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Abstract

We generalize results in [C-dR] by completely describing how the Betti numbers
of the boundary of an orientable manifold vary after attaching a handle, when the
homology coefficients are in Z, Q, R or Z

pZ with p prime. Next we consider the
Ogasa invariant associated with handle decompositions of manifolds. We make use of
the above results in order to obtain upper bounds for the Ogasa invariant of product
manifolds.
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1 Introduction

It is well known that Morse-Smale systems exhibit gradient-like behaviour. In [Sm],
[Mey] it was proved that they possess Lyapunov functions. In fact, Conley [Co] gener-
alized these results by proving the existence of Lyapunov functions for any continuous
flow on smooth compact manifolds. Hence the question of understanding the topology
of level sets associated with Lyapunov functions is quite natural.

Morse-Smale flows on a smooth n-dimensional manifold M were considered to-
gether with a handle decomposition associated with a Lyapunov function in [C-dR].
Thus, after the attachment of a handle corresponding to a singularity (or a round
handle corresponding to a periodic orbit) one can consider the effect on the new reg-
ular level set. The authors completely describe how the Betti numbers of the level
set vary after attaching a (round) handle when the homology coefficients are taken
in Z

2Z . These results were generalized in [Be-Me-dR1] by considering continuous flows
associated with Lyapunov functions on n-dimensional manifolds. More specifically, a
flow in the isolating block N of an isolated invariant set S with possibly complicated
dynamical behavior was considered. The effect on the Betti numbers of the regular
level sets corresponding to the incoming N+ and outgoing N− boundaries of the flow
in N were determined in terms of the homology indices of S.

A new invariant associated with a handle decomposition of a smooth manifold
was introduced in [O]. Ogasa suggests that one way of measuring the simplicity of a
Morse flow is to compute, for each regular level, the sum of its Betti numbers, and
then take the maximum of the obtained values. Given an n-dimensional manifold, its
Ogasa invariant is then the minimum, over all Morse flows, of these maxima. In other
words, a Morse flow realizing the Ogasa invariant of the manifold is one for which
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the maximum of the sums of the Betti numbers of each regular level is the smallest
possible.

In this paper, we consider handle decompositions of n-dimensional manifolds from
a dynamical point of view in order to understand the Ogasa invariant as a detector of
complicated dynamical behavior as we will motivate subsequently.

Our first result generalizes results in [C-dR] by completely describing the effect
that attaching a handle has on the Betti numbers of the boundary, when the homology
coefficients are chosen among the most standard ones, that is, Z, Q, R or Z

pZ , with p
prime. Since such a description is technical, we state it in a simpler way and refer the
reader to Theorem 3.1 for the detailed version.

Theorem 1. Let N be an n-dimensional manifold with compact orientable boundary
∂N = N+tN−, endowed with a Morse flow entering through the regular level set N+,
exiting through the regular level set N− and containing a unique singularity of index l
inside N . Let the homology coefficients be chosen in Z, Q, R or Z

pZ , with p prime.
Then the Betti numbers of N+ and N− are the same except for both βl and βn−1−l

or both βl−1 and βn−l, for which the behaviour is classified.

Roughly speaking, up to few exceptions, attaching a handle of index l can either
increase by 1 the l-th Betti number and its dual (i.e. βl(N+) = βl(N−) + 1 and
βn−1−l(N+) = βn−1−l(N−) + 1) or can decrease by 1 the (l − 1)-th Betti number of
N+ and its dual (n− l). The most significant exception is given in the case n = 2i by
l = i for which there is also the possibility for all the Betti numbers to keep unchanged
(and when it happens we shall speak of invariant handles).

On one hand, our generalization implies that

Corollary 2. All the results and machinery using Conley Index Theory and con-
tinuation of Lyapunov graphs developed in [Be-Me-dR1], [Be-Me-dR2], [Be-dR-V]
and [Be-dR-Man-V] are still true, independently of the homology coefficients, provided
that they be chosen in Z, Q, R or Z

pZ , with p prime.

On the other hand, Theorem 1 allows us to use the Ogasa invariant to detect
complicated chain recurrent components of a flow in the following sense. Our result
tells us that attaching a handle can change the sum of the Betti numbers of the
regular levels by 0, 2 or −2. Hence, for instance, if a manifold is known to have Ogasa
invariant equal to 32 and we know that the sum of the Betti numbers of each section of
a filtration of a gradient-like flow is less than, say, 10, then, it necessarily means that
at least one of the isolating neighbourhoods of the filtration cannot be built with less
than 22 handles1, which must reveal a complexity of the chain recurrent component
inside it.

The problem of this invariant is that it seems very difficult to be computed, except
for some easy examples. In particular it is very difficult to find significant lower
bounds. Even for manifolds M which are the connected sum X]Y of two manifolds
X and Y , it is very easy to show that the Ogasa invariant of M is less than or equal
to the maximum between the Ogasa invariant of X and that of Y (see [O]). However,
we want to emphasize that equality might not hold, as M = CP2](S2 × S2) shows2.

