1),∫ t

0
θd∇

v
Xs =

∫ t

0
θd∇

v
µ(Ys, ξs)

=
∫ t

0
µ∗θd∇

P×N
(Ys, ξs) +

1
2

∫
βv∗

µ θ(d(Ys, ξs), d(Ys, ξs))

=
∫ t

0
µ∗Ys

θd∇
N

ξs +
∫ t

0
µ∗ξs

θd∇
P
Ys +

1
2

∫
βv∗

µ θ(d(Ys, ξs), d(Ys, ξs)),

where third equality follows from Proposition 3.15 in [3]. Since d∇
P
Ys is

horizontal, it follows that
∫ t
0 µ∗ξs

θd∇
P
Ys = 0. Hence∫ t

0
θd∇

v
Xs =

∫ t

0
µ∗Ys

θd∇
N

ξs +
1
2

∫
βv∗

µ θ(d(Ys, ξs), d(Ys, ξs)).

Since θ is vertical form, from Lemma 3.1 we see that∫ t

0
θd∇

v
Xs =

∫ t

0
µ∗Ys

θd∇
N

ξs.

So we conclude that
∫ t
0 θd∇

v
Xs is local martingale if and only if

∫ t
0 µ∗Ys

θd∇Nξs

is too, and proof is complete.
(ii) Let B be a g-Brownian motion in M and θ be a vertical form on E. By
formula (3),∫ t

0
θ d∇

v
σ(Bs) =

∫ t

0
σ∗θ d∇

M
Bs +

1
2

∫ t

0
τ v∗
σ θ(Bs) ds.

We observe that
∫

σ∗θ d∇
M

Bs is a real local martingale. Since B and θ are
arbitraries, Doob-Meyer decomposition assure that

∫ t
0 θ d∇

v
σ(Bs) is real

local martingale if and only if τ v
σ vanishes. From definitions of vertical

martingale and harmonic section we conclude the proof.
(iii) Let B be a g-Brownian motion in M and Bh be a horizontal Brownian
motion in P , that is,

dBh = HBdB, (6)

where H is the horizontal lift of M to P . Set θ ∈ Γ(TN∗). By geometric
Itô formula (1),∫ t

0
θ d∇

N
Fσ(Bh

s ) =
∫ t

0
F ∗σθ d∇

P
Bh

s +
∫ t

0
β∗Fσ

θ(dBh, dBh)s.
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From (6) we see that∫ t

0
θ d∇

N
Fσ(Bh

s ) =
∫ t

0
H∗F ∗σθ d∇

M
Bs +

∫ t

0
β∗Fσ

θ(HBdB, HBdB)s.

As B is Brownian motion we have∫ t

0
θ d∇

N
Fσ(Bh

s ) =
∫ t

0
H∗F ∗σθ d∇

M
Bs +

∫ t

0
(τH

Fσ
)∗θ(Bs)ds,

where τH
Fσ

= τFσ ◦ (H ⊗ H). Since θ and B are arbitraries, Doob-Meyer
decomposition shows that

∫ t
0 θd∇

N
Fσ(Bh

s ) is real local martingale if and only
if τH

Fσ
vanishes. From definitions of martingale and horizontally harmonic

map we conclude the proof. �
Now we give an extension of the characterization of harmonic sections

obtained by C.M. Wood, see Theorem 1 in [15].

Theorem 3.2 Under the hypotheses of Theorem 3.1, a section σ of πE is
harmonic section if and only if Fσ is horizontally harmonic map.

Proof: Let B be a arbitrary g-Brownian motion in M and Bh be a horin-
zontal lift of B in P , see equation (6).

Suppose that σ is a harmonic section. Theorem 3.1, item (ii), shows that
σ(B) is a vertical martingale. But µ−1

Bh ◦ σ(B) is a ∇N -martingale, which
follows from Theorem 3.1, item (i). Since Fσ(Bh) = µ−1

Bh ◦ σ ◦ π(Bh), it
follows that Fσ(Bh) is a ∇N -martingale. Finally, Theorem 3.1, item (iii),
shows that Fσ is horizontally harmonic map.

Conversely, suppose that Fσ is a horizontally harmonic map. Theorem
3.1, item (iii), shows that Fσ(Bh) is a ∇N -martingale. Since Fσ(Bh) =
µ−1

Bh◦σ◦π(Bh), it follows that µ−1
Bh◦σ(B) is a∇N -martingale. From Theorem

3.1, item (i), we see that σ(B) is a vertical martingale. We conclude from
Theorem 3.1, item (ii), that σ is a harmonic section. �

4 A Liouville theorem for harmonic sections

We begin this section defining the Kaluza-Klein metric on P (M,G). Let
P (M,G) be a principal fiber bundle endowed with a connection form ω, M
be a Riemannian manifold with a metric g and h be a bi-invariant metric
on G. The Kaluza-Klein metric is defined by

k = π∗g + ω∗h. (7)
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From now on P (M,G) is endowed with the Kaluza-Klein metric.
We will denote by dP and dG the Riemannian distance of P and G,

respectively.

