Stochastic characterization of harmonic sections and a Liouville theorem

Simão Stelmastchuk¹

Departamento de Matemática, Universidade Estadual de Campinas, 13.081-970 - Campinas - SP, Brazil. e-mail: simnaos@yahoo.com.br

Abstract

Let P(M, G) be a principal fiber bundle and E(M, N, G, P) be an associate fiber bundle. Our interested is to study harmonic sections of the projection π_E of E into M. Our first purpose is to give a stochastic characterization of harmonic section from M into E and a geometric characterization of harmonic sections with respect to its equivariant lift. The second purpose is to show a version of Liouville theorem for harmonic sections and to prove that section M into E is a harmonic section if and only if it is parallel.

Key words: harmonic sections; fiber bundles; Liouville theorem, stochastic analisys on manifolds.

MSC2010 subject classification: 53C43, 55R10, 58E20, 58J65, 60H30.

1 Introduction

Let $\pi_E : (E, k) \to (M, g)$ be a Riemannian submmersion and σ be a section of π_E , that is, $\pi_E \circ M = Id_M$. We know that $TE = VE \oplus HE$ such that $VE = \ker(\pi_{E*})$ and HE is the horizontal bundle ortogonal to VE. C. Wood has studied the harmonic sections in many context, see [14], [15], [16], [17], [18]. To recall, a harmonic sections is a minimal section for the vertical energy functional

$$E(\sigma) = \frac{1}{2} \int_{M} \|\mathbf{v}\sigma_*\|^2 vol(g),$$

where $\mathbf{v}\sigma_*$ is the vertical component of σ_* . Furthermore, in [14], Wood showed that σ is a minimizer of the vertical energy functional if

$$\tau_{\sigma}^{v} = \mathrm{tr} \nabla^{\mathrm{v}} \mathbf{v} \sigma_{*} = 0,$$

¹The research of S. Stelmastchuk is partially supported by FAPESP 02/12154-8.

where ∇^v is the vertical part of Levi-Civita connection on E, since π_E has totally geodesics fibers. Wood called σ a harmonic section if $\tau^v_{\sigma} = 0$.

In this work, we drop the Riemannian submersion condition of π_E and we mantain the fact that $TE = VE \oplus HE$ and that M is a Riemannian Manifold. Let ∇^E be a symmetric connection on E, where E is not necessarily a Riemannian manifold. About these conditions we can define harmonic sections in the same way that Wood, only observing that ∇^v is vertical componente of ∇^E . There is no compatibility between ∇^E and Levi-Civita connection on M.

Furthermore, we restrict the context of our study. Let P(M,G) be a Riemannian *G*-principal fiber bundle over a Riemannian manifold *M* such that the projection π of *P* into *M* is Riemannian submmersion. Suppose that *P* has a connection form ω . Let E(M, N, G, P) be an associated fiber bundle of *P* with fiber *N*. It is well know that ω yields horizontal spaces on *E*. Our goal is to study the harmonic sections of projection π_E .

Let $F: P \to N$ be a differential map. We call F a horizontally harmonic map if $\tau_F \circ (H \otimes H) = 0$, where H is the horizontal lift from M into Passociated to ω .

Let σ be a section of π_E . It is well know that there exists a unique equivariant lift $F_{\sigma}: P \to N$ associated to σ . Our first purpose is to give an stochastic characterization for the harmonic section σ and the horizontally harmonic map F_{σ} . From these stochastic characterizations we show that a section σ of π_E is harmonic section if and only if F_{σ} is a horizontally harmonic map. This result is an extension of Theorem 1 in [14].

For our second purpose we consider P(M, G) endowed with the Kaluza-Klein metric, M and G with the Brownian coupling property and N with the non-confluence property. About these conditions we show a version of Liouville Theorem and a version of result due to T. Ishiara in [5] to harmonic sections. As applications of our Liouville Theorem we can show the following. If we suppose that M is complete Riemmanian manifold with nonnegative Ricci curvature and its tangent bundle TM is endowed with the Sasaky metric, then the harmonic sections σ of π_{TM} are the 0-section. In the same way we can construct an ambient for Hopf fibrations, with Riemannian structure, such that harmonic sections are the 0-section.

2 Preliminaries

In this work we use freely the concepts and notations of P. Protter [12], E. Hsu [4], P. Meyer [9], M. Emery [2] and [3], W. Kendall [8] and S. Kobayashi

and N. Nomizu [6]. We refer the reader to [1] for a complete survey about the objects of this section.

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})$ be a probability space which satisfies the usual hypothesis (see for example [2]). Our basic assumptions is that every stochastic process are continuos.

Definition 2.1 Let M be a differential manifold. Let X be a process stochastic with valued in M. We call X a semimartingale if, for all f smooth on M, f(X) is a real semimartingale.