1In fact, let us consider any handle decomposition of each of the isolating neighbourhoods of the given
gradient-like flow. If we compute the sum of the Betti numbers of the regular levels of the corresponding
Morse flow, at least in one of them we must reach at least 32 by definition of the Ogasa invariant. Under our
assumptions, abstractly speaking, the most economical way of reaching it would be between two sections
for which the sum of the Betti numbers is 10 with 22 handles, 11 of which increase by 2 the sum of the
Betti numbers of the boundary in order to reach the value 32, and 11 of which decrease by 2 the sum of
the Betti numbers of the boundary in order to go back to 10.

2The Ogasa invariant of CP2 is 2, that of S2 × S2 is 4, that of M is 2 because M can also be seen as
CP2](CP2]−CP2).
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In order to investigate possible ways to compute such an invariant, in the second
part of this paper we focus on product manifolds M = P ×Q.

We first consider a way of building a handle decomposition of the product M
from handle decompositions of the factors P and Q. By applying Theorem 1 to this
construction we can prove that the following upper bounds hold.

Theorem 3. Let R denote one of the following rings: Z
pZ (p prime), Z, Q or R. Let

P be a p-dimensional closed orientable manifold and let HP be a handle decomposition
of P of LP handles. Let Q be a q-dimensional closed orientable manifold and let HQ

be a handle decomposition of Q realizing the Ogasa invariant of Q denoted by ν(Q).
Let βk(P ; R) denote the k-th Betti number of P , computed with respect to R, the ring
of the homology coefficients. Then:

1. if HQ contains no invariant handle, we have

ν(P ×Q; R) ≤ LP + (ν(Q; R)− 1) ·
p∑

j=0

βj(P ; R)

2. if HQ contains at least one invariant handle, we have

ν(P ×Q; R) ≤ 2bLP

2
c+ ν(Q; R) ·

p∑
j=0

βj(P ; R)

Note that in the original definition of [O], the homology and, consequently, the
Betti numbers, are computed by considering coefficients in R. We have naturally
extended the definition by adding the dependence on the coefficient ring R.

Concerning these inequalities, they can be sharp in some cases, e.g. inequality of
Item 1 for S1 × S2, but there are examples for which the opposite inequality doesn’t
hold (of course, even when interchanging the role of P and Q). An interesting example
of the latter case is L3,1 × S2, where L3,1 is the lens space associated with the couple
(3, 1) and the possible homology coefficients are Z, Q, R or Z

2Z . Theorem 3 insures
that ν(L3,1 × S2) ≤ 6, but explicit computation (see Subsection 4.2) shows that
ν(L3,1 × S2) = 4. The reason why the Ogasa invariant is less than expected is due to
the presence of torsion of order 3 in the regular levels. In this sense, this example is
new with respect to those in [O].

By looking closer at Theorem 3, other related results and questions naturally arise
(see Subsection 4.4 for further details).

Finally, there are two ways of considering a Morse flow to be a “simplest” one:
firstly, the classical, by minimizing the number of singularities; secondly, Ogasa’s, by
minimizing the complexity of the regular levels. It is interesting to compare the two
approaches. For instance, for Sp × Sq, the Ogasa invariant is four and is achieved by
a handle decomposition corresponding to a Morse flow having the minimal number of
singularities. In general, it remains an open question for which classes of manifolds, if
not all, the Ogasa invariant is achieved by a handle decomposition corresponding to
a Morse flow having the minimal number of singularities.

The paper is organized as follows. Section 2 contains background material.
Section 3 is devoted to Theorem 1 and its proof. In Section 4 we study product
manifolds: in particular we prove Theorem 3 and discuss its consequences.
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2 Notation and general definitions

2.1 Handle decompositions of a manifold

The theory of handle decompositions is very classical. We briefly recall the needed
definitions and set our notation. Let Dm denote the m-dimensional closed ball. We
say that the m-dimensional manifold B is obtained by gluing the index-q handle hq

to the (maybe empty) m-dimensional manifold A if:

• hq is homeomorphic to Dm

• B is homeomorphic to the space A ∪Φ hq, where

Φ : Sq−1 ×Dm−q ⊂ ∂hq −→ ∂A

is a homeomorphism onto its image.

The homeomorphism Φ above is classically called the attaching map, its domain is
called the attaching region of the q-handle hq, while the complementary set Dq ×
Sm−q−1 of ∂hq is called the belt region of hq.

Let M be a given m-dimensional closed manifold. Roughly speaking, an ordered
handle decomposition H of M is a sequence

M0,M1, . . . ,MLH

of (LH + 1) m-dimensional manifolds such that:

• M0 = ∅, M1 = Dm and MLH = M ;
• for all j = 1, . . . , LH, Mj is obtained by gluing a handle to Mj−1.

