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Abstract

In this paper, we formulate a comprehensive study of relevant properties of
reversible vector fields. As a consequence, we prove that the reversibility of the
first non-zero quasi-homogeneous term, respect to some types, of a vector field
is a necessary condition for the reversibility of the vector field. We also provide
a straightforward characterization of the reversibility for quasi-homogeneous
vector fields. Finally, as an application of our previous results, we analyze
some special polynomial and nilpotent systems, including examples which are
centers and non-reversible.

1 Introduction and setting of the problem

In the last decades there has been a surging interest in the study of systems with
time-reversal symmetries. Symmetry properties arise naturally and frequently in
dynamical systems. In recent years, a lot of attention has been devoted to under-
stand and use the interplay between dynamics and symmetry properties. Reversible
vector fields were first considered by Birkoff, in the beginning of last century, when
he was studying the restricted three body problem. Some decades ago, the the-
ory has been formalized by Devaney, [8]. We refer to Lamb and Roberts, [9] for a
survey in reversible systems and related topics. Many authors have dedicated to
understand the connection between, centers, analytic integrability and reversibility,
see for instance (Algaba, Gamero and Garćıa [1], Berthier and Moussu [4], Berthier,
Cerveau and Lins Neto [3], Chavarriga, Giacomin, Giné and Llibre [7], Strozyna and
Zoladek, [13], Zoladek, [15], Teixeira and Yang, [14], and references therein).

In this paper, we are concerned to establish a discussion involving reversible
vector fields and quasi-homogeneous normal forms theory.

We deal with two dimensional systems. Let F = (X, Y ) be a (germ of) Cr

reversible vector field with F(0) = 0, r > 1, r = ∞ or r = ω. We know by
Montgomery-Bochner Theorem (see [11]) that there exists a coordinate system of
class Cr such that the vector field is expressed as F(x, y) = (yf(x, y2), g(x, y2)) with
f and g being Cr−functions. So a system is not reversible provided that it cannot
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be expressed, up to Cr − conjugacy, in the above form. This is, roughly speaking,
the route we have chosen to conduct this paper.

We now need to introduce some definitions and terminology.

• An involution is a diffeomorphism σ ∈ C∞(U0 ⊂ Rn,Rn), such that σ ◦
σ = Id, where U0 is a small neighborhood of 0 ∈ Rn. Denote Fix (σ) =
{x ∈ U0 |σ(x) = x} This set is a local sub-manifold of Rn and we are assum-
ing throughout the paper that dim (Fix (σ)) = n− 1.

• We say that ẋ = F(x), x ∈ Rn, or F is reversible or σ-reversible, if there is an
involution σ, σ(0) = 0, such that σ∗F = −F.

• We say that ẋ = F(x), or F is linear reversible if F is σ-reversible with σ a
linear involution.

• We say that ẋ = F(x), x ∈ Rn, or F is axis-reversible when it is Rxi
-reversible

for some i = 1, · · · , n, where Rxi
is the following involution

Rxi
(x1, · · · , xi−1, xi, xi+1, · · · , xn) = (x1, · · · , xi−1,−xi, xi+1, · · · , xn).

A planar vector field F, respect to the type t = (t1, t2), can be expanded as:

F = Fr(t) + Fr(t)+1 + · · · , Fr(t) 6≡ 0, and r(t) ∈ Z,

where Fr(t) is called the first quasi-homogeneous term of F respect to the type t,
and we denote by Fk, k ∈ Z, a polynomial quasi-homogeneous vector field in the
plane of degree k respect to the type t. When the type t is fixed we use F = Fr +· · ·.

It is known the role of the first quasi-homogeneous term of a vector field in
the following cases: center problem and analytic integrability problem of a vector
field. In fact the monodromic character of the first quasi-homogeneous term respect
to some type is a sufficient condition for the monodromic character of the original
vector field (see [10]). On the other hand, if a vector field is analytically integrable
then its first quasi-homogeneous term respect to any type is analytically integrable
(see [2]). In this paper we investigate the role of the first quasi-homogeneous term
inside the reversible universe.

Summarizing, in what follows we give a rough overall description of the main
results of the paper.

• Reversibility with respect to the first term. Let F be reversible and
expressed in quasi-homogeneous terms as F = Fr + H.O.T. where a suitable
type t is chosen. Then ẋ = Fr(x) is also reversible. (Proposition 3.13).

• Relation between reversibility and axis-reversibility of the first term.
Let F be reversible and t = (t1, t2) be a suitable type in the range of values.
Then there exists a change of variables, Φ, which depends on t such that
Φ∗Fr(t) is axis-reversible. (Theorem 3.14).
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• Conditions for quasi-homogeneous reversibility. Some necessary and
sufficient conditions for quasi-homogeneous reversibility are exhibited (Propo-
sitions 4.19 and 4.21).

The remaining sections are organized as follows. In Section 2 some terminology,
basic concepts and auxiliary results are presented. In Section 3, a discussion on
Newton Diagram is given as well as some preparatory results on reversibility. In
Section 4, results on reversibility of quasi-homogeneous planar vector fields are dis-
cussed, and we apply previous results to get some useful information on polynomial
models and nilpotent systems.

2 Background and preparatory results

First of all, we establish some terminology and definitions.
Let Pt

k be the vector space of real quasi-homogeneous polynomial functions of
degree k ∈ N, respect to the type t = (t1, · · · , tn) ∈ Nn, i.e., f ∈ Pt

k, f : Rn −→ R if
and only if f(εt1x1, · · · , εtnxn) = εkf(x1, · · · , xn) for all ε, x1, · · · , xn ∈ R and Qt

k be
the vector space of the polynomial quasi-homogeneous vector fields of degree k ∈ Z,
respect to type t = (t1, · · · , tn) ∈ Nn, i.e., F = (Q1, · · · , Qn)T ∈ Qt

k, F : Rn −→ Rn,
if and only if Qi ∈ Pt

k+ti
, ∀i = 1, · · · , n.

It is obvious the following result:

Lemma 2.1 Let E = diag (εt1 , · · · , εtn). Then:

(a) f ∈ Pt
k if and only if f(Ex) = εkf(x), for all x ∈ Rn.

(b) F ∈ Qt
k if and only if F(Ex) = εkEF(x), for all x ∈ Rn.

Lemma 2.2 Let F ∈ Qt
k, E = diag (εt1 , · · · , εtn). Then, DF(Ex) = εkEDF(x)E−1.

Proof: Let F ∈ Qt
k. So, F (Ex) = εkEF(x). If we derive this expression with

respect to x we get EDF(Ex) = εkEDF(x). So the proof is achieved.

