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Abstract. The space of tempered distributions S′ can be realized as a se-

quence spaces by means of the Hermite representation theorems (see [2]). In
this work we introduce and study a new tempered generalized functions algebra

H, in this algebra the tempered distributions are embedding via its Hermite ex-
pansion. We study the Fourier transform, point value of generalized tempered

functions and the relation of the product of generalized tempered functions

with the Hermite product of tempered distributions (see [6]). Furthermore,
we give a generalized Itô formula for elements of H and finally we show some

applications to stochastic analysis.

1. Introduction

The differential algebras of generalized functions of Colombeau type were developed
in connection with non linear problems. These algebras are a good frame to solve
differential equations with rough initial date or discontinuous coefficients (see [3],
[8] and [13]). Recently there are a great interest in develop a stochastic calculus
in algebras of generalized functions (see for instance [1], [4], [11], [12] and [14]),
in order to solve stochastic differential equations with rough data. A Colombeau
algebra G on an open subset Ω of Rm is a differential algebra containing D′(Ω) as a
linear subspace and C∞(Ω) as a faithful subalgebra. The embedding of D′(Ω) into
G is done via convolution with a mollifier, in the simplified version the embedding
depends on the particular mollifier.
The algebra of tempered generalized functions was introduced by J. F. Colombeau
in [5] in order to develop a theory of Fourier transform in algebras of generalized
functions (see [8] and [7] for applications and references). We observe that in this
algebra the most of properties involving Fourier transform and convolution are valid
in a weak sense.
In this work we introduced and study a new algebra of tempered generalized func-
tions, this algebra is based in the Fourier-Hermite expansion of tempered distri-
butions. More precisely, the Hermite representation theorem for S ′ (see [2], [17],
[20], and [21]) which establishes that every S ∈ S ′ can be represented by a Hermite
series

(1) S =
∞∑

n=0

S(hn)hn
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where {hn} are the Hermite functions and the equality is in the weak sense. The idea
is embedded the tempered distributions into the differential subalgebra Hs′ ⊂ SN0

via the sequence of partial sums

Sn =
n∑

j=0

S(hj)hj

and define the algebra of generalized tempered functions as

H = Hs′/Hs

where Hs is a differentiable ideal of Hs′ (see section 3 for precise definitions and
details).
The plan of exposition is as follows: Section 2 contains a brief summary without
proofs of Hermite functions and the Hermite representation theorems. In section
3, we introduce the Tempered algebra H, this algebra contains to the tempered
distributions and extends the product in S. We study its elementary properties
and shows that the symmetric product of tempered distributions (see [22] and [6])
is associated with the product in H.
In section 4, we introduce and study the ring of tempered numbers h and the
point value of tempered generalized functions. Section 5, deals with integration,
convolutions and Fourier transform of tempered generalized functions. We obtain
the Fourier inversion theorem forH, the formula of interchange between the product
and the convolution, the rule of integration by parts. The important point to note
here is that the identities are in h, this is in a strong sense.
In section 6 it is shown a generalized Itô formula for elements of H. The crucial
facts are the existence of point value for generalized tempered distribution, the
good definition of Stieljes integral and the Follmer approach to the Itô formula (see
[15]). Finally, it should be noted that in [10] and [11] is present a Itô formula for
generalized functions, with some mistakes in definitions and proofs how is pointed
in [4].

2. N-Representation of tempered distributions.

Let S ≡ S(R) be the Schwartz space of rapidly decreasing smooth real valued
functions.

For each m ∈ N0 ≡ N ∪ {0}, we consider ‖ · ‖m the norm of S given by

‖ϕ‖m =
( ∫ ∞

−∞
|(N + 1)mϕ(x) |2 dx

) 1
2
,

where N + 1 = 1
2 (− d2

dx2 + x2 + 1).
We observe that S provides with the natural topology given by these norms

is a sequentially complete locally convex space and its dual space S ′ is the space
of tempered distributions. The family of norms {‖ · ‖m : m ∈ N0} is direct and
equivalent to the family of seminorms {‖ · ‖α,β,∞ : α, β ∈ N0}, given by

‖ϕ‖α,β,∞ = sup
x
|(1 + |x|2)αDβϕ(x)|.

We use often the following property of the multiplication on S. For all m ∈ N0

there exists r, s ∈ N0 and a constant Cm > 0 such that

(2) ‖ϕψ‖m ≤ Cm‖ϕ‖r‖ψ‖s
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for all ϕ,ψ ∈ S (see for instance [16] Theorem 2).
The Hermite polynomials Hn(x) are defined by

(3) Hn(x) = (−1)ne
x2
2
dn

dxn
e−

x2
2

for n ∈ N0 or equivalently

(4) Hn(x) = 2−
n
2

[n/2]∑
k=0

(−1)kn!(
√

2x)n−2k

k!(n− 2k)!
.

