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Abstract

This paper uses tools in Quasi-Homogeneous Normal Form theory to dis-
cuss certain aspects of reversible vector fields around an equilibrium point.
Our main result provides an algorithm, via Lie Triangle, that detects the
non-reversibility of vector fields. As a consequence we answer an intriguing
question related to the problems derived from the 16◦ Hilbert Problem. That
is, it is possible to decide whether a planar center is not reversible. Some of
the theory developed is also applied to get further results on nilpotent and de-
generate polynomial vector fields. We find several families of nilpotent centers
which are non-reversible.

1 Introduction and setting of the problem

This paper is focused on the differential systems with time-reversal symmetries. A
time-reversal symmetry is one of the fundamental symmetries in natural science and
it arises in many branches in physics, see for instance, Lamb and Roberts [15] for a
survey on reversible systems and related topics.

In the last decades there has been an increasing interest in the study of systems
with time-reversal symmetries. In recent years, a lot of attention has been devoted
to understand and use the interplay between dynamics and symmetry properties.
Reversible vector fields were first considered by Birkoff, in the beginning of the last
century, when he was studying the restricted three body problem. In [13] the theory
was formalized by Devaney.

The property of reversibility of a planar vector field is a sufficient condition for a
monodromic planar vector field to be a center, and this provides a strong motivation
to study the reversibility of vector fields. Moreover, there exists a strong connection
between the reversible and the center characteristics of a planar vector field. In fact,
it is known that a planar system having a non-degenerate (respectively nilpotent)
center at the origin is reversible (respectively orbitally reversible), see Poincaré [18],
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Berthier and Moussu [9]. In this paper, we also study nilpotent centers which are
non-reversible.

Much effort has been dedicated to understand the connection between, centers,
analytic integrability and reversibility of a planar vector field, see for instance (Al-
gaba, Gamero and Garćıa [2], Berthier and Moussu [9], Berthier, Cerveau and Lins
Neto [8], Chavarriga, Giacomin, Giné and Llibre [12], Llibre and Medrado, [16],
Strozyna and Zoladek, [20], Zoladek, [22], Teixeira and Yang, [21], and references
therein).

On the other hand, much work has been done in the study of planar polynomial
vector fields by means of techniques in the quasi-homogeneous normal form theory,
see for instance, Gasull and Torregrosa [14], Algaba, Gamero and Garćıa [2], Algaba,
Freire, Gamero and Garćıa [3], [4], [5].

In this paper, our main aim is to establish a discussion involving reversible vector
fields and quasi-homogeneous normal forms theory.

We now need to introduce some definitions and terminology.

• An involution is a diffeomorphism σ ∈ C∞(U0 ⊂ Rn,Rn), such that σ ◦
σ = Id, where U0 is a small neighborhood of 0 ∈ Rn. Denote Fix (σ) =
{x ∈ U0 |σ(x) = x} This set is a local sub-manifold of Rn and we are assum-
ing throughout the paper that dim (Fix (σ)) = n− 1.

• We say that the system ẋ = F(x), x ∈ Rn, or the vector field F is reversible
if there is an involution σ, σ(0) = 0, such that σ∗F = −F.

• We say that the system ẋ = F(x), x ∈ Rn, or the vector field F is orbitally
reversible if there exists an involution σ and a function f ∈ C∞(U0 ⊂ Rn,R),
f(0) = 1 such that σ∗ (fF) = −fF.

• We say that the system ẋ = F(x), or the vector field F is reversible with
respect to the coordinate xi (or just Rxi

−reversible) , i = 1, · · · , n, if it is
reversible with respect to the involution

Rxi
(x1, · · · , xi−1, xi, xi+1, · · · , xn) = (x1, · · · , xi−1,−xi, xi+1, · · · , xn).

We mean that the system ẋ = F(x) is invariant under a coordinate system
given by xi → −xi, t → −t for some i.

We deal with n−dimensional systems. Let F0 = (X,Y ), X ∈ R, Y ∈ Rn−1, a
(germ of) Cr reversible vector field with F0(0) = 0, r > 1, r = ∞ or r = ω. We know
(Montgomery-Bochner Theorem, (see [17], pp. 206)) that there exists a coordinate
system of class Cr around 0 such that the vector field is expressed as F0(x, y) =
(f(x2, y), xg(x2, y)), x ∈ R, y ∈ Rn−1 with f and g being Cr−functions. So a system
is not reversible provided that it cannot be expressed, up to Cr− conjugacy, to the
above form. This is, roughly speaking, the route we have chosen to conduct this
paper.

In summary, in what follows, we give a rough all-over description of the main
results of the paper.
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• Necessary conditions of reversibility We derive that it is enough to use re-
versible generators in order to calculate necessary conditions for the reversibil-
ity of a vector field. (Theorem 2.11). This fact provides a strong simplification
to deal with the reversibility problem.

• Algorithm of non-reversibility. We exhibit an algorithm, via the Lie tri-
angle, that detects the non-reversibility of the system (Theorem 3.19)

• Applications. We apply some of the theory developed to get further results
on nilpotent polynomial and degenerate vector fields.

The remaining sections are organized as follows. In Section 2 some terminology,
basic concepts and preparatory results are presented. In Section 3 an adequate
normal form to detect the reversibility of a vector field is discussed. In section 4
we present some applications on nilpotent and degenerate vectors fields, where the
center and the reversibility problem are connected.

2 N−reversibility

First of all, we establish some terminology and definitions.
Let Pt

k be the vector space of real quasi-homogeneous polynomial functions of
degree k ∈ N, respect to the type t = (t1, · · · , tn) ∈ Nn, i.e., f ∈ Pt

k, f : Rn −→ R if
and only if f(εt1x1, · · · , εtnxn) = εkf(x1, · · · , xn) for all ε, x1, · · · , xn ∈ R and Qt

k be
the vector space of the polynomial quasi-homogeneous vector fields of degree k ∈ Z,
respect to type t = (t1, · · · , tn) ∈ Nn, i.e., F = (Q1, · · · , Qn)T ∈ Qt

k, F : Rn −→ Rn,
if and only if Qi ∈ Pt

k+ti
, ∀i = 1, · · · , n. For more details see Bruno [10].

We will denote:

• Rt
k := {µk ∈ Pt

k |µk(−x, y) = −µk(x, y)}.
• St

k := {µk ∈ Pt
k |µk(−x, y) = µk(x, y)}, where x = x1 and y = (x2, · · · , xn)T .

• Rt
k :=

{
(p, q)T ∈ Qt

k

∣∣p ∈ St
k+t1

, qi ∈ Rt
k+ti

, i = 2, · · · , n}
, the Rx−reversible quasi-

homogeneous vector fields of degree k, where q = (q2, · · · , qm)T .

• St
k :=

{
(p, q)T ∈ Qt

k : p ∈ Rt
k+t1

, qi ∈ St
k+ti

, i = 2, · · · , n}
the Rx−symmetric

quasi-homogeneous vector fields of degree k.

In this way we may always consider the decomposition Pt
k = Rt

k

⊕
St

k and Qt
k =

Rt
k

⊕St
k.

Remark 2.1 Denote now Ũj = ProyRt
j
(U) and Uj = ProySt

j
(U).

Next lemma is a direct consequence of the last definitions.

Lemma 2.2 Let S = diag(−1,

n−1︷ ︸︸ ︷
1, · · · , 1). Then
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a) µ̃k ∈ Rt
k if, and only if, µ̃k(Sx) = −µ̃k(x).

b) µk ∈ St
k if, and only if, µk(Sx) = µk(x).

c) P̃k ∈ Rt
k, if, and only if, P̃k(Sx) = −SP̃k(x).

d) Pk ∈ St
k, if, and only if, Pk(Sx) = SPk(x).

Lemma 2.3 Let F̃r ∈ Rt
r, Fs ∈ St

s , µ̃k ∈ Rt
k, µk ∈ St

k. Hence:

a) ∇µ̃k · F̃r ∈ St
r+k.

b) ∇µ̃k · Fs ∈ Rt
s+k.

c) ∇µk · F̃r ∈ Rt
r+k.

d) ∇µk · Fs ∈ St
s+k.

Proof: This proof is an immediate consequence of Lemma 2.2. We prove only the
item a).

