Stochastic characterization of harmonic sections and a Liouville theorem

Simão Stelmastchuk ${ }^{1}$
Departamento de Matemática, Universidade Estadual de Campinas, 13.081-970 - Campinas - SP, Brazil. e-mail: simnaos@yahoo.com.br

Abstract

Let $P(M, G)$ be a principal fiber bundle and $E(M, N, G, P)$ be an associate fiber bundle. Our interested is to study harmonic sections of the projection π_{E} of E into M. Our first purpose is to give a stochastic characterization of harmonic section from M into E and a geometric characterization of harmonic sections with respect to its equivariant lift. The second purpose is to show a version of Liouville theorem for harmonic sections and to prove that section M into E is a harmonic section if and only if it is parallel.

Key words: harmonic sections; fiber bundles; Liouville theorem, stochastic analisys on manifolds.

MSC2010 subject classification: $53 \mathrm{C} 43,55 \mathrm{R} 10,58 \mathrm{E} 20,58 \mathrm{~J} 65,60 \mathrm{H} 30$.

1 Introduction

Let $\pi_{E}:(E, k) \rightarrow(M, g)$ be a Riemannian submmersion and σ be a section of π_{E}, that is, $\pi_{E} \circ M=I d_{M}$. We know that $T E=V E \oplus H E$ such that $V E=\operatorname{ker}\left(\pi_{\mathrm{E} *}\right)$ and $H E$ is the horizontal bundle ortogonal to $V E$. C. Wood has studied the harmonic sections in many context, see [14], [15], [16], [17], [18]. To recall, a harmonic sections is a minimal section for the vertical energy functional

$$
E(\sigma)=\frac{1}{2} \int_{M}\left\|\mathbf{v} \sigma_{*}\right\|^{2} \operatorname{vol}(g)
$$

where $\mathbf{v} \sigma_{*}$ is the vertical component of σ_{*}. Furthermore, in [14], Wood showed that σ is a minimizer of the vertical energy functional if

$$
\tau_{\sigma}^{v}=\operatorname{tr} \nabla^{\mathbf{v}} \mathbf{v} \sigma_{*}=0
$$

[^0]where ∇^{v} is the vertical part of Levi-Civita connection on E, since π_{E} has totally geodesics fibers. Wood called σ a harmonic section if $\tau_{\sigma}^{v}=0$.

In this work, we drop the Riemannian submersion condition of π_{E} and we mantain the fact that $T E=V E \oplus H E$ and that M is a Riemmanian Manifold. Let ∇^{E} be a symmetric connection on E, where E is not necessarily a Riemannian manifold. About these conditions we can define harmonic sections in the same way that Wood, only observing that ∇^{v} is vertical componente of ∇^{E}. There is no compatibility between ∇^{E} and Levi-Civita connection on M.

Furthermore, we restrict the context of our study. Let $P(M, G)$ be a Riemannian G-principal fiber bundle over a Riemannian manifold M such that the projection π of P into M is Riemmanian submmersion. Suppose that P has a connection form ω. Let $E(M, N, G, P)$ be an associated fiber bundle of P with fiber N. It is well know that ω yields horizontal spaces on E. Our goal is to study the harmonic sections of projection π_{E}.

Let $F: P \rightarrow N$ be a differential map. We call F a horizontally harmonic map if $\tau_{F} \circ(H \otimes H)=0$, where H is the horizontal lift from M into P associated to ω.

Let σ be a section of π_{E}. It is well know that there exists a unique equivariant lift $F_{\sigma}: P \rightarrow N$ associated to σ. Our first purpose is to give an stochastic characterization for the harmonic section σ and the horizontally harmonic map F_{σ}. From these stochastic characterizations we show that a section σ of π_{E} is harmonic section if and only if F_{σ} is a horizontally harmonic map. This result is an extension of Theorem 1 in [14].

For our second purpose we consider $P(M, G)$ endowed with the KaluzaKlein metric, M and G with the Brownian coupling property and N with the non-confluence property. About these conditions we show a version of Liouville Theorem and a version of result due to T. Ishiara in [5] to harmonic sections. As applications of our Liouville Theorem we can show the following. If we suppose that M is complete Riemmanian manifold with nonnegative Ricci curvature and its tangent bundle $T M$ is endowed with the Sasaky metric, then the harmonic sections σ of $\pi_{T M}$ are the 0 -section. In the same way we can construct an ambient for Hopf fibrations, with Riemannian structure, such that harmonic sections are the 0 -section.

2 Preliminaries

In this work we use freely the concepts and notations of P. Protter [12], E. Hsu [4], P. Meyer [9], M. Emery [2] and [3], W. Kendall [8] and S. Kobayashi
and N. Nomizu [6]. We refer the reader to [1] for a complete survey about the objects of this section.

Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$ be a probability space which satisfies the usual hypothesis (see for example [2]). Our basic assumptions is that every stochastic process are continuos.

Definition 2.1 Let M be a differential manifold. Let X be a process stochastic with valued in M. We call X a semimartingale if, for all f smooth on $M, f(X)$ is a real semimartingale.

Let M be a differential manifold endowed whit symmetric connection ∇^{M}. Let X be a semimartingale in M and θ be a 1 -form on M defined along X. We denote the Itô integral on M along the semimartingale X by $\int_{0}^{t} \theta d^{\nabla^{M}} X_{s}$. Let $b \in T^{(2,0)} M$ defined along X. We denote the quadratic integral on M along the semimartingale X by $\int_{0}^{t} b(d X, d X)_{s}$.