The Hermite functions hn(x) are defined by

(5) hn(x) = (
√

2πn!)−
1
2 e−

1
4 x2

Hn(x)

for n ∈ N0. Some properties of the Hermite functions that we will often use follows.
• hn ∈ S for all n ∈ N0,
• hn is an even (odd) function if n is even (odd),
•
√
n+ 1hn+1(x) + 2h′n(x) =

√
nhn−1(x) for all n ∈ N0,

•
√
n+ 1hn+1(x) = xhn(x)−

√
nhn−1(x) for all n ∈ N0,

• {hn : n ∈ N0} is an orthonormal basis of L2(R),
• (N + 1)hn = (n+ 1)hn for all n ∈ N0.

From the two last properties we have

‖ϕ‖2
m =

∞∑
n=0

(n+ 1)2m < ϕ, hn >
2,

where < ϕ, hn >=
∫
ϕ(x)hn(x)dx are the Fourier-Hermite coefficients of the ex-

pansion of ϕ.
The Hermite representation theorem for S (S ′) states an topological isomorphism
from S (S ′) onto the space of sequences s (s′).
Let s be the space of rapidly decreasing sequences

s = {(an) ∈ `2 :
∞∑

n=0

(n+ 1)2m | an |2<∞, for all m ∈ N0}.

The space s is a locally convex space with the sequence of norms

‖(an)‖m = (
∞∑

n=0

(n+ 1)2m | an |2)
1
2

or with the equivalent sequence of norms

| (an) |m,∞= sup
n

(n+ 1)m|an|.

The topological dual space to s, denoted by s′, is given by

s′ = {(bn) : for some (C,m) ∈ R× N0, | bn |≤ C(n+ 1)m for all n},

and the natural pairing of elements from s and s′, denoted by 〈·, ·〉, is given by

〈(bn), (an)〉 =
∞∑

n=0

bnan

for (bn) ∈ s′ and (an) ∈ s.
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It is clear that s′ is an algebra with the pointwise operations:

(bn) + (b′n) = (bn + b′n)
(bn) · (b′n) = (bnb′n),

and s is an ideal of s′.
The relation between s (s′) and S (S ′) is induced by the Hermite functions, via

Hermite coefficients (evaluation). The following representation theorem is funda-
mental in our work, for the proof we refer to [17] pp. 143.

Theorem 1 (N-representation theorem for S and S ′). a) Let h : S → s be the
application

h(ϕ) = (< ϕ, hn >).
Then h is a topological isomorphism. Moreover,

‖h(ϕ)‖m = ‖ϕ‖m

for all ϕ ∈ S.
b) Let H : S ′ → s′ be the application H(T ) = (T (hn)). Then H is a topological
isomorphism. Moreover, if T ∈ S ′ we have that

T =
∞∑

n=0

T (hn)hn

in the weak sense and for all ϕ ∈ S,

T (ϕ) = 〈H(T ),h(ϕ)〉.

We say that the sequences h(ϕ) and H(T ) are the Hermite coefficients of the
tempered function ϕ and the distribution T , respectively.

Now, we show the Hermite coefficients of some tempered distributions.

2.1. The delta distribution. (see [2] pp 191.)

(6) δ(hn) = hn(0) =

{
(−1)

n
2

4√2π

√
1
2

3
4 · · ·

n−1
n for n even,

0 for n odd.

2.2. The constant distribution 1. (see [2] pp 190.)

(7) 1(hn) =
∫ ∞

−∞
hn(x) dx =

{
4
√

8π
√

1
2

3
4 · · ·

n−1
n for n even,

0 for n odd.

2.3. The xp
+ distribution. (see [19] pp 162.)

We recall that < xp
+, φ >=

∫∞
0
xpφ(x) dx.

(8) xp
+(hn) =

{
(
√

2πn!)−
1
2 2pΓ(p+1

2 )Wn(2p+ 1) for n even,
(
√

2πn!)−
1
2 2p+1Γ(p+2

2 )Wn(2p+ 1) for n odd

where Wn(x) are polynomials such that W0(x) = W1(x) = 1 and

Wn+2(x) = xWn(x) + n(n− 1)Wn−2(x).

Note that if p = 0, then xp
+ is the Heaviside distribution H.

2.4. The δ′ distribution.

(9) δ′(hn) = −h′n(0) =
√
nhn−1(0).
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3. The Tempered Algebra

In order to introduce the tempered algebra we consider SN0 the space of sequences
of rapidly decreasing smooth functions. It is clear that SN0 has the structure of an
associative, commutative differential algebra with the natural operations:

(fn) + (gn) = (fn + gn)
a(fn) = (afn)

(fn) · (gn) = (fngn)
D(fn) = (Dfn)

where (fn) and (gn) are in S and a ∈ R.