Lemma 2.3 Consider the following decompositions: F =
∑∞

j=r Fj, σ =
∑∞

j=i0
σj;

Fj, σj ∈ Qt
j, with r, i0 ∈ Z y j0 ∈ N. Then by means of the re-scaling, x = Ey,

E = diag (εt1 , · · · , εtn), the equation Dσ(x) · F(x) = −F(σ(x)), is transformed in:

εi0

∞∑
i=0

εi

i∑
j=0

Dσi+i0(y) · Fr+j−i(y) = −
∞∑

j=0

εjFr+j

(
εi0

∞∑
i=0

εiσi+i0(y)

)
(2.1)

Proof: Applying the re-scaling x = Ey one has:

Dσ(x) · F(x) = Dσ(Ey) · F(Ey) =

[ ∞∑
i=0

Dσi+i0(Ey)

][ ∞∑
j=0

Fr+j(Ey)

]
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From Lemma 2.1 b) and Lemma 2.2 one gets:

Dσ(x) · F(x) = E

[ ∞∑
i=0

εi+i0Dσi+i0(y)

]
E−1E

[ ∞∑
j=0

εr+jFr+j(y)

]

= εr+i0E

[ ∞∑
i=0

εiDσi+i0(y)

][ ∞∑
j=0

εjFr+j(y)

]

= εr+i0E

∞∑
i=0

εi

i∑
j=0

Dσi+i0(y) · Fr+j−i(y).

Using again Lemma 2.1 b), one obtains:

F(σ(x)) = F(σ(Ey)) =
∞∑

j=0

Fr+j

( ∞∑
i=0

σi+i0(Ey)

)
=

∞∑
j=0

Fr+j

(
Eεi0

∞∑
i=0

εiσi+i0(y)

)

= E

∞∑
j=0

εr+jFr+j

(
εi0

∞∑
i=0

εiσi+i0(y)

)
= Eεr

∞∑
j=0

εjFr+j

(
εi0

∞∑
i=0

εiσi+i0(y)

)
.

After a simple simplification on the above equality we complete the proof.

Lemma 2.4 Let F =
∑∞

j=r Fj, σ-reversible, σ =
∑∞

j=i0
σj, where Fj, σj ∈ Qt

j,
r, i0 ∈ Z. Then i0 = 0, σ0 is an involution and Fr is σ0-reversible provided i0 ≥ 0.

Proof: Taking into account that σ ◦ σ = Id and Lemma 2.1 b), we may write
Ey = x, as:

Ey = x = σ (σ(x)) = σ (σ(Ey)) =
∞∑

j=i0

σj

( ∞∑
i=i0

σi (Ey)

)

=
∞∑

j=i0

σj

(
E

∞∑
i=i0

εiσi (y)

)
= Eεi0

∞∑
j=0

εj+i0σj+i0

(
εi0

∞∑
i=0

εi+i0σi+i0 (y)

)
.

Thus, if we assume i0 ≥ 0 then i0 = 0 and a straightforward computation allows us
to obtain σ0 (σ0(y)) = y.

On the other hand, Dσ(x) · F(x) = −F(σ(x)). We apply again the re-scaling
x = Ey to both hands of the above equality and immediately we get Dσ0 ·Fr(y) =
−Fr (σ0(y)).

Lemma 2.5 Let σ be an involution and y = Ψ(x) be a coordinates change, both
defined around the origin. If F is σ−reversible then Ψ−1

∗ F is Ψ◦σ ◦Ψ−1−reversible.

Proof: It is obvious that Ψ ◦ σ ◦ Ψ−1 is an involution. If F is σ−reversible then
Dσ(x)F(x) = −F(σ(x)). First of all we show that
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Dσ̂(y)G(y) = −G(σ̂(y)), where σ̂ = Ψ ◦ σ ◦Ψ−1, y = Ψ(x), G(y) = Ψ−1
∗ F(y).

That is, G(y) = [DΨ(Ψ−1(y))]F(Ψ−1(y)). Hence

Dσ̂(y)G(y) = D(Ψ ◦ σ ◦Ψ−1)(y)DΨ(Ψ−1(y))F(Ψ−1(y))

= DΨ(σ ◦Ψ−1(y))Dσ(Ψ−1(y))

Id︷ ︸︸ ︷
DΨ−1(y)DΨ(Ψ−1(y)) F(x)

= DΨ(σ(x))Dσ(x)F(x) [F is reversible]

= DΨ(σ(x))(−F(σ(x))) = −DΨ(σ ◦Ψ−1(y))F(σ ◦Ψ−1(y))

= −DΨ(Ψ−1 ◦ (Ψ ◦ σ ◦Ψ−1)(y))F(Ψ−1 ◦ (Ψ ◦ σ ◦Ψ−1)(y))

= −G(Ψ ◦ σ ◦Ψ−1(y)) = −G(σ̂(y)).

We now use a weak version of Montgomery-Bochner Theorem, (see [11] p. 206).

Theorem 2.6 If F is σ−reversible, where σ =
∑∞

j=0 σj and σj ∈ Qt
j, then the

mapping y = Ψ(x), where
Ψ = 1

2
(Id + σ0 ◦ σ),

satisfies: Ψ =
∑∞

j=0 Ψj, Ψj ∈ Qt
j, Ψ0 = Id. Moreover Ψ−1

∗ F is σ0−reversible.

Proof: From σ =
∑∞

j=0 σj and Lemma 2.1 b), one obtains Ψ =
∑∞

j=0 Ψj with

Ψj ∈ Qt
j, Ψ(0) = 0 and Ψ0 = 1

2
(Id + σ0 ◦ σ0). From Lemma 2.4, σ0 is an involution

and Ψ0 = 1
2
(Id + Id) = Id.

Observe that

Ψ ◦ σ(x) = 1
2
(σ(x) + σ0(x)) = 1

2
(σ0(x) + σ(x)) = σ0(Ψ(x)) = (σ0 ◦Ψ)(x).

So σ0 = Ψ ◦ σ ◦Ψ−1, and applying Lemma 2.5 one has Ψ−1F is σ0−reversible. That
is (σ0)∗ (Ψ−1

∗ F) = − (Ψ−1
∗ F). This completes the desired proof.

Theorem 2.7 Let t ∈ Nn a fixed type. If F is σ0-reversible, σ0 ∈ Qt
0 and dim (Fix(σ0)) =

k < n, then there exists Ψ0 ∈ Qt
0, det(DΨ0(0)) 6= 0, diag(DΨ0(0)) = diag(Id), such

that (Ψ0)∗F is Lk-reversible, where

Lk(x1, · · · , xn) = ((−1)i1x1, · · · , (−1)inxn),

ij ∈ {0, 1}, j = 1, · · · , n and
∑n

j=1 ij = n− k.