Let M and N be differential manifolds endowed with symmetric connections ∇^{M} and ∇^{N}, respectively. Let $F: M \rightarrow N$ be a differential map and θ be a section of $T N^{*}$. We have the following geometric Itô formula:

$$
\begin{equation*}
\int_{0}^{t} \theta d^{\nabla^{N}} F\left(X_{s}\right)=\int_{0}^{t} F^{*} \theta d^{\nabla^{M}} X_{s}+\frac{1}{2} \int_{0}^{t} \beta_{F}^{*} \theta(d X, d X)_{s} \tag{1}
\end{equation*}
$$

where β_{F} is the second fundamental form of F (see [1] or [13] for the definition of β_{F}).
Definition 2.2 Let M be a differential manifold endowed with symmetric connection ∇^{M}. A semimartingale X with values in M is called a $\nabla^{M_{-}}$ martingale if $\int_{0}^{t} \theta d^{M} X_{s}$ is a real local martingale for all $\theta \in \Gamma\left(T M^{*}\right)$.

Definition 2.3 Let M be a Riemannian manifold equipped with metric g. Let B be a semimartingale with values in M, we say that B is a g-Brownian motion in M if B is a ∇^{g}-martingale, where ∇^{g} is the Levi-Civita connection of g, and for any section b of $T^{(2,0)} M$ we have that

$$
\begin{equation*}
\int_{0}^{t} b(d B, d B)_{s}=\int_{0}^{t} \operatorname{tr} \mathrm{~b}_{\mathrm{B}_{\mathrm{s}}} \mathrm{ds} \tag{2}
\end{equation*}
$$

From (1) and (2) we deduce the useful formula:

$$
\begin{equation*}
\int_{0}^{t} \theta d^{\nabla^{N}} F\left(B_{s}\right)=\int_{0}^{t} F^{*} \theta d^{\nabla^{g}} B_{s}+\frac{1}{2} \int_{0}^{t} \tau_{F}^{*} \theta_{B_{s}} d s \tag{3}
\end{equation*}
$$

where τ_{F} is the tension field of F.
From formula (2) and Doob-Meyer decomposition it follows that F is an harmonic map if and only if it sends g-Brownian motions to ∇^{N}-martingales.

Definition 2.4 Let M be a differential manifold endowed with symmetric connection ∇^{M}. M has the non-confluence of martingales property if for every filtered space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$, M-valued martingales X and Y defined over Ω and every finite stopping time T such that

$$
X_{T}=Y_{T} \quad \text { a.s. we have } X=Y \quad \text { over } \quad[0, T]
$$

Example 2.1 Let $M=V$ be a n-dimensional vector space with flat connection ∇^{n}. Let X and Y be V-valued martingales. Suppose that there are a stopping time τ with respect to $\left(\mathcal{F}_{t}\right)_{t \geq 0}, K>0$ such that $\tau \leq K<\infty$ and $X_{\tau}=Y_{\tau}$. Then straightforward calculus shows that $X_{t}=Y_{t}$ for $t \in[0, \tau]$.

Definition 2.5 A Riemmanian manifold M has the Brownian coupling property if for all $x_{0}, y_{0} \in M$ we can construct a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a filtration $\left(\mathcal{F}_{t} ; t \geq 0\right)$ and two Brownian motions X and Y, not necessarily independents, but both adapted to filtration such that

$$
X_{0}=x_{0}, Y_{0}=y_{0}
$$

and

$$
\mathbb{P}\left(X_{t}=Y_{t} \text { for some } t \geq 0\right)=1
$$

The stopping time $T(X, Y)=\inf \left\{t>0 ; X_{t}=Y_{t}\right\}$ is called coupling time.
Example 2.2 Let M be a complete Riemannian manifold. In [7], W. Kendall has showed that if M is compact or M has nonnegative Ricci curvature then M has the Brownian coupling property.

Let M be a Riemmanian manifold with metric g. Consider X and Y two g-Brownian motion in M which satisfies the Brownian coupling property and $X_{0}=x, Y_{0}=y$, where $x, y \in M$. Denote by $T(X, Y)$ their coupling time. The process \bar{Y} is defined by

$$
\bar{Y}_{t}=\left\{\begin{array}{cc}
Y_{t} & , \quad t \leq T(X, Y) \tag{4}\\
X_{t} & , \quad t \geq T(X, Y)
\end{array}\right.
$$

It is imediatelly that $\bar{Y}_{0}=y_{0}$.
Proposition 2.1 Let M be a Riemannian manifold with metric g. Suppose that M has the Brownian coupling property. Let X, Y be two g-Brownian motions in M which satisfies the Brownian coupling property. Then the process \bar{Y} is a g-Brownian motion in M.

Proof: It is a straightforward proof from definition of Brownian motion.

3 Harmonic sections

Let $P(M, G)$ be a principal fiber bundle over M and $E(M, N, G, P)$ be an associate fiber bundle to $P(M, G)$. We denote the canonical projection from $P \times N$ into E by μ, namely, $\mu(p, \xi)=p \cdot \xi$. For each $p \in P$, we have the map $\mu_{p}: N \rightarrow E$ defined by $\mu_{p}(\xi)=\mu(p, \xi)$. Let $\sigma: E \rightarrow M$ be a section of projection π_{E}, that is, $\pi_{E} \circ \sigma=I d_{M}$. There exists a unique equivariante lift $F_{\sigma}: P \rightarrow N$ associated to σ which is defined by

$$
\begin{equation*}
F_{\sigma}(p)=\mu_{p}^{-1} \circ \sigma \circ \pi(p) \tag{5}
\end{equation*}
$$

The equivariance property of F_{σ} is given by

$$
F_{\sigma}(p \cdot g)=g^{-1} \cdot F_{\sigma}(p), \quad g \in G
$$

Let us endow P and M with Riemmanian metrics k and g, respectively, such that $\pi:(P, k) \rightarrow(M, g)$ is a Riemmanian submmersion. Let ω be a connection form on P. We observe that the connection form ω yields a horizontal structure on E, that is, for each $b \in E, T_{b} E=V_{b} E \oplus H_{b} E$, where $V_{b} E:=\operatorname{Ker}\left(\pi_{E b *}\right)$ and $H_{b} E$ is the horizontal subspace done by ω on E (see for example [6], pp.87). We denote by $\mathbf{v}: T E \rightarrow V E$ and $\mathbf{h}: T E \rightarrow H E$ the vertical and horizontal projection, respectively.