Definition 1. Let

(10) Hs′ = {(fn) ∈ SN0 : for each m ∈ N0, (‖fn‖m) ∈ s′ }

and

(11) Hs = {(fn) ∈ SN0 : for each m ∈ N0, (‖fn‖m) ∈ s }

Lemma 1. Hs′ is a subalgebra of SN0 and Hs is a differential ideal of Hs′ .

Proof. Let (fn), (gn) ∈ Hs′ and m ∈ N0. Applying the inequality (2), there exists
r, s ∈ N0 and a constant Cm > 0 such that

‖fngn‖m ≤ Cm‖fn‖r‖gn‖s.

By definition, there exists constants D,E > 0 and p, q ∈ N0 such that

‖fn‖r ≤ D(n+ 1)p

‖gn‖s ≤ E(n+ 1)q.

Combining these inequalities, we obtain

‖fngn‖m ≤ CmDE(n+ 1)p+q.

This proves that (‖fngn‖m) ∈ s′, thus (fn) · (gn) ∈ Hs′ .
Now, we prove that Hs is an ideal of Hs′ . Let (fn) ∈ Hs′ , (gn) ∈ Hs and m ∈ N0.
From (1) we have that for each r ∈ N0 there exists a constant D > 0 and p ∈ N0

such that

‖fn‖r ≤ D(n+ 1)p

and for all s, l ∈ N0,

‖(‖gn‖s)‖2
l =

∞∑
n=0

(n+ 1)2l‖gn‖2
s <∞.
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Combining the inequality (2) with the above equations we obtain

‖(‖fngn‖m)‖2
l =

∞∑
n=0

(n+ 1)2l‖fngn‖2
m

≤ C2
m

∞∑
n=0

(n+ 1)2l‖fn‖2
r‖gn‖2

s

≤ C2
mD

2
∞∑

n=0

(n+ 1)2(l+p)‖gn‖2
s

< ∞.

Noted that we have proved that (‖fngn‖m) ∈ s, for all m ∈ N0. This is (fn) · (gn) ∈
Hs.
Finally, we prove that if (fn) ∈ Hs then (Dfn) ∈ Hs. In fact, let m ∈ N0. Since
{‖ · ‖m : m ∈ N0} is equivalent to {‖ · ‖α,β,∞ : α, β ∈ N0} we have that there exists
α, β,mα,β ∈ N0 and a constants Cm, Cα,β+1 > 0 such that

‖Dfn‖m ≤ Cm‖Dfn‖α,β,∞

= Cm‖fn‖α,β+1,∞

≤ CmCα,β+1‖fn‖mα,β
.

As (fn) ∈ Hs we have (‖Dfn‖m) ∈ s. This implies that (Dfn) ∈ Hs. �

Proposition 1. Let T ∈ S ′. Then (Tn) ∈ Hs′ , where Tn =
∑n

j=0 T (hj)hj.

Proof. From Theorem 1, there exists a constant C > 0 and p ∈ N0 such that

|T (hj)| ≤ C(j + 1)p

for all j ∈ N0. Then

‖Tn‖2
m =

n∑
j=0

(j + 1)2m|T (hj)|2

≤ (n+ 1)2m
n∑

j=0

|T (hj)|2

≤ C(n+ 1)2(m+p+1).

This completes the proof. �

Definition 2. The tempered algebra is defined as

H = Hs′/Hs.

The elements of H are called tempered generalized functions.

Let (fn) ∈ Hs′ we will use [fn] by denoted the equivalent class (fn) +Hs.

Proposition 2. Let ι : S → H be the application

ι(T ) = [Tn].

Then ι is a linear embedding. Moreover,we have that
a) For all ϕ ∈ S,

ι(ϕ) = [ϕ].
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b) For all T ∈ S ′

ι(DT ) = Dι(T ).

Proof. It is clear from the above Proposition, that ι is well defined and a linear
application. We claim that ι(T ) = 0 implies T = 0. Since (Tn) ∈ Hs, we have

lim
n→∞

‖Tn‖m = 0

for all m ∈ N0. This is the sequence (Tn) converge weakly to 0, which proves the
claim.
a) Let ϕ ∈ S. We have that ι(ϕ) = [ϕn] where ϕn =

∑n
j=0 < ϕ, hj > hj . Then for

all m, s ∈ N0 we have that

lim
n→∞

(n+ 1)2s‖ϕ− ϕn‖2
m = lim

n→∞
(n+ 1)2s

∞∑
j=n+1

(j + 1)2m| < ϕ, hj > |2

≤ lim
n→∞

∞∑
j=n+1

(j + 1)2(m+s)| < ϕ, hj > |2

= 0

where the last equality follows from ‖ϕ‖m+s < ∞. Therefore, we conclude that
(‖ϕ− ϕn‖m) ∈ s. Since (ϕ− ϕn) ∈ Hs, it follows that ι(ϕ) = [ϕ].
b) Let T ∈ S ′. By definitions and properties of Hermite functions,

DTn = D(
n∑

j=0

T (hj)hj)

=
n∑

j=0

T (hj)Dhj

=
n∑

j=0

T (hj)
1
2
(
√
jhj−1 −

√
j + 1hj+1)

= −
n∑

j=0

1
2
(
√
jT (hj−1)−

√
j + 1T (hj+1))hj

=
n∑

j=0

DT (hj)hj

= (DT )n.

