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Abstract

Let P(M, Q) be a principal fiber bundle and E(M, N, G, P) be an
associate fiber bundle. Our interested is to study harmonic sections of
the projection g of E into M. Our first purpose is to give a stochastic
characterization of harmonic section from M into E and a geometric
characterization of harmonic sections with respect to its equivariant
lift. The second purpose is to show a version of Liouville theorem for
harmonic sections and to prove that section M into E is a harmonic
section if and only if it is parallel.

Key words: harmonic sections; fiber bundles; Liouville theorem, stochastic
analisys on manifolds.

MSC2010 subject classification: 53C43, 55R10, 5820, 58J65, 60H30.

1 Introduction

Let 7g : (E, k) — (M, g) be a Riemannian submmersion and o be a section
of mg, that is, mg o M = Idy;. We know that TE = VE @& HE such that
VE = ker(mg,) and HE is the horizontal bundle ortogonal to VE. C. Wood
has studied the harmonic sections in many context, see [14], [15], [16], [17],
[18]. To recall, a harmonic sections is a minimal section for the vertical
energy functional

B(0) =5 [ IvolPol(g),

where vo, is the vertical component of o,. Furthermore, in [14], Wood
showed that ¢ is a minimizer of the vertical energy functional if

v v
T, = trVivo, =0,
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where V" is the vertical part of Levi-Civita connection on E, since wg has
totally geodesics fibers. Wood called ¢ a harmonic section if 77 = 0.

In this work, we drop the Riemannian submersion condition of 7mr and
we mantain the fact that TE = VE & HE and that M is a Riemmanian
Manifold. Let V¥ be a symmetric connection on £, where E is not necessar-
ily a Riemannian manifold. About these conditions we can define harmonic
sections in the same way that Wood, only observing that V" is vertical
componente of VZ. There is no compatibility between V¥ and Levi-Civita
connection on M.

Furthermore, we restrict the context of our study. Let P(M,G) be a
Riemannian G-principal fiber bundle over a Riemannian manifold M such
that the projection 7 of P into M is Riemmanian submmersion. Suppose
that P has a connection form w. Let E(M, N,G, P) be an associated fiber
bundle of P with fiber N. It is well know that w yields horizontal spaces on
E. Our goal is to study the harmonic sections of projection 7.

Let F': P — N be a differential map. We call F' a horizontally harmonic
map if 7p o (H ® H) = 0, where H is the horizontal lift from M into P
associated to w.

Let 0 be a section of mg. It is well know that there exists a unique
equivariant lift F,, : P — N associated to o. Our first purpose is to give an
stochastic characterization for the harmonic section ¢ and the horizontally
harmonic map F,. From these stochastic characterizations we show that
a section ¢ of mg is harmonic section if and only if F, is a horizontally
harmonic map. This result is an extension of Theorem 1 in [14].

For our second purpose we consider P(M, G) endowed with the Kaluza-
Klein metric, M and G with the Brownian coupling property and N with
the non-confluence property. About these conditions we show a version
of Liouville Theorem and a version of result due to T. Ishiara in [5] to
harmonic sections. As applications of our Liouville Theorem we can show
the following. If we suppose that M is complete Riemmanian manifold with
nonnegative Ricci curvature and its tangent bundle T'M is endowed with the
Sasaky metric, then the harmonic sections o of s are the 0-section. In the
same way we can construct an ambient for Hopf fibrations, with Riemannian
structure, such that harmonic sections are the 0-section.

2 Preliminaries

In this work we use freely the concepts and notations of P. Protter [12], E.
Hsu [4], P. Meyer [9], M. Emery [2] and [3], W. Kendall [8] and S. Kobayashi



and N. Nomizu [6]. We refer the reader to [1] for a complete survey about
the objects of this section.

Let (Q, F, (Ft)t>0, P) be a probability space which satisfies the usual hy-
pothesis (see for example [2]). Our basic assumptions is that every stochastic
process are continuos.

Definition 2.1 Let M be a differential manifold. Let X be a process stochas-
tic with valued in M. We call X a semimartingale if, for all f smooth on
M, f(X) is a real semimartingale.

Let M be a differential manifold endowed whit symmetric connection
VM. Let X be a semimartingale in M and @ be a 1-form on M defined
along X. We denote the Ito integral on M along the semimartingale X by
fg HdVMXS. Let b € TN defined along X. We denote the quadratic
integral on M along the semimartingale X by fé b(dX,dX)s.

