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Abstract

An extension of some standard likelihood based procedures to nonlinear regression models under
scale mixtures of skew-normal distributions is developed. This novel class of models provides a
useful generalization of the symmetrical nonlinear regression models since the error distributions
cover both skewness and heavy�tailed distributions such as the skew-t, skew-slash and the skew-
contaminated normal distributions. The main advantage of these class of distributions is that
they have a nice hierarchical representation which allows easy implementation of inference. A
simple EM-type algorithm for iteratively computing maximum likelihood estimates is presented
and the observed information matrix for obtaining the asymptotic covariance matrix is derived
analytically. With the aim of identifying atypical observations and/or model misspeci�cation a
brief discussion of the standardized residuals is given. Finally, an illustration of the methodology
is given considering a data set previously analyzed under skew-normal nonlinear regression models.
Our analysis indicates that a skew-t nonlinear regression model with 3 degrees of freedom seems to
�t the data better than the skew-normal nonlinear regression model as well as other asymmetrical
nonlinear models in the sense of robustness against outlying observations.

Key words: EM algorithm, Skew-normal distribution, Scale mixtures of skew-normal
distributions, Nonlinear regression models.

1. Introduction

Normal nonlinear regression models (N-NLM) are usually applied in sciences and engineering
to model symmetrical data for which nonlinear functions of unknown parameters are used in order
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to explaining or describing the phenomena under study. But N-NLM su�ers from the same lack
of robustness against departures from distributional assumptions as other statistical models based
on the Gaussian distribution and may be too restrictive to provide an accurate representation
of the structure that is present in the data. To deal with this problem, some proposals have
been made in the literature by replacing the assumption of normality by a class of symmetrical
distributions that cover both light-and heavy-tailed distributions such as Student-t, logistic, power
exponential, (see Cysneiros and Vanegas, 2008; Cordeiro et al., 2009, among others). Recently,
Cancho et al. (2009) and Xie et al. (2009) have shown the advantage of using the skew-normal
distribution in the context of nonlinear regression models (SN-NLM). In this article, we extend the
SN-NLM by assuming that the models errors follow scale mixtures of skew-normal distributions�
hereafter SMSN (Branco and Dey, 2001)� which deal simultaneously with skewness and heavy-tails.
Interestingly, this rich class contains the entire family of scale mixtures of normal distributions
(Lange and Sinsheimer, 1993). In addition, the skew�normal (SN) and skewed versions of some
classical symmetric distributions are SMSN members: for example, The skew�t (ST), the skew�
slash (SSL) and the skew contaminated normal (SCN). They seem to be a reasonable choice for
robust inference and some of the advantages of our approach are to o�er e�cient algorithms to
model estimation and the practical interpretation of the parameters.

The rest of the paper is organized as follows. In Section 2, we present some properties of the
univariate SMSN family. Section 3 outlines the asymmetric model as well as some inferential results.
In Section 4 an EM-type algorithm for maximum likelihood estimation is developed. Additionally,
some model selection criteria and the use of standardized residuals in these asymmetrical nonlinear
models are discussed. Finally, in Section 5, we illustrate the methodology considering an application
with a real data set.

2. Scale mixtures of skew-normal distributions

2.1. Preliminaries

First, we make some remarks about the class of scale mixtures of skew-normal distributions, as
introduced by Branco and Dey (2001); see also Arellano-Valle et al. (2006).

As de�ned by Azzalini (1985), a random variable Z has skew-normal distribution with location
parameter µ, scale parameter σ2 and skewness parameter λ, if its density is given by

f(z) = 2φ(z; µ, σ2)Φ
(

λ(z − µ)
σ

)
, (1)

where φ(·;µ, σ2) denotes the density of the univariate normal distribution with mean µ and variance
σ2 > 0 and Φ(·) is the distribution function of the standard univariate normal distribution. We
denote it by Z ∼ SN(µ, σ2, λ).

Let Z ∼ SN(0, σ2, λ). A random variable Y is in the SMSN family if it can be written as

Y = µ + κ1/2(U)Z, (2)
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where µ is a location parameter, κ(u) is a positive function of u, U is a random variable with
distribution function H(·;ν) and density h(·; ν) and ν is a scalar or vector parameter indexing
the distribution of U . Although we can deal with any κ function, in this paper we restrict our
attention to the case in that κ(u) = 1/u, since it leads to good mathematical properties.