Let M be a differential manifold endowed whit symmetric connection ∇^M . Let X be a semimartingale in M and θ be a 1-form on M defined along X. We denote the Itô integral on M along the semimartingale X by $\int_0^t \theta d^{\nabla^M} X_s$. Let $b \in T^{(2,0)}M$ defined along X. We denote the quadratic integral on M along the semimartingale X by $\int_0^t b (dX, dX)_s$. Let M and N be differential manifolds endowed with symmetric connec-

Let M and N be differential manifolds endowed with symmetric connections ∇^M and ∇^N , respectively. Let $F: M \to N$ be a differential map and θ be a section of TN^* . We have the following geometric Itô formula:

$$\int_0^t \theta \ d^{\nabla^N} F(X_s) = \int_0^t F^* \theta \ d^{\nabla^M} X_s + \frac{1}{2} \int_0^t \beta_F^* \theta \ (dX, dX)_s, \tag{1}$$

where β_F is the second fundamental form of F (see [1] or [13] for the definition of β_F).

Definition 2.2 Let M be a differential manifold endowed with symmetric connection ∇^M . A semimartingale X with values in M is called a ∇^M -martingale if $\int_0^t \theta \, d^M X_s$ is a real local martingale for all $\theta \in \Gamma(TM^*)$.

Definition 2.3 Let M be a Riemannian manifold equipped with metric g. Let B be a semimartingale with values in M, we say that B is a g-Brownian motion in M if B is a ∇^g -martingale, where ∇^g is the Levi-Civita connection of g, and for any section b of $T^{(2,0)}M$ we have that

$$\int_0^t b(dB, dB)_s = \int_0^t \operatorname{tr} \mathbf{b}_{\mathrm{B}_s} \mathrm{ds}.$$
 (2)

From (1) and (2) we deduce the useful formula:

$$\int_0^t \theta d^{\nabla^N} F(B_s) = \int_0^t F^* \theta d^{\nabla^g} B_s + \frac{1}{2} \int_0^t \tau_F^* \theta_{B_s} ds, \tag{3}$$

where τ_F is the tension field of F.

From formula (2) and Doob-Meyer decomposition it follows that F is an harmonic map if and only if it sends g-Brownian motions to ∇^N -martingales.

Definition 2.4 Let M be a differential manifold endowed with symmetric connection ∇^M . M has the non-confluence of martingales property if for every filtered space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$, M-valued martingales X and Y defined over Ω and every finite stopping time T such that

$$X_T = Y_T$$
 a.s. we have $X = Y$ over $[0, T]$.

Example 2.1 Let M = V be a n-dimensional vector space with flat connection ∇^n . Let X and Y be V-valued martingales. Suppose that there are a stopping time τ with respect to $(\mathcal{F}_t)_{t\geq 0}$, K > 0 such that $\tau \leq K < \infty$ and $X_{\tau} = Y_{\tau}$. Then straightforward calculus shows that $X_t = Y_t$ for $t \in [0, \tau]$.

Definition 2.5 A Riemmanian manifold M has the Brownian coupling property if for all $x_0, y_0 \in M$ we can construct a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a filtration $(\mathcal{F}_t; t \ge 0)$ and two Brownian motions X and Y, not necessarily independents, but both adapted to filtration such that

$$X_0 = x_0, Y_0 = y_0$$

and

$$\mathbb{P}(X_t = Y_t \text{ for some } t \ge 0) = 1.$$

The stopping time $T(X, Y) = \inf\{t > 0; X_t = Y_t\}$ is called coupling time.

Example 2.2 Let M be a complete Riemannian manifold. In [7], W. Kendall has showed that if M is compact or M has nonnegative Ricci curvature then M has the Brownian coupling property.

Let M be a Riemmanian manifold with metric g. Consider X and Y two g-Brownian motion in M which satisfies the Brownian coupling property and $X_0 = x, Y_0 = y$, where $x, y \in M$. Denote by T(X, Y) their coupling time. The process \overline{Y} is defined by

$$\bar{Y}_t = \begin{cases} Y_t &, t \leq T(X, Y) \\ X_t &, t \geq T(X, Y). \end{cases}$$
(4)

It is imediately that $\bar{Y}_0 = y_0$.

Proposition 2.1 Let M be a Riemannian manifold with metric g. Suppose that M has the Brownian coupling property. Let X, Y be two g-Brownian motions in M which satisfies the Brownian coupling property. Then the process \overline{Y} is a g-Brownian motion in M.

Proof: It is a straightforward proof from definition of Brownian motion. \Box

3 Harmonic sections

Let P(M,G) be a principal fiber bundle over M and E(M, N, G, P) be an associate fiber bundle to P(M,G). We denote the canonical projection from $P \times N$ into E by μ , namely, $\mu(p,\xi) = p \cdot \xi$. For each $p \in P$, we have the map $\mu_p : N \to E$ defined by $\mu_p(\xi) = \mu(p,\xi)$. Let $\sigma : E \to M$ be a section of projection π_E , that is, $\pi_E \circ \sigma = Id_M$. There exists a unique equivariante lift $F_{\sigma} : P \to N$ associated to σ which is defined by

$$F_{\sigma}(p) = \mu_p^{-1} \circ \sigma \circ \pi(p).$$
(5)

The equivariance property of F_{σ} is given by

$$F_{\sigma}(p \cdot g) = g^{-1} \cdot F_{\sigma}(p), \quad g \in G.$$

Let us endow P and M with Riemmanian metrics k and g, respectively, such that $\pi : (P, k) \to (M, g)$ is a Riemmanian submmersion. Let ω be a connection form on P. We observe that the connection form ω yields a horizontal structure on E, that is, for each $b \in E$, $T_b E = V_b E \oplus H_b E$, where $V_b E := \text{Ker}(\pi_{Eb*})$ and $H_b E$ is the horizontal subspace done by ω on E (see for example [6], pp.87). We denote by $\mathbf{v} : TE \to VE$ and $\mathbf{h} : TE \to HE$ the vertical and horizontal projection, respectively.