Let M and N be differential manifolds endowed with symmetric connec-
tions VM and V¥, respectively. Let F : M — N be a differential map and
0 be a section of TN*. We have the following geometric It6 formula:

t t t
/HdVNF(XS)—/ F*0 dVMXSJr;/ Br0 (dX,dX)s, (1)
0 0 0

where [Sr is the second fundamental form of F' (see [1] or [13] for the defini-
tion of OF).

Definition 2.2 Let M be a differential manifold endowed with symmetric
connection VM. A semimartingale X with values in M is called a VM-
martingale if fg 0 d™ X, is a real local martingale for all § € T'(TM*).

Definition 2.3 Let M be a Riemannian manifold equipped with metric g.
Let B be a semimartingale with values in M, we say that B is a g-Brownian
motion in M if B is a VI-martingale, where V9 is the Levi-Civita connection
of g, and for any section b of T M we have that

t t
/ b(dB,dB), = / tr bp,ds. (2)
0 0

From (1) and (2) we deduce the useful formula:

t t 1 t
/ 04" F(B,) = / F*0d" By + / 750, ds, (3)
0 0 0

where 75 is the tension field of F'.
From formula (2) and Doob-Meyer decomposition it follows that F' is an
harmonic map if and only if it sends g-Brownian motions to V~-martingales.



Definition 2.4 Let M be a differential manifold endowed with symmetric
connection VM. M has the non-confluence of martingales property if for ev-
ery filtered space (Q, F, (Ft)t>0,P), M-valued martingales X and Y defined
over ) and every finite stopping time T such that

Xr=Yr a.s. we have X =Y over [0,T].

Example 2.1 Let M =V be a n-dimensional vector space with flat con-
nection V™. Let X and Y be V-valued martingales. Suppose that there are
a stopping time T with respect to (Fi)i>0, K > 0 such that 1 < K < oo and
X; =Y. Then straightforward calculus shows that X, =Y; fort € [0, 7].

Definition 2.5 A Riemmanian manifold M has the Brownian coupling prop-
erty if for all xo,y9 € M we can construct a complete probability space
(Q,F,P), a filtration (F;t > 0) and two Brownian motions X and Y, not
necessarily independents, but both adapted to filtration such that

Xo = 20, Yo = Yo
and
P(X; =Y; for somet >0) = 1.
The stopping time T(X,Y) = inf{t > 0; X; = Y3} is called coupling time.
Example 2.2 Let M be a complete Riemannian manifold. In [7], W.

Kendall has showed that if M is compact or M has nonnegative Ricci cur-
vature then M has the Brownian coupling property.

Let M be a Riemmanian manifold with metric g. Consider X and Y
two g-Brownian motion in M which satisfies the Brownian coupling property
and Xy = z,Yp = y, where x,y € M. Denote by T(X,Y) their coupling
time. The process Y is defined by

(Y, t<T(X,Y
Yt_{Xt > T(X,Y). (4)

~—

It is imediatelly that Yy = yo.

Proposition 2.1 Let M be a Riemannian manifold with metric g. Suppose
that M has the Brownian coupling property. Let X,Y be two g-Brownian
motions in M which satisfies the Brownian coupling property. Then the
process Y is a g-Brownian motion in M.

Proof: It is a straightforward proof from definition of Brownian motion.
O



3 Harmonic sections

Let P(M,G) be a principal fiber bundle over M and E(M, N, G, P) be an
associate fiber bundle to P(M, G). We denote the canonical projection from
P x N into E by u, namely, u(p,§) = p-§. For each p € P, we have the
map p, : N — E defined by p,(§) = pu(p,§). Let o : E— M be a section
of projection g, that is, mg o 0 = Idp;. There exists a unique equivariante
lift F,, : P — N associated to ¢ which is defined by

Fo(p) = pp ' 0o om(p). (5)

The equivariance property of F, is given by

F,(p-9)=g ' F,(p), ge€G.

Let us endow P and M with Riemmanian metrics k£ and g, respectively,
such that 7 : (P,k) — (M,g) is a Riemmanian submmersion. Let w be
a connection form on P. We observe that the connection form w yields a
horizontal structure on E, that is, for each b € E, T, E = V, E ® HyFE, where
Vo E = Ker(mgps) and HyE' is the horizontal subspace done by w on E (see
for example [6], pp.87). We denote by v: TE — VE and h: TE — HE
the vertical and horizontal projection, respectively.