Therefore Dι(T ) = [DTn] = [(DT )n] = ι(DT ). �

Corollary 1. Let ϕ,ψ ∈ S. Then

ι(ϕψ) = ι(ϕ) · ι(ψ).

Proof. We first observe that

(ϕψ)− (ϕn) · (ψn) = (ϕ) · (ψ − ψn) + (ϕ− ϕn) · (ψ).

Applying Proposition 2 and Lemma 1 we obtain (ϕψ)−(ϕn) ·(ψn) ∈ Hs. Therefore
ι(ϕψ) = ι(ϕ) · ι(ψ). �
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Remark 1. Let OM be the ring of multipliers of S (see [17]). We have a natural
multiplication from OM by H into H, defined by

g[fn] := [gfn]

where g ∈ OM and [fn] ∈ H.
It is easy to check that the product is well defined and that H is a OM -module.

We give two examples of tempered generalized functions.

Example 1. The distribution δ. We have that ι(δ) = [δn], where δn =
∑n

j=0 hj(0)hj.
Applying the formula (6) and the following equality

n∑
j=0

hj(x)hj(y) =
√
n+ 1
x− y

(
hn+1(x)hn(y)− hn+1(y)hn(x)

)
,

we see that

(12) δn(x) =


√
n+ 1 (−1)

n
2

4√2π

√
1
2

3
4 · · ·

n−1
n

hn+1(x)
x for n even,

√
n+ 1 (−1)

n+3
2

4√2π

√
1
2

3
4 · · ·

n
n+1

hn(x)
x for n odd.

Example 2. The element δ2. We have that δ2 ≡ ι(δ) · ι(δ) = [δ2n]. From (12) it
follows that

(13) δ2n(x) =

 (n+ 1) 1√
2π

( 1
2

3
4 · · ·

n−1
n ) h2

n+1(x)

x2 for n even,

(n+ 1) 1√
2π

( 1
2

3
4 · · ·

n
n+1 ) h2

n(x)
x2 for n odd.

We introduce the concept of association for tempered generalized functions.

Definition 3. Let [fn] and [gn] be tempered generalized functions. We say that
[fn] and [gn] are associated, denoted by [fn] ≈ [gn], if for all ϕ ∈ S

lim
n→∞

< fn − gn, ϕ >= 0.

We observe that the relation ≈ is well defined, because (ln) ∈ Hs and ϕ ∈ S we
have that limn→∞ < ln, ϕ >= 0. It follows immediately that ≈ is an equivalence
relation on H.

Proposition 3. a) Let [fn], [gn] ∈ H such that [fn] ≈ [gn]. Then Dα[fn] ≈ Dα[gn]
for all α ∈ N.

b) Let [fn], [gn] ∈ H such that [fn] ≈ [gn] and l ∈ OM . Then l[fn] ≈ l[gn].
c) Let T, S ∈ S ′ such that ι(T ) ≈ ι(S). Then T = S.

Proof. a) By integration by parts and hypothesis,

lim
n→∞

< Dαfn −Dαgn, ϕ > = lim
n→∞

< fn − gn, (−1)αDαϕ >

= 0

for all ϕ ∈ S. This is Dα[fn] ≈ Dα[gn].
b) Let ϕ ∈ S. As l ∈ OM we have lϕ ∈ S. By assumption,

lim
n→∞

< lfn − lgn, ϕ > = lim
n→∞

< fn − gn, lϕ >

= 0.
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We conclude that l[fn] ≈ l[gn].
c) By definition, limn→∞

∫
(T − S)n(x) hk(x) dx = (T − S)(hk) for all k ∈ N0.

But limn→∞
∫

(T − S)n(x) hk(x) dx = 0 since ι(T ) ≈ ι(S). Applying the N-
representation theorem we conclude that T = S. �

Example 3. xι(δ) ≈ 0. In fact,

lim
n→∞

< xδn, hk >= (xhk)(0) = 0.

Finally, we study the relation between the symmetric product of tempered distri-
butions via hermite expansions and association for tempered generalized functions.
The symmetric product of tempered distribution was introduced by Shen, C. and
Sun, M. in [22] based on ideas of [6].

Definition 4. Let S and T be tempered distributions. Suppose that for all k ∈
N ∪ {0} there exists

ck = lim
n→∞

< TnSn, hk >

and that (ck) ∈ s′. The symmetric Hermite product of S and T , denoted by S • T ,
is defined to be the tempered distribution

(14)
∞∑

k=0

ckhk.