If µ̃k ∈ Rt
k, y = Sx then:

∇µ̃k(Sx) = ∇µ̃k(Sx)S = ∇µ̃k(y)S = −∇µ̃k(x).

Hence ∇µ̃k(y) = −∇µ̃k(x)S−1 = −∇µ̃k(x)S. So:

(
∇µ̃k · F̃r

)
(y) = ∇µ̃k(y) · F̃r(y) = ∇µ̃k(x) · SSF̃r(x) = ∇µ̃k(x) · F̃r(x) =

(
∇µ̃k · F̃r

)
(x)

and finally the proof is done.

In [6] is proved the following result

Theorem 2.4 F is reversible if, and only if, there exists an involution σ0 ∈ Qt
0 and

a change of variables close to the identity Φ such that (Φ ◦ σ0)∗F is Rx−reversible.

Therefore, we can assume up to change of variables of zero degree that F = F̃r + · · ·,
with F̃r ∈ Rt

r and study when there exists a change of variables Φ =
∑

j≥0 Φj,
Φj ∈ Qt

j and DΦ(0) = Id, such that Φ∗F is Rx−reversible. Otherwise, F is not
reversible.

Along this paper, we will need sometimes to truncate quasi-homogeneous expan-
sions. In this way, for the vector field F, expanded in quasi-homogeneous terms of
type t, F = Fr + Fr+1 + · · ·, we define its quasi-homogeneous (r + k)-jet respect to
the type t by

J r+k(F) = Fr + Fr+1 + · · ·+ Fr+k.

Sometimes, we will need to pick-up the k-degree quasi-homogeneous term of a vector
field. As we have already done, we use subscripts on vector fields to denote its
projection on the space of quasi-homogeneous polynomials. For instance, [F,G]k
will denote the k-degree quasi-homogeneous term of the Lie product.
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Throughout this paper we use the relation between change of variables and the
generators associate to the change of variables, more concretely.

Let y = Φ(x) be a smooth change of variables. It is known (see [1]) that it can
be suspended to a flow uε(x) (where u1(x) = Φ(x)) defined by a vector field U (U
is called generator of Φ). Recall that u(x, ε) is the solution of

∂u(x,ε)
∂ε

= U (u(x, ε)) , u(x, 0) = x.

Considering the development (in ε) at ε = 0:

u(x, ε) = u(x, 0) +
∂u(x, 0)

∂ε
ε +

1

2!

∂2u(x, 0)

∂ε2
ε2 + · · ·

= x + U(u(x, 0))ε +
1

2!

∂U (u(x, ε))

∂ε

∣∣∣∣
ε=0

ε2 + · · ·

= x + U(x)ε +
1

2!
DU(x)U(x)ε2 + · · ·

So,

Φ(x) = x + U(x) +
1

2!
DU(x)U(x) + · · · (2.1)

If we denote the Φ−action over F as Φ∗F or U∗∗F, it is known (see [1]) that,

U∗∗F = F + [F,U] + · · ·+ 1
n!

n veces︷ ︸︸ ︷
[ · · · [ F,U ] , · · · ,U ] + · · · (2.2)

Definition 2.5 Let N ∈ N, F = F̃r +
∑

j≥1 Fr+j, Fr+j ∈ Qt
r+j. We say that

F is N-reversible if there exists a vector field U =
∑

j≥1 Uj, Uj ∈ Qt
j such that

J r+N (U∗∗F) is Rx-reversible.

Remark 2.6 It is clear that if there exists N ∈ N such that F is N-reversible but
not (N + 1)-reversible, then F is non-reversible.

Our goal now is to find sufficient conditions for non-reversibility of the field F.
Consider the above decomposition on each quasi-homogeneous term of F. In this
way, we will study the system:

ẋ = F̃r +
∑

j≥r+1

(
F̃j + Fj

)
, (2.3)

where F̃j ∈ Rt
j and Fj ∈ St

j .

Lemma 2.7 Let F̃r ∈ Rt
r, R̃k ∈ Rt

k and Rk ∈ St
k. Then:

(a)
[
R̃k, F̃r

]
∈ St

r+k.

(b)
[
Rk, F̃r

]
∈ Rt

r+k.
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Proof: Let F̃r = (f, g)T , g = (g2, · · · , gn)T and R̃k = (p, q)T , q = (q2, · · · , qn)T . As

F̃r ∈ Rt
r and R̃k ∈ Rt

r one has f ∈ St
r+t1

, p ∈ St
k+t1

, gi ∈ Rt
r+ti

and qi ∈ Rt
k+ti

,
i = 2, · · · , n. Recall that

[
R̃k, F̃r

]
=

(
∇pF̃r −∇fR̃k,∇q2F̃r −∇g2R̃k, · · · ,∇qnF̃r −∇gnR̃k

)T

,

Now from Lemma 2.3 we obtain (a).
Let us discuss (b). If Rk = (p̃, q)T ∈ St

k, q = (q2, · · · , qn)T , then p̃ ∈ Rt
k+t1

and
qi ∈ St

k+ti
, for i = 2, · · · , n.

From Lemma 2.3 one has ∇p̃F̃r ∈ St
r+k+t1

, ∇fRk ∈ St
r+k+t1

, ∇qiF̃r ∈ Rt
r+k+ti

,

∇giR̃k ∈ Rt
r+k+ti

and the claim (b) follows.

Lemma 2.8 Consider Φ and Ψ coordinates changes given by U =
∑

j≥1 Uj y V =∑
j≥k Vj with Uj,Vj ∈ Qt

j, respectively. Let W =
∑

j≥1 Wj, Wj ∈ Qt
j be a

generator of one of the mappings Ψ ◦ Φ or Φ ◦Ψ. Then

Wj = Uj, ∀j = 1, · · · , k − 1,
Wk = Uk + Vk.

Proof: If Φ is generated by U, equation (2.1) allows us to derive Φ(x) = x +∑
j≥1 Φj(x) with Φ1 = U1 and Φj = Uj +fj (U1, · · · ,Uj−1) where fj with fj(0) = 0.
Similarly for Ψ(x) = x+

∑
j≥1 Ψj(x), with Ψ1 = V1 y Ψj = Vj+fj (V1, · · · ,Vj−1).

In this case, as V1 = · · · = Vk−1 = 0, one obtains Ψ1 ≡ · · · ≡ Ψk−1 ≡ 0 y Ψk = Vk.
We discuss just the mapping Ψ ◦ Φ(x); the proof for Φ ◦ Ψ(x) is completely

analogous.
Let Θ(x) := Ψ ◦ Φ(x) = x +

∑
j≥1 Θj(x). Using same arguments as above one

obtains that both, Θ1 = W1 and Θj = Wj + fj (W1, · · · ,Wj−1) , depend only on
de W1, · · · ,Wj.

If k = 1, as Θ(x) = Ψ ◦ Φ(x) = Ψ
(
x +

∑
j≥1 Φj(x)

)
= x + Ψ1(x) + Φ1(x) + · · ·

where · · · are higher degree (> 1) quasi-homogeneous terms one has W1 = U1 +V1.

If k > 1, then Ψ1 ≡ · · · ≡ Ψk−1 ≡ 0 y Θ(x) = Ψ◦Φ(x) = Ψ
(
x +

∑
j≥1 Φj(x)

)
=

x + Φ1(x) + · · ·+ Φk−1(x) + Ψk(x) + Φk(x) + · · · where · · · are higher degree (> k)
quasi-homogeneous terms. Thus Θ1 = Φ1, · · · , Θk−1 = Φk−1 y Θk = Φk + Ψk.

In this way we get W1 = U1. Moreover for each j, 2 ≤ j ≤ k − 1 we have:

Θj = Wj + fj (W1, · · · ,Wj−1) = Uj + fj (U1, · · · ,Uj−1) = Φj

We obtain then W1 = U1, · · · ,Wk−1 = Uk−1. Finally the proof of the Proposition
follows from

Θk = Wk + fk (W1, · · · ,Wk−1) = Wk + fk(U1, · · · ,Uk−1)

Ψk + Φk = Vk + Uk + fk (U1, · · · ,Uk−1) .

