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Abstract

Our purpose is to show a version of Girsanov theorem in smooth

manifolds. After, we will use it theorem to give stochastic character-

ization for strongly projective maps. This stochastic characterization

yields a proof that projective maps of rank � 2 between Riemannian

manifolds, with connected domain, are a�ne maps. In particular,

the groups of a�ne and projective transformations, in connected Rie-

mannian manifold, are equal.
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1 Introduction

The problem of change of probabilities is well kwnow in Theory of Proba-
bility. In stochastic analysis the interest is what this change yields in the
process. In Rn, the well know Girsanov theorem shows that martingales and
Bronwnian motions turn in other ones when probability is changed.

We wish to investigate the change of martingales in manifolds when
probabilities are turned. There are some works about change of probability
in manifolds. We cite for instance I. Shigekawa [13], [14] and M. Arnaudon
et al. [2], [3].

Our �rst purpose is to state and to prove the following version of Gir-
sanov theorem in manifolds.

Theorem A: Let P and Q be equivalents probabilities. Let us denote
Z = dP

dQ
. Let M be a smooth manifold equipped whit symmetric connec-

tion rM . Let X be a (rM ;P)-martingale in M . ThenZ t

0
�dr

M

Xs �

�Z t

0

1

Z
dZ;

Z t

0
�drXs

�

is Q-local martingale.
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In Rn, Girsanov theorem is used in some applications as for example
stochastic di�erential equation. Here, our application is to use Theorem A
to study the projective maps.

Projective transformations are of great interrest in Mathematics and
Physics. For a fuller tratament we refer the reader to [1]. If one does not
consider the specialized studied of projective transformations, �rst atten-
tions in projective maps were gived by K.Yano and S. Ishihara in [15] and
Z.Har'El in [8]. For our study about projective maps we follows the works
of T. Nore [11] and J. Hebda [9]. As application of Theorem A we gived the
following characterization.

Theorem B: Let M;N be smooth manifolds equipped with symmetric con-
nections rM and rN , respectively. Let � : M ! N be a smooth map of
constant rank. Then � is strongly projective if and only if there exist a 1-
form � on M such that �(X) is (rN ;Qr

M

�;X)-martingale, for every (rM ;P)-

martingale X in M , where Qr
M

�;X = ZP and Z = exp(�
R
�dr

M

X).

As application of Theorem B we show that composition of strongly pro-
jective maps is strongly projective map. Finally, we show the surprising
result about projective maps.

Theorem C: Let M and N be Riemannian manifolds endowed with sym-
metric connections rM and rN , respectively. Suppose that M is connected.
Then every projective map � : (M;rM ) ! (N;rN ) of rank � 2 is a�ne
map.

A direct consequence of Theorem C is, when M is a connected Rie-
mannian manifold with dimM � 2, that the groups of a�ne and projective
transformations of M are equal.

The author is greatly indebted to Professor Pedro Catugno for suggesting
the problem and for many stimulating conversations.

2 Preliminaries

We begin by recalling some fundamental facts on stochastic calculus on
manifolds, we shall use freely concepts and notations of M. Emery [7], P.
Protter [12] and S. Kobayashi and N. Nomizu [10]. For a complete treatment
about this section we refer the reader to [5].

Let (
;F ; (Ft)t�0) be a mensuravel space with right continuos �ltration.
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When we equippe it whit probability P, we ask that (
;F ; (Ft)t�0;P) sati�es
the usual hypothesis (see for example [7]). We also suppose that every
stochastic process is continuos.

De�nition 2.1 Let M be a di�erential manifold. A stochastic process X
in M is called semimartingale if f(X) is real semimartingale for all smooth
function f on M .

Let M be a smooth manifold, i.e. C1 manifold, endowed with symmet-
ric connection rM . Here, symmetric connection mains that connection is
torsion free. Let X be a continuous semimartingale with values in M . Let
(x1; : : : ; xn) be a system of local coordinates. The Itô integral of an adapted
stochastic 1-form � along X is de�ned, locally, byZ t

0
�dr

M

Xs =

Z t

0
�i(X)dXi

s +
1

2

Z t

0
�i(Xs)�

i
jk(Xs)d[X

j ; Xk]s;

where �(x) = �i(x)dx
i, with �i smooth, and �ijk are the Christo�el symbols of

rM . Let b an adapted stochastic section of T (2;0)M along X. The quadratic
integral of b along X is de�ned, locally, byZ t

0
b (dXs; dXs) =

Z t

0
bij(Xs)d[X

i; Xj ]s; (1)

where b(x) = bij(x)dx
i 
 dxj , whit bij smooth.