Let ∇^{M} denote the Levi-Civita connection on M and ∇^{E} be a symmetric connection on E. We follow B. O'Neill in [11] to define the Fundamental tensor T for vector fields X and Y on E by

$$
T_{X} Y:=\mathbf{h} \nabla_{\mathbf{v} X}^{E} \mathbf{v} Y+\mathbf{v} \nabla_{\mathbf{v} X}^{E} \mathbf{h} Y
$$

We are interested in connections ∇^{E} such that $T \equiv 0$. We observe that when π_{E} is a Riemannian submmersion the condition $T \equiv 0$ is equivalent to π_{E} has totally geodesic fibers.

We denote by ∇^{v} the vertical component of connection ∇^{E} on $T E$, that is, for X, Y vector fields on E we have

$$
\nabla_{X}^{v} Y=\mathbf{v} \nabla_{X}^{E}(\mathbf{v} Y) .
$$

Let us denote ∇^{x} the induced connection of ∇^{E} over fiber $\pi_{E}^{-1}(x)$ for all $x \in M$. We endow N with a connection ∇^{N} such that, for each $p \in P, \mu_{p}$ is an affine map over its image, the fiber $\pi_{E}^{-1}(x)$ with $\pi(p)=x$.

Let σ be a section of π_{E}. Write $\sigma_{*}=\mathbf{v} \sigma_{*}+\mathbf{h} \sigma_{*}$, where $\mathbf{v} \sigma_{*}$ and $\mathbf{h} \sigma_{*}$ are the vertical and the horizontal component of σ_{*}, respectively. The second fundamental form for $\mathbf{v} \sigma_{*}$ is defined by

$$
\beta_{\sigma}^{v}=\bar{\nabla}^{v} \circ \mathbf{v} \sigma_{*}-\mathbf{v} \sigma_{*} \circ \nabla^{M},
$$

where $\bar{\nabla}^{v}$ is the induced connection on $\sigma^{-1} E$. The vertical tension field is given by

$$
\tau_{\sigma}^{v}=\operatorname{tr} \beta_{\sigma}^{\mathrm{v}}
$$

In the following we extend the definition given by C. M. Wood [15] of harmonic section.

Definition 3.1 1. A section σ of π_{E} is called harmonic section if $\tau_{\sigma}^{v}=0$; 2. A differential map $F: P \rightarrow N$ is called horizontally harmonic if $\tau_{F} \circ(H \otimes H)=0$, where H is horizontal lift from M into P.

Definition 3.2 1. Let $\theta \in T E^{*}$. We call θ a vertical form if $\theta(X)=0$ for every horizontal vector field on E.
2. A E-valued semimartingale X is called a vertical martingale if, for every vertical form θ on $E, \int_{0}^{t} \theta d^{\nabla^{v}} X_{s}$ is a real local martingale.

Let us denote by β_{μ}^{v} the second fundamental form with respect to product connection $\nabla^{P \times N}$ and vertical connection ∇^{v}, that is,

$$
\beta_{\mu}^{v}\left(\left(X_{1}, \zeta_{1}\right),\left(X_{2}, \zeta_{2}\right)\right)=\bar{\nabla}_{\left(X_{1}, \zeta_{1}\right)}^{v} \mu_{*}\left(X_{2}, \zeta_{2}\right)-\mu_{*}\left(\nabla_{\left(X_{1}, \zeta_{1}\right)}^{P \times N}\left(X_{2}, \zeta_{2}\right)\right)
$$

for X_{1}, X_{2} vector fields on P and ζ_{1}, ζ_{2} vector fields on N.
Lemma 3.1 Let μ_{p} be an affine map, for each $p \in P$. For every point (p, ξ) in $P \times N$ we have that
(i) if X is a horizontal vector field on E, then $\mu_{p *}^{-1}(X)=0$;
(ii) $\bar{\nabla}_{\left(X_{1}, \zeta_{1}\right)}^{v} \mu_{*}\left(X_{2}, \zeta_{2}\right)_{\mu(p, \xi)}=\nabla_{\mu_{p *}\left(\zeta_{1}\right)}^{x} \mu_{p *}\left(\zeta_{2}\right)$, for X_{1}, X_{2} horizontal vectors fields on P and ζ_{1}, ζ_{2} vectors fields on N;
(iii) $\beta_{\mu}^{v}((X, \zeta),(X, \zeta))_{(p, \xi)}$ is a horizontal vector field, where X is a horizontal vector field on P and ζ is a vector field on N.