6



Lemma 2.9 Let r ∈ N, F = F̃r +
∑

j≥1 Fr+j with F̃r ∈ Rt
r, Fr+j ∈ Qt

r+j and

F̃r 6= 0. Consider U =
∑

j≥1 Uj with Uj ∈ Qt
j. There exist V =

∑
j≥1 Vj,

Vj ∈ Qt
j and Vr ∈ Q̂t

r, where Q̂t
r is a complementary space to

〈
F̃r

〉
in Qt

r; that is,

Qt
r = Q̂t

r

⊕ 〈
F̃r

〉
, such that U∗∗F = V∗∗F

Proof: Let Φ be the diffeomorphism generated by U. Let Ur = Ûr + λF̃r with
λ ∈ R and Ûr ∈ Q̂t

r. If λ = 0 the assertion follows; it is enough to take V = U.
If λ 6= 0, we select Ψ, the diffeomorphism generated by λF. Observe that

(λF)∗∗F = F + [F, λF] + · · ·+ 1

n!
[· · · [F, λF] , · · · , λF] + · · · = F

If V is generator of Φ ◦Ψ−1, then:

U∗∗F = Φ∗F = Φ ◦Ψ−1 ◦Ψ∗F =
(
Φ ◦Ψ−1

)
∗ (Ψ∗F) = V∗∗ ((λF)∗∗F) = V∗∗F

On the other hand Ψ(x) = x+λFr(x)+· · ·. So Ψ−1(x) = x−λFr(x)+· · ·. Applying

Lemma 2.8 one obtains that Vr = Ur − λFr = Ûr ∈ Q̂t
r.

From now on, we will denote, abusing of the language, Rt
r as a complementary

subspace to < F̃r > in Rt
r

Proposition 2.10 If the system (2.3) is reversible, then there is a diffeomorphism
Ψ generated by a Rx−reversible vector field V, i.e. V ∈ ⊕

j≥1Rt
j, such that(

V∗∗F
)

r+j
= 0 for all j ≥ 1.

Proof: If ẋ = F(x) is reversible, there exists a diffeomorphism Φ generated by U
such that

(
U∗∗F

)
r+j

= 0 for all j ≥ 1.

Let kU = min
{
j ∈ N

∣∣Uj 6= 0
}
. If kU < +∞, we show that there exists a

diffeomorphism generated by V such that
(
V∗∗F

)
r+j

= 0 for every j ≥ 1. Moreover

kV > kU.
Let ΨkU

be the diffeomorphism generated by −UkU
. Consider V one of the

possible generators of ΨkU
◦ Φ. We show that

(
(ΨkU

◦ Φ)∗F
)

r+j
= 0 for every

j ≥ 1. From Lemma 2.7 cases b) and c) we just need to prove that:

0 =
((−UkU

)
∗∗ (U∗∗F)

)
r+j

=
((−UkU

)
∗∗

(
U∗∗F

))
r+j

This assertion is always true due to
(
U∗∗F

)
r+j

= 0 for every j ≥ 1.

We conclude the present proof by applying the Proposition 2.8 and recalling that
J kU−1 (V) = J kU−1 (U) and VkU

= UkU
−UkU

.

Theorem 2.11 F = F̃r+
∑

j≥1 Fr+j is N-reversible, N ∈ N, provided that there ex-

ists a vector field Ũ =
∑N

j=1 Ũj, Ũj ∈ Rt
j such that J r+N

(
Ũ∗∗F

)
is Rx−reversible.

Proof: It is enough to apply Lemma 2.9 and Proposition 2.10.

Remark 2.12 Therefore to study the reversibility of a vector field it is enough to
use change of variables whose generators are reversibles.
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3 N−reversible normal forms and reversibility

The goal of this section is to determine a suitable normal form adequate to our
setting. Following the terminology of the last section, let Qt

k = St
k

⊕Rt
k for every

k. So we write

F = F̃r +
∞∑

j=1

(
F̃r+j + Fr+j

)
, F̃r+j ∈ Rt

r+j, Fr+j ∈ St
r+j, (3.4)

where F̃r 6= 0, F̃r ∈ Rt
r, i.e. F is 0−reversible.

We take F(0) := F = F̃
(0)
r +

(
F̃

(0)
r+1 + F

(0)

r+1

)
+ · · ·. To simplify the terms F

(0)

r+1, we

apply the variable change Φ1 generated by Ũ1 ∈ Rt
1. Observe that from Theorem

2.11 we may use generators belonging to Rt
k instead Qt

k, and we get

(Φ1)∗F = F̃(0)
r + F̃

(0)
r+1 + F

(0)

r+1 +
[
F̃(0)

r , Ũ1

]
+ · · ·

Such results suggest to define the following linear operator:

L
(1)

: Rt
1 −→ St

r+1

Ũ1 →
[
Ũ1, F̃

(0)
r

]
.

(3.5)

From Lemma 2.7 (a) we know that L
(1)

, is well defined, and it depends on F̃
(0)
r and

we may write L
(1)

= L
(1)

[
F̃

(0)
r

]
.

Consider F
(0)

r+1 = F
r

r+1 + F
c

r+1 where F
r

r+1 ∈ Im
(
L

(1)
)

and F
c

r+1 ∈ Cor
(
L

(1)
)
,

with St
r+1 = Im

(
L

(1)
) ⊕

Cor
(
L

(1)
)
. We may select Ũ1 ∈ Rt

1 such that F
r

r+1 =

L
(1)

(
Ũ1

)
. So F(1) := (Φ1)∗F

(0) is expressed as:

F(1) = F̃(0)
r + F̃

(0)
r+1 + F

c

r+1 + · · ·
If F

c

r+1 6= 0 we will show that the original vector field cannot be 1-reversible. Oth-
erwise we may write

F(1) = F̃(0)
r + F̃

(0)
r+1 + F̃

(1)
r+2 + F

(1)

r+2 + · · · (3.6)

To simplify F
(1)

r+2 we apply Φ2 having as generator the vector field Ũ1 + Ũ2 with

Ũj ∈ Rt
j for j = 1, 2. We choose Ũ1 ∈ Ker

(
L

(1)
)

and we get:

(Φ2)∗F
(1) = F̃(0)

r + F̃
(0)
r+1 +

[
F̃(0)

r , Ũ1

]
+ F̃

(1)
r+2 + F

(1)

r+2 +
[
F̃

(0)
r+1, Ũ1

]
+

[
F̃(0)

r , Ũ2

]

+
1

2!

[[
F̃(0)

r , Ũ1

]
, Ũ1

]
+ · · ·

= F̃(0)
r + F̃

(0)
r+1 + F̃

(1)
r+2 + F

(1)

r+2 +
[
F̃

(0)
r+1, Ũ1

]
+

[
F̃(0)

r , Ũ2

]
+ · · ·

In this way a sequence of linear operators can be defined L
(m)

, m ∈ N as follows.
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Definition 3.13 Let m ∈ N and

F(m) = F̃(m)
r + · · ·+ F̃

(m)
r+m−1 +

∑
j≥m

(
F̃

(m)
r+j + F

(m)

r+j

)
,

where F̃
(m)
r+j ∈ Rt

r+j for each j ≥ 0 and F
(m)

r+j ∈ St
r+j for each j ≥ m. We define the

operator L
(m)

by induction on m ∈ N. L
(1)

is defined in (3.5), and the operators

L
(m)

that depend on F̃
(m)
r , · · · , F̃(m)

r+m−1, i.e. L
(m)

= L
(m)

[F̃
(m)
r , · · · , F̃(m)

r+m−1] for every
m ≥ 1, are defined by

L
(m)

: Ker
(
L

(m−1)
)
×Rt

m −→ St
r+m((

R̃1, · · · , R̃m−1

)
, R̃m

)
→ ∑m−1

j=0

[
R̃m−j, F̃r+j

]
.

Lemma 2.7 (a) allows us to conclude that L
(m)

is well defined.

Definition 3.14 Let F, G be two conjugate vector fields such that Ũ∗∗F = G,
Ũ ∈ ⊕

j≥1Rt
j. We say that G is a N−reversible normal form of F if G can be

expressed as

G = G̃r + · · ·+ G̃r+N−1 +
(
G̃r+N + Gr+N

)
+ · · · ,

with G̃r = F̃r, Gr+N ∈ Cor
(
L

(N)
[G̃r, · · · , G̃r+N−1]

)
and G̃r+j ∈ Rt

r+j, 0 ≤ j ≤ N .