The name of the class becomes clear when we note that the conditional distribution of Y given
U = u is skew-normal. Speci�cally, we have that Y |U = u ∼ SN(µ, u−1σ2, λ). Thus, the density
of Y is given by

f(y) = 2
∫ ∞

0

φ(y; µ, u−1σ2)Φ
(

u1/2λ(y − µ)
σ

)
dH(u;ν), (3)

that is, f(·) is an in�nite mixture of skew-normal densities, being U the scale factor and its
distribution function H(·;ν), the mixing distribution.

We use the notation Y ∼ SMSN(µ, σ2, λ; H). When H is degenerate, with u = 1, we obtain
the SN(µ, σ2, λ) distribution.

2.2. Moments

Arnold et al. (1993) show an interesting method of moments to obtain estimators with closed
form expressions for a skew�normal random variable. In this section we extend their method to
obtain the moments estimators of the parameters of a SMSN distribution. First, we present the
following result

Lemma 1. Let Y ∼ SMSN(µ, σ2, λ;H).

a) If E[U−1/2] < ∞, then E[Y ] = µ +
√

2
π k1∆;

b) If E[U−1] < ∞, then V ar[Y ] = σ2k2 − 2
π k2

1∆
2;

where ∆ = σδ, δ =
λ√

1 + λ2
and km = E[U−m/2].

For ν �xed, from Lemma 1, we can �nd the moments estimator of θ = (µ, σ2, δ)>, which we
denote by θ̃ = (µ̃, σ̃2, δ̃)>. It is given by

M3(k2 − 2
π

k2
1 δ̃

2)3/2 = (M2)3/2(a1 + a2δ̃
2)δ̃,

σ̃2 =
M2

(k2 − 2
π k2

1 δ̃
2)

and

µ̃ = M1 − k1

√
2
π

σ̃δ̃,

where a1 = 3
√

2
π (k3 − k1k2), a2 = 2( 2

π )3/2k3
1 −

√
2
π k3, M1 = 1

n

∑n
i=1 yi, M2 = 1

n

∑n
i=1(yi − ȳ)2

and M3 = 1
n

∑n
i=1(yi − ȳ)3. Although we do not have a closed form expression for δ̃, we can

apply some computational procedures (such as the Newton-Raphson method) to obtain numerical
solutions. However, when U = 1, the equations above reduce to the equations obtained by Arnold
et al. (1993); see also Lin et al. (2007b).
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For a SMSN random variable Y , a convenient stochastic representation is given next. It can be
used to simulate realizations of Y , to implement the EM algorithm and also to study some of its
properties. The proof follows easily from Henze (1986) and the stochastic representation given in
(2).

Lemma 2. A random variable Y ∼ SMSN(µ, σ2, λ; H) has a stochastic representation given by

Y = µ + ∆T + U−1/2Γ1/2T1,

where δ = λ√
1+λ2 , ∆ = σδ, Γ = (1 − δ2)σ2, T = U−1/2|T0|, T0 and T1 are independent standard

normal random variables and | · | denotes absolute value.

2.3. Examples of SMSN distributions

In this section we consider some particular cases of SMSN distributions. For each SMSN
distribution, we compute the conditional expectations

κr = E[Ur|y], τr = E[Ur/2WΦ(U1/2A)|y],

where A =
λ(y − µ)

σ
and WΦ(x) = φ(x)/Φ(x), x ∈ R. These quantities will be useful when

implementing the EM algorithm.

• The skew�t distribution with ν degrees of freedom. In this case we consider U ∼ Gamma(ν/2, ν/2),
ν > 0, in de�nition (2) � where Gamma(a, b) denotes the gamma distribution with mean
a/b. The density of Y takes the form

f(y) =
Γ(ν+1

2 )
Γ( ν

2 )
√

πνσ

(
1 +

d

ν

)− ν+1
2

T

(√
v + 1
d + ν

A; ν + 1

)
, y ∈ R, (4)

where d = (y−µ)2/σ2 and T (·; ν) denotes the distribution function of the standard Student�t
distribution, with location zero, scale one and ν degrees of freedom, namely t(0, 1, ν). We use
the notation Y ∼ ST (µ, σ2, λ; ν). A particular case of the skew-t distribution is the skew�
Cauchy distribution, when ν = 1. Also, when ν → ∞, we get the skew-normal distribution
as the limiting case.