Lemma 4.1 Let P (M,G) be a principal fiber bundle whit a Kaluza-Klein
metric k, where g is the Riemannian metric on M and h is the bi-invariant
metric on G associated to k. The following assertions are holds:

(i) Let τ : [0, 1] → P be a differential curve such that τ(t) = u · µ(t) with
τ(0) = u and µ(t) ∈ G, then∫ 1

0
k(τ̇(t), τ̇(t))

1
2 dt =

∫ 1

0
h(µ̇(t), µ̇(t))

1
2 dt.

(ii) Let τ : [0, 1] → P be a differential curve. If γ is a curve in M and if µ
is a curve in G such that τ = γ(t)h · µ(t), then∫ 1

0
k(τ̇(t), τ̇(t))

1
2 dt ≤

∫ 1

0
g(γ̇(t), γ̇(t))

1
2 dt +

∫ 1

0
h(µ̇(t), µ̇(t))

1
2 dt

(iii) Let x ∈ M and u, v, w ∈ π−1(x). If a, b are points in G such that
v = u · a and w = u · b, then

dP (v, w) = dG(a, b).

Proof: (i) and (ii) The proofs are straightforward.
(iii) Let τ : [0, 1] → P be a differential curve such that τ(0) = v and
τ(1) = w. Consider a curve γ in M such that π(τ) = γ. There exists a
differential curve µ in G such that µ(0) = a, µ(1) = b and τ = γh · µ. We
observe that γ(0) = x and γ(1) = x. This gives

∫ 1
0 g(γ̇(t), γ̇(t))

1
2 dt = 0.

Thus from item (i) and item (ii) we conclude that∫ 1

0
k(τ̇(t), τ̇(t))

1
2 dt =

∫ 1

0
h(µ̇(t), µ̇(t))

1
2 dt.

Therefore it is only necessary to consider vertical curves. It follows that
dP (v, w) = dP (u · a, u · b) = dG(a, b), by definition of Riemmanian distance.
�

Theorem 4.1 Let P (M,G) be a principal fiber bundle equipped with Kaluza-
Klein metric and E(M,N,G, P ) be an associated fiber to P . Let ∇E and
∇N be connetions on E and N , respectively, such that the Fundamental ten-
sor T is null and µp is an affine map for each p ∈ P . Moreover, if N has
the non-confluence martingales property and if M and G have the Brownian
coupling property, then
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(i) a section σ of πE is harmonic section if and only if Fσ is constante map;

(ii) the left action of G into N has a fix point if there exists a harmonic
section σ of πE;

(iii) a section σ of πE is harmonic section if and only if σ is parallel.

Proof: (i) We first suppose that Fσ is a constante map. Then it is
immediately that τ v

σ = 0, so σ is harmonic section.
Conversely, the proof will be divided into two parts. Firstly, we found a

suitable stopping time τ . After, we use τ to prove that Fσ is constant over
P .

Choose x, y ∈ M arbitraries. By assumption about M , there exists two
g-Brownian motion X and Y in M such that X0 = x and Y0 = y, which
satisfy the Brownian coupling property. Consequently, the coupling time
T (X, Y ) is finite. Proposition 2.1 now assures that the process

Ȳt =
{

Yt , t ≤ T (X, Y )
Xt , t ≥ T (X, Y )

(8)

is a g-Brownian motion in M .
Let a, b ∈ G be arbitraries points. Since G has the Brownian coupling

property, we have two h-Brownian motion µ and ν in G such that µ0 = a,
ν0 = b. Moreover, there is a finite coupling time T (µ, ν). But the process

ν̄t =
{

νt , t ≤ T (µ, ν)
µt , t ≥ T (µ, ν)

(9)

is a h-Brownian motion in G, which follows from Proposition 2.1.
Set u, v ∈ P such that π(u) = x and π(v) = y. Consider two horizontal

Brownian motion Xh and Ȳ h in P such that Xh
0 = u and Ȳ h

0 = v. Define
τ = T (X, Y ) ∨ T (µ, ν). We claim that

Xh
t · µt = Ȳ h

t · ν̄t, a.s. ∀ t ≥ τ. (10)

In fact, we need consider two cases. First, suppose that T (X, Y ) ≤ T (µ, ν).
For all t ≥ T (µ, ν) we have

dP (Xh
t · µt, Ȳ

h
t · ν̄t) = dP (Xh

t · µt, Ȳ
h
t · µt) = dP (RµtX

h
t , Rµt Ȳ

h
t ).

Since k is the Kaluza-Klein metric, it follows that

dP (Xh
t · µt, Ȳ

h
t · ν̄t) = dM (Xt, Ȳt).
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From (8) we conclude that (10) is satisfied for all t ≥ T (µ, ν).
In the other side, suppose that T (X, Y ) ≥ T (µ, ν). For all t ≥ T (X, Y ),

Lemma 4.1, item (iii), assures that

dP (Xh
t · µt, Ȳ

h
t · ν̄t) = dP (Xh

t · µt, X
h
t · ν̄t) = dG(µt, ν̄t).