Let ∇^M denote the Levi-Civita connection on M and ∇^E be a symmetric connection on E. We follow B. O'Neill in [11] to define the Fundamental tensor T for vector fields X and Y on E by

$$T_X Y := \mathbf{h} \nabla^E_{\mathbf{v}X} \mathbf{v} Y + \mathbf{v} \nabla^E_{\mathbf{v}X} \mathbf{h} Y.$$

We are interested in connections ∇^E such that $T \equiv 0$. We observe that when π_E is a Riemannian submission the condition $T \equiv 0$ is equivalent to π_E has totally geodesic fibers.

We denote by ∇^v the vertical component of connection ∇^E on TE, that is, for X, Y vector fields on E we have

$$\nabla^v_X Y = \mathbf{v} \nabla^E_X(\mathbf{v} Y).$$

Let us denote ∇^x the induced connection of ∇^E over fiber $\pi_E^{-1}(x)$ for all $x \in M$. We endow N with a connection ∇^N such that, for each $p \in P$, μ_p is an affine map over its image, the fiber $\pi_E^{-1}(x)$ with $\pi(p) = x$.

Let σ be a section of π_E . Write $\sigma_* = \mathbf{v}\sigma_* + \mathbf{h}\sigma_*$, where $\mathbf{v}\sigma_*$ and $\mathbf{h}\sigma_*$ are the vertical and the horizontal component of σ_* , respectively. The second fundamental form for $\mathbf{v}\sigma_*$ is defined by

$$\beta^v_{\sigma} = \bar{\nabla}^v \circ \mathbf{v}\sigma_* - \mathbf{v}\sigma_* \circ \nabla^M$$

where $\overline{\nabla}^{v}$ is the induced connection on $\sigma^{-1}E$. The vertical tension field is given by

$$\tau_{\sigma}^{v} = \mathrm{tr}\beta_{\sigma}^{\mathrm{v}}$$

In the following we extend the definition given by C. M. Wood [15] of harmonic section.

Definition 3.1 1. A section σ of π_E is called harmonic section if $\tau_{\sigma}^v = 0$; 2. A differential map $F : P \to N$ is called horizontally harmonic if $\tau_F \circ (H \otimes H) = 0$, where H is horizontal lift from M into P.

Definition 3.2 1. Let $\theta \in TE^*$. We call θ a vertical form if $\theta(X) = 0$ for every horizontal vector field on E.

2. A E-valued semimartingale X is called a vertical martingale if, for every vertical form θ on E, $\int_0^t \theta d^{\nabla^v} X_s$ is a real local martingale.

Let us denote by β^v_{μ} the second fundamental form with respect to product connection $\nabla^{P \times N}$ and vertical connection ∇^v , that is,

$$\beta^{v}_{\mu}((X_{1},\zeta_{1}),(X_{2},\zeta_{2})) = \bar{\nabla}^{v}_{(X_{1},\zeta_{1})}\mu_{*}(X_{2},\zeta_{2}) - \mu_{*}\left(\nabla^{P\times N}_{(X_{1},\zeta_{1})}(X_{2},\zeta_{2})\right)$$

for X_1, X_2 vector fields on P and ζ_1, ζ_2 vector fields on N.

Lemma 3.1 Let μ_p be an affine map, for each $p \in P$. For every point (p, ξ) in $P \times N$ we have that

- (i) if X is a horizontal vector field on E, then $\mu_{p*}^{-1}(X) = 0$;
- (ii) $\bar{\nabla}^{v}_{(X_{1},\zeta_{1})}\mu_{*}(X_{2},\zeta_{2})_{\mu(p,\xi)} = \nabla^{x}_{\mu_{p*}(\zeta_{1})}\mu_{p*}(\zeta_{2}), \text{ for } X_{1}, X_{2} \text{ horizontal vectors fields on } P \text{ and } \zeta_{1}, \zeta_{2} \text{ vectors fields on } N;$
- (iii) $\beta^{v}_{\mu}((X,\zeta),(X,\zeta))_{(p,\xi)}$ is a horizontal vector field, where X is a horizontal vector field on P and ζ is a vector field on N.