Proof: (i) The proof is straightforward.
(ii) Using definitions of $\bar{\nabla}^{v}$ and T we deduce that

$$
\bar{\nabla}_{\left(X_{1}, \zeta_{1}\right)}^{v} \mu_{*}\left(X_{2}, \zeta_{2}\right)=T_{\mu_{p *}\left(\zeta_{2}\right)} \mu_{\xi^{*}}\left(X_{1}\right)-\mathbf{v}\left[\mu_{p *}\left(\zeta_{2}\right), \mu_{\xi *}\left(X_{1}\right)\right]+\mathbf{v} \nabla_{\mu_{p *}\left(\zeta_{1}\right)}^{E} \mu_{p *}\left(\zeta_{2}\right) .
$$

From (i) and the fact that $\mu_{p *}$ is a diffeomorphism we see that $\left[\mu_{p *}\left(\zeta_{2}\right), \mu_{\xi *}\left(X_{1}\right)\right]$ is not vertical. For this reason and the assumption that $T \equiv 0$ we conclude that

$$
\bar{\nabla}_{\left(X_{1}, \zeta_{1}\right)}^{v} \mu_{*}\left(X_{2}, \zeta_{2}\right)=\nabla_{\mu_{p *}\left(\zeta_{1}\right)}^{x} \mu_{p *}\left(\zeta_{2}\right),
$$

where ∇^{x} is the induced connection in the fiber $\pi_{E}^{-1}(x)$ with $\pi(p)=x$. (iii) Let $(p, \xi) \in P \times N$. Let X be a horizontal vector field on P and ζ be a vector field on N. From (ii) we see that

$$
\beta_{\mu}^{v}((X, \zeta),(X, \zeta))_{(p, \xi)}=\nabla_{\mu_{p *}(\zeta)}^{x} \mu_{p *}(\zeta)-\mu_{*}\left(\nabla_{(X, \zeta)}^{P \times N}(X, \zeta)\right),
$$

where $\pi(p)=x$. As $\nabla_{(X, \zeta)}^{P \times N}(X, \zeta)=\nabla_{X}^{P} X+\nabla_{\zeta}^{N} \zeta$ we have

$$
\beta_{\mu}^{x}((X, \zeta),(X, \zeta))_{(p, \xi)}=\nabla_{\mu_{p *}(\zeta)}^{v} \mu_{p *}(\zeta)-\mu_{\xi *} \nabla_{X}^{P} X-\mu_{p *} \nabla_{\zeta}^{N} \zeta .
$$

Since μ_{p} is an affine map, for each $p \in P$, it follows that

$$
\beta_{\mu}^{v}((X, \zeta),(X, \zeta))_{(p, \xi)}=-\mu_{\xi *} \nabla_{X}^{P} X .
$$

As π is a Riemannian submmersion we have

$$
\beta_{\mu}^{v}((X, \zeta),(X, \zeta))_{(p, \xi)}=-\mu_{\xi *} \mathbf{h}\left(\nabla_{X}^{P} X\right),
$$

where $\mathbf{h}\left(\nabla_{X}^{P} X\right)$ is the horizontal componente of $\nabla_{X}^{P} X$, which completes the proof.

Now, we relate the geometric and stochastic concepts of harmonic section and horizontally harmonic map.

Theorem 3.1 Let $P(M, G)$ be a Riemannian principal fiber bundle endowed with a connection form ω and M a Riemannian manifold such that the projection π of P into M is a Riemannian submmersion. Let $E(M, N, G, P)$ be an associated fiber to P endowed with a connection ∇^{E} such that its Fundamental tensor T is null. Moreover, suppose that N has a connection ∇^{N} such that μ_{p} is an affine map for each $p \in P$. Then
(i) a E-valued semimartingale X is vertical martingale if and only if $\mu_{Y}^{-1} \circ X$ is a ∇^{N} - martingale in N, where $Y=\pi_{E}(X)^{h}$ is the horizontal lift of $\pi_{E}(X)$ to P;
(ii) a section σ of π_{E} is harmonic section if and only if, for every g Brownian motion B in $M, \sigma(B)$ is a vertical martingale;
(iii) a equivariant lift F_{σ} associated to σ, σ a section of π_{E}, is horizontally harmonic map if and only if, for every horizontal Brownian motion B^{h} in $P, F_{\sigma}\left(B^{h}\right)$ is $a \nabla^{N}$-martingale.

Proof: (i) Let X be a semimartingale in E and θ be a vertical form on E. Let us denote $\xi=\mu_{Y}^{-1} \circ X$. As $X=\mu(Y, \xi)$ we have, by geometric Itô formula (1),

$$
\begin{aligned}
\int_{0}^{t} \theta d^{\nabla^{v}} X_{s} & =\int_{0}^{t} \theta d^{\nabla^{v}} \mu\left(Y_{s}, \xi_{s}\right) \\
& =\int_{0}^{t} \mu^{*} \theta d^{\nabla^{P \times N}}\left(Y_{s}, \xi_{s}\right)+\frac{1}{2} \int \beta_{\mu}^{v *} \theta\left(d\left(Y_{s}, \xi_{s}\right), d\left(Y_{s}, \xi_{s}\right)\right) \\
& =\int_{0}^{t} \mu_{Y_{s}}^{*} \theta d^{\nabla^{N}} \xi_{s}+\int_{0}^{t} \mu_{\xi_{s}}^{*} \theta d^{\nabla^{P}} Y_{s}+\frac{1}{2} \int \beta_{\mu}^{v *} \theta\left(d\left(Y_{s}, \xi_{s}\right), d\left(Y_{s}, \xi_{s}\right)\right)
\end{aligned}
$$

where third equality follows from Proposition 3.15 in [3]. Since $d^{\nabla^{P}} Y_{s}$ is horizontal, it follows that $\int_{0}^{t} \mu_{\xi_{s}}^{*} \theta d^{\nabla^{P}} Y_{s}=0$. Hence

$$
\int_{0}^{t} \theta d^{\nabla^{v}} X_{s}=\int_{0}^{t} \mu_{Y_{s}}^{*} \theta d^{\nabla^{N}} \xi_{s}+\frac{1}{2} \int \beta_{\mu}^{v *} \theta\left(d\left(Y_{s}, \xi_{s}\right), d\left(Y_{s}, \xi_{s}\right)\right) .
$$