Let VM denote the Levi-Civita connection on M and V¥ be a symmetric
connection on E. We follow B. O’Neill in [11] to define the Fundamental
tensor 1" for vector fields X and Y on E by

TxY = hVE vy + vVE hy.

We are interested in connections V¥ such that T = 0. We observe that
when 7g is a Riemannian submmersion the condition 7" = 0 is equivalent to
7w has totally geodesic fibers.

We denote by V? the vertical component of connection V¥ on TE, that
is, for X, Y vector fields on E we have

V%Y = vVE(vY).

Let us denote V? the induced connection of V¥ over fiber 7' (z) for all
x € M. We endow N with a connection V¥ such that, for each p € P, Hp
is an affine map over its image, the fiber 7' () with 7 (p) = =.

Let o be a section of 7. Write o, = vo, + ho,, where vo, and ho, are
the vertical and the horizontal component of o, respectively. The second
fundamental form for vo, is defined by

B =V'ovo, —va,o VM,



where V? is the induced connection on ¢ 1E. The vertical tension field is
given by
T, = trfy.
In the following we extend the definition given by C. M. Wood [15] of
harmonic section.

Definition 3.1 1. A section o of mg is called harmonic section if T2 = 0;
2. A differential map F : P — N s called horizontally harmonic if
Trpo(H® H) =0, where H is horizontal lift from M into P.

Definition 3.2 1. Let € TE*. We call 0 a vertical form if 6(X) = 0 for
every horizontal vector field on E.

2. A E-valued semimartingale X is called a vertical martingale if, for every
vertical form 6 on E, fg 0dV" X, is a real local martingale.

Let us denote by 3} the second fundamental form with respect to product
connection V¥V and vertical connection V?, that is,

B((X1,0), (X2, G2)) = Vi, (X2, G2) = o (VRN (X2, G2))
for X1, X5 vector fields on P and (y, (3 vector fields on V.

Lemma 3.1 Let p1, be an affine map, for each p € P. For every point (p,§)
in P x N we have that

(1) if X is a horizontal vector field on E, then N;?*l (X)=0;

(ii) le,gl)”*(X%C?)u(p,ﬁ) = Vﬁp*(gl),up*(@), for X1, Xo horizontal vectors
fields on P and (1, (s vectors fields on N;

(iii) B5((X, (), (X,0))pe) s a horizontal vector field, where X is a hori-
zontal vector field on P and ( is a vector field on N.

Proof: (i) The proof is straightforward.
(ii) Using definitions of V? and T we deduce that

?E)Xl,cl):“*(X% @) = Tup*(@)ﬂﬁ*(xl) = V[pp (C2) pex(X1)] + vap*(gl)ﬂp*<<2)~

From (i) and the fact that i, is a diffeomorphism we see that [t ((2), prex (X1)]
is not vertical. For this reason and the assumption that T'= 0 we conclude
that

v1(]X1,C1)'u"‘ (X2> CQ) = Vip*(gl)ﬂp*(éé),
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where V7 is the induced connection in the fiber 75! (z) with 7(p) = z.
(iii) Let (p,&) € P x N. Let X be a horizontal vector field on P and ¢ be
a vector field on N. From (ii) we see that

B, O (X, ey = Vi, oot () — 1o (VRS (X,Q))

where w(p) = x. As V{)Xxé\)](X, () =VEX + VéVC we have

32X, 0), (X, ) pe) = Vi (oyh(€) — 16 VEX — 15 V'€

Since fu, is an affine map, for each p € P, it follows that

/BZ((Xv <)7 (Xa C))(p,f) = _Mf*V§X.

As 7 is a Riemannian submmersion we have

Bu((X,€), (X,0)pe) = —Hesh(VEX),

where h(V£ X) is the horizontal componente of VL X, which completes the
proof. O

Now, we relate the geometric and stochastic concepts of harmonic section
and horizontally harmonic map.