Proof: (i) The proof is straightforward. (ii) Using definitions of $\overline{\nabla}^v$ and T we deduce that

$$\bar{\nabla}^{v}_{(X_{1},\zeta_{1})}\mu_{*}(X_{2},\zeta_{2}) = T_{\mu_{p*}(\zeta_{2})}\mu_{\xi*}(X_{1}) - \mathbf{v}[\mu_{p*}(\zeta_{2}),\mu_{\xi*}(X_{1})] + \mathbf{v}\nabla^{E}_{\mu_{p*}(\zeta_{1})}\mu_{p*}(\zeta_{2})$$

From (i) and the fact that μ_{p*} is a diffeomorphism we see that $[\mu_{p*}(\zeta_2), \mu_{\xi*}(X_1)]$ is not vertical. For this reason and the assumption that $T \equiv 0$ we conclude that

$$\bar{\nabla}^{v}_{(X_{1},\zeta_{1})}\mu_{*}(X_{2},\zeta_{2}) = \nabla^{x}_{\mu_{p*}(\zeta_{1})}\mu_{p*}(\zeta_{2}),$$

where ∇^x is the induced connection in the fiber $\pi_E^{-1}(x)$ with $\pi(p) = x$. (iii) Let $(p,\xi) \in P \times N$. Let X be a horizontal vector field on P and ζ be a vector field on N. From (ii) we see that

$$\beta^{v}_{\mu}((X,\zeta),(X,\zeta))_{(p,\xi)} = \nabla^{x}_{\mu_{p*}(\zeta)}\mu_{p*}(\zeta) - \mu_{*}\left(\nabla^{P\times N}_{(X,\zeta)}(X,\zeta)\right),$$

where $\pi(p) = x$. As $\nabla_{(X,\zeta)}^{P \times N}(X,\zeta) = \nabla_X^P X + \nabla_\zeta^N \zeta$ we have

$$\beta_{\mu}^{x}((X,\zeta),(X,\zeta))_{(p,\xi)} = \nabla_{\mu_{p*}(\zeta)}^{v}\mu_{p*}(\zeta) - \mu_{\xi*}\nabla_{X}^{P}X - \mu_{p*}\nabla_{\zeta}^{N}\zeta.$$

Since μ_p is an affine map, for each $p \in P$, it follows that

$$\beta^v_\mu((X,\zeta),(X,\zeta))_{(p,\xi)} = -\mu_{\xi*} \nabla^P_X X.$$

As π is a Riemannian submetrian we have

$$\beta^{v}_{\mu}((X,\zeta),(X,\zeta))_{(p,\xi)} = -\mu_{\xi*}\mathbf{h}(\nabla^{P}_{X}X),$$

where $\mathbf{h}(\nabla_X^P X)$ is the horizontal componente of $\nabla_X^P X$, which completes the proof.

Now, we relate the geometric and stochastic concepts of harmonic section and horizontally harmonic map.

Theorem 3.1 Let P(M, G) be a Riemannian principal fiber bundle endowed with a connection form ω and M a Riemannian manifold such that the projection π of P into M is a Riemannian submmersion. Let E(M, N, G, P)be an associated fiber to P endowed with a connection ∇^E such that its Fundamental tensor T is null. Moreover, suppose that N has a connection ∇^N such that μ_p is an affine map for each $p \in P$. Then

- (i) a *E*-valued semimartingale *X* is vertical martingale if and only if $\mu_Y^{-1} \circ X$ is a ∇^N - martingale in *N*, where $Y = \pi_E(X)^h$ is the horizontal lift of $\pi_E(X)$ to *P*;
- (ii) a section σ of π_E is harmonic section if and only if, for every g-Brownian motion B in M, $\sigma(B)$ is a vertical martingale;
- (iii) a equivariant lift F_{σ} associated to σ , σ a section of π_E , is horizontally harmonic map if and only if, for every horizontal Brownian motion B^h in P, $F_{\sigma}(B^h)$ is a ∇^N -martingale.

Proof: (i) Let X be a semimartingale in E and θ be a vertical form on E. Let us denote $\xi = \mu_Y^{-1} \circ X$. As $X = \mu(Y, \xi)$ we have, by geometric Itô formula (1),

$$\begin{split} \int_0^t \theta d^{\nabla^v} X_s &= \int_0^t \theta d^{\nabla^v} \mu(Y_s, \xi_s) \\ &= \int_0^t \mu^* \theta d^{\nabla^P \times N}(Y_s, \xi_s) + \frac{1}{2} \int \beta_\mu^{v*} \theta(d(Y_s, \xi_s), d(Y_s, \xi_s)) \\ &= \int_0^t \mu^*_{Y_s} \theta d^{\nabla^N} \xi_s + \int_0^t \mu^*_{\xi_s} \theta d^{\nabla^P} Y_s + \frac{1}{2} \int \beta_\mu^{v*} \theta(d(Y_s, \xi_s), d(Y_s, \xi_s)) \end{split}$$

where third equality follows from Proposition 3.15 in [3]. Since $d^{\nabla^P} Y_s$ is horizontal, it follows that $\int_0^t \mu_{\xi_s}^* \theta d^{\nabla^P} Y_s = 0$. Hence

$$\int_0^t \theta d^{\nabla^v} X_s = \int_0^t \mu_{Y_s}^* \theta d^{\nabla^N} \xi_s + \frac{1}{2} \int \beta_\mu^{v*} \theta(d(Y_s, \xi_s), d(Y_s, \xi_s)).$$

Since θ is vertical form, from Lemma 3.1 we see that

$$\int_0^t \theta d^{\nabla^v} X_s = \int_0^t \mu_{Y_s}^* \theta d^{\nabla^N} \xi_s$$

So we conclude that $\int_0^t \theta d^{\nabla^v} X_s$ is local martingale if and only if $\int_0^t \mu_{Y_s}^* \theta d^{\nabla N} \xi_s$ is too, and proof is complete.