Lemma 2. a) The symmetric Hermite product is commutative, distributive.
b) The symmetric Hermite product verifies the Leibnitz rule: Let S and T be in S ′,
then

D(S • T ) = DS • T + S •DT.
c) Let S and T be in S ′ such that there exists S • T . Then

ι(S) · ι(T ) ≈ ι(S • T ).

Proof. a), b) The proof are straightforward (see [6]).
c) It is immediate from the definitions.

�

Remark 2. In order to work with ordinary differential equations in the generalized
tempered functions setting, we introduce the algebra HT of time depended tempered
generalized functions. We can proceed in a similar way to the construction of the
algebra H, the details are left to the reader. Let ST be the set of functions f :
[0, T ] × R → R such that for each t ∈ [0, T ], f(t, ·) ∈ S and for each x ∈ R,
f(·, x) ∈ C1([0, T ]). The set HT

s′ is given by

{(fn) ∈ SN0
T : for each m ∈ N0, ( sup

t∈[0,T ]

‖fn(t, ·)‖m), ( sup
t∈[0,T ]

‖∂fn

∂t
(t, ·)‖m) ∈ s′ }

and the set HT
s given by

{(fn) ∈ SN0
T : for each m ∈ N0, ( sup

t∈[0,T ]

‖fn(t, ·)‖m), ( sup
t∈[0,T ]

‖∂fn

∂t
(t, ·)‖m) ∈ s }.

It is clear that HT
s is a differentiable ideal of the algebra HT

s′ . We define the algebra
HT as HT

s′/HT
s . The elements of HT are called time depended tempered generalized

functions. It follows immediately that for [fn] ∈ HT we have that ∂
∂t [fn(t, ·)] define

by [ ∂
∂tfn(t, ·)] ∈ H.
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4. Tempered numbers and point values

Definition 5. The ring of tempered numbers is defined as

(15) h = s′/s.

The elements of h are called tempered numbers.

Let (bn) ∈ s′ we will use [bn] by denoted the equivalent class (bn) + s.

Lemma 3. a) Let ι : R → h be the application

ι(a) = [a].

Then ι is a embedding.
b) H is a h-module with the natural operations.
c) Let [fn] ∈ H and a ∈ R. Then [fn(a)] ∈ h.

Proof. a) It is clear that (a) ∈ s′, then ι(a) = [a] is well defined. Assuming that
ι(a) = 0, we have that (a) ∈ s. In particular limn→∞ na = 0, it follows that a = 0.
b) We have divided the proof into two parts. We first prove that for (bn) ∈ s′

and (fn) ∈ Hs′ we have (bnfn) ∈ Hs′ . In fact, by definition there exists constants
E,F > 0 and p, q ∈ N0 such that

‖fn‖m ≤ E(n+ 1)p

|bn| ≤ F (n+ 1)q.

Combining these inequalities, we obtain

‖bnfn‖m ≤ EF (n+ 1)p+q.

This proves that (‖bnfn‖m) ∈ s′, thus (bnfn) ∈ Hs′ .
Finally, the proof is completed by showing that for (an) ∈ s and (fn) ∈ Hs′ or
(an) ∈ s′ and (fn) ∈ Hs we have (anfn) ∈ Hs.
c) Since δa ∈ S ′, there exists a constant C > 0 and m ∈ N0 such that

|fn(a)| = |δa(fn)| ≤ C‖fn‖m,

for all n ∈ N0.
Combining the above inequality with (‖fn‖m) ∈ s′ we conclude that (fn(a)) ∈
s′. �

Remark 3. We observe that h is not a field, since there exist zero divisors in h.
In fact, [1 + (−1)n], [1 + (−1)n+1] ∈ h are non zero and its product is zero.

Definition 6. The point value of [fn] ∈ H in a ∈ R, denoted by [fn](a), is defined
to be [fn(a)].

Example 4. The point value of δ in a ∈ R. From (12) we have that ι(δ)(a) = [an],
where

an =

{ √
n+1
a hn+1(a)hn(0) for n even,

−
√

n+1
a hn(a)hn+1(0) for n odd.

Example 5. The point value of x+ in 0. It is easy to check that ι(x+)(0) = [an],
where

an =
{ √

n+ 1hn(0)
∫∞
0
hn+1(x) dx for n even,√

nhn−1(0)
∫∞
0
hn(x) dx for n odd.
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We introduce the concept of association for tempered numbers.

Definition 7. Let [an] and [bn] be tempered numbers. We say that [an] and [bn]
are associated, denoted by [an] ≈ [bn], if

lim
n→∞

(an − bn) = 0.

We observe that the relation ≈ is well defined and that ≈ is an equivalence relation
on h.

Example 6. ι(x+)(0) ≈ 0.