Theorem 3.1 Let P(M,G) be a Riemannian principal fiber bundle endowed
with a connection form w and M a Riemannian manifold such that the
projection w of P into M is a Riemannian submmersion. Let E(M,N,G, P)
be an associated fiber to P endowed with a connection V¥ such that its
Fundamental tensor T s null. Moreover, suppose that N has a connection
VN such that tp s an affine map for each p € P. Then

(i) a E-valued semimartingale X is vertical martingale if and only if,u;loX
is a VN - martingale in N, where Y = wg(X)" is the horizontal lift of
mp(X) to P;

(ii) a section o of wg is harmonic section if and only if, for every g-
Brownian motion B in M, o(B) is a vertical martingale;

(iii) a equivariant lift F, associated to o, o a section of wg, is horizontally
harmonic map if and only if, for every horizontal Brownian motion
B" in P, F,(B") is a VN -martingale.



Proof: (i) Let X be a semimartingale in E and 6 be a vertical form on
E. Let us denote £ = M;,l o X. As X = u(Y,§) we have, by geometric 1t6
formula (1),

t t
/O A R AT S

0

t
— [ wod™ Vg 5 [ OV Ee) d(Y )
0
¢ N t P 1
_ * \% * v - VU
_ /O,Wsed §S+/0 uz.6d YS+2/BM O(d(Y;, &), (Y, ),

where third equality follows from Proposition 3.15 in [3]. Since V'Y, is
horizontal, it follows that f(f “ZS GdVPYS = 0. Hence

t t N 1
0dV" X, = 3.0dY &+ = | BUO(d(Ys, &), d(Ys, Es)).
/ | nod™ e 5 [ arone.g. g

Since 6 is vertical form, from Lemma 3.1 we see that

t t
/ 0dv" X, = / 1w 0dv " €.
0 0

So we conclude that f(f 0dV" X, is local martingale if and only if fg Ky, OdVNE,
is too, and proof is complete.

(ii) Let B be a g-Brownian motion in M and 6 be a vertical form on E. By
formula (3),

t N t 1 t
/ 0 4" 0(B,) = / "0 V"' B, + + / 700(B,) ds.
0 0 2 Jo

We observe that [ o*6 av" B; is a real local martingale. Since B and 6 are
arbitraries, Doob-Meyer decomposition assure that fg 6 dV'o(Bs) is real
local martingale if and only if 77 vanishes. From definitions of vertical
martingale and harmonic section we conclude the proof.
(iii) Let B be a g-Brownian motion in M and B" be a horizontal Brownian
motion in P, that is,

dB" = HpdB, (6)

where H is the horizontal lift of M to P. Set § € T'(TN*). By geometric
It6 formula (1),

t t t
/9dVNFU(Bg):/ F0 dVPB§+/ B 0(dB", dB),.
0 0 0

8



From (6) we see that

t t t
/ 9 dV" F,(B") = / H*F0 d¥" B, + / 3t 0(HpdB, HpdB)s.
0 0 0
As B is Brownian motion we have

t t t
/edVNFU(Bg)—/ H*F'0 dVMBS+/ (£ )*0(Bs)ds,
0 0 0

where Tg = 7p, o (H ® H). Since § and B are arbitraries, Doob-Meyer

decomposition shows that fg 0dV" F, (B") is real local martingale if and only
if Tg vanishes. From definitions of martingale and horizontally harmonic
map we conclude the proof. O

Now we give an extension of the characterization of harmonic sections
obtained by C.M. Wood, see Theorem 1 in [15].

Theorem 3.2 Under the hypotheses of Theorem 3.1, a section o of mg is
harmonic section if and only if F, is horizontally harmonic map.

Proof: Let B be a arbitrary g-Brownian motion in M and B" be a horin-
zontal lift of B in P, see equation (6).

Suppose that o is a harmonic section. Theorem 3.1, item (ii), shows that
o(B) is a vertical martingale. But u;}b o o(B) is a VV-martingale, which
follows from Theorem 3.1, item (i). Since F,(B") = ,u];,lL oo on(B"), it
follows that F,(B") is a VV-martingale. Finally, Theorem 3.1, item (iii),
shows that F, is horizontally harmonic map.

Conversely, suppose that F, is a horizontally harmonic map. Theorem
3.1, item (iii), shows that F,(B") is a VN-martingale. Since F,(B") =
u;}b ogon(B"), it follows that u;}boa(B) is a VV-martingale. From Theorem
3.1, item (i), we see that o(B) is a vertical martingale. We conclude from
Theorem 3.1, item (ii), that ¢ is a harmonic section. O

4 A Liouville theorem for harmonic sections

We begin this section defining the Kaluza-Klein metric on P(M,G). Let
P(M, G) be a principal fiber bundle endowed with a connection form w, M
be a Riemannian manifold with a metric ¢ and h be a bi-invariant metric
on G. The Kaluza-Klein metric is defined by

k=n"g+w"h. (7)



From now on P(M,G) is endowed with the Kaluza-Klein metric.
We will denote by dp and dg the Riemannian distance of P and G,
respectively.