Proof: Consider the decomposition σ0 =
∑s

i=1 σ
(ji)
0 , s ≥ 0, where j1 < j2 < · · · < js

and σ
(ji)
0 ∈ Q(1,···,1)

ji
. Since the degree of a homogeneous vector field is non-negative

and by Lemma 2.4 one derives that j1 = 0 and σ
(0)
0 is an involution.

Let Ψ̂ := 1
2
(Id + σ

(0)
0 ◦ σ0) ∈ Qt

0, Ψ̂ =
∑s

i=1 Ψ̂(ji) with Ψ̂(ji) ∈ Q(1,···,1)
ji

. As F is
σ0-reversible, applying Theorem 2.6 for the type homogeneous, one has j1 = 0 and
Ψ̂(0) = Id. Moreover Ψ̂−1

∗ F is σ
(0)
0 -reversible.
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As σ
(0)
0 is homogeneous of 0−degree one has σ

(0)
0 (x) = Dσ

(0)
0 (0)x. Assume that

each one of l coordinates of type t takes value equal to 1, 0 ≤ l ≤ n, and in
the case when l = n one has the homogeneous type. For simplicity, assume that

t = (

l︷ ︸︸ ︷
1, · · · , 1, tl+1, · · · , tn). So

Dσ
(0)
0 (0) =




A
a1

. . .

an−l


 .

Since Dσ
(0)
0 (0)x is an involution one has

(
Dσ

(0)
0 (0)

)2

= Id and we derive that the

spectrum of Dσ
(0)
0 (0) is {±1}, A is a square matrix l × l, A2 = Id and ai = ±1,

i = 1, · · · , n− l.
On the other hand, if dim (Fix(σ0)) = k, then dim (Fix(Dσ0(0))) = k. Hence

dim
(
Fix(Dσ

(0)
0 (0))

)
= k and so Dσ

(0)
0 (0) has 1 as an eigenvalue with algebraic and

geometric multiplicity equal to k. Hence Dσ
(0)
0 (0) is diagonalizable with eigenvalues

1 and −1 where k and n−k are the algebraic multiplicities of 1 and −1 respectively.
Consider now the matrix P given by: diag ((−1)i1 , · · · , (−1)in) = P ·Dσ

(0)
0 (0) ·

P−1, con i1, · · · , in ∈ {0, 1}, i1 + · · ·+ in = n− k.

Thus, Lk(x) = P ·Dσ
(0)
0 (0) · P−1, where

P =




P̂
1

. . .

1


 ,

and Px ∈ Qt
0 ∩Q(1,···,1)

0 .
From Lemma 2.5,we get that (Ψ0)∗F is Lk-reversible with Ψ0 = P ◦ Ψ̂−1 ∈ Qt

0.
Moreover

det (Ψ0(0)) = det(P ) det
(
Ψ̂(0)

)
= det(P ) det

(
Ψ̂(0)(0)

)
= det(P ) 6= 0,

As diag(P ) =
(
diag(P̂ ), 1, · · · , 1

)
y Ψ(0) = Id, we select an appropriate basis of

eigenvectors to get diag(DΨ0(0)) = diag (Id).

3 Reversibility of planar vector fields

The first objective in this section is to associate to a given σ-reversible planar vec-
tor field F a type t such that Fr(t) is σ0-reversible, where σ0 is the first quasi-
homogeneous term of σ respect to the type t. In this approach Newton Diagram
plays an important role. We now need to introduce some definitions and terminol-
ogy related to the Newton Diagram. (For more details, see Bruno [6], Broer et. al.
[5]).
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• Write F = (P,Q) where P (x, y) =
∑

aijx
iyj−1, Q(x, y) =

∑
bijx

i−1yj. The
support of F, supp(F), is the set of all (i, j)T such that (aij, bij)

T 6= (0, 0).
Such points (i, j)T in supp(F) are called support points.

• Consider
Υ =

⋃

(i,j)T∈supp(F)

(
(i, j)T + R2

+

)
,

where R2
+ is the positive quadrant. The convex envelope of Υ is called the

Newton polygon of F and its boundary, ∂Υ, consists of two non-bounded rays
and a polygonal line ΓF. (that can be reduced to a unique point). This polyg-
onal ΓF is called the Newton diagram of F. The segments of ΓF are called
edges. Those points joining the edges of ΓF together with end points are the
vertices of ΓF.

• If ∂Υ contains an unbounded ray that is different from any coordinate axis,
then we say that it is an unbounded edge of the Newton polygon.

• Let e be an edge of ΓF and m ∈ Q be its slope. If 1
m

= t2
t1

with irreducible

numbers t1, t2 ∈ N0 = N ∪ {0}, then t = (t1, t2) and E (e) := t2
t1

are the type
and the exponent associated to e, respectively. The exponent of an unbounded
horizontal (resp. vertical) edge is defined as ∞ (resp. 0 ) and its type as (0, 1)
(resp. (1, 0) ).

As an illustration, Figure 1 represents the Newton diagram of the following system:

ẋ = −xy2 + 3x3 + y4 + 5xy3 + 2x3y2 − x5,
ẏ = 2y3 + 2x2y − 7y4 + x2y3 + 4x4y + 3x7 (3.2)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5












y4

0

























−xy2

2y3

























5xy3

−7y4

























2x3y2

x2y3

























3x3

2x2y

























−x5

4x4













V1

V2

V3

V4

e1

e2

e3













0

3x7













Figure 1: Newton diagram of (3.2)

Observe that this diagram contains four vertices V1, V2, V3, V4 and three compact
edges e1, e2, e3. So E (e1) = 1/2, E (e2) = 1 and E (e3) = 5.
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Remark 3.8 Let e1, · · · , en, be the edges of the diagram ΓF. The symbol i < j
means that ei is located at the left side of ej. In this case E (ei) < E (ej).

Lemma 3.9 If σ is an involution, then the point (1, 1) belongs to an edge of the
Newton diagram of σ.

Proof: Observe that Dσ(0)2 = Id, since σ is an involution satisfying σ(0) = 0. So
we must distinguish the following two cases:

σ(x, y) = diag (sx,−sy) + · · · , with s = ±1, or

σ(x, y) =

(
a b
c −a

)(
x
y

)
+ · · · , with a2 + bc = 1, bc 6= 0.

Concerning the first case, the point (1, 1) always is a support point of the Newton
diagram of σ. For the second case, we argue as follows. As bc 6= 0 the points (0, 2)
and (2, 0) are support points of the diagram of σ and so (1, 1) belong to a unique
compact edge of such diagram.