More precisely, an (ordered) handle decomposition also contains explicitly the infor-
mation about the gluing, so that in the sequel, an ordered handle decomposition of M
will be denoted by

H =
[
(h(1)

0 , ϕ1), . . . , (h
(l)
j , ϕl), . . . , (hLH

m , ϕLH)
]

where

• LH denotes the total number of handles in the decomposition;

• the subscript j in h(l)
j denotes the index of the handle h(l)

j ;

• the exponent (l) in h
(l)
j indicates that the handle h(l)

j is the l-th handle to be
glued in the ordered handle decomposition H;

• ifMl is the manifold obtained after gluing the first l handles of the decomposition,
then ϕl : Sj−1 ×Dm−j −→ ∂Ml−1 is the attaching map associated with h(l)

j , that

is, the map describing how the handle h(l)
j is glued to Ml−1 in order to build Ml;

in particular ϕ1 : ∅ −→ ∅ is always the empty map.

Brackets are there to emphasize that the decomposition is ordered. Sometimes, we
shall write, for short, H =

[
h

(1)
0 , . . . , h

(l)
j , . . . , hLH

m

]
but it is understood that the

gluing comes together with the handle. As an example, the canonical two-handle
decomposition of the sphere Sn will be denoted by

[
h

(1)
0 , h

(2)
n

]
and the underlying

ϕ2 : Sn−1 −→ Sn−1 is for instance the identity on Sn−1.
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2.2 Homology of product manifolds

Let us briefly recall here the Künneth formula (see for instance [Mat] or [Br]), which
allows us to compute the homology of the product of two manifolds.

Theorem 2.1. (Künneth formula) Let X and Y be two finitely generated free com-
plexes. Then, for all k we have

Hk(X × Y ) =

( ⊕
a+b=k

Ha(X)⊗Hb(Y )

)
⊕

( ⊕
a+b=k−1

Tor(Ha(X),Hb(Y ))

)

where ⊗ denotes the tensor product, while Tor(·, ·) denotes the torsion product.

In [Mat] one can find the main rules for the computation of these products.

2.3 Homology with coefficients, Betti numbers and Ogasa in-
variant

In the sequel we shall be interested in considering homology groups with coefficients
in an Abelian group G which, for us, will be chosen among Z

pZ (p prime), Z, Q and
R.

Theorem 2.2. (Universal Coefficient Theorem) For any Abelian group G, any sim-
plicial complex X and any integer k, we have

Hk(X; G) = (Hk(X; Z)⊗G)⊕ (Tor(Hk−1(X; Z), G))

Definition 2.3. (Betti numbers) Let R denote the ring of the homology coefficients,
which can be chosen among Z

pZ (p prime), Z, Q and R. If R = Z, then for j =
0 . . . (n− 1) the j-th Betti number of the (n− 1)-dimensional manifold N , denoted by
βj(N ; Z), is defined as the rank of the Abelian group Hj(N ; Z). In all the other cases,
R is a field, and for j = 0 . . . (n− 1) the j-th Betti number of the (n− 1)-dimensional
manifold N , denoted by βj(N ; R), is defined as the dimension of the vector space
Hj(N ; R).

Note that, when N is orientable, by the Universal Coefficient Theorem, the Betti
numbers relative to Z are the same as those relative to Q or R.

Definition 2.4. (Ogasa invariant, [O]) Let R denote the ring of the homology coeffi-
cients, which can be chosen among Z

pZ (p prime), Z, Q or R. For any ordered handle
decomposition H of M , let

νH(M ; R) = max
l=1,...,LH

(
n−1∑
i=0

βi(Nl; R)

)

where βi(Nl; R) denotes the i-th Betti number of the (n − 1)-dimensional mani-
fold Nl = ∂Ml, which is the boundary of the manifold obtained after attaching the
first l handles of H. The Ogasa invariant of the manifold M (relative to R) is the
number defined by:

ν(M ; R) = min
H

νH(M ; R)

where the minimum is taken over all of the ordered handle decompositions of M .

Note that in the original paper [O], the author only considers the case where R
is R, the field of the real numbers.
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3 The effect on the Betti numbers of regular levels
after handle attachments

3.1 Main result

In this section we prove the following theorem which describes explicitly how the
Betti numbers of the regular levels may change when only a Morse singularity of
index l is contained in between them. It is a generalization, concerning the homology
coefficients, of the analogous result proved in [C-dR] for coefficients in Z

2Z .

Theorem 3.1. Let N be an n-dimensional manifold obtained by attaching a handle
of index l to the collar of an (n − 1)-dimensional closed orientable manifold denoted
by N−. Let N+ denote the new boundary ∂N\N−. Let R denote the ring of the
homology coefficients, which can be chosen among Z

pZ (p prime), Z, Q or R. For all
k = 0, . . . , (n − 1) let βk(N−; R) (resp. βk(N+; R)) denote the k-th Betti number
of N− (resp. N+), computed with respect to R. Then we have:

1. if l = 0 then β0(N+; R) = β0(N−; R) + 1
βn−1(N+; R) = βn−1(N−; R) + 1
βk(N+; R) = βk(N−; R) for all k 6= 0 and k 6= n− 1;

if l = n− 1 then β0(N+; R) = β0(N−; R)− 1
βn−1(N+; R) = βn−1(N−; R)− 1
βk(N+; R) = βk(N−; R) for all k 6= 0 and k 6= n− 1;