Lemma 4.1 Let P(M,G) be a principal fiber bundle whit a Kaluza-Klein
metric k, where g is the Riemannian metric on M and h is the bi-invariant
metric on G associated to k. The following assertions are holds:

(i) Let T :[0,1] — P be a differential curve such that 7(t) = u - u(t) with
7(0) = u and u(t) € G, then

Akﬁwﬁwﬁﬁ=éhmwmwﬁw

(ii) Let 7:[0,1] — P be a differential curve. If v is a curve in M and if u
is a curve in G such that 7 = y(t)" - u(t), then

1 1 1 1 1 1
/MWMWMK/MWMWMH/MNMWMt
0 0 0

(iii) Let x € M and u,v,w € 7w Y(z). If a,b are points in G such that
v=u-a and w=u-b, then

dp(v,w) = dg(a,b).

Proof: (i) and (ii) The proofs are straightforward.

(iii) Let 7 : [0,1] — P be a differential curve such that 7(0) = v and
7(1) = w. Consider a curve v in M such that 7(7) = v. There exists a
differential curve p in G such that ;(0) = a, (1) = b and 7 = 4" - u. We
observe that 'y(O) = 2 and (1) = x. This gives fol g("y(t),"y(t))%dt = 0.
Thus from item (i) and item (ii) we conclude that

/k lehwmwww

Therefore it is only necessary to consider vertical curves. It follows that
dp(v,w) =dp(u-a,u-b) =dg(a,b), by definition of Riemmanian distance.
O

Theorem 4.1 Let P(M,G) be a principal fiber bundle equipped with Kaluza-
Klein metric and E(M,N,G, P) be an associated fiber to P. Let V¥ and
VY be connetions on E and N, respectively, such that the Fundamental ten-
sor T' is null and p, is an affine map for each p € P. Moreover, if N has
the non-confluence martingales property and if M and G have the Brownian
coupling property, then

10



(1) a section o of mg is harmonic section if and only if Fy is constante map;

(ii) the left action of G into N has a fix point if there exists a harmonic
section o of Tg;

(iii) a section o of g is harmonic section if and only if o is parallel.

Proof: (i) We first suppose that F, is a constante map. Then it is
immediately that 77 = 0, so ¢ is harmonic section.

Conversely, the proof will be divided into two parts. Firstly, we found a
suitable stopping time 7. After, we use 7 to prove that F, is constant over
P.

Choose x,y € M arbitraries. By assumption about M, there exists two
g-Brownian motion X and Y in M such that X¢o = z and Yy = y, which
satisfy the Brownian coupling property. Consequently, the coupling time
T(X,Y) is finite. Proposition 2.1 now assures that the process

- [ Y, t<T(X,Y)
Yt‘{Xt , t>T(X,Y) ®)

is a g-Brownian motion in M.

Let a,b € G be arbitraries points. Since G has the Brownian coupling
property, we have two h-Brownian motion y and v in G such that ug = a,
vy = b. Moreover, there is a finite coupling time 7T'(u, ). But the process

_ v, t<T(u,v)
= 9
. { pe o, t= T(M? V) ( )

is a h-Brownian motion in G, which follows from Proposition 2.1.

Set u,v € P such that 7(u) = z and 7(v) = y. Consider two horizontal
Brownian motion X* and Y" in P such that X(’} = u and l_/oh = v. Define
T=T(X,Y)VT(u,v). We claim that

XM=Y 5, a8V t>1 (10)

In fact, we need consider two cases. First, suppose that T(X,Y) < T'(u,v).
For all ¢t > T'(u,v) we have

dP(XZL i, ?;th ’ 171‘/) = dP(Xth ) :utai/;fh ) :ut) = dP(R,utXtha Rm?th)-
Since k is the Kaluza-Klein metric, it follows that

dp(XP - e, Y- 7) = dy (X4, V).

11



From (8) we conclude that (10) is satisfied for all ¢ > T'(u, v).
In the other side, suppose that T(X,Y) > T(u,v). For all t > T(X,Y),
Lemma 4.1, item (iii), assures that

dp(X{" - e, V' - 2) = dp(X] - o, XT' - 1) = da(ps, 7).