Definition 3.10 Let F be a vector field. We define the following real numbers
associate to F:

αF :=

{
1 if {E (e) : E (e) ≤ 1, e is an edge of ΓF} = ∅,
max {E (e) : E (e) ≤ 1, e is an edge of ΓF} otherwise

βF :=

{
1 if {E (e) : E (e) ≥ 1, e is an edge of ΓF} = ∅,
min {E (e) : E (e) ≥ 1, e is an edge of ΓF} otherwise

0 1 2 3 4 5 6
0

1

2

3

4

5
V1

V2

V3

V4

e1

e2

e3

(a) αF = 1
3

y βF = 2

0 1 2 3 4
0

1

2

3

4

5

V1

V2

e1

e2

(b) αF = 0 y βF = 3
2

0 1 2 3 4
0

1

2

3

V1

V2

e

(c) αF = 1 y βF = 3
2
.

Figure 2: Examples of Newton diagram

Lemma 3.11 Let σ be an involution. Then for any type t = (t1, t2) with ασ ≤ t2
t1
≤

βσ, the degree of the first quasi-homogeneous term of σ is zero.
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Proof: From Lemma 3.9 we know that the point (1, 1) is in the Newton diagram of
σ.

There are two possibilities, ασ < βσ or ασ = βσ = 1.
If ασ = βσ = 1, then t = (1, 1) and the Newton diagram of σ possesses a unique

compact edge of exponent equal to 1 that contains the point (1, 1). So the degree
of the first quasi-homogeneous term (in this case a homogeneous term) of σ is zero.

If ασ < βσ, then the Newton diagram of σ possesses two edges, it isn’t necessarily
compact. If one selects t = (t1, t2) with ασ ≤ t2

t1
≤ βσ, the point (1, 1) is also a

support point of the first quasi-homogeneous term of σ. In this way the degree of
the first quasi-homogeneous term of σ is zero.

Lemma 3.12 Let F =
∑∞

j=0 Fr+j, σ−reversible and Fr+j ∈ Qt
r+j (under a type t).

a) Assume that ασ = βσ = 1 and t = (1, 1). Then the Newton diagram of Fr is not
reduced to a single support point.

b) Assume that 0 < ασ < βσ and t = (t1, t2) such that t2
t1

= ασ. Then the Newton
diagram of Fr is not reduced to a single support point except when the point is
on the y−axis.

c) Assume that ασ < βσ < +∞ and t = (t1, t2) such that t2
t1

= βσ. Then the Newton
diagram of Fr is not reduced to a single support point except when the point is
on the x−axis.

Proof: We argue by contradiction. If (m0, n0) is the unique support point of ΓFr with
m0, n0 ∈ N∪{0}, m0 +n0 > 0, then Fr = (a0χ{n0>0}xm0yn0−1, b0χ{m0>0}xm0−1yn0)T ,
with a2

0 + b2
0 6= 0. Following Lemma 3.9, the point (1, 1) always is in a edge of the

diagram of σ. There are two possibilities, the point (1, 1) is a vertex or not.
If (1, 1) is not a vertex then Γσ possesses a unique edge e. The exponent of e is

1 and its support points are (0, 2) y (2, 0). Hence ασ = βσ = 1. This is exactly the
situation given in a). Choosing the type t = (1, 1) associated to the unique compact
edge of Γσ. So it follows from Lemma 3.11 that the degree of the first homogeneous
term of σ is zero. From Lemma 2.4 we conclude that σ0 is an involution and Fr is

σ0-reversible. Thus σ0(x, y) =

(
a b
c −a

)(
x
y

)
, with a2 + bc = 1, bc 6= 0.

Recall that Dσ0 · Fr = −Fr ◦ σ0 and:

Dσ0 · Fr(x, y) =

(
a b
c −a

)(
a0χ{n0>0}xm0yn0−1

b0χ{m0>0}xm0−1yn0

)

=

(
aa0χ{n0>0}xm0yn0−1 + bb0χ{m0>0}xm0−1yn0

ca0χ{n0>0}xm0yn0−1 − ab0χ{m0>0}xm0−1yn0

)
,

Fr ◦ σ0(x, y) =

(
a0χ{n0>0}(ax + by)m0(cx− ay)n0−1

b0χ{m0>0}(ax + by)m0−1(cx− ay)n0

)
.

Now it is easy to detect that the above equality never happens by virtue the relation
bc 6= 0, and so we get a contradiction.

9



On the other hand, if the point (1, 1) is a vertex then ασ < βσ. We now show
the claim in c). The proof of b) is similar.

As βσ < +∞, the inferior edge of Γσ is compact. This edge is formed by two
vertices: (1, 1) and (mσ + 1, 0) with mσ ∈ N.

Choosing t = (t1, t2) such that t2
t1

= βσ, by Lemma 3.11 the degree of the
first homogeneous term of σ is zero and by Lemma 2.4 we conclude that σ0 is
an involution. Moreover Fr is σ0-reversible and σ0(x, y) = (−sx, sy + Axmσ) with
A 6= 0 y s = ±1. We still recall that mσ is odd provided that s = 1.

Again using the equality Dσ0 · Fr(x, y) = −Fr (σ0(x, y)). We have:

Dσ0 · Fr(x, y) =

( −s 0
mσAxmσ−1 s

)(
a0χ{n0>0}xm0yn0−1

b0χ{m0>0}xm0−1yn0

)

=

( −sa0χ{n0>0}xm0yn0−1

sb0χ{m0>0}xm0−1yn0 + mσAa0χ{n0>0}xmσ+m0−1yn0

)
,

−Fr (σ0(x, y)) = −Fr (−sx, sy + Axn0) = −
(

a0χ{n0>0}(−sx)m0(sy + Axmσ)n0−1

b0χ{m0>0}(−sx)m0−1(sy + Axmσ)n0

)
.

We can deduce now that the equality does not happen except when n0 = 0 (i.e.
when the unique support point is on the x−axis) and (−s)m0−1 = s, for every A 6= 0.

Proposition 3.13 Let F =
∑∞

j=r Fj be σ−reversible with σ =
∑∞

j=i0
σj, where

Fj, σj ∈ Qt
j. If t = (t1, t2) verifies αF ≤ t2

t1
≤ βF, then i0 = 0, σ0 is an involution

and Fr is σ0-reversible.

Proof: We are going to prove that ασ ≤ αF. In fact if αF = 1, the assertion is
immediate. Otherwise if αF < ασ ≤ 1, selecting the type t = (t1, t2) with t2

t1
= ασ,

it is straightforward to deduce that the Newton polygon of Fr is reduced to a single
support point. So, from Lemma 3.12 b), ΓFr has a point in the y − axis as the
unique support point in the Newton polygon of Fr and such point is a vertex V of
ΓF.

If V is the unique vertex of the Newton diagram then αF = 1, which is a
contradiction. If there are more vertices by Remark 3.8 we would get ασ ≤ αF what
is also a contradiction.