2. if n = 2i+ 1
(a) if l = i then

either

{
βi(N+; R) = βi(N−; R) + 2
βk(N+; R) = βk(N−; R) for all k 6= i

or

 βi−1(N+; R) = βi−1(N−; R)− 1
βi+1(N+; R) = βi+1(N−; R)− 1
βk(N+; R) = βk(N−; R) for all k 6= i− 1 and k 6= i+ 1;

(b) if l = i+ 1 then

either

 βi−1(N+; R) = βi−1(N−; R) + 1
βi+1(N+; R) = βi+1(N−; R) + 1
βk(N+; R) = βk(N−; R) for all k 6= i− 1 and k 6= i+ 1

or

{
βi(N+; R) = βi(N−; R)− 2
βk(N+; R) = βk(N−; R) for all k 6= i;

3. if n = 2i and l = i then

either βk(N+; R) = βk(N−; R) for all k

or

 βi(N+; R) = βi(N−; R) + 1
βi−1(N+; R) = βi−1(N−; R) + 1
βk(N+; R) = βk(N−; R) for all k 6= i and k 6= i− 1

or

 βi−1(N+; R) = βi−1(N−; R)− 1
βi(N+; R) = βi(N−; R)− 1
βk(N+; R) = βk(N−; R) for all k 6= i and k 6= i− 1;
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4. for all the other cases, we have

either

 βl(N+; R) = βl(N−; R) + 1
βn−1−l(N+; R) = βn−1−l(N−; R) + 1
βk(N+; R) = βk(N−; R) for all k 6= l and k 6= n− 1− l

or

 βl−1(N+; R) = βl−1(N−; R)− 1
βn−l(N+; R) = βn−l(N−; R)− 1
βk(N+; R) = βk(N−; R) for all k 6= l − 1 and k 6= n− l.

Corollary 3.2. The Ogasa invariant of an orientable closed n-dimensional mani-
fold M is always even and if M admits a handle decomposition of L̃M non-invariant
handles, then, for R equal to Z

pZ (p prime), Z, Q or R, we have that ν(M ; R) ≤ L̃M .

3.2 Preliminary Lemmas

First let us note that, by the Universal Coefficient Theorem, the Betti numbers relative
to R and Q are, in our setting, the same as those computed with respect to Z. Let
us then assume R to be Z

pZ (p prime) or Z.
The main ingredient of the proof of Theorem 3.1 will be the study of the following

two long exact sequences. The first one, denoted by LES−, concerns the index pair
(N,N−) obtained by attaching a handle of index l to N−:

. . .
p−j+1−−−→ Hj+1(N,N−; R)

∂−j+1−−−→ Hj(N−; R)
i−j−→ Hj(N ; R)

p−j−−→ Hj(N,N−; R)
∂−j−−→ . . . (1)

The second one, denoted by LES+, is obtained by considering the opposite flow, and
is therefore related to the index pairs (N,N+) obtained by attaching a handle of
index (n− l) to N+:

. . .
p+

j+1−−−→ Hj+1(N,N+; R)
∂+

j+1−−−→ Hj(N+; R)
i+j−→ Hj(N ; R)

p+
j−−→ Hj(N,N+; R)

∂+
j−−→ . . . (2)

Another useful tool will be the following lemma.

Lemma 3.3. Let R be Z
pZ (p prime) or Z. Then,

for all k 6= l and k 6= l − 1 we have βk(N−; R) = βk(N ; R);
for all k 6= n− 1− l and k 6= n− l we have βk(N+; R) = βk(N ; R).

Proof. We know that the only non-zero homology group of the index pair (N,N−) is
Hl(N,N−; R) = R. Hence, for all k 6= l and k 6= l− 1 the long exact sequence LES−
splits into 0 → Hk(N−; R) → Hk(N ; R) → 0. Hk(N−; R) is therefore isomorphic
to Hk(N ; R), thus implying βk(N−; R) = βk(N ; R). The analogous statement
concerning N+ and N follows in the same way from the analysis of LES+.

The following lemma allows us to generalize the result in [C-dR].

