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Abstract

This paper deals with the random linear transport equation for which the velocity
and the initial condition are random functions. Expressions for the density and joint
density functions of the transport equation solution are given. We also verify that in
the Gaussian time-dependent velocity case the probability density function (PDF) of
the solution satisfies a convection-diffusion equation with a time-dependent diffusion
coefficient. Examples are included.
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1 Introduction

In this paper, we deal with the random one-dimensional transport problem

Qt(x, t) + V (t) Qx(x, t) = 0 (t > 0, x ∈ R), Q(x, 0) = Q0(x), (1)

where V (t) is the random velocity and Q0(x) is the random initial condition. We suppose the natural
hypothesis of independence between the velocity and the initial condition. Transport equations arise
in the modeling of a wide variety of phenomena that involve advective transport of substances or
wave motions [1,2]. In the typical situation of uncertainties in the transport velocity or/and in the
initial condition, the random transport equation provides a better description of the process.

Several authors have studied problems related to (1). Most of approaches include methods by
which one seeks the statistical moments of the solution (e.g. see [1–6], and the references there
in). The main effort is usually concentrated on the derivation of appropriate differential equations
for average quantities using, in general, small perturbations with some kind of closure. Another
approach is to solve numerically appropriate equations for representative sets of realizations of
random fields and to average computed functions. This approach is the so-called Monte Carlo
method (e.g. see [6]) which has the advantage of applying to a very broad range of both linear and
nonlinear problems. However, the large volume of calculation, the numerical errors in solving the
deterministic equations, and the difficulty for generalizing the results limit the significance of this
approach.
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The purpose of this paper is to present some new results about the random solution of (1). In
Section 2 we couple the total probability theorem with the characteristic method to find the PDF
of the solution of (1). In Section 3 we present results and examples in which the velocity in (1) is
a Gaussian process. We straightforward verify that the PDF of the solution satisfies a convection-
diffusion equation with a time-dependent diffusion coefficient. Although differential equations for
moments and density functions have been presented in the literature for some particular cases, we
believe that our methodology gives a new insight on the subject and is more direct. Finally, in
Section 4 we obtain the two-point joint density function of the solution of (1).

2 The probability density function of Q(x, t)

For each realization V (t, ω), of the random velocity, and Q0(x, ω), of the initial condition, the
solution at a fixed (x, t), Q(x, t, ω), is constant along the characteristics, i.e,

Q(x, t, ω) = Q0(x0, ω), where x0 = x−
∫ t

0
V (τ, ω)dτ.

Thus, the solution of (1) can be expressed as Q(x, t) = Q0 (x− A(t)), where we denote A(t) as

A(t) =
∫ t

0
V (τ)dτ. (2)

The concept of conditional probability will play a role in calculating the cumulative function of
Q(x, t), FQ(q; x, t), for a fixed (x, t). In fact, by the Law of Total Probability [7] we can write

FQ(q; x, t) = P(Q(x, t) ≤ q) = EX0 [P(Q(x, t) ≤ q |X0)], (3)

where X0 is given by X0(x, t) = x − A(t), EX0 denotes the expected value relative to random
variable X0, P denotes the probability measure, and P(U | V ) denotes the conditional probability
of U given V . By the characteristic method we observe that Q(x, t) ≤ q given that X0 = x0 is
equivalent to Q0(x0) ≤ q. Thus, from (3),

FQ(q; x, t) =
∫ +∞

−∞
P(Q0(x0) ≤ q) fX0(x0) dx0 =

∫ +∞

−∞
FQ0(q; x0) fX0(x0) dx0, (4)

where FQ0(q; x0) is the cumulative function of Q0(x0). Taking the derivative with respect to q, we
obtain

fQ(q; x, t) =
∫ +∞

−∞
fQ0(q; x0) fX0(x0) dx0. (5)

Recalling that A(t) is a random variable for t fixed, we have

FX0(x0) = P(x− A(t) ≤ x0) = P(A(t) ≥ (x− x0)) = 1− FA(t)(x− x0), (6)

and by the differentiation with respect to x0 we arrive at fX0(x0) = fA(t)(x−x0). Then, substituting
fX0(x0) in (5), we obtain

fQ(q; x, t) =
∫ +∞

−∞
fA(t)(x− x0) fQ0(q; x0) dx0. (7)

The arguments so far summarized prove the following result:

Proposition 1 The PDF of the solution of (1) at a fixed (x, t), fQ(q; x, t), is given by (7).
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Corollary 2 The m-th moment, µm(x, t), m ≥ 1, of the solution of (1) is given by

µm(x, t) =
∫ +∞

−∞
qm fQ(q; x, t) dq =

∫ +∞

−∞
fA(t)(x− x0) µm

0 (x0) dx0, (8)

where µm
0 (x) is the m-th moment of Q0(x).

