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Abstract

Carathéodory’s theorem for cones states that if we have a linear combination of vectors in
Rn, we can rewrite this combination using a linearly independent subset. This theorem has
been successfully applied in nonlinear optimization in many contexts. In this work we present
a new version of this celebrated theorem, in which we prove a bound for the size of the scalars
in the linear combination and we provide examples where this bound is useful. We also prove
that the convergence property of the internal penalty method cannot be improved.

Key words: Nonlinear Programming, Constraint Qualifications, Internal Penalty Method.
AMS Subject Classification: 90C30, 49K99, 65K05.

1 Introduction

In 1911 Carathéodory proved that if a point x ∈ Rn lies on the convex hull of a compact set
P , then x lies on the convex hull of a subset P ′ of P with no more than n+ 1 points [6]. In 1914
Steinitz generalized this result for a general set P [17].

Here we will see a different version of Carathéodory’s theorem, which appears in [5], and we
will provide bounds on the size of the multipliers given by the theorem. We address the following
nonlinear optimization problem:

Minimize f(x) Subject to h(x) = 0, g(x) ≤ 0, (1)

where f : Rn → R, h : Rn → Rm and g : Rn → Rp are continuously differentiable functions. Under
a given constraint qualification, the solution x∗ satisfies the KKT condition, that is, x∗ is feasible
with respect to equality and inequality constraints and there exist λ ∈ Rm and µj ≥ 0 for every
j ∈ I(x∗) = {i ∈ {1, . . . , p}|gi(x∗) = 0} such that

∇f(x∗) +
m∑

i=1

λi∇hi(x∗) +
∑

j∈I(x∗)

µj∇gj(x∗) = 0.

A common constraint qualification usually employed is the Linear Independence constraint
qualification, which states that {∇hi(x∗)}mi=1 ∪ {∇gj(x∗)}j∈I(x∗) is linearly independent. We will
refer to this multi-set as the active set of gradients at x∗. The weaker Mangasarian-Fromovitz
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constraint qualification (MFCQ) [13] states that the active set of gradients is positive-linearly
independent, which means that there is no α ∈ Rm, βj ≥ 0 for every j ∈ I(x∗) such that

m∑
i=1

αi∇hi(x∗) +
∑

j∈I(x∗)

βj∇gj(x∗) = 0,

except if we take all αi and βj equal to zero. In fact, this is a reformulation of the original
definition, given in [15].

Recently, a weaker constraint qualification appeared in the literature: the Constant Positive
Linear Dependence constraint qualification (CPLD) [14, 4], which has been successfully applied to
obtain new practical algorithms [1, 2, 9]. We say that the CPLD condition holds for a feasible x∗ if
for every I ⊂ {1, . . . ,m}, J ⊂ I(x∗) such that the set of gradients {∇hi(x∗)}i∈I ∪ {∇gj(x∗)}j∈J is
positive-linearly dependent, there exists a neighborhood V (x∗) of x∗ such that the set of gradients
{∇hi(y)}i∈I ∪ {∇gj(y)}j∈J remains positive-linearly dependent for every y ∈ V (x∗). The CPLD
condition is a natural generalization of the Constant Rank constraint qualification of Janin [12],
which states the same as above, replacing “positive-linearly dependent” by “linearly dependent”.
The CPLD condition is weaker than the Constant Rank condition [16].

In practical algorithms, weaker constraint qualifications are preferred, since convergence results
are stronger.

In section 2 we will state Carathéodory’s theorem and obtain new bounds on the size of the
multipliers. Examples of applications of the new result will be given. In section 3 we will prove
the impossibility of generalizing the convergence result of the internal penalty method using the
CPLD condition.

2 Generalized Carathéodory’s theorem for cones

The main tool which enables us to prove convergence results under the CPLD condition is
Carathéodory’s theorem for cones which appears in [5]. We state it here with the new bounds
given by item 4.

Theorem 1. If x =
m∑

i=1

αivi with vi ∈ Rn and αi 6= 0 for every i, then there exist I ⊂ {1, . . . ,m}

and scalars ᾱi for every i ∈ I such that

1. x =
∑
i∈I

ᾱivi;

2. αiᾱi > 0 for every i ∈ I;

3. {vi}i∈I is linearly independent;

4. |ᾱi| ≤ 2m−1|αi| for every i ∈ I.

Proof. We assume that {vi}mi=1 is linearly dependent, otherwise the result follows trivially. Then,
there exists β ∈ Rm, β 6= 0 such that

∑m
i=1 βivi = 0. Thus, we may write

x =
m∑

i=1

(αi − γβi)vi,

for every γ ∈ R. Let i∗ = argmini

∣∣∣∣αi

βi

∣∣∣∣ and γ̄ =
αi∗

βi∗
, then γ̄ is the least modulus coefficient

αi

βi
.