(ii) Let B be a g-Brownian motion in M and θ be a vertical form on E. By formula (3),

$$\int_0^t \theta \ d^{\nabla^v} \sigma(B_s) = \int_0^t \sigma^* \theta \ d^{\nabla^M} B_s + \frac{1}{2} \int_0^t \tau_\sigma^{v*} \theta(B_s) \ ds.$$

We observe that $\int \sigma^* \theta \ d^{\nabla^M} B_s$ is a real local martingale. Since B and θ are arbitraries, Doob-Meyer decomposition assure that $\int_0^t \theta \ d^{\nabla^v} \sigma(B_s)$ is real local martingale if and only if τ_{σ}^v vanishes. From definitions of vertical martingale and harmonic section we conclude the proof.

(iii) Let B be a g-Brownian motion in M and B^h be a horizontal Brownian motion in P, that is,

$$dB^h = H_B dB, (6)$$

where H is the horizontal lift of M to P. Set $\theta \in \Gamma(TN^*)$. By geometric Itô formula (1),

$$\int_0^t \theta \ d^{\nabla^N} F_{\sigma}(B^h_s) = \int_0^t F^*_{\sigma} \theta \ d^{\nabla^P} B^h_s + \int_0^t \beta^*_{F_{\sigma}} \theta (dB^h, dB^h)_s.$$

From (6) we see that

$$\int_0^t \theta \ d^{\nabla^N} F_{\sigma}(B^h_s) = \int_0^t H^* F_{\sigma}^* \theta \ d^{\nabla^M} B_s + \int_0^t \beta_{F_{\sigma}}^* \theta(H_B dB, H_B dB)_s.$$

As B is Brownian motion we have

$$\int_0^t \theta \ d^{\nabla^N} F_\sigma(B_s^h) = \int_0^t H^* F_\sigma^* \theta \ d^{\nabla^M} B_s + \int_0^t (\tau_{F_\sigma}^H)^* \theta(B_s) ds,$$

where $\tau_{F_{\sigma}}^{H} = \tau_{F_{\sigma}} \circ (H \otimes H)$. Since θ and B are arbitraries, Doob-Meyer decomposition shows that $\int_{0}^{t} \theta d^{\nabla^{N}} F_{\sigma}(B_{s}^{h})$ is real local martingale if and only if $\tau_{F_{\sigma}}^{H}$ vanishes. From definitions of martingale and horizontally harmonic map we conclude the proof.

Now we give an extension of the characterization of harmonic sections obtained by C.M. Wood, see Theorem 1 in [15].

Theorem 3.2 Under the hypotheses of Theorem 3.1, a section σ of π_E is harmonic section if and only if F_{σ} is horizontally harmonic map.

Proof: Let *B* be a arbitrary *g*-Brownian motion in *M* and B^h be a horinzontal lift of *B* in *P*, see equation (6).

Suppose that σ is a harmonic section. Theorem 3.1, item (ii), shows that $\sigma(B)$ is a vertical martingale. But $\mu_{B^h}^{-1} \circ \sigma(B)$ is a ∇^N -martingale, which follows from Theorem 3.1, item (i). Since $F_{\sigma}(B^h) = \mu_{B^h}^{-1} \circ \sigma \circ \pi(B^h)$, it follows that $F_{\sigma}(B^h)$ is a ∇^N -martingale. Finally, Theorem 3.1, item (iii), shows that F_{σ} is horizontally harmonic map.

Conversely, suppose that F_{σ} is a horizontally harmonic map. Theorem 3.1, item (iii), shows that $F_{\sigma}(B^h)$ is a ∇^N -martingale. Since $F_{\sigma}(B^h) = \mu_{B^h}^{-1} \circ \sigma \circ \pi(B^h)$, it follows that $\mu_{B^h}^{-1} \circ \sigma(B)$ is a ∇^N -martingale. From Theorem 3.1, item (i), we see that $\sigma(B)$ is a vertical martingale. We conclude from Theorem 3.1, item (ii), that σ is a harmonic section.

4 A Liouville theorem for harmonic sections

We begin this section defining the Kaluza-Klein metric on P(M,G). Let P(M,G) be a principal fiber bundle endowed with a connection form ω , M be a Riemannian manifold with a metric g and h be a bi-invariant metric on G. The Kaluza-Klein metric is defined by

$$k = \pi^* g + \omega^* h. \tag{7}$$

From now on P(M,G) is endowed with the Kaluza-Klein metric.

We will denote by d_P and d_G the Riemannian distance of P and G, respectively.