Since θ is vertical form, from Lemma 3.1 we see that

$$
\int_{0}^{t} \theta d^{\nabla^{v}} X_{s}=\int_{0}^{t} \mu_{Y_{s}}^{*} \theta d^{\nabla^{N}} \xi_{s} .
$$

So we conclude that $\int_{0}^{t} \theta d^{\nabla^{v}} X_{s}$ is local martingale if and only if $\int_{0}^{t} \mu_{Y_{s}}^{*} \theta d^{\nabla N} \xi_{s}$ is too, and proof is complete.
(ii) Let B be a g-Brownian motion in M and θ be a vertical form on E. By formula (3),

$$
\int_{0}^{t} \theta d^{\nabla^{v}} \sigma\left(B_{s}\right)=\int_{0}^{t} \sigma^{*} \theta d^{\nabla^{M}} B_{s}+\frac{1}{2} \int_{0}^{t} \tau_{\sigma}^{v *} \theta\left(B_{s}\right) d s
$$

We observe that $\int \sigma^{*} \theta d^{\nabla^{M}} B_{s}$ is a real local martingale. Since B and θ are arbitraries, Doob-Meyer decomposition assure that $\int_{0}^{t} \theta d^{\nabla^{v}} \sigma\left(B_{s}\right)$ is real local martingale if and only if τ_{σ}^{v} vanishes. From definitions of vertical martingale and harmonic section we conclude the proof.
(iii) Let B be a g-Brownian motion in M and B^{h} be a horizontal Brownian motion in P, that is,

$$
\begin{equation*}
d B^{h}=H_{B} d B, \tag{6}
\end{equation*}
$$

where H is the horizontal lift of M to P. Set $\theta \in \Gamma\left(T N^{*}\right)$. By geometric Itô formula (1),

$$
\int_{0}^{t} \theta d^{\nabla^{N}} F_{\sigma}\left(B_{s}^{h}\right)=\int_{0}^{t} F_{\sigma}^{*} \theta d^{\nabla^{P}} B_{s}^{h}+\int_{0}^{t} \beta_{F_{\sigma}}^{*} \theta\left(d B^{h}, d B^{h}\right)_{s} .
$$

From (6) we see that

$$
\int_{0}^{t} \theta d^{\nabla^{N}} F_{\sigma}\left(B_{s}^{h}\right)=\int_{0}^{t} H^{*} F_{\sigma}^{*} \theta d^{\nabla^{M}} B_{s}+\int_{0}^{t} \beta_{F_{\sigma}}^{*} \theta\left(H_{B} d B, H_{B} d B\right)_{s}
$$

As B is Brownian motion we have

$$
\int_{0}^{t} \theta d^{\nabla^{N}} F_{\sigma}\left(B_{s}^{h}\right)=\int_{0}^{t} H^{*} F_{\sigma}^{*} \theta d^{\nabla^{M}} B_{s}+\int_{0}^{t}\left(\tau_{F_{\sigma}}^{H}\right)^{*} \theta\left(B_{s}\right) d s
$$

where $\tau_{F_{\sigma}}^{H}=\tau_{F_{\sigma}} \circ(H \otimes H)$. Since θ and B are arbitraries, Doob-Meyer decomposition shows that $\int_{0}^{t} \theta d^{\nabla^{N}} F_{\sigma}\left(B_{s}^{h}\right)$ is real local martingale if and only if $\tau_{F_{\sigma}}^{H}$ vanishes. From definitions of martingale and horizontally harmonic map we conclude the proof.

Now we give an extension of the characterization of harmonic sections obtained by C.M. Wood, see Theorem 1 in [15].

Theorem 3.2 Under the hypotheses of Theorem 3.1, a section σ of π_{E} is harmonic section if and only if F_{σ} is horizontally harmonic map.

Proof: Let B be a arbitrary g-Brownian motion in M and B^{h} be a horinzontal lift of B in P, see equation (6).

Suppose that σ is a harmonic section. Theorem 3.1, item (ii), shows that $\sigma(B)$ is a vertical martingale. But $\mu_{B^{h}}^{-1} \circ \sigma(B)$ is a ∇^{N}-martingale, which follows from Theorem 3.1, item (i). Since $F_{\sigma}\left(B^{h}\right)=\mu_{B^{h}}^{-1} \circ \sigma \circ \pi\left(B^{h}\right)$, it follows that $F_{\sigma}\left(B^{h}\right)$ is a ∇^{N}-martingale. Finally, Theorem 3.1, item (iii), shows that F_{σ} is horizontally harmonic map.

Conversely, suppose that F_{σ} is a horizontally harmonic map. Theorem 3.1, item (iii), shows that $F_{\sigma}\left(B^{h}\right)$ is a ∇^{N}-martingale. Since $F_{\sigma}\left(B^{h}\right)=$ $\mu_{B^{h}}^{-1} \circ \sigma \circ \pi\left(B^{h}\right)$, it follows that $\mu_{B^{h}}^{-1} \circ \sigma(B)$ is a ∇^{N}-martingale. From Theorem 3.1, item (i), we see that $\sigma(B)$ is a vertical martingale. We conclude from Theorem 3.1, item (ii), that σ is a harmonic section.

4 A Liouville theorem for harmonic sections

We begin this section defining the Kaluza-Klein metric on $P(M, G)$. Let $P(M, G)$ be a principal fiber bundle endowed with a connection form ω, M be a Riemannian manifold with a metric g and h be a bi-invariant metric on G. The Kaluza-Klein metric is defined by

$$
\begin{equation*}
k=\pi^{*} g+\omega^{*} h . \tag{7}
\end{equation*}
$$

From now on $P(M, G)$ is endowed with the Kaluza-Klein metric.
We will denote by d_{P} and d_{G} the Riemannian distance of P and G, respectively.