Lemma 3.15 Let k ∈ N, k > 1, F =
∑k−1

j=0 F̃r+j +
(
F̃r+k + Fr+k

)
+ · · ·, F̃r+j ∈

Rt
r+j and Fr+k ∈ St

r+k. Assume that Ũ =
∑∞

j=1 Ũj, Ũj ∈ Rt
j such that

(
Ũ1, · · · , Ũk−1

)
∈

Ker
(
L

(k−1)
)
. Then:

(
˜̃
U∗∗F

)

r+j

= F̃r+j, for j = 0, · · · , k,

(
Ũ∗∗F

)
r+j

= 0, for j = 0, · · · , k − 1,

(
Ũ∗∗F

)
r+k

= Fr+k +
k∑

l=1

[
F̃r+k−l, Ũl

]

Proof: For j = 0, · · · , k, one has

(
Ũ∗∗F

)
r+j

= Fr+j +
[
F, Ũ

]
r+j

+
1

2!

[[
F, Ũ

]
, Ũ

]
r+j

+
1

3!

[[[
F, Ũ

]
, Ũ

]
, Ũ

]
r+j

+ · · ·

+
1

n!

[
· · ·

[
F, Ũ

]
, · · · , Ũ

]
r+j
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Since
(
Ũ1, · · · , Ũk−1

)
∈ Ker

(
L

(k−1)
)
, one has:

0 =
[
F̃r, Ũ1

]
=

[
F, Ũ

]
r+1

,

0 =
2∑

l=1

[
F̃r+1−l, Ũl

]
=

[
F, Ũ

]
r+2

,

...

0 =
k−1∑

l=1

[
F̃r+k−1−l, Ũl

]
=

[
F, Ũ

]
r+k−1

.

and so the proof is complete.

The following result proves that the (r+N)−jet of any two N−reversible normal
form is unique, modulus reversible generators.

Theorem 3.16 Let

F = F̃r + F̃r+1 + · · ·+ F̃r+N−1 +
(
F̃r+N + Fr+N

)
+ · · · ,

G = F̃r + G̃r+1 + · · ·+ G̃r+N−1 +
(
G̃r+N + Gr+N

)
+ · · ·

such that

Fr+N ∈ Cor
(
L

(N)
[F̃r, F̃r+1, · · · , F̃r+N−1]

)
,

Gr+N ∈ Cor
(
L

(N)
[F̃r, G̃r+1, · · · , G̃r+N−1]

)
.

Assume that there exists a formal series Ũ =
∑

j≥1 Ũj with Ũj ∈ Rt
j for all j ≥ 1

such that
(
Ũ∗∗F

)
r+j

= Gr+j for all j = 1, · · · , N . Then

G̃r+j = F̃r+j for all j = 1, · · · , N and Gr+N = Fr+N

Proof: As Gr+j =
(
Ũ∗∗F

)
r+j

, for j = 1, · · · , N one obtains:

Gr+j = Fr+j +
[
F, Ũ

]
r+j

+
1

2!

[[
F, Ũ

]
, Ũ

]
r+j

+ · · ·

+
1

n!

[
· · ·

[
F, Ũ

]
, · · · , Ũ

]
r+j

+ · · · (3.7)

Hence:

Gr+j = Fr+j +
[
F, Ũ

]
r+j

+
1

2!

[[
F, Ũ

]
, Ũ

]
r+j

+ · · ·+ 1

n!

[
· · ·

[
F, Ũ

]
, · · · , Ũ

]
r+j

+ · · ·

G̃r+j = F̃r+j +
[̃
F, Ũ

]
r+j

+
1

2!

˜[[
F, Ũ

]
, Ũ

]
r+j

+ · · ·+ 1

n!

˜[
· · ·

[
F, Ũ

]
, · · · , Ũ

]
r+j

+ · · ·

10



Observe that these infinite sums are well defined. As Gr = · · · = Gr+N−1 = 0, for
1 ≤ j ≤ N − 1 one has:

0 =
[
F, Ũ

]
r+j

+
1

2!

[[
F, Ũ

]
, Ũ

]
r+j

+ · · ·+ 1

n!

[
· · ·

[
F, Ũ

]
, · · · , Ũ

]
r+j

+ · · ·

For j = 1, taking into account the quasi-homogeneous degree in the non-reversible
part, the equation (3.7) is written as:

0 =
[
F̃r, Ũ1

]
r+1

= −L
(1)

(
Ũ1

)
,

Hence Ũ1 ∈ Ker
(
L

(1)
)
.

Consider now the reversible terms for j = 1. From Lemma 2.7 case (a), we get:

G̃r+1 = F̃r+1 +
˜[
F̃r, Ũ1

]
r+1

= F̃r+1.

For j = 2, considering in (3.7) the reversible terms, one has:

0 =
[
F̃r, Ũ2

]
+

[
F̃r+1, Ũ1

]
+ 1

2!

[[
F̃r, Ũ1

]
, Ũ1

]

=
[
F̃r, Ũ2

]
+

[
F̃r+1, Ũ1

]
= −L

(2)
(
Ũ1, Ũ2

)

So
(
Ũ1, Ũ2

)
∈ Ker

(
L

(2)
)
.

Considering now the reversible terms in (3.7) for j = 2, from Lemma 2.7, case

(a), one gets F̃r+2 = G̃r+2.

Arguing in the same way as above we have F̃r+N−1 = G̃r+N−1 and
(
Ũ1, · · · , ŨN−1

)
∈

Ker
(
L

(N−1)
)
.

From Lemma 3.15, the non-reversible terms of the equation (3.7), for j = N ,
are:

Gr+N = Fr+N +
N−1∑
j=0

[
F̃r+j, ŨN−j

]
= Fr+N − L

(N)
(
Ũ1, · · · , ŨN

)

Thus Gr+N − Fr+N ∈ Im
(
L

(N)
)
∩ Cor

(
L

(N)
)

= {0} and so Gr+N = Fr+N .

Finally the reversible terms of (3.7), for j = N , are:

G̃r+N = F̃r+N +
N∑

j=0

˜[
F̃r+j, ŨN−j

]
= F̃r+N .

This finishes the proof.
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Lemma 3.17 Let k, N ∈ N, k ≤ N . If

F = F̃r + F̃r+1 + · · ·+ F̃r+k−1 +
(
F̃r+k + Fr+k

)
+ · · · ,

is N-reversible then

Fr+k ∈ Im
(
L

(k)
[F̃r, · · · , F̃r+k−1]

)

Proof: Consider Fr+k = F
r

r+k + F
c

r+k with F
r

r+k ∈ Im
(
L

(k)
[F̃r, · · · , F̃r+k−1]

)
and

F
c

r+k ∈ Cor
(
L

(k)
[F̃r, · · · , F̃r+k−1]

)
.

So there is a k−upla
(
R̃1, · · · , R̃k

)
in the domain of the operator L

(k)
[F̃r, · · · , F̃r+k−1]

satisfying

F
r

r+k = L
(k)

[F̃r, · · · , F̃r+k−1]
(
R̃1, · · · , R̃k

)
.

Let Φ be the diffeomorphism generated by
∑k

j=1 R̃j. From Lemma 3.15 one gets

Φ∗F = F̃r + · · ·+ F̃r+k−1 + F̃r+k + F
r

r+k − L
(k)

1 [F̃r, · · · , F̃r+k−1]
(
R̃1, · · · , R̃k

)

+F
c

r+k + · · ·
= F̃r + · · ·+ F̃r+k−1 + F̃r+k + F

c

r+k + · · ·

As Φ∗F is N -reversible and N ≥ k we conclude that Φ∗F is also k-reversible.

Hence, there is Ũ =
∑k

j=1 Ũj, Ũj ∈ Rt
j such that

(
Ũ∗∗ (Φ∗F)

)
r+j

= 0 for j =

0, · · · , k. Denoting G = Ũ∗∗ (Φ∗F) then

G = F̃r + G̃r+1 + · · ·+ G̃r+k + Gr+k + · · ·

with Gr+k = 0.
Theorem 3.16 implies that F̃r+j = G̃r+j, for j = 1, · · · , k and F

c

r+k = 0 and so
we finish the proof.

The following proposition defines a procedure which provides us the necessary
conditions of reversibility up to a defined order.