Lemma 4.1 Let P(M,G) be a principal fiber bundle whit a Kaluza-Klein metric k, where g is the Riemannian metric on M and h is the bi-invariant metric on G associated to k. The following assertions are holds:

(i) Let $\tau : [0,1] \to P$ be a differential curve such that $\tau(t) = u \cdot \mu(t)$ with $\tau(0) = u$ and $\mu(t) \in G$, then

$$\int_0^1 k(\dot{\tau}(t), \dot{\tau}(t))^{\frac{1}{2}} dt = \int_0^1 h(\dot{\mu}(t), \dot{\mu}(t))^{\frac{1}{2}} dt$$

(ii) Let τ : [0,1] → P be a differential curve. If γ is a curve in M and if μ is a curve in G such that τ = γ(t)^h · μ(t), then

$$\int_0^1 k(\dot{\tau}(t), \dot{\tau}(t))^{\frac{1}{2}} dt \le \int_0^1 g(\dot{\gamma}(t), \dot{\gamma}(t))^{\frac{1}{2}} dt + \int_0^1 h(\dot{\mu}(t), \dot{\mu}(t))^{\frac{1}{2}} dt$$

(iii) Let $x \in M$ and $u, v, w \in \pi^{-1}(x)$. If a, b are points in G such that $v = u \cdot a$ and $w = u \cdot b$, then

$$d_P(v,w) = d_G(a,b).$$

Proof: (i) and (ii) The proofs are straightforward.

(iii) Let $\tau : [0,1] \to P$ be a differential curve such that $\tau(0) = v$ and $\tau(1) = w$. Consider a curve γ in M such that $\pi(\tau) = \gamma$. There exists a differential curve μ in G such that $\mu(0) = a, \mu(1) = b$ and $\tau = \gamma^h \cdot \mu$. We observe that $\gamma(0) = x$ and $\gamma(1) = x$. This gives $\int_0^1 g(\dot{\gamma}(t), \dot{\gamma}(t))^{\frac{1}{2}} dt = 0$. Thus from item (i) and item (ii) we conclude that

$$\int_0^1 k(\dot{\tau}(t), \dot{\tau}(t))^{\frac{1}{2}} dt = \int_0^1 h(\dot{\mu}(t), \dot{\mu}(t))^{\frac{1}{2}} dt.$$

Therefore it is only necessary to consider vertical curves. It follows that $d_P(v, w) = d_P(u \cdot a, u \cdot b) = d_G(a, b)$, by definition of Riemmanian distance. \Box

Theorem 4.1 Let P(M, G) be a principal fiber bundle equipped with Kaluza-Klein metric and E(M, N, G, P) be an associated fiber to P. Let ∇^E and ∇^N be connections on E and N, respectively, such that the Fundamental tensor T is null and μ_p is an affine map for each $p \in P$. Moreover, if N has the non-confluence martingales property and if M and G have the Brownian coupling property, then

- (i) a section σ of π_E is harmonic section if and only if F_{σ} is constante map;
- (ii) the left action of G into N has a fix point if there exists a harmonic section σ of π_E ;
- (iii) a section σ of π_E is harmonic section if and only if σ is parallel.

Proof: (i) We first suppose that F_{σ} is a constant map. Then it is immediately that $\tau_{\sigma}^{v} = 0$, so σ is harmonic section.

Conversely, the proof will be divided into two parts. Firstly, we found a suitable stopping time τ . After, we use τ to prove that F_{σ} is constant over P.

Choose $x, y \in M$ arbitraries. By assumption about M, there exists two g-Brownian motion X and Y in M such that $X_0 = x$ and $Y_0 = y$, which satisfy the Brownian coupling property. Consequently, the coupling time T(X, Y) is finite. Proposition 2.1 now assures that the process

$$\bar{Y}_t = \begin{cases} Y_t & , t \leq T(X,Y) \\ X_t & , t \geq T(X,Y) \end{cases}$$

$$\tag{8}$$

is a g-Brownian motion in M.

Let $a, b \in G$ be arbitraries points. Since G has the Brownian coupling property, we have two h-Brownian motion μ and ν in G such that $\mu_0 = a$, $\nu_0 = b$. Moreover, there is a finite coupling time $T(\mu, \nu)$. But the process

$$\bar{\nu}_t = \begin{cases} \nu_t & , \quad t \le T(\mu, \nu) \\ \mu_t & , \quad t \ge T(\mu, \nu) \end{cases}$$
(9)

is a h-Brownian motion in G, which follows from Proposition 2.1.