From (9) we conclude that (10) is satisfied for all ¢ > T(X,Y).

Setting t > 7 we obtain F,(X['- ) = F,(Y;*-1;). Since F, is equivariant
by right action, p; ' - F,(X}) = ;' - E,(Y}"). Because py = i for t > 7, we
conclude that F,(X}) = F,(Y,").

Since o is a harmonic section, from Theorem 3.2 we see that F, is a hor-
izontally harmonic map. Theorem 3.1 now shows that F,(X}) and F,(Y;")

are VN-martingales in N. Since N has non-confluence martingales property,
FU(X(})Z) = FJ(YOh)-

It follows immediately that F,(u) = Fy(v). Consequently, F;, is a constant
map.

(ii) Let o be a harmonic section of 7g. From item (i) there exists £ € N
such that F,(p) = & for all p € P. We claim that £ is a fix point. In fact,
set a € G. From equivariant property of F, we deduce that

a-é=a-F,(p)=F,(p-a~')=¢

(iii) Let o be a section of mp. Suppose that o is parallel. Then 0. (X)
is horizontal for all X € TM (see for example [6], pp.114). This gives
vo,(X) = 0. Then it is clear, by definition, that ¢ is harmonic section.
Suppose that o is a harmonic section. From item (i) it follows that there
exists £ € N such that F,(p) = ¢ for all p € P. By definition of equivariant
lift,
o(z) =comn(p) = pu(p,&) = pe(p), n(p) ==,

where ¢ is an application from P into E. Let v € T, M and let y(t) be a
curve in M such that v(0) = z and 4(0) = v. Then

d

== pe 0 /" (t) = pe.(7(0)),

0

o+(v) Tt

d
ooy(t) = —
0

where 7" is the horizontal lift of v into P. Since 4"(0) is horizontal vector
in P, so is pe(9"(0)) in E (see for example [6], pp.87). Therefore o, (v) is
horizontal vector. So we conclude that o is parallel. O

12



Tangent bundle

Let M be a complete Riemannian manifold which is compact or has non-
negative Ricci curvature. Let OM be the ortonormal frame bundle endowed
whit the Kaluza-Klein metric. Let TM be the tangent bundle equipped
with the Sasaky metric g;. Thus 7 is a Riemannian submersion with to-
tally geodesic fibers and, for each p € P, pu, is a isometric map (see for
example [10]). From these assumptions and Examples 2.1 and 2.2 it follows
that the hypotheses of Theorem 4.1 are satisfied.

Proposition 4.2 Under conditions stated above, if o is a harmonic section
of T, then o is the 0-section.

Proof: Let o be a harmonic section of mrys. By Theorem 4.1, item (i),
there exists & € N such that F,(u) = ¢ for all u € P. Moreover, by item (ii)
¢ is a fix point of left action of O(n,R) into R™. We observe that 0 € R” is
the unique fix point to this left action. Thus get F,(u) = 0. Therefore o is
the 0-section. O

Hopf fibration

Let ST — §2"=1 — CP"! be a Hopf fibration. It is well know that
S2n=1(CP"~!, S1) is a principal fiber bundle. We recall that U(1) = S'. Let
¢ be the aplication of U(1) x C™ into C™ given by

(9, (215, 2m)) = g (21, 2m) = (921, - -+, 92m). (11)

Clearly, ¢ is a left action of U(1) into C™. Thus, we can consider C™ as stan-
dard fiber of associate fiber ~E(CP"1 C™, St S?" 1), where
E = 821 x v) C™. We are considering the canonical scalar product
<,> on C" and the induced Riemannian metric g on CP"~!. Since U(1) is
invariant by <, >, there exists one and only one Riemannian metric § on £
such that 7 is a Riemannian submersion from (E, §) to (M, g) with totally
geodesic fibers isometrics to (N, <,>) (see for example [13]). From these
assumptions and examples 2.1 and 2.2 wee see that hypotheses of Theorem
4.1 are holds.

Proposition 4.3 Under conditions stated above, if o is a harmonic section
of T, then o is the 0-section.

Proof: We first observe that (0,...,0) is the unique fix point to the left
action (11). Since o is harmonic section, from Theorem 4.1 we see that F,,

13



is constant map and F,(p) = (0,...,0) for all p € S?"~1. Therefore o is the

0-section. O
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