Lemma 3.4. Let R be Z
pZ (p prime) or Z. If R = Z let A, B, D and E be arbitrary

finitely generated Abelian groups, and let rank(A) denote the rank of A, that is, the
dimension of the largest torsion-free subgroup of A. If R = Z

pZ (p prime), let A, B,
D and E be arbitrary finite dimensional vector spaces over R, and let rank(A) denote
the rank of A, that is, the dimension of A as a vector spaces over R. If the sequence

0 → A→ B
p−→ R

∂−→ D → E → 0

is exact, then we have:
a) if ker ∂ = 0 then rank(A) = rank(B) and rank(D) = rank(E) + 1;
b) if ker ∂ 6= 0 then rank(B) = rank(A) + 1 and rank(D) = rank(E);
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Proof. If ker ∂ = 0, then the exact sequence splits into the two exact sequences

0 → A→ B
p−→ 0 and 0 → R

∂−→ D → E → 0

so that A is isomorphic to B and D is isomorphic to E ⊕R, thus implying case a).
If ker ∂ 6= 0 and ker ∂ = R, then the exact sequence splits into the two exact

sequences
0 → A→ B

p−→ R→ 0 and 0 → D → E → 0

thus implying B isomorphic to A ⊕ R and D isomorphic to E. If R = Z
pZ (p prime),

this solves case b).
If R = Z, only one more case is left, that is, ker ∂ 6= 0 and ker ∂ = mZ, m ∈ N∗

and m 6= 1. Then the sequence splits into the two exact sequences

0 → A→ B
p−→ Z → Z

mZ
→ 0 and 0 → Z ·m−−→ Z → D → E → 0

where ·m denotes the multiplication by m. By the Rank-Nullity theorem, given an
exact sequence, the alternating sum of the ranks of the appearing groups is zero, and
case b) is done also for R = Z.

3.3 Proof of Theorem 3.1

Proof of Item 1
Straighforward. If l = 0, N+ is the disjoint union of N− and Sn−1.
The case l = n follows from the previous one by considering the reverse flow, thus
interchanging the role of N+ and N−.

Proof of Item 2 (a)
Lemma 3.3 implies that for all k 6= i, k 6= i − 1 and k 6= i + 1, we have
βk(N−; R) = βk(N ; R) = βk(N+; R).

In order to study the remaining indices, we shall consider the two exact sequences
extracted from LES− and LES+:

0 → Hi(N−; R) → Hi(N ; R) → R
∂−i−−→ Hi−1(N−; R) → Hi−1(N ; R) → 0 (1′)

0 → Hi+1(N+; R) → Hi+1(N ; R) → R
∂+

i+1−−−→ Hi(N+; R) → Hi(N ; R) → 0 (2′)

In the sequel we shall study these sequences with the help of Lemma 3.4 and use the
equalities below, resulting from Lemma 3.3:

βi+1(N−; R) = βi+1(N ; R) and βi−1(N+; R) = βi−1(N ; R) (3)

Case 1: ker ∂−l = 0 and ker ∂+
n−l = 0. This case cannot occur because it

contradicts the Poincaré Duality. We should have βi−1(N+; R) = βi+1(N+; R), but
under our assumptions:
βi−1(N+; R) = βi−1(N ; R) by (3);
βi−1(N ; R) = βi−1(N−; R)− 1 by Lemma 3.4 applied to sequence (1′);
βi−1(N−; R)− 1 = βi+1(N−; R)− 1 by the Poincaré Duality;
βi+1(N−; R)− 1 = βi+1(N ; R)− 1 by (3);
βi+1(N ; R)− 1 = βi+1(N+; R)− 1 by Lemma 3.4 applied to sequence (2′)
so that βi−1(N+; R) = βi+1(N+; R)− 1 which is the wanted contradiction.

Case 2: ker ∂−l = 0 and ker ∂+
n−l 6= 0. Lemma 3.4 applied to sequences (1′) and (2′)

implies{
βi(N ; R) = βi(N−; R) and βi−1(N−; R) = βi−1(N ; R) + 1
βi+1(N ; R) = βi+1(N+; R) + 1 and βi(N+; R) = βi(N ; R).
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and, after substituting (3), we get

 βi−1(N+; R) = βi−1(N−; R)− 1
βi+1(N+; R) = βi+1(N−; R)− 1
βi(N+; R) = βi(N−; R)

Case 3: ker ∂−l 6= 0 and ker ∂+
n−l = 0. Lemma 3.4 applied to sequences (1′) and (2′)

implies {
βi(N ; R) = βi(N−; R) + 1 and βi−1(N−; R) = βi−1(N ; R)
βi+1(N ; R) = βi+1(N+; R) and βi(N+; R) = βi(N ; R) + 1

and, after substituting (3), we get
{
βi(N+; R) = βi(N−; R) + 2
βk(N+; R) = βk(N−; R) for k = i− 1 and k = i+ 1.

Case 4: ker ∂−l 6= 0 and ker ∂+
n−l 6= 0. The situation here is symmetric to the one

of Case 1 and cannot occur. Under our assumptions:
βi+1(N−; R) = βi+1(N ; R) by (3);
βi+1(N ; R) = βi+1(N+; R) + 1 by Lemma 3.4 applied to sequence (2′);
βi+1(N+; R) + 1 = βi−1(N+; R) + 1 by the Poincaré Duality;
βi−1(N+; R) + 1 = βi−1(N ; R) + 1 by (3);
βi−1(N ; R) + 1 = βi−1(N−; R) + 1 by Lemma 3.4 applied to sequence (1′)
so that βi+1(N−; R) = βi−1(N−; R) + 1 which contradicts the Poincaré Duality.