Proposition 3.18 let N ∈ N, F = F̃r + · · · a vector field. There exists Ũ =∑N
j=1 Ũj with

Ũ∗∗F = F̃r +
∑
j≥1

(
F̃r+j + Fr+j

)

such that if Fr+j = 0 j = 0, · · · , k − 1, then Fr+k ∈ Cor
(
L

(k)
[F̃r, · · · , F̃r+k−1]

)
, for

all k = 1, · · · , N .
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Proof: Let F(0) := F = F̃
(0)
r +

∑
j≥1

(
F̃

(0)
r+j + F

(0)

r+j

)
, we are going to prove that there

exists a sequence of change of variables near the identity Φ(k), k = 1, · · · , N such
that F(k) := Φ

(k)
∗ F(k−1), verifies the following properties:

(a) Φ(k) is generated by Ũ(k) = Ũ
(k)
1 + · · · + Ũ

(k)
k , where

(
Ũ

(k)
1 , · · · , Ũ(k)

k

)
, belong

to the domain of the operator L
(k)

[F̃
(k−1)
r , · · · , F̃(k−1)

r+k−1].

(b) If F(k) := F
(k)
r +

∑
j≥1

(
F̃

(k)
r+j + F

(k)

r+j

)
then it is verified:

F
(k)

r+j = 0, j = 0, · · · , k − 1 if, and only if, F
(k−1)

r+j = 0, j = 0, · · · , k − 1,

and in this case it has F̃
(k)
r+j = F̃

(k−1)
r+j , j = 0, · · · , k.

(c) If F
(k)

r+j = 0 j = 0, · · · , k − 1 then F
(k)

r+k ∈ Cor
(
L

(k)
[F̃

(0)
r , · · · , F̃(k−1)

r+k−1]
)
.

Let us prove this statement by induction. For k = 1, we consider the decomposition

F
(0)

r+1 = F
r

r+1 + F
c

r+1 with





F
r

r+1 ∈ Im
(
L

(1)
[F̃

(0)
r ]

)

F̃c
r+1 ∈ Cor

(
L

(1)
[F̃

(0)
r ]

)

So, there exists Ũ
(1)
1 such that F

r

r+1 = L
(1)

[F̃
(0)
r ]

(
Ũ

(1)
1

)
.

Taking Φ(1) generated by Ũ
(1)
1 (it is verified (a) and F(1) = Φ

(1)
∗ F(0). It has that

F̃
(1)
r+1 = F̃

(0)
r+1, therefore is obtained (b) and (c)).

Let us assume that (a), (b) and (c) are verified for k − 1 < N and let us prove
these statements for k.

We consider the decomposition:

F
(k−1)

r+k = F
r

r+k + F
c

r+k with





F
r

r+k ∈ Im
(
L

(k)
[F̃

(k−1)
r , · · · , F̃(k−1)

r+k−1]
)

F
c

r+k ∈ Cor
(
L

(k)
[F̃

(k−1)
r , · · · , F̃(k−1)

r+k−1]
)

.

So, there is
(
Ũ

(k)
1 , · · · , Ũ(k)

k

)
in the domain of L

(k)
[F̃

(k−1)
r , · · · , F̃(k−1)

r+k−1] such that

F
r

r+k = L
(k)

[F̃(k−1)
r , · · · , F̃(k−1)

r+k−1]
(
Ũ

(k)
1 , · · · , Ũ(k)

k

)

Considering Φ(k) generated by Ũ(k) = Ũ
(k)
1 + · · · + Ũ

(k)
k (therefore (a) is verified)

and F(k) = Φ
(k)
∗ F(k−1). Let us prove (b).

• If F
(k−1)

r+j = 0 for j = 0, · · · , k − 1 then by Lemma 3.15 it has F
(k)

r+j = 0 for

j = 0, · · · , k − 1 and F̃
(k)
r+j = F̃

(k−1)
r+j for j = 0, · · · , k. This is the sufficient

condition.
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• We prove the necessary condition by induction on j, 0 ≤ j ≤ k− 1. For j = 0
it is trivial. Assuming the condition j − 1. Let us prove for j. In fact, if we
express the vector fields

F(k−1) = F̃(k−1)
r + · · ·+ F̃

(k−1)
r+j−1 +

(
F

(k−1)

r+j + F̃
(k−1)
r+j

)
+

(
F

(k−1)

r+j+1 + F̃
(k−1)
r+j+1

)
+ · · · ,

F(k) = F̃(k−1)
r + · · ·+ F̃

(k−1)
r+j−1 + F̃

(k−1)
r+j +

(
F

(k)

r+j+1 + F̃
(k)
r+j+1

)
+ · · · .

We have to prove that F
(k−1)

r+j = 0 and F̃
(k)
r+j+1 = F̃

(k−1)
r+j+1. We know that(

Ũ
(k)
1 , · · · , Ũ(k)

j

)
∈ Ker

(
L

(j)
[F̃

(k−1)
r , · · · , F̃(k−1)

r+j−1]
)

and by Lemma 3.15, it has

0 = F
(k)

r+j =
(
Ũ

(k)
∗∗ F(k−1)

)
r+j

= F
(k−1)

r+j +

j∑

l=1

[
F̃

(k−1)
r+j−l, Ũ

(k)
l

]
= F

(k−1)

r+j ,

hence F
(k−1)

r+j = 0.

In this case, applying Lemma 3.15 again, we obtain

F̃
(k)
r+j+1 =

(
˜

Ũ
(k)
∗∗ F(k−1)

)

r+j+1

= F̃
(k−1)
r+j+1

Finally, we prove the property (c). By applying Lemma 3.15, we have

F
(k)

r+k =
(
Ũ

(k)
∗∗ F(k−1)

)
r+k

= F
(k−1)

r+k +
k∑

l=1

[
F̃

(k−1
r+k−l, Ũ

(k)
l

]

= F
r

r+k + F
c

r+k − L
(k)

[F̃(k−1)
r , · · · , F̃(k−1)

r+k−1]
(
Ũ

(k)
1 , · · · , Ũ(k)

k

)
= F

c

r+k

So, F
(k)

r+k ∈ Cor
(
L

(k)
[F̃

(k−1)
r , · · · , F̃(k−1)

r+k−1]
)
, to obtain the result it is enough to apply

induction hypothesis and property (b).

To finish the proof it is enough to consider Ũ a generator of the change of
variables Φ(N) ◦ Φ(N−1) ◦ · · · ◦ Φ(1).

The following result characterizes the k−reversibility of a vector field and ensures
the existence of a (k + 1)−reversible normal for this vector field.

Theorem 3.19 Let N ∈ N, F = F̃r + · · · a vector field and Ũ the generator defined

in Proposition 3.18 (i.e., Ũ∗∗F = F̃r +
∑

j≥1

(
F̃r+j + Fr+j

)
, verifying the properties

of the Proposition 3.18). Then:
F is k−reversible, k ≤ N if, and only if, Fr+j = 0, j = 1, · · · , k.

Moreover, in this case Ũ∗∗F is a (k + 1)−reversible normal form of F.

Proof: The sufficient condition is trivial. Let us prove the necessary condition. We
assume F is k−reversible and Fr+j 6= 0 for some j = 1, · · · , k. We define j0 :=
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min
{
j = 1, · · · , k : Fr+j 6= 0

}
. By hypothesis Fr+j0 ∈ Cor

(
L

(j0)
[F̃r, · · · , F̃r+j0−1]

)

and therefore U∗∗F is a j0−reversible normal form. By using Lemma 3.17 Fr+j0 ∈
Im

(
L

(j0)
[F̃r, · · · , F̃r+j0−1]

)
, then Fr+j0 = 0, and this is a contradiction.

Taking into account the Hilbert Basis Theorem and the above Theorem, we
obtain the following result.

Corollary 3.20 Let F =
{
F = F̃r + · · · |F polinomial vector field

}
a family of poly-

nomial vector fields. Then there exists M ∈ N such that:
F ∈ F is reversible if, and only if, F is M−reversible.

Remark 3.21 The minimum natural number M ∈ N which exists by Corollary 3.20
is called reversibility order of F .

4 Applications

There are inside the theory of planar vector fields three important objects: ana-
lytic integrability, the center-focus problem and reversibility. Moreover, they are
themselves intrinsically and closely related.