Set $u, v \in P$ such that $\pi(u) = x$ and $\pi(v) = y$. Consider two horizontal Brownian motion X^h and \overline{Y}^h in P such that $X_0^h = u$ and $\overline{Y}_0^h = v$. Define $\tau = T(X, Y) \lor T(\mu, \nu)$. We claim that

$$X_t^h \cdot \mu_t = \bar{Y}_t^h \cdot \bar{\nu}_t, \text{ a.s. } \forall t \ge \tau.$$
(10)

In fact, we need consider two cases. First, suppose that $T(X, Y) \leq T(\mu, \nu)$. For all $t \geq T(\mu, \nu)$ we have

$$d_P(X_t^h \cdot \mu_t, \bar{Y}_t^h \cdot \bar{\nu}_t) = d_P(X_t^h \cdot \mu_t, \bar{Y}_t^h \cdot \mu_t) = d_P(R_{\mu_t}X_t^h, R_{\mu_t}\bar{Y}_t^h).$$

Since k is the Kaluza-Klein metric, it follows that

$$d_P(X_t^h \cdot \mu_t, \bar{Y}_t^h \cdot \bar{\nu}_t) = d_M(X_t, \bar{Y}_t).$$

From (8) we conclude that (10) is satisfied for all $t \ge T(\mu, \nu)$.

In the other side, suppose that $T(X, Y) \ge T(\mu, \nu)$. For all $t \ge T(X, Y)$, Lemma 4.1, item (iii), assures that

$$d_P(X_t^h \cdot \mu_t, \bar{Y}_t^h \cdot \bar{\nu}_t) = d_P(X_t^h \cdot \mu_t, X_t^h \cdot \bar{\nu}_t) = d_G(\mu_t, \bar{\nu}_t).$$

From (9) we conclude that (10) is satisfied for all $t \ge T(X, Y)$.

Setting $t \geq \tau$ we obtain $F_{\sigma}(X_t^h \cdot \mu_t) = F_{\sigma}(\bar{Y}_t^h \cdot \bar{\nu}_t)$. Since F_{σ} is equivariant by right action, $\mu_t^{-1} \cdot F_{\sigma}(X_t^h) = \bar{\nu}_t^{-1} \cdot F_{\sigma}(\bar{Y}_t^h)$. Because $\mu_t = \bar{\nu}_t$ for $t \geq \tau$, we conclude that $F_{\sigma}(X_t^h) = F_{\sigma}(\bar{Y}_t^h)$.

Since σ is a harmonic section, from Theorem 3.2 we see that F_{σ} is a horizontally harmonic map. Theorem 3.1 now shows that $F_{\sigma}(X_t^h)$ and $F_{\sigma}(\bar{Y}_t^h)$ are ∇^N -martingales in N. Since N has non-confluence martingales property,

$$F_{\sigma}(X_0^h) = F_{\sigma}(\bar{Y}_0^h).$$

It follows immediately that $F_{\sigma}(u) = F_{\sigma}(v)$. Consequently, F_{σ} is a constant map.

(ii) Let σ be a harmonic section of π_E . From item (i) there exists $\xi \in N$ such that $F_{\sigma}(p) = \xi$ for all $p \in P$. We claim that ξ is a fix point. In fact, set $a \in G$. From equivariant property of F_{σ} we deduce that

$$a \cdot \xi = a \cdot F_{\sigma}(p) = F_{\sigma}(p \cdot a^{-1}) = \xi.$$

(iii) Let σ be a section of π_E . Suppose that σ is parallel. Then $\sigma_*(X)$ is horizontal for all $X \in TM$ (see for example [6], pp.114). This gives $\mathbf{v}\sigma_*(X) = 0$. Then it is clear, by definition, that σ is harmonic section.

Suppose that σ is a harmonic section. From item (i) it follows that there exists $\xi \in N$ such that $F_{\sigma}(p) = \xi$ for all $p \in P$. By definition of equivariant lift,

$$\sigma(x) = \sigma \circ \pi(p) = \mu(p,\xi) = \mu_{\xi}(p), \quad \pi(p) = x,$$

where μ_{ξ} is an application from P into E. Let $v \in T_x M$ and let $\gamma(t)$ be a curve in M such that $\gamma(0) = x$ and $\dot{\gamma}(0) = v$. Then

$$\sigma_*(v) = \left. \frac{d}{dt} \right|_0 \sigma \circ \gamma(t) = \left. \frac{d}{dt} \right|_0 \mu_{\xi} \circ \gamma^h(t) = \mu_{\xi*}(\dot{\gamma}^h(0)),$$

where γ^h is the horizontal lift of γ into P. Since $\dot{\gamma}^h(0)$ is horizontal vector in P, so is $\mu_{\xi*}(\dot{\gamma}^h(0))$ in E (see for example [6], pp.87). Therefore $\sigma_*(v)$ is horizontal vector. So we conclude that σ is parallel.

Tangent bundle

Let M be a complete Riemannian manifold which is compact or has nonnegative Ricci curvature. Let OM be the ortonormal frame bundle endowed whit the Kaluza-Klein metric. Let TM be the tangent bundle equipped with the Sasaky metric g_s . Thus π_E is a Riemannian submersion with totally geodesic fibers and, for each $p \in P$, μ_p is a isometric map (see for example [10]). From these assumptions and Examples 2.1 and 2.2 it follows that the hypotheses of Theorem 4.1 are satisfied.

Proposition 4.2 Under conditions stated above, if σ is a harmonic section of π_{TM} , then σ is the 0-section.