Proofs of Item 2 (b), Item 3 and Item 4
These proofs are completely analogous to that of Item 2 (a). For each of the four
cases of Item 2 (a), we solve the system in which the unknowns are the Betti numbers
of N+ and N−, and the equations are given by:

- the thesis of Lemma 3.3
- the thesis of Lemma 3.4 applied to the exact sequences extracted from LES− and

LES+:

0 → Hl(N−; R) → Hl(N ; R) → R
∂−l−−→ Hl−1(N−; R) → Hl−1(N ; R) → 0

0 → Hn−l(N+; R) → Hn−l(N ; R) → R
∂+

n−l−−−→ Hn−l−1(N+; R) → Hn−l−1(N ; R) → 0

4 Applications to product manifolds

4.1 Handle decompositions of the product of two manifolds

In what follows we describe a method for constructing a handle decomposition of the
product space P ×Q, once a handle decomposition of P and a handle decomposition
of Q are known.

Proposition 4.1. Let P be a p-dimensional manifold with handle decomposition
HP =

[
(f (1)

0 , ϕ1), . . . , (f
(l)
i , ϕl), . . . , (fLP

p , ϕLP
)
]
, and let Q be a q-dimensional man-

ifold with handle decomposition HQ =
[
(g(1)

0 , ψ1), . . . , (g
(m)
j , ψm), . . . , (gLQ

q , ψLQ
)
]
.

Then HP and HQ induce a handle decomposition HP×Q of the (p + q)-dimensional
manifold P ×Q such that

• the total number of handles of HP×Q is LP · LQ;
• all the ((p+ q)-dimensional) handles hk of HP×Q of index k are of the form

f
(l)
i × g

(m)
j with f

(l)
i ∈ HP ; g

(m)
j ∈ HQ and i+ j = k;

9



• if n = (m − 1)LP + l, with 1 ≤ l ≤ LP and 1 ≤ m ≤ LQ, then the handle h(n)
k

in the n-th position in HP×Q corresponds to f
(l)
i × g

(m)
j , where f (l)

i ∈ HP and

g
(m)
j ∈ HQ.

Proof. Let h(n)
k ∈ HP×Q. Then there exist f (l)

i ∈ HP and g(m)
j ∈ HQ such that

Dk ×Dp+q−k︸ ︷︷ ︸
h
(n)
k

≈ Di ×Dp−i︸ ︷︷ ︸
f
(l)
i

×Dj ×Dq−j︸ ︷︷ ︸
g
(m)
j

As for the attaching region of hk, since

Sk−1 = ∂Dk = ∂(Di ×Dj) =
(
Si−1 ×Dj

) ⋃
Si−1×Sj−1

(
Di × Sj−1

)
we shall consider the following identification:

Sk−1 ×Dp+q−k︸ ︷︷ ︸
attaching region of h

(n)
k

≈
((

Si−1 ×Dj
)
∪Si−1×Sj−1

(
Di × Sj−1

))
×Dp+q−k

≈

 Si−1 ×Dp−i︸ ︷︷ ︸
attaching region of f

(l)
i

×Dj ×Dq−j︸ ︷︷ ︸
g
(m)
j

 ⋃
Si−1×Dp−i×Sj−1×Dq−j

Di ×Dp−i︸ ︷︷ ︸
f
(l)
i

× Sj−1 ×Dq−j︸ ︷︷ ︸
attaching region of g

(m)
j


Observing that (P × Q)n−1 is given by (P × Qm−1) ∪Pl−1×Qm−1 (Pl−1 × Qm), the
gluing of the attaching region of h(n)

k on ∂((P ×Q)n−1) will be given by the map

χ : Sk−1 ×Dp+q−k −→ ∂((P ×Q)n−1)

naturally defined by:

χ(x, y) = (ϕl(x), ι1(y)) if x belongs to the attaching region of f (l)
i , y belongs to g(m)

j

minus the attaching region of g(m)
j , and where ι denotes the inclusion of g(m)

j in
Qm ⊂ Q;

χ(x, y) = (ι2(x), ψm(y)) if x belongs to f
(l)
i minus the attaching region of f (l)

i , y
belongs to the attaching region of g(m)

j , and where ι denotes the inclusion of f (l)
i in

Pl ⊂ P ;

χ(x, y) = (ϕl(x), ψm(y)) if x belongs to the attaching region of f (l)
i and y belongs to

the attaching region of g(m)
j .

Note that, in particular, a point simultaneously belonging to both the attaching re-
gion of f (l)

i and the attaching region of g(m)
j will be attached to a well defined point

belonging to (∂Pl−1 × ∂Qm−1) ⊂ ((∂Pl−1 ×Qm) ∩ (Pl × ∂Qm−1)).