We have that
km =

(ν

2

)m/2 Γ(ν−m
2 )

Γ( ν
2 )

.

Thus, from Proposition 1 in Lachos et al. (2009), we obtain

κr =
2r+1νν/2Γ( ν+2r+1

2 )(d + ν)−
ν+2r+1

2

f(y)Γ(ν/2)
√

πσ
T (

√
ν + 2r + 1

d + ν
A; ν + 2r + 1)

and
τr =

2(r+1)/2νν/2Γ(ν+r+1
2 )(d + ν + A2)−

ν+r+1
2

f(y)Γ(ν/2)
√

π
2
σ

.

Applications of the skew�t distribution in robust estimation can be found in Lin et al. (2007a)
and Azzalini and Genton (2008).
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• The skew�slash distribution. In this case we have U ∼ Beta(ν, 1) � where Beta(a, b) denotes
the beta distribution with parameters a and b � with positive shape parameter ν, and use
the notation Y ∼ SSL(µ, σ2, λ; ν). The density of Y is given by

f(y) = 2ν

∫ 1

0

uν−1φ(y; µ, u−1σ2)Φ(u1/2A)du, y ∈ R, (5)

and we have that
km =

2ν

2ν −m
, ν > m/2.

In this case, the conditional expectations are given by

κr =
2ν+r+1νΓ( 2ν+2r+1

2 )P1

(
2ν + 2r + 1

2
,
d

2

)
d−

2ν+2r+1
2

f(y)
√

πσ
E[Φ(S1/2A)]

and
τr =

2ν+r/2+1/2νΓ( 2ν+r+1
2 )

f(y)
√

π
2
σ

(d + A2)−
2ν+r+1

2 P1

(
2ν + r + 1

2
,
d + A2

2

)
,

where Px(a, b) denotes the distribution function of the Gamma(a, b) distribution evaluated
at x and S ∼ Gamma

(
2ν + 2r + 1

2
,
d

2

)
I(0,1), a truncated gamma distribution on (0, 1),

with the parameters values in parenthesis before truncation. The skew-slash is a heavy-
tailed distribution having as limiting distribution the skew-normal one (when ν → ∞).
Applications can be found in (Wang and Genton, 2006).

• The skew contaminated normal distribution. Here U is a discrete random variable taking one
of two states. The probability function of U is given by

h(u|ν) = νI(u=γ) + (1− ν)I(u=1), 0 < ν < 1, 0 < γ ≤ 1,

where ν = (ν, γ)>. We denote it by Y ∼ SCN(µ, σ2, λ; ν, γ). Also, we have

km =
ν

γm/2
+ 1− ν.

It follows immediately that

f(y) = 2{νφ(y; µ, γ−1σ2)Φ(γ1/2A) + (1− ν)φ(y; µ, σ2)Φ(A)}.

The parameters ν and γ can be interpreted as the proportion of outliers and a scale fac-
tor, respectively. The skew contaminated normal distribution reduces to the skew-normal
distribution when γ = 1. In this case, we have that

κr =
2

f(y)
[νγrφ1(y;µ, γ−1σ2)Φ(γ1/2A) + (1− ν)φ(y;µ, σ2)Φ(A)]

and
τr =

2
f(y)

[νγr/2φ(y; µ, γ−1σ2)φ(γ1/2A) + (1− ν)φ(y; µ, σ2)φ(A)].
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3. The SMSN nonlinear regression model

The nonlinear regression model based on SMSN distributions�hereafter SMSN-NLM� is de�ned
as

Yi = η(β,xi) + εi, i = 1, . . . , n, (6)

where the Yi are responses, η(.) is an injective and twice continuously di�erentiable function with
respect to the parameter vector β = (β1, . . . , βp)>, xi is a vector of explanatory variable values
and the random errors εi ∼ SMSN(−

√
2
π k1∆, σ2, λ;H) that corresponds to the regression model

where the error distribution has mean zero. When they exist, from Lemma 1, we have that

E[Yi] = η(β,xi), V ar[Yi] = k2σ
2 − b2∆2,

where b = −
√

2
π k1 and Yi ∼ SMSN(η(β,xi) + b∆, σ2, λ;H), for i = 1, . . . , n. In order to

avoid di�culties in estimating the parameter ν of the mixing variable, we �xed it previously, as
recommended by Lange et al. (1989) and Berkane et al. (1994).