Remark 3 In the case where V (t) = V we obtain A(t) = V t, fA(t)(x) = (1/t)fV (x/t), and

fQ(q; x, t) =
∫ +∞

−∞
fV (v) fQ0(q; x− vt) dv = EV [fQ0(q; x− V t)]. (9)

Remark 4 In the case where Q(x, 0) = g(x), a deterministic function, we can express (7) as

fQ(q; x, t) =
∫ +∞

−∞
fA(t)(x− x0) δ(g(x0)− q) dx0, (10)

where δ is the Dirac (delta) distribution. Furthermore, if g(x) is a smooth function, if the equation
g(x) − q = 0 has n isolated zeros, xj,q, j = 1, 2, ..., n, and if g′(x) does not vanish at each of the
zeros, we have (e.g. see [8])

δ(q − g(x)) =
n∑

j=1

δ(x− xj,q)

|g′(xj,q)| , and (11)

fQ(q; x, t) =
∫ +∞

−∞
fA(t)(x− x0)

n∑

j=1

δ(x0 − xj,q)

|g′(xj,q)| dx0 =
n∑

j=1

1

|g′(xj,q)| fA(t)(x− xj,q). (12)

Expressions (7), (8), and (12) point out that practical calculations demand the knowledge of the
PDF of A(t). With this in mind, let us present now some results to be used in the next section.
From (2) we obtain (e.g. see [7])

µ(t) = E[A(t)] =
∫ t

0
E[V (τ)]dτ and σ2(t) = Var[A(t)] =

∫ t

0

∫ t

0
Cov(s, τ)dsdτ, (13)

where E[V (t)] is the mean and Cov(t, τ) is the covariance function of V (t). Also, if E[V (t)] and
Cov(t, τ) are continuous functions it follows that

d[µ(t)]

dt
= E[V (t)] and

d[σ2(t)]

dt
= 2

∫ t

0
Cov(t, τ)dτ. (14)

3 The Gaussian velocity case

If we assume V (t) Gaussian then A(t) in (2) is also a Gaussian random variable for each t [7]; its
mean and variance are given by (13). In this case we have the following result:

Proposition 5 The PDF of Q(x, t), fQ(q; x, t), satisfies the convection-diffusion equation

(fQ)t + E[V (t)](fQ)x =
(∫ t

0
Cov(t, τ)dτ

)
(fQ)xx. (15)

PROOF. Differentiating fQ(q; x, t) in (7) conveniently, we can see that if

∂

∂t
fA(t)(x) + E[V (t)]

∂

∂x
fA(t)(x) =

(∫ t

0
Cov(t, τ)dτ

)
∂2

∂x2
fA(t)(x), (16)
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then the result in (15) follows. In fact, since A(t) ∼ N(µ(t), σ(t)) its density function is

fA(t)(x) =
1√

2πσ(t)
exp

[
−(x− µ(t))2

2σ2(t)

]
, (17)

where µ(t) and σ(t) are given in (13). The differentiation of fA(t)(x) yields

∂

∂x
fA(t)(x) = −fA(t)(x)

[
x− µ(t)

σ2(t)

]
,

∂2

∂x2
fA(t)(x) =

fA(t)(x)

σ2(t)

[
−1 +

(x− µ(t))2

σ2(t)

]
, and

∂

∂t
fA(t)(x) = fA(t)(x)

[
−σ′(t)

σ(t)
+

(x− µ(t))

σ2(t)
µ′(t) +

(x− µ(t))2

σ3(t)
σ′(t)

]
.