Let us emphasize that, in particular, after attaching the first mLP handles, the
obtained manifold is P ×Qm whose boundary is P × ∂Qm.
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4.2 An example

Example 4.2. Let La,b denote the lens space associated with the integer co-prime
parameters a and b. Let us fix a handle decomposition for La,b, made of four handles
[f0, f1, f2, f3] and associated with its minimal Heegaard splitting. Let us consider
the product space La,b × S2. If we fix for S2 a two-handle decomposition [g0, g2],
following the procedure given in Proposition 4.1 we get a eight-handle decomposition
for La,b × S2. After gluing the first four handles we get:

attached handle
h

(n)
i+j :

h
(1)
0+0 h

(2)
1+0

resulting manifold
(P ×Q)n: D3 ×D2 (S1 ×D2)×D2

boundary
of the resulting manifold: S4 S1 × S3

non-zero Z-homology
of the boundary: H0 = H4 = Z H0 = H4 = Z; H1 = H3 = Z

sum of the Betti numbers
of the boundary: 2 4

attached handle
h

(n)
i+j :

h
(3)
2+0 h

(4)
3+0

resulting manifold
(P ×Q)n: (La,b \D3)×D2 La,b ×D2

boundary
of the resulting manifold: (S2 ×D2) ∪S2×S1 ((La,b \D3)× S1) La,b × S1

non-zero Z-homology
of the boundary:

H0 = H4 = Z;

H1 = H2 = Z
aZ ;

H0 = H4 = Z;

H1 = Z⊕ Z
aZ

; H3 = Z

H2 =
Z
aZ

sum of the Betti numbers
of the boundary: 2 4

The homology of the third boundary has been computed by using the Mayer-
Vietoris exact sequence.

When attaching the remaining four handles, by the symmetry of the decomposition,
we find back the same boundaries (the third, the second, the first and the empty set).

Now, choose R among Z, Q, R or Z
pZ with p prime not dividing a. Then, the

given handle decomposition guarantees that ν(La,b × S2; R) ≤ 4. Moreover, we
know from [O] that, the fundamental group of the space being non-zero, the opposite
inequality also holds. Therefore we have that, for our choices of R,

ν(La,b × S2; R) = 4

4.3 Upper bounds for the Ogasa invariant

In this section we want to apply Theorem 3.1 to the construction described in Propo-
sition 4.1 in order to deduce general upper bounds for the Ogasa invariant of the
product of two orientable manifolds. We shall prove the formulae of Theorem 3 in
the next subsection, while the optimality of these inequalities, as well as the special
example L3,1 × S2, will be discussed thereafter.
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4.3.1 Proof of Theorem 3

This subsection is completely devoted to the proof of Theorem 3.
By Proposition 4.1, we have a handle decomposition of P × Q made of LP · LQ

handles and denoted by HP×Q. Moreover, after attaching the first m · LP handles
of HP×Q, the resulting manifold is P ×Qm whose boundary is P × ∂Qm.

By using the Künneth formula and the Universal Coefficient Theorem, we can
prove the following formula.

Lemma 4.3. Let X and Y be closed manifolds of dimension x and y respectively. If
R is Z, Q, R or Z

pZ , then

x+y∑
k=0

βk(X × Y ; R) =

(
x∑

i=0

βi(X; R)

)
·

 y∑
j=0

βj(Y ; R)


Therefore, for all m = 1, . . . , LQ, by Theorem 3.1 we are in one of the following

situations.

1.
∑q−1

k=0 βk(∂Qm; R) =
∑q−1

k=0 βk(∂Qm−1; R) + 2.
By Lemma 4.3, this means that after attaching the LP handles of HP×Q[
h((m−1)LP +1), . . . , h(mLP )

]
, we go from

∑p+q−1
k=0 βk(P × ∂Qm−1; R) to

p+q−1∑
k=0

βk(P × ∂Qm; R) =
p+q−1∑

k=0

βk(P × ∂Qm−1; R) + 2
p∑

i=0

βi(P ; R)

Increasing the sum of the Betti numbers by 2 ·
∑p

i=0 βi(P ; R) with LP handles
guarantees that in this interval of LP handles

maxl=1,...,LP

∑p+q−1
k=0 βk(∂(P ×Q)(m−1)LP +l; R) ≤

≤
∑p+q−1

k=0 βk(∂(P ×Q)mLP
; R) + (LP −

∑p
i=0 βi(P ; R))

= LP +
(∑q−1

j=0 βj(Qm; R)− 1
)
·
∑p

i=0 βi(P ; R)

≤ LP + (ν(Q; R)− 1) ·
∑p

i=0 βi(P ; R)

(see also Figure 1 for the computation of the first inequality).
Note that the last inequality does not depend on the interval of LP handles we
are dealing with.