The log-likelihood function for θ = (β>, σ2, λ)> given the observed sample y = (y1, . . . , yn)>

is given by `(θ) =
n∑

i=1

`i(θ), where

`i(θ) = log 2− 1
2

log 2π − 1
2

log σ2 + log Ki,

with
Ki =

∫∞
0

u
1/2
i exp{− 1

2uidi}Φ(u1/2
i Ai)dH(ui) and di = (yi − η(β,xi) − b∆)2/σ2 and Ai =

d
1/2
i λ. The score function is given by U(θ) =

∂`(θ)
∂θ

=
n∑

i=1

Ui(θ), where Ui(θ) =
∂`i(θ)

∂θ
=

(
Ui(β)>, Ui(σ2), Ui(λ)

)> and Ui(γ), for γ = β, σ2 or λ, has the form

Ui(γ) =
∂`i(θ)

∂γ
= −1

2
∂logσ2

∂γ
+

1
Ki

∂Ki

∂γ
, i = 1, . . . , n, (7)

where
∂Ki

∂γ
= Iφ

i (1)
∂Ai

∂γ
− 1

2
IΦ
i

(
3
2

)
∂di

∂γ

and the observed information matrix J(θ) = − ∂2`(θ)
∂θ∂θ>

= −
n∑

i=1

∂2`i(θ)
∂θ∂θ>

, have elements given by

Jγτ = − ∂2`i(θ)
∂γ∂τ>

, for γ, τ = β, σ2 or λ, where

∂2`i(θ)
∂γ∂τ>

= −1
2

∂2 log σ2

∂γ∂τ>
− 1

K2
i

∂Ki

∂γ

∂Ki

∂τ>
+

1
Ki

∂2Ki

∂γ∂τ>
,

and

∂2Ki

∂γ∂τ>
=

1
4
IΦ
i

(
5
2

)
∂di

∂γ

∂di

∂τ>
− 1

2
IΦ
i

(
3
2

)
∂2di

∂γ∂τ>
− 1

2
Iφ
i (2)

(
∂Ai

∂γ

∂di

∂τ>
+

∂di

∂γ

∂Ai

∂τ>

)

−Iφ
i (2) Ai

∂Ai

∂γ

∂Ai

∂τ>
+ Iφ

i (1)
∂2Ai

∂γ∂τ>
,
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with,
IΦ
i (w) =

∫ ∞

0

uw
i exp

(
−1

2
uidi

)
Φ1(u

1/2
i Ai)dH(ui)

and
Iφ
i (w) =

1√
2π

∫ ∞

0

uw
i exp

(
−1

2
ui(di + A2

i )
)

dH(ui).

Notice that we can also write Ki = IΦ
i (1

2 ). Direct substitution of H in the integrals above
yields immediately the following results for each distribution considered, viz.,

• Skew�t:

IΦ
i (w) =

2wνν/2Γ(w + ν/2)
Γ(ν/2)(ν + di)ν/2+w

T

(√
ν + 2w

di + ν
Ai; ν + 2w

)
and

Iφ
i (w) =

2wνν/2Γ(ν+2w
2 )

√
2πΓ(ν/2)(di + A2

i + ν)
ν + 2w

2

.

• Skew�slash:

IΦ
i (w) =

ν2ν+wΓ(ν + w)
dν+w

i

P1

(
ν + w,

di

2

)
E{Φ(S1/2

i Ai)} and

Iφ
i (w) =

ν2ν+wΓ(ν + w)√
2π(di + A2

i )ν+w
P1

(
ν + w,

di + A2
i

2

)
,

where Si ∼ Gamma(ν + w, di

2 )I(0,1).

• Skew contaminated normal:

IΦ
i (w) =

√
2π{νγw−1/2φ1

(√
di|0,

1
γ

)
Φ(γ1/2Ai) + (1− ν)φ1(

√
di|0, 1)Φ(Ai)} and

Iφ
i (w) = νγw−1/2φ1

(√
di + A2

i |0,
1
γ

)
+ (1− ν)φ1

(√
di + A2

i |0, 1
)

.