Therefore, using (14),

∂

∂t
fA(t)(x) + E[V (t)]

∂

∂x
fA(t)(x) =

∂

∂t
fA(t)(x) + µ′(t)

∂

∂x
fA(t)(x) =

= fA(t)(x)

[
−σ′(t)

σ(t)
+

(x− µ(t))2

σ3(t)
σ′(t)

]
=

σ′(t)
σ(t)

fA(t)(x)

[
−1 +

(x− µ(t))2

σ2(t)

]
=

= σ(t)σ′(t)
∂2

∂x2
fA(t)(x) =

1

2

d(σ2(t))

dt

∂2

∂x2
fA(t)(x) =

(∫ t

0
Cov(t, τ)dτ

)
∂2

∂x2
fA(t)(x),

and the result follows.

2

Corollary 6 The m-th moment, µm(x, t), m ≥ 1, of the solution of (1) also satisfies (15), i.e.,

(µm)t + E[V (t)](µm)x =
(∫ t

0
Cov(t, τ)dτ

)
(µm)xx. (18)

Example 7 We consider problem (1) with inicial condition defined by g(x) = 1, if x > 0, and
g(x) = 0, if x < 0. This initial condition has been used by several authors to study mixing zones
of substance concentrations. From (10) we have

fQ(q; x, t) = δ(q − 1)
∫ 0

−∞
fA(t)(x− x0) dx0 + δ(q)

∫ +∞

0
fA(t)(x− x0) dx0, (19)

i.e., Q(x, t) is the Bernoulli random variable with

P(Q(x, t) = 1) =
∫ 0

−∞
fA(t)(x− x0) dx0 =

∫ +∞

x
fA(t)(θ) dθ = (20)

=
1√

2πσ(t)

∫ +∞

x
exp

[
−(θ − µ(t))2

2σ2(t)

]
dθ =

1√
π

∫ +∞
x−µ(t)√

2σ(t)

e−θ2

dθ =
1

2
erfc

(
x− µ(t)√

2σ(t)

)
,

where erfc(x) is the complementary error function. Moreover, from (8) or (19)–(20), and observing
that µm(x, 0) = g(x) for all m, we arrive at

µm(x, t) =
1

2
erfc

(
x− µ(t)√

2σ(t)

)
. (21)

Example 8 In this example, the Gaussian velocity is defined by its mean, E[V (t)], and the expo-
nentially decaying covariance function, CovV (t, τ) = σ2

V exp (−|t− τ |/λ). The covariance function
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is parameterized by the variance, Var[V (t)] = σ2
V , and by the correlation length, λ > 0, which

governs the decay rate of the time correlation. Let g(x) = α e−βx2
(α, β > 0), be the initial con-

dition. Therefore, we may find fQ(q; x, t) by using (12). For 0 < q < α the equation g(x) = q has

two roots, x1,q = [(1/β) ln (α/q)]1/2 and x2,q = − [(1/β) ln (α/q)]1/2. For the function g(x), we find

|g′(xj,q)| = 2βq [(1/β) ln (α/q)]1/2 (j = 1, 2). Thus, from (12) and (17) we arrive at the exact PDF:

fQ(q; x, t) =
1√

8πβσ(t)ρ(q)q

{
exp

[
−(x− ρ(q)− µ(t))2

2σ(t)2

]
+ exp

[
−(x + ρ(q)− µ(t))2

2σ(t)2

]}
, (22)

where ρ(q) = [(1/β) ln (α/q)]1/2. Evidently, fQ(q; x, t) = 0 for q 6∈ (0, α). Also, from (13), we have

σ(t) = σV

{∫ t

0

∫ t

0
exp

[
−|s− τ |

λ

]
dsdτ

} 1
2

=
√

2λσV

[
exp

(
− t

λ

)
+

t

λ
− 1

] 1
2

. (23)

Example 9 Let V (t) be the Gaussian white noise with zero mean and power spectrum η. In this
case, A(t) is also Gaussian with zero mean, ηt variance and fA(t)(θ) = (2πηt)−1/2 exp [−θ2/(2ηt)].

By (14) we arrive at
∫ t

0
Cov(t, τ) dτ = η/2, and (15) becomes (fQ)t = (η/2) (fQ)xx. This diffusive

equation with fQ(q; x, 0) = fQ0(q; x) can be solved by the Green’s function approach:

fQ(q; x, t) =
1√
2πηt

∫ +∞

−∞
exp

[
−(x− x0)

2

2ηt

]
fQ0(q; x0) dx0. (24)

This solution agrees with (7) with fA(t) being the Green function.