In a similar way we derive that 0 < βF < βσ.
We have shown that ασ ≤ αF ≤ 1 ≤ βF ≤ βσ. So for every t = (t1, t2) with

αF ≤ t2
t1
≤ βF one has ασ ≤ t2

t1
≤ βσ. From Lemma 3.11 one obtains i0 = 0. Lemma

2.4 allows us to finish the proof

Next result allows us to obtain necessary conditions for the reversibility of F.

Theorem 3.14 Let F be a reversible vector field and t = (t1, t2) be a type such that
αF ≤ t2

t1
≤ βF. Then there exists a transformation y = Φ0(x) with Φ0 ∈ Qt

0 such
that (Φ0)∗Fr(t) is axis-reversible.

10



Proof: First of all observe that, under our assumptions, Proposition 3.13 implies
that the involution associated to F is σ =

∑
j≥0 σj with σj ∈ Qt

j. Theorem 2.6
ensures that there is y = Ψ(x) such that Ψ∗F is σ0-reversible, and σ0 ∈ Qt

0 is an
involution of zero degree. From Theorem 2.7 we deduce immediately the existence
of a zero degree transformation y = Θ0(x) that sends the previous vector field to
a Rx− or a Ry−reversible field. So, Φ∗F is axis-reversible, where Φ = Θ0 ◦ Ψ, is a
change of variables and Φ =

∑
j≥0 Φj, Φj ∈ Qt

j. From Lemma 2.3 one obtains that
(Φ0)∗Fr(t) is axis-reversible.

4 Applications

In this section, we deduce conditions for a vector field to be reversible.

4.1 Reversibility of quasi-homogeneous planar vector field

First of all, consider planar systems expressed by

ẋ = F(x) = Fr(x), x ∈ R2, (4.3)

with Fr ∈ Qt
r, for any fixed type t = (t1, t2).

Lemma 4.15 Given t = (t1, t2) and Fr ∈ Qt
r there are unique polynomial mappings

µ ∈ Pt
r and h ∈ Pt

r+|t| satisfying

Fr = Xh + µD0. (4.4)

Moreover

µ = 1
r+|t|div (Fr) and h = 1

r+|t|D0 ∧ Fr (4.5)

Proof:
First of all we prove the uniqueness. If there are µ ∈ Pt

r and h ∈ Pt
r+|t| satisfying

(4.4) then from Euler Theorem (applied to quasi-homogeneous systems ) we have

div (Fr) = div (Xh) + div (µD0) = ∂µ
∂x

t1x + ∂µ
∂y

t2y + µdiv (D0)

= ∇µ ·D0 + µ|t| = (r + |t|)µ.

Also

D0 ∧ Fr = D0 ∧Xh∇h ·D0 = (r + |t|)h
Such objects verify (4.5) and hence the uniqueness follows.

Now we show the existence. Let µ ∈ Pt
r and h ∈ Pt

r+|t| satisfying (4.5).
Again Euler Theorem implies that

−∂h
∂y

+ t1xµ = 1
r+|t|

[
−t1x

∂Fre2

∂y
+ t2Fre1 + t2y

∂Fre1

∂y
+ t1x

∂Fre1

∂x
+ t1x

∂Fre2

∂y

]

= 1
r+|t| [t2Fre1 +∇ (Fre1) ·D0]

= 1
r+|t| [t2Fre1 + (r + t1)Fre1] = Fre1

11



The relationship concerning the other component is similarly deduced. This finishes
the proof.

Remark 4.16 Lemma 4.15 allows us to write Fk = [Xg + µD0] with µ = div(Fk)
k+|t|

and g = D0∧Fk

k+|t| .

Throughout this section we assume Fr = Xh +µD0, with h ∈ Pt
r+|t| and µ ∈ Pt

r.

Lemma 4.17 Let Fr = Xh + µD0 with µ 6≡ 0.

a) Fr is Rx-reversible if and only if h(−x, y) = h(x, y) and µ(−x, y) = −µ(x, y).

b) Fr is Ry−reversible if and only if h(x,−y) = h(x, y) and µ(x,−y) = −µ(x, y).

Proof: We are going to prove only a). The other case is similar.
Observe that Fr = (P,Q)T is Rx−reversible if and only if P (−x, y) = P (x, y) y

Q(−x, y) = −Q(x, y).
This condition is necessary. If P (−x, y) = P (x, y) and Q(−x, y) = −Q(x, y)

then:

h(−x, y) = 1
r+|tD0(−x, y) ∧ Fr(−x, y) = 1

r+|t|(−t1xQ(−x, y)− t2yP (−x, y)) = h(x, y),

µ(−x, y) = 1
r+|t|

(
∂P (−x,y)

∂(−x)
+ ∂Q(−x,y)

∂y

)
= 1

r+|t|

(
−∂P (x,y)

∂x
− ∂Q(x,y)

∂y

)
= −µ(x, y).

This condition is sufficient. If h(−x, y) = h(x, y) and µ(−x, y) = −µ(x, y) then:

P (−x, y) = −∂h(−x,y)
∂y

+ t1(−x)µ(−x, y)− ∂h(x,y)
∂y

+ t1xµ(x, y) = P (x, y),

Q(−x, y) = ∂h(−x,y)
∂(−x)

+ t2yµ(−x, y)− ∂h(x,y)
∂x

− t2yµ(x, y) = −Q(x, y).

Lemma 4.18 Let F = Fr ∈ Qt
r be σ-reversible, with σ =

∑∞
i=i0

σi, σi ∈ Qt
i . Then,

i0 = 0, σ0 is an involution and Fr is σ0-reversible.

Proof: From Proposition 3.13 it is enough to prove the inequality αFr ≤ t2
t1
≤ βFr .

If the Newton diagram ΓFr of Fr is reduced to a single point support then
αFr = 0, βFr = ∞, and hence αFr < t2

t1
< βFr .

If ΓFr is not reduced to a single point support then it possesses a unique compact
edge e with E (e) = t2

t1
. Recall that the diagram may also contain some unbounded

edge with exponent 0 or ∞. Therefore, it has αFr ≤ t2
t1
≤ βFr .

Proposition 4.19 Consider F = Fr ∈ Qt
r reversible. Then there exists a coor-

dinates change Ψ0 ∈ Qt
0 such that diag(D(Ψ0(0)) = diag(Id) and Ψ0∗Fr is axis-

reversible.
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Proof: If Fr is σ-reversible with σ =
∑∞

i=i0
σi, σi ∈ Qt

i y dim (Fix (σ)) = 1,
then from Lemma 4.18 one obtains i0 = 0. Moreover σ0 is a involution and Fr

is σ0-reversible. From Theorem 2.7, one has that Fr is either Rx-reversible or Ry-
reversible.