The derivatives of di and Ai involves standard algebraic manipulations and are not given here.
Note that since one has a closed-form expression for the observed information matrix for θ, the
Newton-Raphson method can be easily applied to get the ML estimates . In the next section we
discuss a technique more elaborate to �nd the ML estimates of the parameters vector θ based on
an EM-type algorithm.

4. Parameter estimation via the EM-algorithm

In this subsection we develop an Expectation-Maximization (EM) algorithm (Dempster et al.,
1977) for maximum likelihood estimation of the parameters of SMSN-NLM. In order to do this,
we �rst represent the SMSN-NLM in an incomplete data framework using the result presented in
Lemma 2. We consider the following hierarchical representation for Yi

Yi|Ti = ti ∼ N1(η(β,xi) + ∆ti, U
−1
i Γ), (8)

Ti|Ui ∼ TN1(b, u−1
i )I(b,∞), (9)

Ui ∼ H(.;ν) (10)
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where
Γ = (1− δ2)σ2, ∆ = σδ (11)

and TN1(r, s) denotes the truncated univariate normal distribution on (r, s), with parameters
values in parenthesis before truncation. An useful straightforward result is that the conditional
distribution of Ti given yi and ui is TN1(µTi + b, u−1

i M2
T )I(b,∞), with

M2
T =

Γ
∆2 + Γ

, µTi
=

∆
∆2 + Γ

(yi − η(β,xi)−∆b)

Now we proceed for the E-step of the algorithm. To represent the estimator of the parameter ξ =

g(θ), we will use the general notation ξ̂ = g(θ̂), where g(·) is a generic function of θ = (β>, σ2, λ)>.
Thus, let y = (y1, . . . , yn)>, t = (t1, . . . , tn)> and u = (u1, . . . , un)>. It follows that the complete
log-likelihood function associated with (y, t,u) is given by

`c(θ|y, t,u) = c− n

2
log Γ− 1

2Γ

n∑

i=1

ui(yi − η(β,xi)−∆ti)2, (12)

where c is a constant that is independent of θ. Letting ûi = E[Ui|θ = θ̂, yi], ûti = E[Uiti|θ = θ̂, yi],
ût2i = E[Uit

2
i |θ = θ̂, yi] and using known properties of conditional expectation we obtain

ûti = ûi(µ̂Ti + b) + M̂T τ̂1i , ût2i = ûi(µ̂Ti + b)2 + M̂2
T + M̂T (µ̂Ti + 2b)τ̂1i ,

(13)

where
τ̂1i = E

[
U

1/2
i WΦ(

U
1/2
i µ̂Ti

M̂T

)|θ̂, yi

]
.

In each step, the conditional expectations ûi = û1i and τ̂1i can be easily derived from the
results given in Subsection 2.3. For the skew�t and skew contaminated normal distributions we
have computationally attractive expressions that can be easily implemented. However, this is not
the case for the skew�slash one, where Monte Carlo integration may be employed, which yield the
so�called MC�EM algorithm; see Lachos et al. (2009).

These expressions are quite useful in implementing the M-step, which consists in maximizing
the expected complete data function or the Q−function over θ, given by

Q(θ|θ̂(k)
) = E[`c(θ)|y, θ̂

(k)
] = c− n

2
log(Γ)− 1

2Γ

n∑

i=1

[
û

(k)
i (yi − η(β,xi))

2

− 2∆(yi − η(β,xi))ût
(k)

i + ∆2ût2i
(k)

]
]

,

where θ̂
(k) is an updated value of θ̂.

When the M-step turns out to be analytically intractable, it can be replaced with a sequence of
conditional maximization (CM) steps. The resulting procedure is known as ECM algorithm (Meng
and Rubin, 1993). Next, we describe this EM-type algorithm (ECM) for maximum likelihood
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estimation of the parameters of the SMSN-NLM.

E-step: Given a current estimate θ̂
(k), compute û

(k)
i ût

(k)

i , ût2i
(k)

, for i = 1, . . . , n.