Note that γ̄ is such that αi − γ̄βi = 0 for at least one index i = i∗. If αi(αi − γ̄βi) < 0, then
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|αi|2 = α2
i < αiγ̄βi = |αi||γ̄||βi|, with αi 6= 0, βi 6= 0, thus |γ̄| >

∣∣∣∣αi

βi

∣∣∣∣ which contradicts the defini-

tion of γ̄. Therefore we conclude that αi(αi − γ̄βi) ≥ 0. Also, |αi − γ̄βi| ≤ |αi| + |γ̄||βi| ≤ 2|αi|,

since γ̄ ≤
∣∣∣∣αi

βi

∣∣∣∣ for every i. Including in the sum only the indexes such that ᾱi = αi − γ̄βi 6= 0

we are able to write the linear combination x with at least one less vector. We can repeat this
procedure until {vi}i∈I is linearly independent with αiᾱi > 0 and |ᾱi| ≤ 2m−1|αi| for every i ∈ I.
2

We usually apply Carathéodory’s theorem when we have a sequence {xk} converging to a
feasible point x∗ that satisfies a quasi-KKT condition of the form

∇f(xk) +
m∑

i=1

λk
i∇hi(xk) +

∑
j∈I(x∗)

µk
j∇gj(xk) = εk, (2)

where λk ∈ Rm, µk
j ≥ 0 for every j ∈ I(x∗) and every k ∈ N, with ‖εk‖ → 0.

Such a sequence may be obtained, for example, when we apply the external or internal penalty
method (see [3]). To prove that the limit point x∗ is a KKT point, two cases are usually considered.
Define Mk = max{|λi|, µj ,∀i ∈ {1, . . . ,m}, j ∈ I(x∗)}. If there is a subsequence such that {Mk}
is bounded, we can obtain a convergent subsequence of {λk

i } and {µk
j }, then, taking limits and

using the continuity of the gradients we obtain that x∗ is a KKT point. If, on the other hand,
Mk → +∞, we may divide (2) by Mk, then, the infinity norm of the new multipliers is equal to 1,
thus we get a bounded sequence with non-null limit points (by the continuity of the norm). Taking
a convergent subsequence we get a non-null linear combination of the active set of gradients, which
proves that x∗ fails to satisfy the Mangasarian-Fromovitz constraint qualification.

The idea to generalize this kind of result under the CPLD condition is to apply Carathéodory’s
theorem to equation (2). This gives us, for every k, two sets Ik ⊂ {1, . . . ,m}, Jk ⊂ I(x∗), new
multipliers λ̄k

i for every i ∈ Ik and µ̄k
j ≥ 0 for every j ∈ Jk such that

{∇hi(x∗)}i∈Ik
∪ {∇gj(x∗)}j∈Jk

is linearly independent

and
∇f(xk) +

∑
i∈Ik

λ̄k
i∇hi(xk) +

∑
j∈Jk

µ̄k
j∇gj(xk) = εk. (3)

The key point is to observe that we can take a subsequence such that Ik is the same set I for
every k and Jk is the same set J for every k. This comes from the finiteness of the possible sets
Ik, Jk. Proceeding in the same fashion, defining M̄k = max{|λ̄k

i |, µ̄k
j ,∀i ∈ I, j ∈ J} we obtain the

KKT condition if there is a bounded subsequence of {M̄k}. Otherwise, if M̄k → +∞, dividing
(3) by M̄k and taking limits, we have as before that the gradients at x∗ are positive-linearly
dependent. This proves that x∗ fails to satisfy the CPLD condition since the gradients at xk

are linearly independent, with xk arbitrarily close to x∗. Thus, positive-linear dependence is not
maintained in a neighborhood of x∗, for this particular choice of I ⊂ {1, . . . ,m}, J ⊂ I(x∗). These
natural ideas appeared for the first time in the first applications of the CPLD condition [14, 1, 2].

The new bounds |λ̄k
i | ≤ 2m−1|λk

i | for every i ∈ I and |µ̄k
j | ≤ 2p−1|λk

j | for every j ∈ J may be
useful in many ways. For example, if we have that {(λk, µk)} is bounded, then the same is true for
the sequence of new multipliers {(λ̄k, µ̄k)}. The converse is not always true. Consider for instance
xk = αk

1v
k
1 + αk

2v
k
2 , vk

1 6= 0 with βk
1 v

k
1 + βk

2 v
k
2 = 0 for βk

1 = βk
2 = 1, αk

1 = 1 + 10k, αk
2 = 10k. We

have
∣∣∣∣αk

1

βk
1

∣∣∣∣ > ∣∣∣∣αk
2

βk
2

∣∣∣∣ for every k, then ᾱk
1 = αk

1 −
(
αk

2

βk
2

)
βk

1 = 1 and xk = ᾱk
1v

k
1 for every k.
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Another common situation in which bounds may be useful is when we have µk
j → 0. This

appears for example in the internal penalty method, in which quasi-KKT points are defined as