Remark 4.20 The change of variables of zero degree is: (x, y)T = Φ(u, v), Φ ∈ Qt
0,

x = u + bχ{t=(t1,1)}vt1, y = v + cχ{t=(1,t2)}ut2. Moreover it is verified (Φ−1)∗Fr =
Xh̃ + µ̃D0, where

h̃(u, v) = 1
1−bcχ{t=(1,1)}

h
(
u + bχ{t=(t1,1)}v

t1 , v + cχ{t=(1,t2)}u
t2
)
,

µ̃(u, v) = µ
(
u + bχ{t=(t1,1)}v

t1 , v + cχ{t=(1,t2)}u
t2
)
.

Next proposition states necessary conditions for the axis-reversibility in the homo-
geneous case.

Proposition 4.21 Let Fr = Xh + µD0 ∈ Q(1,1)
r , with µ(x, y) =

∑r
j=0 Djx

jyr−j and

h(x, y) =
∑r+2

j=0 Cjx
jyr+2−j. Fr is reversible if only if there are b, c ∈ R, bc 6= 1

satisfying:

a)
2k+1∑
i=0

i∑
m1=0

(2k+1)!(r+1−2k)!i!(r+2−i)!
(2k+1−m1)!m1!(r−2k+1−i+m1)!(i−m1)!

Cib
i−m1c2k+1−m1 = 0, for k = 0, 1, · · · , ⌊ r+2

2

⌋

2k∑
i=0

i∑
m1=0

(2k)!(r−2k)!i!(r−i)!
(2k−m1)!m1!(r−2k−i+m1)!(i−m1)!

Dib
i−m1c2k−m1 = 0, for k = 0, 1, · · · , ⌊ r

2

⌋
,

where bxc represents the integer part of x.

b) Same equality as in item (a) occurs by replacing b and c by 1
c

and 1
b
, respectively.

Proof: From Theorem 2.7, Fr is linear-reversible if and only if there is a change
of variables (u, v) = Φ(x, y) = (x + by, cx + y), with 1 − bc 6= 0, such that Φ∗Fr is
axis-reversible.

If F∗r := Φ∗Fr = Xh∗ + µ∗D0, then:

h∗(u, v) = (1− bc)h(u + bv, cu + v),

µ∗(u, v) = µ(u + bv, cu + v).

So:

∂uh
∗ = (∂x + c∂y)h,

∂vh
∗ = (b∂x + ∂y)h.

Observe now that from Lemma 4.17, F∗r is Ru-reversible provided that h∗(u, v) is
even in u and µ∗(u, v) is odd in u.

Moreover, h∗(u, v) is even in u if and only if ∂2k+1
u ∂

r+2−(2k+1)
v h∗ = 0, for k =

0, 1, · · · , ⌊ r+2
2

⌋
or equivalently:

(∂x + c∂y)
2k+1(b∂x + ∂y)

r+2−(2k+1)h(x, y) = 0, for k = 0, 1, · · · , ⌊ r+2
2

⌋
.
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Observe that

∂M
u ∂N

v = (∂x + c∂y)
M(b∂x + ∂y)

N

=

( ∑
m1+m2=M

(
M
m1

)
cm2∂m1

x ∂m2
y

)( ∑
n1+n2=N

(
N
n1

)
bn1∂n1

x ∂n2
y

)

=
∑

m1+m2=M

n1+n2=N

(
M
m1

)(
N
n1

)
bn1cm2∂m1+n1

x ∂m2+n2
y

=
M∑

m1=0

N∑
n1=0

(
M
m1

)(
N
n1

)
bn1cM−m1∂m1+n1

x ∂M+N−m1−n1
y .

If we denote i = m1 + n1, one obtains:

∂M
u ∂N

v =
M∑
i=0

i∑
m1=0

(
M
m1

)(
N

i−m1

)
bi−m1cM−m1∂i

x∂
M+N−i
y .

To complete the proof it is enough to observe that

∂M
x ∂r+2−M

y h(x, y) = M !(r + 2−M)!CM .

The second equation is obtained by imposing that µ∗ is odd in u. Replacing u by v
and studying the reversibility in u, part (b) follows similarly.

4.2 Some examples

The main goal of this subsection is to characterize families of reversible quasi-
homogeneous vector fields.

Theorem 4.22 Let ẋ = F8(x) with

F8(x) =

(
a0y

3 + a1x
3y2 + a2x

6y + a3x
9

b0x
2y3 + b1x

5y2 + b2x
8y + b3x

11

)
∈ Q(1,3)

8 .

Then F8 is reversible if and only if one of the following conditions is satisfied:

a) a0 = a1 = b0 = 0, 2b1a3 − 3a2a3 − a2b2 = 0,

b) a0 6= 0 y a1 + b0 = 0, −54a0a3 − 6a0b2 − 3a2b0 + 9a2a1 − b1b0 + 3b1a1 = 0,
(b0 − 3a1)

3 + 12a0 [6a0(b2 − 3a3) + b0(b1 − 3a2)− 3a1(b1− 3a2)] = 0.

Proof: Observe that F8 = Xh + µD0 with h(x, y) = C0y
4 + C1x

3y3 + C2x
6y2 +

C3x
9y + C4x

12, µ(x, y) = D0x
2y2 + D1x

5y + D2x
8, where C0 = − 3

12
a0, C1 = b0−3a1

12
,

C2 = b1−3a2

12
, C3 = b2−3a3

12
, C4 = b3

12
, D0 = 3a1+3b0

12
, D1 = 6a2+2b1

12
, D2 = 9a3+b2

12
. From

Proposition 4.19, we derive that if F8 is reversible then there exists a coordinates
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change (u, v)T = Φ(x, y), u = x, v = cx3 + y, such that Φ∗F8 = Xh̃ + µ̃D0 is
axis-reversible, where:

h̃(u, v) = C0v
4 + (4C0c + C1)u

3v3 + (6C0c
2 + 3C1c + C2)u

6v2

+(4C0c
3 + 3C1c

2 + 2C2c + C3)u
9v + (C0c

4 + C1c
3 + C2c

2 + C3c + C4)u
12,

µ̃(u, v) = D0u
2v2 + (2D0c + D1)u

5v + (D0c
2 + D1c + D2)u

8.

Observe that Φ∗F8 is axis-reversible, provided that there is c ∈ R such that:

4C0c + C1 = 0, (C1)

4C0c
3 + 3C1c

2 + 2C2c + C3 = 0, (C2)

D0 = 0, (D1)

D0c
2 + D1c + D2 = 0. (D2).

If C0 = 0, in (C1) one gets that C1 = 0. From (C2), (D2) one obtains that
2C2D2 −D1C3 = 0 and a) follows.