From (9) we conclude that (10) is satisfied for all t ≥ T (X, Y ).
Setting t ≥ τ we obtain Fσ(Xh

t ·µt) = Fσ(Ȳ h
t · ν̄t). Since Fσ is equivariant

by right action, µ−1
t ·Fσ(Xh

t ) = ν̄−1
t ·Fσ(Ȳ h

t ). Because µt = ν̄t for t ≥ τ , we
conclude that Fσ(Xh

t ) = Fσ(Ȳ h
t ).

Since σ is a harmonic section, from Theorem 3.2 we see that Fσ is a hor-
izontally harmonic map. Theorem 3.1 now shows that Fσ(Xh

t ) and Fσ(Ȳ h
t )

are ∇N -martingales in N . Since N has non-confluence martingales property,

Fσ(Xh
0 ) = Fσ(Ȳ h

0 ).

It follows immediately that Fσ(u) = Fσ(v). Consequently, Fσ is a constant
map.
(ii) Let σ be a harmonic section of πE . From item (i) there exists ξ ∈ N
such that Fσ(p) = ξ for all p ∈ P . We claim that ξ is a fix point. In fact,
set a ∈ G. From equivariant property of Fσ we deduce that

a · ξ = a · Fσ(p) = Fσ(p · a−1) = ξ.

(iii) Let σ be a section of πE . Suppose that σ is parallel. Then σ∗(X)
is horizontal for all X ∈ TM (see for example [6], pp.114). This gives
vσ∗(X) = 0. Then it is clear, by definition, that σ is harmonic section.

Suppose that σ is a harmonic section. From item (i) it follows that there
exists ξ ∈ N such that Fσ(p) = ξ for all p ∈ P . By definition of equivariant
lift,

σ(x) = σ ◦ π(p) = µ(p, ξ) = µξ(p), π(p) = x,

where µξ is an application from P into E. Let v ∈ TxM and let γ(t) be a
curve in M such that γ(0) = x and γ̇(0) = v. Then

σ∗(v) =
d

dt

∣∣∣∣
0

σ ◦ γ(t) =
d

dt

∣∣∣∣
0

µξ ◦ γh(t) = µξ∗(γ̇h(0)),

where γh is the horizontal lift of γ into P . Since γ̇h(0) is horizontal vector
in P , so is µξ∗(γ̇h(0)) in E (see for example [6], pp.87). Therefore σ∗(v) is
horizontal vector. So we conclude that σ is parallel. �
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Tangent bundle

Let M be a complete Riemannian manifold which is compact or has non-
negative Ricci curvature. Let OM be the ortonormal frame bundle endowed
whit the Kaluza-Klein metric. Let TM be the tangent bundle equipped
with the Sasaky metric gs. Thus πE is a Riemannian submersion with to-
tally geodesic fibers and, for each p ∈ P , µp is a isometric map (see for
example [10]). From these assumptions and Examples 2.1 and 2.2 it follows
that the hypotheses of Theorem 4.1 are satisfied.

Proposition 4.2 Under conditions stated above, if σ is a harmonic section
of πTM , then σ is the 0-section.

Proof: Let σ be a harmonic section of πTM . By Theorem 4.1, item (i),
there exists ξ ∈ N such that Fσ(u) = ξ for all u ∈ P . Moreover, by item (ii)
ξ is a fix point of left action of O(n, R) into Rn. We observe that 0 ∈ Rn is
the unique fix point to this left action. Thus get Fσ(u) = 0. Therefore σ is
the 0-section. �

Hopf fibration

Let S1 → S2n−1 → CPn−1 be a Hopf fibration. It is well know that
S2n−1(CPn−1, S1) is a principal fiber bundle. We recall that U(1) ∼= S1. Let
φ be the aplication of U(1)× Cm into Cm given by

(g, (z1, . . . , zm)) → g · (z1, . . . , zm) = (gz1, . . . , gzm). (11)

Clearly, φ is a left action of U(1) into Cm. Thus, we can consider Cm as stan-
dard fiber of associate fiber E(CPn−1, Cm, S1, S2n−1), where
E = S2n−1 ×U(1) Cm. We are considering the canonical scalar product
<,> on Cn and the induced Riemannian metric g on CPn−1. Since U(1) is
invariant by <,>, there exists one and only one Riemannian metric ĝ on E
such that πE is a Riemannian submersion from (E, ĝ) to (M, g) with totally
geodesic fibers isometrics to (N,<, >) (see for example [13]). From these
assumptions and examples 2.1 and 2.2 wee see that hypotheses of Theorem
4.1 are holds.

Proposition 4.3 Under conditions stated above, if σ is a harmonic section
of πE, then σ is the 0-section.

Proof: We first observe that (0, . . . , 0) is the unique fix point to the left
action (11). Since σ is harmonic section, from Theorem 4.1 we see that Fσ

13



is constant map and Fσ(p) = (0, . . . , 0) for all p ∈ S2n−1. Therefore σ is the
0-section. �
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