5. Integration and Fourier transform

In this section we present the integration theory of tempered generalized func-
tions and the Fourier transform.

Definition 8. Let [fn] ∈ H and A be a Lebesgue measurable set. The integral of
[fn] on A, denoted by

∫
A
[fn](x) dx is defined to be

(16) [
∫

A

fn(x) dx].

We observe that the integral is well defined as an element of h. In fact, as 1A is a
tempered distribution there exists a constant C > 0 and m ∈ N0 such that

|
∫

A

g(x) dx| ≤ C‖g‖m,

for all g ∈ S. In particular, for [fn] ∈ H we have that

|
∫

A

fn(x) dx| ≤ C‖fn‖m.

As (‖fn‖m) ∈ s′, we conclude that
∫

A
[fn](x) dx ∈ h.

In the next Lemma we collect some fundamental properties of the integral of
tempered generalized functions.

Lemma 4. Let [fn] and [gn] be tempered generalized functions, a = [an] ∈ h and
α ∈ N. Then
a) Let A and B disjoint Lebesgue measurable sets. Then∫

A∪B

[fn](x) dx =
∫

A

[fn](x) dx+
∫

B

[fn](x) dx.

b) ∫
A

([fn] + a[gn])(x) dx =
∫

A

[fn](x) dx+ a

∫
A

[gn](x) dx.

c) Let ϕ ∈ S. Then

ι(
∫

A

ϕ dx) =
∫

A

ι(ϕ) dx.

d) ”Rule of integration by parts”∫
R
[fn]Dα[gn](x) dx = (−1)α

∫
R
(Dα[fn])[gn](x) dx.

e) Let ϕ ∈ S and T ∈ S ′. Then∫
R
ι(T ) · ι(ϕ)(x) dx = ι(T (ϕ)).
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Proof. The proof of a), b) and c) are immediate.
d) We have that∫

R
[fn]Dα[gn](x) dx = [

∫
R
fnD

αgn(x) dx]

= [
∫

R
(−1)αDαfn(x)gn(x) dx]

= (−1)α

∫
R
(Dα[fn])[gn](x) dx.

e) By definitions ∫
R
ι(T ) · ι(ϕ)(x) dx = [

∫
R
Tn(x)ϕ(x) dx]

Let us prove that (T (ϕ)−
∫
Tn(x)ϕ(x) dx) ∈ s. Combining definitions, N-representation

theorem and limn→∞ < ϕ, hj >= 0, we obtain that there exists n0 ∈ N such that
if n ≥ n0,

|T (ϕ)−
∫

R
Tn(x)ϕ(x) dx| = |T − Tn(ϕ)|

≤
∞∑

j=n+1

|T (hj)|| < ϕ, hj > |

≤
∞∑

j=n+1

C(j + 1)p| < ϕ, hj > |

≤
∞∑

j=n+1

C(j + 1)2p| < ϕ, hj > |2.

Since ϕ ∈ S, it follows that

lim
n→∞

∞∑
j=n+1

(j + 1)q| < ϕ, hj > |2 = 0

for all q ∈ N0. Combining the above inequalities we see that

lim
n→∞

(n+ 1)r|T (ϕ)−
∫

R
Tn(x)ϕ(x) dx| = 0,

for all r ∈ N0. This proves that (T (ϕ)−
∫
Tn(x)ϕ(x) dx) ∈ s, which completes the

proof. �

Example 7. Let T ∈ S ′. Then∫
R
ι(T )(x) dx = [

∫
R
Tn(x) dx]

= [1(Tn)]

= [
n∑

j even

T (hj)hj(0)(−1)
j
2 ],

where the last equality follows from formula (7).
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Example 8. δ2. From formula (13) we have that∫
R
δ2(x) dx = [

∫
R
δ2n(x) dx]

= [
(n+ 1)√

2π
1
2

3
4
· · · n− 1

n
].

The Fourier transform and convolution are very important tools of classical and
modern analysis, our aim is introduce these operations in the context of tempered
generalized functions. We recall that the Fourier transform F : S → S is defined
by

F(ϕ)(t) =
1√
2π

∫
R
e−itxϕ(x) dx

and the convolution ∗ : S × S → S is defined by

ϕ ∗ ψ(t) =
∫

R
ϕ(t− x)ψ(x) dx.

For a fuller treatment about these issues we refer the reader to [18].

Definition 9. The Fourier transform of a generalized tempered function [fn], de-
noted by F([fn]), is defined to be [F(fn)].

We observe that the above definition is independent of the representatives, because
for all m ∈ N0 and ϕ ∈ S we have that ‖F(ϕ)‖m = ‖ϕ‖m.
Here are some elementary properties of the Fourier transform and convolution.