In fact, it is well known that the vector field (−y, x)T + · · · has center at the
origin if and only if it is reversible, (Poincaré theorem)(see [18]). In this sense, the
reversibility of some families of vector fields are known. For instance, the reversibility
of (−y, x)T + (Pm(x, y), Qm(x, y))T for m = 2 and m = 3, is known (see Bautin [7],
Sibirskii [19], Zoladek [23], [24], and references therein). However, this doesn’t
happen for the monodromic nilpotent case. In this case due to Berthier and Moussu
theorem (see [9]), the vector field (−y, x2n+1)T + · · · has a center at the origin if and
only if it is orbitally reversible. Therefore the monodromic and reversible planar
systems of type nilpotent are centers. However, the reverse claim is not true. We
discuss some counterexamples in this section.

In the first part of this section we discuss the reversibility of the following nilpo-
tent systems:

(
ẋ
ẏ

)
=

(
y

σx4q+1

)
+

(
a1xy + a2x

2q+2

b1y
2 + b2x

2q+1y + b3x
4q+2

)
, (4.8)

(
ẋ
ẏ

)
=

(
y

σx4q−1

)
+

(
a1xy + a2x

2q+1

b1y
2 + b2x

2qy + b3x
4q

)
, (4.9)

with σ = ±1, q ∈ N.
The analytic integrability and the center problem for these systems in the case

σ = −1 (monodromic case) has been studied in [11] and [14], respectively.
In the second part of this section we study the reversibility of a family of systems

with null linear part:
(

ẋ
ẏ

)
=

(
y2

x2

)
+

(
a0x

3 + a1x
2y + a2xy2 + a3y

3

b0x
3 + b1x

2y + b2xy2 + b3y
3

)
. (4.10)
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Remark 4.22 In Algaba et al [3], a recursive procedure to compute quasi-homogeneous
normal forms under equivalence, that uses the Lie triangle, is presented. The com-
putation of the N−reversible normal form can be accomplished by adapting this
procedure to the case of reversible transformations, by using Proposition 3.18

We have the following result.

Theorem 4.23 The system (4.8) is reversible if and only if one of the following
conditions is satisfied:

a) b1 = −a1, a2 = 0, b3 = −σa1.

b) a1 = b1 = b3 = 0, (reversible to the change x → −x, t → −t).

c) a2 = b2 = 0, (reversible to the change y → −y, t → −t).

d) a1 + 2b1 = 0, b2 = −2(q + 1)a2.

Proof: Let F be the vector field given by (4.8). Observe that F is a sum of two
quasi-homogeneous vector field of type t = (1, 2q + 1) and degree 2q and 2q + 1,

respectively. The first quasi-homogeneous term, F̃2q := (y, σx4q+1)T is already in a
desired simplified form (it is Rx− and Ry− reversible) and these are the unique zero
degree involutions which carry the first term of the vector field to Rx−reversible.

We start seeking the Rx−reversibility. To obtain reversible conditions we take the
generator Ũ =

∑
j≥1 Ũj, Ũj ∈ Rt

j, where: Ũ1 = (α1x
2, α2xy)T , Ũ2 = (0, α3x

2q+3)T ,

Ũ3 = (α4x
4, α5x

3y)T , Ũ4 = (χ{q=1}α6x
2y, α7x

2q+5 + χ{q=1}α8xy2)T and χ{q=n} is 1
when q = n and 0 otherwise. Choosing adequately αi, i = 1, · · · , 8 as specified in
the Proposition 3.18, we obtain:

Ũ∗∗F = F(1)(x) = F̃2q +

{
F̃2q+1 + λ(1)

(
0

x4q+2

)}
+

{
F̃2q+2 +

1

2
λ(2)

(
0

x2q+2y

)}

+

{
F̃2q+3 +

1

24(2q + 1)
λ(3)

(
0

x4q+4

)}
+

{
F̃2q+4 − 1

12
λ(4)

(
0

x2q+4y

)}

+

{
F̃2q+5 +

1

480
λ(5)

(
0

x4q+6

)}
+ · · · .

So, by applying Theorem 3.19, F is 5−reversible if, and only if, λ(j) = 0 for 1 ≤ j ≤ 5.
The equations λ

(1)
1 = λ

(2)
1 = 0, are equivalent to:

b3 = −σ
2

[(4q + 1)a1 + (4q − 1)b1)] , (4.11)

(2q + 1)(b1 + a1)b2 + 2
[
(2q2 + 3q − 1)b1 + q(2q + 3)a1

]
a2 = 0, (4.12)

We have the following possibilities:

(1) a2 = b1 + a1 = 0. In this case (4.8) by means of the coordinates change u = x,
v = y + a1xy the system is expressed by:
(

u̇
v̇

)
=

(
v

σu4q+1

)
+

(
0

b2u
2q+1v

)
+

(
0

−σa2
1u

4q+3

)
, σ = ±1, q ∈ N,

that is Ru-reversible. This is the situation described in (a).
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(2) a2 = b2 = 0. In this case the system is Ry-reversible. This is the situation
described in (c).

(3) a1 = b1 = 0, a2 6= 0. In this case the system is Rx-reversible. This is the
situation described in (b).

(4) a2(a1+b1) 6= 0. Assuming the condition (4.11) and b2 = −2[(2q2+3q−1)b1+q(2q+3)a1]a2

(2q+1)(b1+a1)
,

i.e., the condition (4.12), we get

λ(3) = −(2q + 1)σ(b1 + a1)
[
2(4q + 1)(2q + 1)(4q + 3)a2

1

+(128q3 + 96q2 − 4q − 9)b1a1 + (64q3 − 8q + 3)b2
1

]

+24q
[
(2q + 3)(4q + 1)a1 + (8q2 + 14q + 1)b1

]
a2

2,

• If (2q + 3)(4q + 1)a1 + (8q2 + 14q + 1)b1 = 0 then

λ(3) = 8(4q+5)(40q3+74q2+31q+3)(2q+1)σ
(4q+1)2(2q+3)3

b3
1 6= 0

So, F is non-reversible.

• If (2q + 3)(4q + 1)a1 + (8q2 + 14q + 1)b1 6= 0, λ(3) = 0 is equivalent:

a2
2 =

(2q+1)σ(b1+a1)[2(4q+1)(2q+1)(4q+3)a2
1+(128q3+96q2−4q−9)b1a1+(64q3−8q+3)b21]

24q[(2q+3)(4q+1)a1+(8q2+14q+1)b1]
(4.13)

Assuming (4.11), (4.12) and (4.13), one obtains

λ(4) = a2(2b1 + a1)

E︷ ︸︸ ︷[
(4q2 + 10q + 5)b2

1 + 2q(2q − 1)a2
1 + (8q2 + 8q − 5)a1b1

]
.

As the discriminant of E is −16q2 − 40q + 25 < 0, for q ∈ N, λ(4) = 0 only if

2b1 + a1 = 0. In this case the condition (4.13) is a2
2 =

b21σ(16q2+28q+9)

24q
, which is

not possible for σ = −1.

If σ = 1, a1 + 2b1 = 0 y a2
2 =

b21(16q2+28q+9)

24q
, one obtains

λ(5) = − b51(4q+7)(256q5−128q4−256q3+428q2−105q−135)

3q
6= 0.

So, F is non-reversible.

Now we deal with the Ry−reversibility. By means of x ↔ y, y ↔ x, the system
(4.8) takes the expression:

(
ẋ
ẏ

)
=

(
σy4q+1

x

)
+

(
b1x

2 + b2xy2q+1 + b3y
4q+2

a1xy + a2y
2q+2

)
, σ = ±1. (4.14)

Let F be the vector field given by (4.14). Observe that F is a sum of two
quasi-homogeneous vector field of type t = (2q + 1, 1) and degree 2q and 2q + 1,
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respectively. The first quasi-homogeneous term, F̃2q := (σy4q+1, x)T is already in a

desired simplified form (it is Rx−reversible). Choosing adequately Ũ = Ũ1 + Ũ2,
as specified in the Proposition 3.18, we obtain:

Ũ∗∗F(x) =

(
σy4q+1

x

)
+

{
F̃2q+1 + λ(1)

(
xy2q+1

0

)}

+

{
F̃2q+2 − λ(2)

(
xy2q+2

0

)}
+ · · · .