∇f(xk) +
m∑

i=1

λk
i∇hi(xk) +

p∑
j=1

µk
j∇gj(xk) = εk, (4)

with µk
j → 0 when gj(x∗) < 0. With the new bounds, we have that µ̄k

j → 0 whenever µk
j → 0, and

this is crucial to obtain the complementarity condition µjgj(x∗) = 0 of the KKT condition. The
reciprocal is also not true. This can be observed by taking the previous counter-example with αk

1

and αk
2 divided by 10k.

3 Internal Penalty

In this section we will consider problem (1) with only inequality constraints:

Minimize f(x) Subject to g(x) ≤ 0. (5)

The internal penalty method consists of solving the following subproblem:

Minimize f(x) + rk

p∑
j=1

1
gj(x)

Subject to g(x) < 0, (6)

for a sequence of positive scalars rk → 0. If there are additional constraints x ∈ Ω, they are
added to the constraints of the subproblem.

It is a well known fact that if x∗ is a limit point of the sequence xk generated by the interior
penalty method, such that x∗ satisfies the sufficient interior property, that is, x∗ can be approx-
imated by a sequence of strictly feasible points yk → x∗ (g(yk) < 0), then x∗ is a solution to
problem (5) [7].

If x∗ is a local solution of problem (5) and we apply the internal penalty method to:

Minimize f(x) +
1
2
‖x− x∗‖22 Subject to ||x− x∗|| ≤ δ, g(x) ≤ 0, (7)

for a sufficiently small δ. The corresponding subproblem is:

Minimize f(x) +
1
2
‖x− x∗‖22 + rk

p∑
j=1

1
gj(x)

Subject to ||x− x∗||2 ≤ δ, g(x) < 0. (8)

We can write the KKT condition for the subproblem in the solution xk, and we will arrive at the
quasi-KKT condition given by (4), but without the terms depending on h. See details in [3].

According to the proof given in the previous section, we have that under the CPLD condition
and the sufficient interior property, limit points of the interior penalty method are KKT point. We
will prove that these hypotheses are equivalent to the Mangasarian-Fromovitz condition.

For this purpose we shall define the quasi-normality constraint qualification proposed by [11].

Definition. We say that a feasible point x∗ to problem (5) satisfies the quasi-normality constraint
qualification if x∗ satisfies MFCQ, or if µj ≥ 0 exists for every j ∈ I(x∗), not all zero, with∑

j∈I(x∗) µj∇gj(x∗) = 0 then a sequence zk → x∗ does not exist, such that µj > 0 ⇒ gj(zk) > 0
for every j ∈ I(x∗).
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We will use the result proved in [4] that CPLD implies quasi-normality.

Theorem 2. A feasible point x∗ satisfies CPLD and the sufficient interior property if, and only
if, x∗ satisfies MFCQ.

Proof. Suppose a feasible x∗ satisfies the CPLD condition and the sufficient interior property.
Then x∗ satisfies the CPLD condition for the problem:

Minimize f(x) Subject to − gi(x) ≤ 0, ∀i ∈ I(x∗), (9)

therefore x∗ satisfies the quasi-normality condition for problem (9). If MFCQ does not hold, then
not all zero scalars µj ≥ 0 exist such that

∑
j∈I(x∗) µj∇gj(x∗) = 0, multiplying by −1 we get that

MFCQ does not hold for problem (9). Thus, by the quasi-normality for this problem we obtain
that there is no sequence zk → x∗ such that µj > 0 ⇒ −gj(zk) > 0 for every j ∈ I(x∗). Since at
least one index j ∈ I(x∗) exists such that µj > 0, we conclude that there is no sequence zk → x∗

such that gj(zk) < 0, which contradicts the sufficient interior property.
The converse holds trivially since one can easily prove that the sufficient interior property holds

using the direction given by the original MFCQ definition, see details in [8, 10]. Clearly, MFCQ
also implies the CPLD condition. 2

This shows that the internal penalty method converges to a KKT point under MFCQ, and
relaxing this condition to CPLD does not provide a stronger result. This is clear since we cannot
expect convergence of the internal penalty method if the sufficient interior property does not hold.

We conclude with a counter-example showing that a stronger form of Theorem 2, in which
CPLD is replaced by quasi-normality, does not hold. Consider the problem:

Minimize x Subject to − x2 ≤ 0,

at the point x∗ = 0. It is clear that MFCQ does not hold and the sufficient interior property holds.
Also the quasi-normality condition holds since there is no infeasible point.
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