CM-step: Update θ̂
(k) by maximizing Q(θ|θ̂(k)

) over θ, which leads to the following nice ex-
pressions

β̂
(k+1)

= argminβ(z(k) − η(β,x))>Û(k)(z(k) − η(β,x)), (14)

∆̂(k+1) =
∑n

i=1 ût
(k)

i (yi − η(β(k+1),xi))
∑n

i=1 ût2i
(k)

, (15)

Γ̂(k+1) =
1
n

n∑

i=1

(
(yi − η(β(k+1),xi))2û

(k)
i − 2∆(k+1)(yi − η(β(k+1),xi))ût

(k)

i

+ (∆2)(k+1)ût2
(k)

i

)
, (16)

where Û(k) = diag(û(k)
1 , . . . , û

(k)
n ), z(k) is the corrected observed response given by z(k) = y −

∆̂(k)τ̂ (k), with τ̂ (k) = (τ̂1
(k), . . . , τ̂n

(k))>, τ̂ (k)
i = ût

(k)

i /û
(k)
i and η(β,x) = (η(β,x1), . . . , η(β,xn))>.

An interesting observation is that the M�step to estimate β is equivalent to the weighted nonlinear
least squares in the NLM, z = η(β,x) + ε, in which reliable and e�cient implementation of
algorithms are available in softwares as SAS, R, Ox and Matlab. Note that σ̂2(k+1) and λ̂(k+1) can
be recovered using (11), that is, λ = ∆/

√
Γ and σ2 = ∆2 + Γ.

4.1. Notes on implementation

It is well known that maximum likelihood estimation in nonlinear models may face some com-
putational hurdles, in the sense that the method may not give maximum global solutions if the
starting values are far from the real parameter values. Thus, the choice of starting values for the
EM algorithm in the non-linear context plays a big role in parameter estimation. In our example
we consider the following procedure for the SN-NLM

• Compute β(0) modeling using the standard nonlinear least squares

• compute the initial values (σ2)(0) and λ(0) using the residuals and the method of moments
estimators given in Section 2.2 with M1 = 0; see also Lin et al. (2007b). The range for
the skewness coe�cient γ1 of the SN distribution is approximately (−0.9953, 0.9953) � see
Azzalini (2005). But the method of moments can produce an initial value of γ

(0)
1 that is not

in this interval. In this case, we use as starting points the values −0.99 (if γ
(0)
1 ≤ −0.9953)

or 0.99 (if γ
(0)
1 ≥ 0.9953).

Now, when modeling using the ST-NLM, SCN-NLM or the SSL-NLM we adopt the following
strategy

• Obtain initial values via method of moments for the SN-NLM, as described above;
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• Perform maximum likelihood estimation of the parameters of the SN-NLM via EM algorithm;

• Use the EM estimates of the regression parameter, scale and skewness parameters of the SN-
NLM as initial values for the corresponding ST-NLM, SSL-NLM and SCN-NLM parameters;

• In order to estimate ν in the ST-NLM and SSL-NLM we have �xed integer values for ν from
3 to 100 and 2 to 100 by 1, respectively, choosing the value of ν that maximizes the likelihood
function. A similar procedure has been adopted for the SCN-NLM.

4.2. Model selection

For each �tted model, we computed the Akaike Information Criterion (AIC) (Akaike, 1974)
and the E�cient Determination Criterion (EDC) (Bai et al., 1989). AIC and EDC have the form

−2`(θ̂) + γcn,

where `(·) is the actual log-likelihood, γ is the number of free parameters that have to be estimated
under the model and the penalty term cn is a convenient sequence of positive numbers. We have
cn = 2. For the EDC criterion, cn is chosen so that it satis�es the conditions cn/n → 0 and
cn/(log log n) → 0 when n →∞. Here we use cn = 0.2

√
n, a proposal that was considered in Bai

et al. (1989).

4.3. Residuals

Residual analysis aims at identifying atypical observations and/or model misspeci�cation once
residuals are measures of agreement between the data and the �tted model. Most residuals are
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Figure 1: Oil palm data set. Plot of the pro�le log-likelihood of the parameter ν for �tting a ST-NLM.
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based on the di�erences between the observed responses and the �tted conditional mean. We
de�ned the following standardized ordinary residual (Pearson residuals):

ri =
yi − µ̂i√
V̂ ar(yi)

, i = 1, . . . , n,

where V̂ ar(yi) = k2σ̂
2 − 2

π k2
1σ̂

2δ̂2. Here, µ̂i = η(β̂,xi), and β̂, σ̂2 and δ̂ denoting the maximum
likelihood estimators of β, σ2 and δ, respectively. We also generate envelopes, as suggested by
Atkinson (1981), to detect incorrect speci�cation of the error distribution and the systematic
component η(β,xi) as well as the presence of outlying observations.