Theorem 2. a) The Fourier transform F : H → H is a linear isomorphism and
its inverse is given by

F−1([fn]) = [F−1(fn)].
b) Let [fn] ∈ H and α ∈ N0. Then

F(Dα[fn]) = (ix)αF([fn])
F(xα[fn]) = iαDαF([fn]).

c) Let T be a tempered distribution. Then ι(F(T )) = F(ι(T )).

Proof. a) Define G : H → H by G([fn]) = [F−1(fn)]. We observe that G is well
defined, because for any m ∈ N0 and ϕ ∈ S we have ‖ϕ‖m = ‖F−1ϕ‖m. It is clear
that F ◦ G = IH and G ◦ F = IH.
b) and c). The proofs follows from the definitions and properties of the Fourier
transform in S. �

Definition 10. Let [fn] and [gn] be generalized tempered functions. The convolu-
tion of [fn] and [gn], denoted by [fn]∗[gn], is defined to be F−1(

√
2πF([fn])·F([gn])).

Theorem 3. a) Let [fn], [gn] ∈ H. Then

[fn] ∗ [gn] = [fn ∗ gn].

b) Let [fn], [gn], [hn] ∈ H and α ∈ N0. Then

[fn] ∗ [gn] = [gn] ∗ [fn]
Dα([fn] ∗ [gn]) = (Dα[fn]) ∗ [gn]

([fn] ∗ [gn]) ∗ [hn] = [fn] ∗ ([gn] ∗ [hn])
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c) Let [fn], [gn] ∈ H. Then

F([fn] · [gn]) =
1√
2π
F([fn]) ∗ F([gn])

F([fn] ∗ [gn]) =
√

2πF([fn]) · F([gn])

d) Let T ∈ S ′ and ϕ ∈ S. Then

ι(T ) ∗ ι(ϕ) ≈ ι(T ∗ ϕ).

Proof. a) The proof is a consequence of the above theorem and definitions.
b) and c) The proofs follows from the definitions and properties of the convolution
in S.
d) We have that for all ψ ∈ S,

lim
n→∞

< (Tn ∗ ϕ), ψ > = T ∗ ϕ(ψ)

= lim
n→∞

< (T ∗ ϕ)n, ψ > .

This shows that ι(T ) ∗ ι(ϕ) ≈ ι(T ∗ ϕ). �

Example 9. The Fourier transform of δ. By formula (6) we have that

F(ι(δ)) = [
n∑

k=0

(−i)khk(0)hk(x)].

6. Generalized Stochastic Calculus

Let (Ω,F , {Ft : t ∈ [0, T ]},P) be a filtered probability space, which satisfies the
usual hypotheses. For a recent account of stochastic calculus we refer the reader to
the book of Ph. Protter [15].

Definition 11. Let [fn] ∈ H, X be a continuous jointly measurable process and
V be an finite variation process. We define the integral of [fn](X) in relation to V
from 0 to t, denote by

∫ t

0
[fn](Xs)dVs, to be

[
∫ t

0

fn(Xs)dVs].

It is clear that for each ω ∈ Ω and t ∈ [0, T ] we have that [
∫ t

0
fn(Xs)dVs(ω)] ∈ h,

because

|
∫ t

0

fn(Xs)dVs(ω)| ≤ sup
x
|fn(x)||V |t(ω)

where |V |t(ω) is the total variation of V in [0, t].

Definition 12. a) Let [fn] ∈ H and X be a random variable. We define the
expectation of [fn](X), denote by E([fn](X)), to be [E(fn(X))].

b) Let [fn] ∈ H, X be a continuous jointly measurable process and V be an
finite variation process such that |V |t is integrable. We define the expectation of∫ t

0
[fn](Xs)dVs, denote by E(

∫ t

0
[fn](Xs)dVs), to be [E(

∫ t

0
fn(Xs)dVs)].

It is easily to check that the above definition is a well definition. We observe
that the natural definition of expectation doesn’t work. In fact, let Yn : Ω → R
be random variables such that (Yn(ω)) ∈ s′ for all ω ∈ Ω. We have that [(E(Yn))]
is dependent of the representatives (Yn), because if {An : n ∈ N} is a partition
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measurable of Ω such that P(An) = 1
2n for all n ∈ N and (bn) ∈ s′, [Yn(ω)] =

[Yn(ω) + bn2n1An(ω)] and (E(bn2n1An)) = (bn) /∈ s.
We can now prove the Itô formula for generalized tempered functions. Clearly,

this formula is an extension of the classical Itô formula via infinite dimensional
methods.

Theorem 4. Let [fn] ∈ H and X be a continuous semimartingale. Then

(17) [fn](Xt) = [fn](X0) +
∫ t

0

D[fn](Xs)dXs +
1
2

∫ t

0

D2[fn](Xs)d < X >s

where
∫ t

0
D[fn](Xs)dXs(ω) defined by [

∫ t

0
Dfn(Xs)dXs(ω)] is the Itô integral of

[fn](X) in relation to X from 0 to t.