Lemma 4.1 Let $P(M, G)$ be a principal fiber bundle whit a Kaluza-Klein metric k, where g is the Riemannian metric on M and h is the bi-invariant metric on G associated to k. The following assertions are holds:
(i) Let $\tau:[0,1] \rightarrow P$ be a differential curve such that $\tau(t)=u \cdot \mu(t)$ with $\tau(0)=u$ and $\mu(t) \in G$, then

$$
\int_{0}^{1} k(\dot{\tau}(t), \dot{\tau}(t))^{\frac{1}{2}} d t=\int_{0}^{1} h(\dot{\mu}(t), \dot{\mu}(t))^{\frac{1}{2}} d t .
$$

(ii) Let $\tau:[0,1] \rightarrow P$ be a differential curve. If γ is a curve in M and if μ is a curve in G such that $\tau=\gamma(t)^{h} \cdot \mu(t)$, then

$$
\int_{0}^{1} k(\dot{\tau}(t), \dot{\tau}(t))^{\frac{1}{2}} d t \leq \int_{0}^{1} g(\dot{\gamma}(t), \dot{\gamma}(t))^{\frac{1}{2}} d t+\int_{0}^{1} h(\dot{\mu}(t), \dot{\mu}(t))^{\frac{1}{2}} d t
$$

(iii) Let $x \in M$ and $u, v, w \in \pi^{-1}(x)$. If a, b are points in G such that $v=u \cdot a$ and $w=u \cdot b$, then

$$
d_{P}(v, w)=d_{G}(a, b)
$$

Proof: (i) and (ii) The proofs are straightforward.
(iii) Let $\tau:[0,1] \rightarrow P$ be a differential curve such that $\tau(0)=v$ and $\tau(1)=w$. Consider a curve γ in M such that $\pi(\tau)=\gamma$. There exists a differential curve μ in G such that $\mu(0)=a, \mu(1)=b$ and $\tau=\gamma^{h} \cdot \mu$. We observe that $\gamma(0)=x$ and $\gamma(1)=x$. This gives $\int_{0}^{1} g(\dot{\gamma}(t), \dot{\gamma}(t))^{\frac{1}{2}} d t=0$. Thus from item (i) and item (ii) we conclude that

$$
\int_{0}^{1} k(\dot{\tau}(t), \dot{\tau}(t))^{\frac{1}{2}} d t=\int_{0}^{1} h(\dot{\mu}(t), \dot{\mu}(t))^{\frac{1}{2}} d t .
$$

Therefore it is only necessary to consider vertical curves. It follows that $d_{P}(v, w)=d_{P}(u \cdot a, u \cdot b)=d_{G}(a, b)$, by definition of Riemmanian distance.

Theorem 4.1 Let $P(M, G)$ be a principal fiber bundle equipped with KaluzaKlein metric and $E(M, N, G, P)$ be an associated fiber to P. Let ∇^{E} and ∇^{N} be connetions on E and N, respectively, such that the Fundamental tensor T is null and μ_{p} is an affine map for each $p \in P$. Moreover, if N has the non-confluence martingales property and if M and G have the Brownian coupling property, then
(i) a section σ of π_{E} is harmonic section if and only if F_{σ} is constante map;
(ii) the left action of G into N has a fix point if there exists a harmonic section σ of π_{E};
(iii) a section σ of π_{E} is harmonic section if and only if σ is parallel.

Proof: (i) We first suppose that F_{σ} is a constante map. Then it is immediately that $\tau_{\sigma}^{v}=0$, so σ is harmonic section.

Conversely, the proof will be divided into two parts. Firstly, we found a suitable stopping time τ. After, we use τ to prove that F_{σ} is constant over P.

Choose $x, y \in M$ arbitraries. By assumption about M, there exists two g-Brownian motion X and Y in M such that $X_{0}=x$ and $Y_{0}=y$, which satisfy the Brownian coupling property. Consequently, the coupling time $T(X, Y)$ is finite. Proposition 2.1 now assures that the process

$$
\bar{Y}_{t}=\left\{\begin{array}{cc}
Y_{t}, & t \leq T(X, Y) \tag{8}\\
X_{t}, & t \geq T(X, Y)
\end{array}\right.
$$

is a g-Brownian motion in M.
Let $a, b \in G$ be arbitraries points. Since G has the Brownian coupling property, we have two h-Brownian motion μ and ν in G such that $\mu_{0}=a$, $\nu_{0}=b$. Moreover, there is a finite coupling time $T(\mu, \nu)$. But the process

$$
\overline{\nu_{t}}=\left\{\begin{array}{lll}
\nu_{t} & , \quad t \leq T(\mu, \nu) \tag{9}\\
\mu_{t} & , \quad t \geq T(\mu, \nu)
\end{array}\right.
$$

is a h-Brownian motion in G, which follows from Proposition 2.1.
Set $u, v \in P$ such that $\pi(u)=x$ and $\pi(v)=y$. Consider two horizontal Brownian motion X^{h} and \bar{Y}^{h} in P such that $X_{0}^{h}=u$ and $\bar{Y}_{0}^{h}=v$. Define $\tau=T(X, Y) \vee T(\mu, \nu)$. We claim that

$$
\begin{equation*}
X_{t}^{h} \cdot \mu_{t}=\bar{Y}_{t}^{h} \cdot \bar{\nu}_{t}, \text { a.s. } \forall t \geq \tau \tag{10}
\end{equation*}
$$