So, by applying Theorem 3.19, F is 2−reversible if, and only if, λ(1) = λ(2) = 0,
or equivalently

b2 = −2(q + 1)a2, (4.15)

a2(2b1 + a1) = 0. (4.16)

Assuming (4.15), from (4.16) we derive the following possibilities:

(1) a2 = 0. In this case (4.8) is Ry-reversible and so it is reversible. This situation
is described in (c).

(2) a1 = −2b1. In this case the change of variables u = x− 2b1xy + a2y
2q+2, v = y

transforms the systems (4.8) in

(
u̇
v̇

)
=

(
b1u2−σv4q+1+[4σb1−b3]v4q+2+2[2b3b1−2σb21−(q+1)a2

2]v4q+3+[3b1a2
2−4b3b21+4qb1a2

2]v4q+4

2b1v−1

u

)
,

σ = ±1, q ∈ N, that is Ru-reversible. This situation is described in (d).

This completes the proof.

Remark 4.24 Notice that the reversibility order of the families (4.8) and (4.14)
are 5 and 2, respectively.

Theorem 4.25 The system (4.9) is reversible if and only if one of the following
conditions is satisfied:

a) a1 = b1 = 0, b2 = −(2q + 1)a2.

b) a2 = b2 = 0, (reversible to the change y → −y, t → −t).

Proof: Let F be the vector field given by (4.9). F is a sum of two quasi-homogeneous
vector field of type t = (1, 2q) and degree 2q−1 and 2q, respectively. The first quasi-

homogeneous term, F̃2q−1 := (y, σx4q−1)T is already in a desired simplified form (it
is Rx− and Ry− reversible) and these are the unique zero degree involutions which
carry the first term of the vector field to Rx−reversible.
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We start seeking the Rx−reversibility. Choosing adequately Ũ = Ũ1 + Ũ2 +
Ũ3 + Ũ4 + Ũ5, as specified in the Proposition 3.18, we obtain:

Ũ∗∗F =

(
y

σx4q−1

)
+

{
F̃2q + λ

(1)
1

(
0

x4q

)
+ λ

(1)
2

(
0

x2qy

)}
+ F̃2q+1

+

{
F̃2q+2 − 1

2(2q+3)
λ

(3)
1

(
x2q+3

0

)
− 1

24
λ

(3)
2

(
0

x4q+2

)}
+ F̃2q+3

+

{
F̃2q+4 − 1

1440(2q+3)
λ

(5)
1

(
0

x4q+4

)
− 1

24(2q+3)
λ

(5)
2

(
0

x2q+4y

)}
+ · · · .

So, by Theorem 3.19, F is reversible provided that λ
(j)
i = 0 for 1 ≤ j ≤ 5, i = 1, 2.

The relations λ
(1)
1 = λ

(1)
2 = 0 are equivalent to:

b3 = −σ
2

[(4q − 3)b1 + (4q − 1)a1)] , b2 = −(2q + 1)a2. (4.17)

Assuming (4.17) one obtains

λ
(3)
1 = a2(2b1 + a1) [(2q + 1)b1 + (2q − 1)a1] ,

λ
(3)
2 = −12

[
(8q2 + 2q + 1)b1 + (2q + 1)(4q − 1)a1

]
a2

2 + σ(b1 + a1)×[
4q(16q2 − 1)a2

1 + (64q3 − 96q2 + 40q − 1)b2
1 + (128q3 − 96q2 − 4q + 1)a1b1

]
.

From these equations we get the following possibilities:

(1) a2 = 0. In this case the system (4.9) is Ry−reversible. This situation is de-
scribed in (b).

(2) a1 = b1 = 0. In this case the system (4.9) is reversible since the change u = x,
v = y + a2x

2q+1 carries it to a Ru-reversible form. This situation is described
in (a)

(3) 2b1 + a1 = 0, a1b1a2 6= 0, in this case λ
(3)
1 = 0 and

λ
(3)
2 = −b1(4q + 3)(−b2

1σ(16q2 + 12q − 1) + 12(2q − 1)a2
2)

If σ = −1, the equation λ
(3)
2 = 0 has no real roots. When σ = 1, the equation

λ
(3)
2 = 0 it is equivalent to

a2
2 =

b21(16q2+12q−1)

12(2q−1)

in this case,

λ
(5)
1 = − b51(4q+5)(512q5−1536q4+1280q3+600q2−1162q+81)

36(2q−1)
6= 0,

so, F is non-reversible.

19



(4) (2q + 1)b1 + (2q − 1)a1 = 0, a1b1a2 6= 0. in this case λ
(3)
1 = 0 and

λ
(3)
2 =

8a1q(a2
1σ(200q2−94q+9)−24q(2q+1)2a2

2)

(1+2q)3

If σ = −1, the equation λ
(3)
2 = 0 has no real roots. When σ = 1, the equation

λ
(3)
2 = 0 it is equivalent to

a2
2 =

a2
1(200q2−94q+9)

24q(2q+1)2

in this case,

λ
(5)
2 = −8a4

1a2q(2q−1)(2q−3)(2q+3)

(2q+1)3
6= 0,

so, F is non-reversible.

We now deal with the Ry−reversibility. Applying to (4.9) the change x ↔ y, y ↔ x,
one has:

(
ẋ
ẏ

)
=

(
σy4q−1

x

)
+

(
b1x

2 + b2xy2q + b3y
4q

a1xy + a2y
2q+1

)
, σ = ±1. (4.18)

If F denotes the vector field given in (4.18), then it is a sum of two quasi-homogeneous
vector field of type t = (2q, 1) and degree 2q−1 and 2q respectively. The first quasi-

homogeneous term, F̃2q−1 := (σy4q−1, x)T is already in a desired simplified form (it is

Rx−reversible). Choosing adequately Ũ = Ũ1 + Ũ2, as specified in the Proposition
3.18, we obtain:

Ũ∗∗F =

(
σy4q−1

x

)
+

{
F̃2q + λ(1)

(
xy2q

0

)}

+

{
F̃2q+1 − 2λ

(2)
1

(
xy2q+1

0

)
− 2λ

(2)
2

(
0

y2q+2

)}
+ · · · .

So, by Theorem 3.19, F is reversible provided that λ(1) = λ
(2)
1 = λ

(2)
2 = 0 or

equivalently:

b2 + 2(q + 1)a2 = 0,

a2 [b1 − (4q + 3)a1] = 0,

a1a2 = 0.

From these equations we get the following possibilities:

(1) a2 = 0. In this case the system (4.9) is Ry−reversible. This situation is de-
scribed in (b).

(2) a1 = b1 = 0. In this case the system (4.9) is reversible since the change u =
x+a2y

2q+1, v = y carries it to a Ru-reversible form. This situation is described
in (a)
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Remark 4.26 Notice that the families (4.9) and (4.18) have reversibility order
equal to 5 and 2, respectively.

Remark 4.27 It is known that the nilpotent centers are orbitally reversible (see
[9]), but can not be reversible. We give some examples of nilpotent centers which
are non-reversible.

The results (a), (b), (c), (d), of the Theorem 4.23, correspond to the families
(ii), (vi), (i) and (v), of Proposition 3.4 of [14], respectively. Thus the cases (iii),
(iv), (vii), (viii), (ix), (x), (xi) and (xii) are non-reversible centers.

In a similar way the cases (b) and (a), of Theorem 4.25, correspond to families
(i) and a sub-family in (ii), of Theorem 3.3 of [14], respectively. So the remaining
cases are non-reversible centers.

Next we study the reversibility of a system with null linear part.