If C0 6= 0, from (C1) one gets c = − C1

4C0
. Taking into account (C2) and (D2)

case b) follows.

Theorem 4.23 Consider ẋ = F1(x) with

F1(x) =

(
a0y

2 + a1xy + a2x
2

b0y
2 + b1xy + b2x

2

)
∈ Q(1,1)

1 .

Then F1 is reversible if and only if one of the following conditions is satisfied:

(a) D0 = D1 = 0.

(b) D1 6= 0, h(−D0, D1) 6= 0, h(3h(x, y)− xhx(x, y),−yhx(x, y))|(x,y)=(−D0,D1) = 0.

(c) D1 6= 0, h(−D0, D1) = 0, hx(−D0, D1) = 0, hxx(−D0, D1) 6= 0.

(d) D1 = 0, D0 6= 0, b2 6= 0 y h(a2 − b1, 3b2) = 0.

(e) D1 = 0, D0 6= 0, b0 − a1 6= 0, b2 = b1 − a2 = 0.

(f) D2
0 + D2

1 6= 0, h ≡ 0.

where D1 = 2a2+b1
3

, D0 = a1+2b0
3

y h(x, y) = −1
3
a0y

3 + b0−a1

3
xy2 + b1−a2

3
x2y + b2

3
x3

Proof: First of all, observe that F1 = Xh + µD0, with h(x, y) = C0y
3 + C1xy2 +

C2x
2y + C3x

3, µ(x, y) = D0y + D1x, where C0 = −1
3
a0, C1 = b0−a1

3
, C2 = b1−a2

3
,

C3 = b2
3
, D0 = a1+2b0

3
, D1 = 2a2+b1

3
. From Proposition 4.19, we deduce that there

exists (x, y)T = Φ(u, v), Φ ∈ Q(1,1)
0 , x = u + bv, y = cu + v such that F̃1 :=
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(Φ−1)∗F1 = Xh̃+µ̃D0 is axis-reversible provided that F1 es reversible. From Remark

4.20 one obtains that F̃1 is Ru-reversible, if and only if:

(3C0 + 2C1b + C2b
2)c + C1 + 2C2b + 3C3b

2 = 0,

C0c
3 + C1c

2 + C2c + C3 = 0,

D0 + D1b = 0,

and F̃1 is Rv-reversible, if and only if:

C0 + bC1 + b2C2 + C3b
3 = 0,

3C0c
2 + 2C1c + C2 + (C1c

2 + 2C2c + 3C3)b = 0,

D0c + D1 = 0.

• If D0 = D1 = 0, then:

– If C0 = C3 = C2 = 0, then µ ≡ 0 y h is even with respect to y. So F1 is
Ry-reversible.

– If C0 = C3 = 0, C2 6= 0, µ ≡ 0 and for c = 0 the first group of equations
is satisfied. So F1 is reversible.

– If C2
0 + C2

3 6= 0 we may assume, without loss of generality, that C0 6= 0
and C3 = 0. If C2 6= 0, for c = 0 there exists b such that the first group of
equations is satisfied. If C2 = C1 = 0 then F1 is Rx-reversible. If C2 = 0
and C1 6= 0 we can determine b, c which are solutions of the first group
of equations. This is the case (a).

• If D1 6= 0, x = u− D0

D1
v, y = v takes the original system into

ẋ = Xĥ + µ̂D0 := F̂1 (4.6)

where µ̂(u, v) = D1u y ĥ(u, v) = h(u − D0

D1
v, v) = Ĉ0v

3 + Ĉ1uv2 + Ĉ2u
2v +

Ĉ3u
3, with Ĉ0 = ĥ(0, 1) = h(−D0

D1
, 1) = D−3

1 h(−D0, D1), Ĉ1 = ĥu(0, 1) =

hx(−D0

D1
, 1) = D−2

1 hx(−D0, D1), Ĉ2 = 1
2
ĥuu(0, 1) = 1

2
hxx(−D0

D1
, 1) =

D−1
1

2
hx(−D0, D1),

Ĉ3 = 1
6
ĥuuu(1, 0) = 1

6
hxxx(1, 0) = C3.

From Proposition 4.19 we deduce that F̂1 is reversible if and only if there exists
c ∈ R such that:

3Ĉ0c + Ĉ1 = 0,

Ĉ0c
3 + Ĉ1c

2 + Ĉ2c + Ĉ3 = 0.

– If Ĉ0 6= 0, then c = − Ĉ1

3Ĉ0
. Moreover there exists solution of the system if

and only if ĥ(1, c) = 0 (Case (c)).

– If Ĉ0 = 0, then Ĉ1 = 0. If Ĉ2 6= 0, then c = − Ĉ3

Ĉ2
(Case (b)). If Ĉ2 = 0

then Ĉ3 = 0 (Case (f)).
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• If D1 = 0 and D0 6= 0, then F̃1 is axis-reversible provided that it is Rv-
reversible. Hence c = 0. So the remaining conditions to be satisfied are:
C2 + 3C3b = 0, h(b, 1) = C0 + bC1 + b2C2 + C3b

3 = 0.

– If C3 6= 0, then b = − C2

3C3
y h(− C2

3C3
, 1) = h(a2−b1

3b2
, 1) = 0. This is equiva-

lent to say that: h(a2 − b1, 3b2) = 0 (Case (d)).

– If C3 = 0, then C2 = 0 and C0 + bC1 = 0. The last relation is achieved if:
either C1 6= 0 and the value of b is determined (Case (e)) or C1 = C0 = 0
(Case (f)).

Theorem 4.24 Let

ẋ = F(x), with F = Xh + µD0 ∈ Q(1,3)
8 , (4.7)

where h(x, y) = − 1
12

(x12 + y4), µ(x, y) = 1
12

(Ax8 + Bx5y − Cx2y2). Then F is
reversible if and only if A = C = 0.

Proof: From Proposition 4.19, F is reversible if and only if Φ∗(F)(u, v) is axis-
reversible, where Φ(u, v) = (x, y + cx3)T and this happens if and only if F is axis-
reversible or equivalently A = C = 0.

Remark 4.25 Recalling the results of Medvedeva in [10], we derive that the origin
of the system (4.7) is monodromic. Moreover, Algaba, Garcia and Reyes in [2], have
established conditions for the existence of centers and for the analytic integrability of
quasi-homogeneous systems. Theorem 3.3 in [2] allows us to deduce that the origin
of (4.7) is a center if and only if A = C. Applying now Theorem 3.2 in [2], one

obtains that F is analytically integrable if and only if B = 0, A = C,C = 2
√

2(n2−n1)
n1+n2+2

,
with n1, n2 ∈ N0, n1 + n2 > 0. These results together with Theorem 4.24 allow to
represent in Figure 3, the family of centers (at the origin) of (4.7). It is worth to
point out that there are vector fields in this family that are non-reversible.