In fact, we need consider two cases. First, suppose that $T(X, Y) \leq T(\mu, \nu)$. For all $t \geq T(\mu, \nu)$ we have

$$
d_{P}\left(X_{t}^{h} \cdot \mu_{t}, \bar{Y}_{t}^{h} \cdot \bar{\nu}_{t}\right)=d_{P}\left(X_{t}^{h} \cdot \mu_{t}, \bar{Y}_{t}^{h} \cdot \mu_{t}\right)=d_{P}\left(R_{\mu_{t}} X_{t}^{h}, R_{\mu_{t}} \bar{Y}_{t}^{h}\right)
$$

Since k is the Kaluza-Klein metric, it follows that

$$
d_{P}\left(X_{t}^{h} \cdot \mu_{t}, \bar{Y}_{t}^{h} \cdot \bar{\nu}_{t}\right)=d_{M}\left(X_{t}, \bar{Y}_{t}\right)
$$

From (8) we conclude that (10) is satisfied for all $t \geq T(\mu, \nu)$.
In the other side, suppose that $T(X, Y) \geq T(\mu, \nu)$. For all $t \geq T(X, Y)$, Lemma 4.1, item (iii), assures that

$$
d_{P}\left(X_{t}^{h} \cdot \mu_{t}, \bar{Y}_{t}^{h} \cdot \bar{\nu}_{t}\right)=d_{P}\left(X_{t}^{h} \cdot \mu_{t}, X_{t}^{h} \cdot \bar{\nu}_{t}\right)=d_{G}\left(\mu_{t}, \bar{\nu}_{t}\right)
$$

From (9) we conclude that (10) is satisfied for all $t \geq T(X, Y)$.
Setting $t \geq \tau$ we obtain $F_{\sigma}\left(X_{t}^{h} \cdot \mu_{t}\right)=F_{\sigma}\left(\bar{Y}_{t}^{h} \cdot \bar{\nu}_{t}\right)$. Since F_{σ} is equivariant by right action, $\mu_{t}^{-1} \cdot F_{\sigma}\left(X_{t}^{h}\right)=\bar{\nu}_{t}^{-1} \cdot F_{\sigma}\left(\bar{Y}_{t}^{h}\right)$. Because $\mu_{t}=\bar{\nu}_{t}$ for $t \geq \tau$, we conclude that $F_{\sigma}\left(X_{t}^{h}\right)=F_{\sigma}\left(\bar{Y}_{t}^{h}\right)$.

Since σ is a harmonic section, from Theorem 3.2 we see that F_{σ} is a horizontally harmonic map. Theorem 3.1 now shows that $F_{\sigma}\left(X_{t}^{h}\right)$ and $F_{\sigma}\left(\bar{Y}_{t}^{h}\right)$ are ∇^{N}-martingales in N. Since N has non-confluence martingales property,

$$
F_{\sigma}\left(X_{0}^{h}\right)=F_{\sigma}\left(\bar{Y}_{0}^{h}\right) .
$$

It follows immediately that $F_{\sigma}(u)=F_{\sigma}(v)$. Consequently, F_{σ} is a constant map.
(ii) Let σ be a harmonic section of π_{E}. From item (i) there exists $\xi \in N$ such that $F_{\sigma}(p)=\xi$ for all $p \in P$. We claim that ξ is a fix point. In fact, set $a \in G$. From equivariant property of F_{σ} we deduce that

$$
a \cdot \xi=a \cdot F_{\sigma}(p)=F_{\sigma}\left(p \cdot a^{-1}\right)=\xi .
$$

(iii) Let σ be a section of π_{E}. Suppose that σ is parallel. Then $\sigma_{*}(X)$ is horizontal for all $X \in T M$ (see for example [6], pp.114). This gives $\mathbf{v} \sigma_{*}(X)=0$. Then it is clear, by definition, that σ is harmonic section.

Suppose that σ is a harmonic section. From item (i) it follows that there exists $\xi \in N$ such that $F_{\sigma}(p)=\xi$ for all $p \in P$. By definition of equivariant lift,

$$
\sigma(x)=\sigma \circ \pi(p)=\mu(p, \xi)=\mu_{\xi}(p), \quad \pi(p)=x,
$$

where μ_{ξ} is an application from P into E. Let $v \in T_{x} M$ and let $\gamma(t)$ be a curve in M such that $\gamma(0)=x$ and $\dot{\gamma}(0)=v$. Then

$$
\sigma_{*}(v)=\left.\frac{d}{d t}\right|_{0} \sigma \circ \gamma(t)=\left.\frac{d}{d t}\right|_{0} \mu_{\xi} \circ \gamma^{h}(t)=\mu_{\xi *}\left(\dot{\gamma}^{h}(0)\right),
$$

where γ^{h} is the horizontal lift of γ into P. Since $\dot{\gamma}^{h}(0)$ is horizontal vector in P, so is $\mu_{\xi *}\left(\dot{\gamma}^{h}(0)\right)$ in E (see for example [6], pp.87). Therefore $\sigma_{*}(v)$ is horizontal vector. So we conclude that σ is parallel.

Tangent bundle

Let M be a complete Riemannian manifold which is compact or has nonnegative Ricci curvature. Let $O M$ be the ortonormal frame bundle endowed whit the Kaluza-Klein metric. Let $T M$ be the tangent bundle equipped with the Sasaky metric g_{s}. Thus π_{E} is a Riemannian submersion with totally geodesic fibers and, for each $p \in P, \mu_{p}$ is a isometric map (see for example [10]). From these assumptions and Examples 2.1 and 2.2 it follows that the hypotheses of Theorem 4.1 are satisfied.