4 The joint probability density function

Let Q1 = Q(x1, t) and Q2 = Q(x2, t) be the random solutions of (1) at (x1, t) and (x2, t), t > 0,
respectively. As known, second-order properties of a random process can give significant information
about the process such as the correlation of Q1 and Q2, that demands the joint density function of
these random variables. The joint cumulative function is given by

FQ(q1, q2; x1, x2, t) = P(Q1 ≤ q1, Q2 ≤ q2) = EX0,Y0 [P(Q1 ≤ q1, Q2 ≤ q2 |X0, Y0)], (25)

where, again, we have used the Law of Total Probability [7]. Here, X0 and Y0 are the random
functions X0(x1, t) = x1 −A(t) and Y0(x2, t) = x2 −A(t). As before, by the characteristic method,
Q1 ≤ q1 and Q2 ≤ q2 given that X0 = x0 and Y0 = y0 is equivalent to Q0(x0) ≤ q1 and Q0(y0) ≤ q2,
where Q0 is the initial condition in (1). Therefore, from (25)

FQ(q1, q2; x1, x2, t) =
∫ ∞

−∞

∫ ∞

−∞
FQ0(q1, q2; x0, y0) fX0,Y0(x0, y0) dx0dy0, (26)

where fX0,Y0(x0, y0) is the joint PDF of X0 and Y0, and FQ0(q1, q2; x0, y0) is the joint cumulative
function of Q0(x0) and Q0(y0). Taking the second-order mixed derivative above, we arrive at

fQ(q1, q2; x1, x2, t) =
∫ ∞

−∞

∫ ∞

−∞
fQ0(q1, q2; x0, y0) fX0,Y0(x0, y0) dx0dy0. (27)

To determine the joint PDF, fX0,Y0 , we start with

FX0,Y0(x0, y0) = P(X0 ≤ x0, Y0 ≤ y0) = P(x1 − A(t) ≤ x0, x2 − A(t) ≤ y0) =

= P (A(t) ≥ x1 − x0, A(t) ≥ x2 − y0) = P(A(t) ≥ ϕ) = 1− FA(t)(ϕ), (28)
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where ϕ = max {x1 − x0, x2 − y0} = max{u, v}, with u = x1 − x0 and v = x2 − y0. Taking the
derivative of ϕ, in the sense of distributions, we have that ∂ϕ/∂u = H(u−v) and ∂ϕ/∂v = H(v−u),
where H is the Heaviside function. Moreover, H ′(α) = δ(α), the Dirac distribution. Consequently,

∂ϕ

∂x0

=
∂ϕ

∂u
· ∂u

∂x0

= −H(u− v),
∂ϕ

∂y0

=
∂ϕ

∂v
· ∂v

∂y0

= −H(v − u) and
∂2ϕ

∂y0∂x0

= −δ(u− v).

Finally, taking the mixed derivative in (28) we find

fX0,Y0(x0, y0) = −∂2FA(t)(ϕ)

∂y0∂x0

= fA(t)(ϕ)δ(u− v) = fA(t)(u)δ(u− v), (29)

since h(α)δ(α) = h(0)δ(α). Substituting this expression in (27) we obtain

fQ(q1, q2; x1, x2, t) =
∫ ∞

−∞

∫ ∞

−∞
fQ0(q1, q2; x1 − u, x2 − v) fA(t)(u) δ(u− v) du dv =

=
∫ ∞

−∞
fQ0(q1, q2; x1 − a, x2 − a) fA(t)(a) da. (30)

Proposition 10 Let Q1 = Q(x1, t) and Q2 = Q(x2, t) be the random solutions of (1) at (x1, t) and
(x2, t), t > 0, respectively.The joint PDF of these random variables is given by (30). Furthermore,
the covariance of the solution of (1) at (x1, t) and (x2, t), t > 0, is given by

Cov[Q(x1, t), Q(x2, t)] =
∫ ∞

−∞
Cov[Q0(x1 − a), Q0(x2 − a)] fA(t)(a) da. (31)
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