Proof: Let σ be a harmonic section of π_{TM} . By Theorem 4.1, item (i), there exists $\xi \in N$ such that $F_{\sigma}(u) = \xi$ for all $u \in P$. Moreover, by item (ii) ξ is a fix point of left action of $O(n, \mathbb{R})$ into \mathbb{R}^n . We observe that $0 \in \mathbb{R}^n$ is the unique fix point to this left action. Thus get $F_{\sigma}(u) = 0$. Therefore σ is the 0-section.

Hopf fibration

Let $S^1 \to S^{2n-1} \to \mathbb{CP}^{n-1}$ be a Hopf fibration. It is well know that $S^{2n-1}(\mathbb{CP}^{n-1}, S^1)$ is a principal fiber bundle. We recall that $U(1) \cong S^1$. Let ϕ be the aplication of $U(1) \times \mathbb{C}^m$ into \mathbb{C}^m given by

$$(g,(z_1,\ldots,z_m)) \to g \cdot (z_1,\ldots,z_m) = (gz_1,\ldots,gz_m). \tag{11}$$

Clearly, ϕ is a left action of U(1) into \mathbb{C}^m . Thus, we can consider \mathbb{C}^m as standard fiber of associate fiber $E(\mathbb{CP}^{n-1}, \mathbb{C}^m, S^1, S^{2n-1})$, where $E = S^{2n-1} \times_{U(1)} \mathbb{C}^m$. We are considering the canonical scalar product \langle , \rangle on \mathbb{C}^n and the induced Riemannian metric g on \mathbb{CP}^{n-1} . Since U(1) is invariant by \langle , \rangle , there exists one and only one Riemannian metric \hat{g} on Esuch that π_E is a Riemannian submersion from (E, \hat{g}) to (M, g) with totally geodesic fibers isometrics to (N, \langle , \rangle) (see for example [13]). From these assumptions and examples 2.1 and 2.2 we see that hypotheses of Theorem 4.1 are holds.

Proposition 4.3 Under conditions stated above, if σ is a harmonic section of π_E , then σ is the 0-section.

Proof: We first observe that $(0, \ldots, 0)$ is the unique fix point to the left action (11). Since σ is harmonic section, from Theorem 4.1 we see that F_{σ}

is constant map and $F_{\sigma}(p) = (0, ..., 0)$ for all $p \in S^{2n-1}$. Therefore σ is the 0-section.

References

- Catuogno, P., A Geometric Itô formula, Matemática Contemporânea, 2007, vol. 33, p. 85-99.
- [2] Emery, M., Stochastic Calculus in Manifolds, Springer, Berlin 1989.
- [3] Emery, M., Martingales continues dans les variétés différentiables, Lectures on probability theory and statistics (Saint-Flour, 1998), 1-84, Lecture Notes in Math., 1738, Springer, Berlin 2000.
- [4] Hsu, E., Stochastic Analysis on Manifolds, Graduate Studies in Mathematics 38. American Mathematical Society, Providence 2002.
- [5] Ishihara, Tôru, Harmonic sections of tangent bundles. J. Math. Tokushima Univ. 13 (1979), 23–27.
- [6] Kobayashi, S., and Nomizu, K., Foundations of Differential Geometry, vol I, Interscience Publishers, New York 1963.
- [7] Kendall, W. S., Nonnegative Ricci curvature and the Brownian coupling property. Stochastics 19 (1986), no. 1-2, 111–129.
- [8] Kendall, Wilfrid S., From stochastic parallel transport to harmonic maps. New directions in Dirichlet forms, 49–115, AMS/IP Stud. Adv. Math., 8, Amer. Math. Soc., Providence, RI, 1998.
- [9] Meyer, P.A., Géométrie stochastique sans larmes. (French) [Stochastic geometry without tears] Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French), pp. 44–102, Lecture Notes in Math., 850, Springer, Berlin-New York, 1981.
- [10] Musso, E, Tricerri, F., Riemannian metrics on tangent bundle, Ann. Mat. Pura Appl. (4), 150 (1988), 1-19.
- [11] O'Neill, B. The fundamental equations of a submersion. Michigan Math. J., 13 (1966) 459469.
- [12] Protter, P., Stochastic integration and differential equations. A new approach. Applications of Mathematics (New York), 21. Springer-Verlag, Berlin, 1990.

- [13] Vilms J., Totally goedesic maps, J. Differential Geometry, 4 (1970), 73-79.
- [14] Wood, C.M., Gauss section in Riemannian immersion. J. London Math. Soc. (2) 33 (1986), no. 1, 157–168.
- [15] Wood, C.M., Harmonic sections and equivariant harmonic maps. Manuscripta Math., 94 (1997), no. 1, 1–13.
- [16] Wood, C. M., Harmonic sections and Yang Mills fields. Proc. London Math. Soc. (3) 54 (1987), no. 3, 544–558.
- [17] Wood, C. M., Harmonic sections of homogeneous fibre bundles. Differential Geom. Appl. 19 (2003), no. 2, 193–210.
- [18] Benyounes, M.; Loubeau, E.; Wood, C. M., Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type. Differential Geom. Appl. 25 (2007), no. 3, 322–334.