Proposition 4.2 Under conditions stated above, if σ is a harmonic section of $\pi_{T M}$, then σ is the 0-section.

Proof: Let σ be a harmonic section of $\pi_{T M}$. By Theorem 4.1, item (i), there exists $\xi \in N$ such that $F_{\sigma}(u)=\xi$ for all $u \in P$. Moreover, by item (ii) ξ is a fix point of left action of $O(n, \mathbb{R})$ into \mathbb{R}^{n}. We observe that $0 \in \mathbb{R}^{n}$ is the unique fix point to this left action. Thus get $F_{\sigma}(u)=0$. Therefore σ is the 0 -section.

Hopf fibration

Let $S^{1} \rightarrow S^{2 n-1} \rightarrow \mathbb{C P}^{n-1}$ be a Hopf fibration. It is well know that $S^{2 n-1}\left(\mathbb{C P}^{n-1}, S^{1}\right)$ is a principal fiber bundle. We recall that $U(1) \cong S^{1}$. Let ϕ be the aplication of $U(1) \times \mathbb{C}^{m}$ into \mathbb{C}^{m} given by

$$
\begin{equation*}
\left(g,\left(z_{1}, \ldots, z_{m}\right)\right) \rightarrow g \cdot\left(z_{1}, \ldots, z_{m}\right)=\left(g z_{1}, \ldots, g z_{m}\right) \tag{11}
\end{equation*}
$$

Clearly, ϕ is a left action of $U(1)$ into \mathbb{C}^{m}. Thus, we can consider \mathbb{C}^{m} as standard fiber of associate fiber $E\left(\mathbb{C P}^{n-1}, \mathbb{C}^{m}, S^{1}, S^{2 n-1}\right)$, where $E=S^{2 n-1} \times_{U(1)} \mathbb{C}^{m}$. We are considering the canonical scalar product $<,>$ on \mathbb{C}^{n} and the induced Riemannian metric g on $\mathbb{C P}^{n-1}$. Since $U(1)$ is invariant by $<,>$, there exists one and only one Riemannian metric \hat{g} on E such that π_{E} is a Riemannian submersion from (E, \hat{g}) to (M, g) with totally geodesic fibers isometrics to ($N,<,>$) (see for example [13]). From these assumptions and examples 2.1 and 2.2 wee see that hypotheses of Theorem 4.1 are holds.

Proposition 4.3 Under conditions stated above, if σ is a harmonic section of π_{E}, then σ is the 0-section.
Proof: We first observe that $(0, \ldots, 0)$ is the unique fix point to the left action (11). Since σ is harmonic section, from Theorem 4.1 we see that F_{σ}
is constant map and $F_{\sigma}(p)=(0, \ldots, 0)$ for all $p \in S^{2 n-1}$. Therefore σ is the 0 -section.

References

[1] Catuogno, P., A Geometric Itô formula, Matemática Contemporânea, 2007, vol. 33, p. 85-99.
[2] Emery, M., Stochastic Calculus in Manifolds, Springer, Berlin 1989.
[3] Emery, M., Martingales continues dans les variétés différentiables, Lectures on probability theory and statistics (Saint-Flour, 1998), 1-84, Lecture Notes in Math., 1738, Springer, Berlin 2000.
[4] Hsu, E., Stochastic Analysis on Manifolds, Graduate Studies in Mathematics 38. American Mathematical Society, Providence 2002.
[5] Ishihara, Tôru, Harmonic sections of tangent bundles. J. Math. Tokushima Univ. 13 (1979), 23-27.
[6] Kobayashi, S., and Nomizu, K., Foundations of Differential Geometry, vol I, Interscience Publishers, New York 1963.
[7] Kendall, W. S., Nonnegative Ricci curvature and the Brownian coupling property. Stochastics 19 (1986), no. 1-2, 111-129.
[8] Kendall, Wilfrid S., From stochastic parallel transport to harmonic maps. New directions in Dirichlet forms, 49-115, AMS/IP Stud. Adv. Math., 8, Amer. Math. Soc., Providence, RI, 1998.
[9] Meyer, P.A., Géométrie stochastique sans larmes. (French) [Stochastic geometry without tears] Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French), pp. 44-102, Lecture Notes in Math., 850, Springer, Berlin-New York, 1981.
[10] Musso, E, Tricerri, F., Riemannian metrics on tangent bundle, Ann. Mat. Pura Appl. (4), 150 (1988), 1-19.
[11] O'Neill, B. The fundamental equations of a submersion. Michigan Math. J., 13 (1966) 459469.
[12] Protter, P., Stochastic integration and differential equations. A new approach. Applications of Mathematics (New York), 21. Springer-Verlag, Berlin, 1990.
[13] Vilms J., Totally goedesic maps, J. Differential Geometry, 4 (1970), 73-79.
[14] Wood, C.M., Gauss section in Riemannian immersion. . J. London Math. Soc. (2) 33 (1986), no. 1, 157-168.
[15] Wood, C.M., Harmonic sections and equivariant harmonic maps. Manuscripta Math., 94 (1997), no. 1, 1-13.
[16] Wood, C. M., Harmonic sections and Yang - Mills fields. Proc. London Math. Soc. (3) 54 (1987), no. 3, 544-558.
[17] Wood, C. M., Harmonic sections of homogeneous fibre bundles. Differential Geom. Appl. 19 (2003), no. 2, 193-210.
[18] Benyounes, M.; Loubeau, E.; Wood, C. M., Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type. Differential Geom. Appl. 25 (2007), no. 3, 322-334.

[^0]: ${ }^{1}$ The research of S. Stelmastchuk is partially supported by FAPESP 02/12154-8.