Proof. We first show that [
∫ t

0
Dfn(Xs)dXs(ω)] is well defined. In fact, let (gn) ∈

Hs. Since (Dgn) ∈ Hs, we have (
∫ t

0
Dgn(Xs)d < X >s (ω)) ∈ s. We see that

(gn(Xt(ω))) and (gn(X0(ω))) are in s, which is clear from the definition of point
value. Combining this facts with the Itô formula we have

(
∫ t

0

Dgn(Xs)dXs(ω)) = (gn(Xt(ω)))−(gn(X0(ω)))−(
1
2

∫ t

0

D2gn(Xs)d < X >s (ω))

are in s . Finally we see that [
∫ t

0
Dfn(Xs)dXs(ω)] ∈ h and the formula (17) holds,

this is clear from the Itô formula applied to fn,

fn((Xt(ω))) = fn((X0(ω))) +
∫ t

0

Dfn(Xs)dXs(ω) +
1
2

∫ t

0

D2fn(Xs)d < X >s (ω).

�

Remark 4. Let f ∈ S. By Proposition 2, [f ] = [fn]. Then it is clear that

[fn](Xt) = [f(Xt)]

and ∫ t

0

D2[fn](Xs)d < X >s= [
∫ t

0

D2f(Xs)d < X >s].

Consequently, ∫ t

0

D[fn](Xs)dXs = [
∫ t

0

Df(Xs)dXs].

In particular, the members of the Itô formula for f as function are the same that
the members of the Itô formula for f as tempered generalized function.

Remark 5. We observe that the members of the Itô formula for C4 functions with
appropriated decreasing at infinite are associated with the corresponding members
of the Itô formula as generalized tempered functions. In fact, we have that (fn)
converge uniformly over compacts whenever f is twice continuously differentiable
and O(e−cx2

) for some c > 1 as x→∞ (see [23] for more details). In particular,

[fn](x) ≈ [f(x)]

for all x ∈ R. Thus

[fn](Xt) ≈ [f(Xt)] and [fn](X0) ≈ [f(X0)].
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If D2f ∈ C2 and D2f is O(e−cx2
) for some c > 1 as x→∞ we have that∫ t

0

D2[fn](Xs)d < X >s≈ [
∫ t

0

D2f(Xs)d < X >s].

Combining the above identities with the classical Itô formula for f we conclude that∫ t

0

D[fn](Xs)dXs ≈ [
∫ t

0

Df(Xs)dXs].

We can now state the Meyer-Tanaka formula (see for instance [15] for the classical
Meyer-Tanaka formula).

Corollary 2. Let X be a semimartingale. Then

(18) |Xt − a| = |X0 − a|+
∫ t

0

sgn(Xs − a)dXs +
∫ t

0

δa(Xs)d < X >s .

If La(X) is the local time of X at point a, we have that

(19) ι(La(X)t) ≈
∫ t

0

δa(Xs)d < X >s .

Proof. Applying the Itô formula (17) to the tempered distribution | ·−a| we obtain
(18). The formula (19) is a consequence of (18) and the classical Meyer-Tanaka
formula,

|Xt − a| = |X0 − a|+
∫ t

0

sgn(Xs − a)dXs + La(X)t.

�

Corollary 3. Let [fn] ∈ H and B be a Brownian motion such that B0 = 0. Then

(20) E([fn](Bt + x)) = [fn](x) +
1
2

∫ t

0

E(D2[fn](Bs + x))ds

Proof. We have

E([
∫ t

0

D[fn](Bs + x)dBs]) = [E
∫ t

0

Dfn(Bs + x)dBs] = 0,

because
∫
Dfn(Bs + x)dBs is a martingale. �

Corollary 4. Let [fn] ∈ H. Then gt = [E(fn(Bt + ·))] ∈ HT solves the Cauchy
problem

Dtg =
1
2
D2

xg

g0 = [fn].

Proof. We observe that

E(fn(Bt + x)) =
∫

R
fn(y)pt(x− y) dy = fn ∗ pt(x)

where pt(y) = 1√
2πt

e−
y2

2t is the heat kernel. As ∗ is a continuous operation in S and
limn→∞ fn ∗ pt = fn in S we conclude that [gn] ∈ HT where gn : [0, T ] × R → R
are given by gn(t, x) = E(fn(Bt +x)). Applying the formula (20) we completes the
proof. �
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Theorem 5. Let [fn] ∈ HT and X be a continuous semimartingale. Then

[fn](Xt) = [fn](X0) +
∫ t

0

Dt[fn](s,Xs)ds+
∫ t

0

Dx[fn](s,Xs)dXs

+
1
2

∫ t

0

D2
x[fn](s,Xs)d < X >s .

Proof. We observe that
∫ t

0
Dt[fn](s,Xs)ds is well defined and proceed analogously

to the proof of the extension of Itô formula. �
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