2.
∑q−1

k=0 βk(∂Qm; R) =
∑q−1

k=0 βk(∂Qm−1; R)− 2.
This case is symmetric to the previous one. Even in the worst situation, the
maximum over the considered interval of LP handles is a value which has already
been considered in another interval of LP handles belonging to Case 1 above.
Therefore we can again insure that

maxl=1,...,LP

∑p+q−1
k=0 βk(∂(P ×Q)(m−1)LP +l; R) ≤

≤ LP + (ν(Q; R)− 1) ·
∑p

i=0 βi(P ; R)

3.
∑q−1

k=0 βk(∂Qm; R) =
∑q−1

k=0 βk(∂Qm−1; R).
This is the case where the l-th handle g(l) of HQ is invariant.
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6

-

sum of the Betti numbers of the boundary

number of attached handles

xVm−1

(m− 1)LP

x

mLP

Vm−1 + 2
p∑

i=0

βi(P )

Vm−1 + 2LP

Vm−1 + LP −
p∑

i=0

βi(P )

�
�
�
�
�
�
�
�
�
�
�
�
�
�

A
A
AA

Figure 1: Computation of the inequality of Case 1, where Vm−1 =

p+q−1X

k=0

βk(P × ∂Qm−1).

Leaving the sum of the Betti numbers unchanged after attaching LP handles
guarantees that in this interval of LP handles

maxl=1,...,LP

∑p+q−1
k=0 βk(∂(P ×Q)(m−1)LP +l; R) ≤

=
(∑q−1

j=0 βj(Qm; R)
)
· (
∑p

i=0 βi(P ; R)) + 2 · bLP

2 c

≤ (ν(Q; R)) · (
∑p

i=0 βi(P ; R)) + 2 · bLP

2 c

where the floor function has been used to make the inequality as sharp as possible
in the case where HP has a unique invariant handle, thus implying LP odd.

The conclusion of the proof is now straightforward. Item 1 of Theorem 3 follows
directly from Cases 1 and 2 above. Item 2 follows directly from Cases 1, 2 and 3
above by considering that 2 · bLP

2 c ≥ (LP −
∑p

i=0 βi(P ; R)) .

4.4 Comments on Theorem 3

Here are some remarks and consequences of Theorem 3.

• If P is an oriented manifold for which there exists a handle decomposition with
LP =

∑p
i=0 βi(P ; R) handles, e.g. a product of spheres, then the inequality of

Item 1 of Theorem 3 reduces to

ν(P ×Q; R) ≤ (ν(Q; R)) ·
p∑

j=0

βj(P ; R)
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while that of Item 2 becomes

ν(P ×Q; R) ≤ (ν(Q; R) + 1) ·
p∑

j=0

βj(P ; R)

because the homology generated in Q by the invariant handle can contribute to
the homology to some regular section.

• When considering orientable manifolds, the situation described in Item 2 can
occur only when the dimension of Q is a multiple of 4: it is the case for instance
of the 4k-dimensional manifolds CP2k.
For this reason, let us focus on Item 1.

• If P × Q = S1 × S2, equality holds in the inequality of Item 1 if we choose
for Q the minimal handle decomposition made of two handles and any homology
coefficients.
Notwithstanding it, let us consider now the product manifold L3,1 × S2, where
L3,1 is the lens space associated with the couple (3, 1). Let the homology coeffi-
cients be Z, Q, R or Z

pZ with p 6= 3 prime. We are in the case of Item 1 above
and the best upper bounds are given by the canonical handle decompositions for
L3,1 and S2 described in Example 4.2. According to the choice of the roles of P
and Q, by Item 1 we get:

ν(L3,1×S2; R 6= Z
3Z

) ≤ LL3,1︸ ︷︷ ︸
4

+(ν(S2; R 6= Z
3Z

)︸ ︷︷ ︸
2

−1) ·
p∑

j=0

βj(L3,1; R 6= Z
3Z

)︸ ︷︷ ︸
2

= 6

ν(S2 × L3,1; R 6= Z
3Z

) ≤ LS2︸︷︷︸
2

+(ν(L3,1; R 6= Z
3Z

)︸ ︷︷ ︸
4

−1) ·
p∑

j=0

βj(S2; R 6= Z
3Z

)︸ ︷︷ ︸
2

= 8

However, in Example 4.2 we have shown that ν(L3,1 × S2; R 6= Z
3Z ) = 4, hence

in general the opposite inequality doesn’t hold.
• The above example shows the delicate interplay between the Betti numbers of

a manifold and those of its regular sections. On one hand, the Ogasa invariant
of L3,1 is somehow greater than expected

4 = ν(L3,1; R) 

p∑

j=0

βj(L3,1; R 6= Z
3Z

) = 2

because of the presence of torsion of order 3 in Π1(L3,1). On the other hand,
when considering the product with S2, the Ogasa invariant ν(L3,1×S2; R 6= Z

3Z )
is somehow less than expected, again because of the presence of torsion.

We naturally conclude with the following question. For any m-dimensional orientable
manifold M , let Lmin denote the minimal number of handles needed to have a handle
decomposition of M . Let CR be the class of such manifolds for which

ν(M ; R) =
m∑

k=0

βk(M ; R) = Lmin

For instance Sp × Sq belongs to CR, whereas CP2 does not. Is it true that if P and
Q belong to CR, then

ν(P ×Q; R) = ν(P ; R) · ν(Q; R)?

The inequality ≤ is trivial. In particular, answering in the affirmative would prove
ν(
∏`

j=1 Skj ) = 2`.
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