Theorem 4.28 The system (4.10) is reversible if and only if one of the following
conditions is satisfied:

a) b0 + a3 = b1 + a2 = b2 + a1 = b3 + a0 = 0.

b) 9b3 − 9a0 + 2a1 = b2 + a1 = 3a2 + 9a0 − 2a1 = b1 + 3a0 = 3a3 − 6a0 + 5a1 =
9b0 − 18a0 − 11a1 = 0

Proof: Observe that the first quasi-homogeneous term is reversible respect to y = x.
To transform the first quasi-homogeneous term in one Rx−reversible, we apply the
change of variables: u = γ

2
(x + y), v = γ

2
(−x + y), t = γτ . The transformed system

is:
(

u′

v′

)
=

(
u2 + v2

−2uv

)
+

(
A0u

3 + A1u
2v + A2uv2 + A3v

3

B0u
3 + B1u

2v + B2uv2 + B3v
3

)
, (4.19)

where ′ = d
dτ

and A0 = a0+a1+a2+a3+b0+b1+b2+b3
2γ

, A1 = −3a0+a1−a2−3a3+3b0+b1−b2−3b3
2γ

,

A2 = 3a0−a1−a2+3a3+3b0−b1−b2+3b3
2γ

, A3 = −a0+a1−a2+a3−b0+b1−b2+b3
2γ

, B0 = −a0+a1+a2+a3−b0−b1−b2−b3
2γ

,

B1 = 3a0+a1−a2−3a3−3b0−b1+b2+3b3
2γ

, B2 = −3a0+a1+a2−3a3+3b0−b1−b2+3b3
2γ

, B3 = a0−a1+a2−a3−b0+b1−b2+b3
2γ

.

Let F be the vector field given by (4.19). Then it is a sum of two quasi-
homogeneous vector field of type t = (1, 1) and degree 1 and 2, respectively. The

first quasi-homogeneous term, F̃1 := (u2 + v2,−2uv)T is already in a desired sim-

plified form (it is Rx−reversible). In fact, it is a Hamiltonian vector field F̃1 = Xh,

with h(u, v) = −1
3
v3 − u2v and Xh(x, y) :=

(−∂h
∂v

, ∂h
∂u

)T
.

We can use the parameter γ, to obtain B3 = 0 or B3 = 1. Choosing adequately
Ũ =

∑7
i=1 Ũi, as specified in the Proposition 3.18, we obtain:

Ũ∗∗F =

(
u2 + v2

−2uv

)
+

{
F̃2 + 2λ

(1)
1

(
u3

0

)
+ 2

3
λ

(1)
2

(
0
v3

)}
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+

{
F̃3 − 5

2
λ

(2)
1

(
0
u4

)
− 5

2
λ

(2)
2

(
0

u2v2

)}
+

{
F̃4 − 1

3
λ

(3)
1

(
0

u4v

)}

+

{
F̃5 − 1

3
λ

(4)
1

(
0
u6

)
− 1

3
λ

(4)
2

(
0

u4v2

)}
+

{
F̃6 + λ

(5)
1

(
0

u6v

)}

+

{
F̃7 + λ

(6)
1

(
0

u6v2

)}
+

{
F̃8 + λ

(7)
1

(
0

u8v

)
+ λ

(7)
2

(
0

u6v3

)}
+ · · · .

So, by Theorem 3.19, F is reversible provided that λ
(j)
i = 0 for 1 ≤ j ≤ 7, i = 1, 2.

The equations λ
(1)
1 = λ

(1)
2 = λ

(2)
1 = λ

(2)
2 = 0, are equivalent to:

A0 = 0,

B1 = 3B3 + A2,

−(4B0 + 5A1 − 15A3)B3 − (3B0 + 5A3)A2 = 0, (4.20)

(3A3 − 4B2 − A1)B3 − (B2 − A3)A2 = 0. (4.21)

From these equations we get the following possibilities:

(1) B3 = A2 = 0. In this case (4.19) is Ru−reversible. This case is included in (a).

(2) A2 6= 0, B3 = B2 − A3 = 3B0 + 5A3 = 0. Assuming these conditions, λ
(3)
1 = 0

is equivalent to:

A2
2 = 5

3
A3(13A3 + 6A1). (4.22)

Assuming (4.22), one obtains

λ
(4)
1 = 5

24
A3A2(1980A3A1 + 2917A2

3 − 630A2
1)

λ
(4)
2 = −15

4
A3A2(A1 + 5A3)(5A1 + 19A3),

Since A2 6= 0, there exists not solution.

(3) B3 = 1, A2 = 0, B0 = 5
4
(3A3 − A1), B2 = 1

4
(3A3 − A1).

Assuming these conditions, one obtain

λ
(3)
1 = 45

4
(A1 − 3A3)(A1 + 3A3).

• If A1 = 3A3, F(1) then:

λ
(4)
1 = −567A3

λ
(4)
2 = 0.

If A3 6= 0, F is not reversible. Otherwise λ
(5)
1 = λ

(6)
1 = 0 and

λ
(7)
1 = λ

(7)
2 = 25664

25
6= 0.

Therefore (4.19) is not reversible.
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• If A1 = −3A3, then:

λ
(4)
1 = −81

16
A3(845A2

3 + 144)

λ
(4)
2 = 9

4
A3(105A2

3 − 128).

If A3 6= 0, F is not reversible. Otherwise λ
(5)
1 = λ

(6)
1 = 0 and

λ
(7)
1 = 3λ

(7)
2 = 25664

25
6= 0.

Therefore (4.19) is not reversible.

(4) B3 = 1, A2 6= 0. From the equations (4.20), (4.21), we obtain:

A1 = (A3 −B2)A2 − 4B2 + 3A3 (4.23)

A3 = − 3
10

B0 + 1
2
B2 + 2

5
5B2−B0

A2
(4.24)

Assuming (4.23), (4.24) one obtains

λ
(3)
1 = −3

4
A2+3

A2

[
8A2

2(A2 + 6) + 15(A2 + 4)(A2 − 6)B2
2

−(6A2
2 − 116A2 − 192)B2B0 − 3(A2 + 2)(3A2 + 4)B2

0

]
,

λ
(4)
1 = 3

400
1

A2
2

{
B2

[−875(A2 − 6)(A2 + 3)(A2 − 3)(A2 + 4)2B2
2

+50(A2 + 4)(A2 + 3)(21A3
2 − 143A2

2 − 164A2 + 1806)B0B2

+4200A2(A2 + 4)(A2 + 3)(A2 − 3)]

+B0

[
3(3A2 + 4)(84A4

2 + 468A3
2 + 1601A2

2 + 2852A2 + 2604)B2
0

+(2205A5
2 + 9450A4

2 − 13780A3
2 − 143970A2

2 − 384960A2 − 342720)B0B2

−40A2(A2 + 3)(56A3
2 + 119A2

2 − 81A2 − 252)
]}

,

λ
(4)
2 = A2+3

4A2
2

[
75(A2 + 4)(7A2

2 − 38A2 − 56)B3
2

+(225A4
2 − 375A3

2 − 1350A2
2 + 18240A2 + 37920)B0B

2
2

+3(3A2 + 4)(30A3
2 + 19A2

2 − 470A2 − 1096)B2
0B2

+3(3A2
2 + 13A2 + 26)(3A2 + 4)2B3

0 + 8A2
2(3A2 + 4)(13A2 − 14)B0

−40A2
2(11A2

2 + 38A2 + 72)B2

]

From λ
(3)
1 = 0 we get the following possibilities:

• If A2 = −3 one obtains

λ
(4)
1 = −525

16
B2

0(B0 − 3B2),

λ
(4)
2 = 0.

From these equations we get the following possibilities:

– If B0 = 0 then (4.19) is:
(

u′

v′

)
=

(
u2 + v2

−2uv

)
+

( −B2u
2v − 3uv2 − B2

6
v3

B2uv2 + v3

)
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the change of variables, x1 = u + v2

−2+B2v
, x2 = v, transforms this

system in

(
x′1
x′2

)
=

(
x2

1 + x2
2

−2x1x2

)
+

(
−B2x

2
1x2 − x3

2(4B2+30x2−4B2
2x2−12B2x2

2+B3
2x2

2)

6(−2+B2x2)2

B2x1x
2
2

)

which is Rx1−reversible. This situation is described in b)

– If B0 = 3B2 6= 0 then λ
(4)
1 = λ

(4)
2 = λ

(5)
1 = λ

(6)
1 = 0 but λ

(7)
1 6= 0.

Hence F is not reversible.

• If A2 + 3 6= 0, using Gröbner basis for the equations λ
(3)
1 = λ

(4)
1 = λ

(4)
2 =

λ
(5)
1 = 0, we get A2 = 0 as unique solution, and this is a contradiction.

This completes the proof.

Remark 4.29 Notice that the family (4.19) has reversibility order equal to 7.
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