Remark 4.26 It is fairly known (Poincarè result) that all centers expressed by
(−y, x)T + · · · are analytically integrable and reversible. Berthier and Moussu, in
[4], have shown that all nilpotent centers ( (y, 0)T + · · ·) are reversible and Moussu
([12]) proved that not all of them are analytically integrable. In our setting we detect
centers in this class that are neither reversible nor analytically integrable.

Theorem 4.27 Let ẋ = F22(x) where

F22(x) =

(
a0y

5 + a1x
5y2

b0x
4y3 + b1x

9

)
∈ Q(3,5)

22 .

Then, F22 is reversible if and only if b0 = a1 = 0.
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Figure 3: Family of centers of the system (4.7)

Proof: From Proposition 4.19 and Remark 4.20, F22 is reversible if and only if it is
axis-reversible or equivalently b0 = a1 = 0.

Remark 4.28 There are quasi-homogeneous centers that are non-reversible. For
example, take the Hamiltonian system ẋ = Xh(x) where h ∈ Pt

30 is expressed by:

h(x, y) = (y3 − ax5)2 + x10 = y6 − 2ax5y3 + (a2 + 1)x10, a 6= 0.

So
(

ẋ
ẏ

)
= Xh(x) =

( −6y5 + 6ax5y2

−10ax4y3 + 10(a2 + 1)x9

)
,

is quasi-homogeneous center with t = (3, 5). From Theorem 4.27 it cannot be re-
versible.

4.3 Reversibility of nilpotent systems

In this subsection we analyze the reversibility of the generic Takens-Bogdanov sin-
gularity. Let

ẋ = y + xn+1Ψ1(x) + yf(x, y),
ẏ = xnyΦ1(x) + xmΦ3(x) + y2g(x, y),

(4.8)

where m ∈ N, n ∈ N0 and f(0, 0) = g(0, 0) = 0, Ψ1(x) =
∑∞

i=0 aix
i, Φ1(x) =∑∞

i=0 bix
i, Φ3(x) =

∑∞
i=0 cix

i, with c0 6= 0 y a2
0 + b2

0 6= 0.

Theorem 4.29 Assume that the system (4.8) is reversible. Then one of the follow-
ing conditions is satisfied:

(a) m < 2n + 1.
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(b) m ≥ 2n + 1 y n is odd.

(c) m ≥ 2n + 1, n is even and (n + 1)a0 + b0 = 0.

Proof: Let F be the vector field associated to (4.8). We argue by contradiction.
Assume for instance that none of the items (a), (b) or (c) is satisfied. That is,
m ≥ 2n + 1, n is even, (n + 1)a0 + b0 6= 0 and F is reversible.

If m ≥ 2n+1 then αF = 1 and βF = n+1. Takimg into account that t = (1, n+1)
one has 1 = αF ≤ t2

t1
= n + 1 = βF. From Corollary 3.14, one deduces that there is

Φ0 ∈ Qt
0 such that (Φ0)∗Fr is axis-reversible.

So Fr =
(
y + a0x

n+1, b0x
ny + χ{m=2n+1}c0x

2n+1
)T

= Xh + µD0, where

µ = ((n + 1)a0 + b0) xn.

All possible zero degree variable changes are of the form u = x + χ{n=0}by,
v = y + cxn+1. By means of such transformations we cannot get a new system
having odd divergence with respect to u or to v. From Lemma 4.17 one arrives to
a contradiction since (n + 1)a0 + b0 6= 0.

Now we deal with the vector field F expressed by the following system:

ẋ = y2 + a0xy − a1x
2 + a2x

3 + xyf1(x) + +x4f2(x) + y2f(x, y),
ẏ = b2x

2 + a0y
2 + 2a1xy + b1x

2y + 3x4 + y2g1(x) + x3yg2(x) + y3g(x, y),
(4.9)

Theorem 4.30 If the system (4.9) is reversible then one of the following conditions
is satisfied:

(a) b2 6= 0, a0 = 0.

(b) b2 6= 0, a0 6= 0, a3
1 + 2a0a1b2 + b2

2 = 0.

(c) b2 = 0, a0 = 0, a1 6= 0.

(d) b2 = 0, a1 = 0, a0 6= 0, 4a2 + 3b1 = 0.

(e) b2 = a1 = a0 = b1 = a2 = 0.

Proof: Consider the following steps:

• If b2 6= 0 then αF = βF = 1. So the reversibility conditions (a) and (b)
coincide with (d) and (e) of Theorem 4.23.

• When b2 = 0, one has:

– if a1 6= 0, then αF = 1, βF = 3. So for all t = (t1, t2) with t2
t1

< 1 the

system Fr = (y2, 0)T is Rx-reversible. For t = (1, 1), Fr does not satisfies
the cases exhibited in Theorem 4.23, except when a0 = 0. If t = (t1, t2)
such that 1 = αF < t2

t1
< 3 then Fr = (−a1x

2, 2a1xy)T is Rx-reversible.

If t = (1, 3) then Fr = (−a1x
2, 2a1xy+3x4)T = Xh +µD0 where µ = a1x

and h = x2(a1y + 3
5
x3). Now, we observe that the system can easily be

transformed by a change of variables in a Rx-reversible vector field. This
is the case (c).
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– If a1 = 0, a0 6= 0 then αF = 1, βF = 2. When for all t = (t1, t2) the
relation t2

t1
< 1 = αF is satisfied then Fr = (y2, 0)T is Rx-reversible. For

t = (1, 1), Fr = (y2 + a0xy, a0y
2)T is Ry-reversible. If t = (t1, t2) such

that 1 = αF < t2
t1

< 2 then Fr = (a0xy, a0y
2)T is Ry-reversible. When

t = (1, 2) then Fr = (a0xy + a2x
3, a0y

2 + b1x
2y + 3x4)T = Xh + µD0

with µ = 1
5
(a0y + (3a2 + b1)x

2) and h = 1
5
x(−a0y

2 +(b1−2a1)x
2y+3x4).

By means the mapping x = u, y = v + cu, the system is transformed in
a Ry-reversible vector field, provided that c = −3a2+b1

a0
= b1−2a1

2a0
. Or in

another words 4a2 + 3b1 = 0. This is the case (d).

– If a1 = a0 = 0 then αF = 1 and βF = 3
2
. For t = (t1, t2) such that t2

t1
< 3

2
,

Fr = (y2, 0)T and therefore Rx-reversible, and for t = (2, 3) one has that
Fr = (y2 + a2x

3, b2x
2y)T that is reversible only when a2 = b1 = 0. This

is the case (e)
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