5. An Application

In this section we consider a likelihood analysis of the data set presented in Foong (1999) that
describe the oil palm yield. Cancho et al. (2009) analyzed the same data set by �tting a SN-NLM.
In this section, we revisit the oil palm data set with the aim of providing additional inferences by
using SMSN distributions. Assuming a nonlinear growth-curve model, we �t a NLM to the data
as speci�ed by Cancho et al. (2009)

Table 1: ML estimation results for �tting various mixture models on the oil palm yield data set. SE are the
asymptotic standard errors based on the observed information matrix.

SN-NLM ST-NLM SCN-NLM SSL-NLM
Parameter Estimate SE Estimate SE Estimate SE Estimate SE

β1 37.351 0.462 37.529 0.441 37.714 0.413 37.463 0.486
β2 44.576 17.039 43.483 10.364 41.259 11.826 43.373 14.982
β3 0.731 0.070 0.732 0.045 0.722 0.052 0.728 0.063
σ2 6.919 2.655 1.644 1.152 2.077 1.343 3.105 1.708
λ -4.453 3.125 -1.871 1.332 -2.269 1.641 -3.489 2.481
ν - - 3 - 0.2 - 2 -
γ - - - - 0.2 - - -

log-likelihood -35.03691 -33.829 -34.132 -34.781
AIC 80.07382 79.659 82.265 81.562
EDC 74.43272 72.890 74.368 74.792

Yi =
β1

1 + β2 exp(−β3xi)
+ εi, εi

iid∼ SMSN(−
√

2
π

k1∆, σ2, λ; H), (17)

for i = 1, . . . , 19, where H denote the distribution function for the mixture variable Ui, for i =

1, . . . , 19. In our analysis we will assume SN, ST, SSL and SCN distributions from the SMSN class
for comparative purposes. We choose the value of ν by maximizing the the likelihood function as
illustrated in Figure 1. For the ST model we found ν = 3, for the SSL we found ν = 2 and for the
SCN we found ν = (0.2, 0.2). Table 1 contains the ML estimates of the parameters from the four
models, together with their corresponding standard errors calculated via the observed information
matrix. The AIC and EDC model selection criteria indicate that the ST distribution present the
best �t. Although the regression estimates parameters are similar in all the four �tted models

11



Figure 2: Oil palm yield data set. Q�Q plots and simulated envelopes for the Pearson Residuals
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(see Table 1) the standard errors of the SMSN-NLM with heavy tails are smaller than those in
the SN-NLM. This suggests that the three models with longer tails than the SN model seem to
produce more accurate maximum likelihood estimates. The estimates for the variance components
(σ2 and λ) are not comparable since they are on di�erent scale.

The QQ-plots and envelopes for the Pearson residuals are shown in Figure 2. The lines in these
�gures represent the 5th percentile, the mean, and the 95th percentile of 100 simulated points
for each observation. These Figures clearly shows once again that the ST distribution provides a
better �t to the data set than the skew�normal distribution.

6. Conclusions

In this paper, we have proposed the application of a new class of asymmetric distributions,
called the SMSN distribution, to nonlinear regression models. An EM�type algorithm is developed
by exploring the statistical properties of the SMSN class. The observed information matrix is
derived analytically which allows direct implementation of inference on this class of models. We
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demonstrate our approach with a real data set and show that the ST model has better performance
than the other competitors. R programs are available from the second author`s homepage with
website address http:// www.ime.unicamp.br/ hlachos/∼ListaPub.html.

Due to recent advances in computational technology, it is worthwhile to carry out Bayesian
treatments via Markov chain Monte Carlo (MCMC) sampling methods in the context of SMSN-
NLM. Other extensions of the current work include, for example, a generalization of SMSN-NLM
to multivariate settings.
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FAPESP-Brazil.
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