De�nition 2.2 Let M be a smooth manifold with symmetric connection
rM . Let P be a probability. A semimartingale X with values in M is
called a (rM ;P)-martingale if

R t
0 � d

rMXs is a real P-local martingale for
all � 2 TM�.

LetM and N be smooth manifolds endowed with symmetric connections
rM and rN , respectively. Let � :M ! N be a smooth map. Let ��1(TN)
be the induced bundle. We denote by rN 0

the unique symmetric connection
on ��1(TN) induced by rN (see for example Proposition I.3.1 in [11]). The
bilinear mapping �� : TM � TM ! TN de�ned by

��(X;Y ) = rN 0

X ��(Y )� ��(r
M
X Y )

is called the second fundamental form of � (see for example de�nition I.4.1.1
in [11]). � is said a�ne map if �F is null.

Let X be a semimartingale in M and � be a 1-form along X. We have
the following geometric Itô formula:Z t

0
� dr

N

�(Xs) =

Z t

0
��� dr

M

Xs +
1

2

Z t

0
���� (dXs; dXs): (2)
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3 Girsanov Theorem

We can now formulate our Girsanov Theorem in manifolds.

Theorem 3.1 Let P and Q be equivalents probabilities. Let us denote
Z = dP

dQ
. Let M be a smooth manifold equipped whit symmetric connec-

tion rM . Let X be a (rM ;P)-martingale in M . ThenZ t

0
�dr

M

Xs �

�Z t

0

1

Zs
dZs;

Z t

0
�drXs

�
(3)

is Q-local martingale.

Proof: Let X be a (rM ;P)-martingale in M and (x1; : : : ; xn) be a local
coordinate system in M . By de�nition of Itô integral, for every 1-form � on
M , Z t

0
�dr

M

Xs =

Z t

0
�i(Xs)dX

i
s +

1

2

Z t

0
�i(Xs)�

i
jk(Xs)d[X

j ; Xk]s;

where �(x) = �i(x)dx
i. SinceXi is real semimartingale,Xi =M i+Ai, where

M i is P-local martingale and Ai is variation �nite process. Substituting these
into equation above we obtainZ t

0
�dr

M

Xs =

Z t

0
�i(Xs)dM

i
s+

Z t

0
�i(Xs)dA

i
s+

1

2

Z s

0
�i(Xs)�

i
jk(Xs)d[X

j ; Xk]s:

BecauseX is a (rM ;P)-martingale,
R t
0 �d

rMXs is P-local martingale. There-
fore by Doob-Meyer decompositionZ t

0
�dr

M

Xs =

Z t

0
�i(Xs)dM

i
s: (4)

Girsanov Theorem in R now shows that N i = M i �
R

1
Z
d[Z;M i] are

Q-martingale. From this and (4) we dedude thatZ t

0
�i(Xs)dN

i
s =

Z t

0
�i(Xs)dM

i
s �

Z t

0
�i(Xs)

1

Zs
d[Zs;M

i]s

=

Z t

0
�i(Xs)dM

i
s �

�Z t

0

1

Zs
dZs;

Z t

0
�i(Xs)dM

i
s

�

=

Z t

0
�dr

M

Xs �

�Z t

0

1

Zs
dZs;

Z t

0
�dr

M

Xs

�
:
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Since
R t
0 �i(Xs)dN

i
s is Q-local martingale, so is

Z t

0
�dr

M

Xs �

�Z t

0

1

Zs
dZs;

Z t

0
�dr

M

Xs

�
:

�

Corollary 3.2 Let M be a smooth manifold endowed with two symmet-
ric connections r and r0. Let X be a (r;P)-martingale in M , Y be a
(r0;P)-martingale in M and � be an 1-form on M . ThenZ t

0
�drXs +

�Z t

0
�dr

0

Ys;

Z t

0
�drXs

�
(5)

is Qr
0

�;Y -local martingale, where Qr
0

�;Y = ZP and Zt = exp(�
R t
0 �d

r0

Ys).

Proof: Let X be a (r;P)-martingale inM , Y be a (r0;P)-martingale inM
and � be an 1-form on M . Write Zt = exp(�

R t
0 �d

r0

Ys) and

Qr
0

�;Y = ZP. As Z is strictly positive we have that Qr
0

�;Y and P are equiva-

lents. It is clear that dZ = �Z�dr
0

Y . Substituting this in equation (3) we
getZ t

0
�drXs�

�Z t

0

1

Zs
dZs;

Z t

0
�drXs

�
=

Z t

0
�drXs+

�Z t

0
�dr

0

Ys;

Z t

0
�drXs

�

From Theorem 3.1 we conclude thatZ t

0
�drXs +

�Z t

0
�dr

0

Ys;

Z t

0
�drXs

�

is Qr
0

�;Y -local martingale. �

Example 3.1 A (2n + 1)-dimensional smooth manifold is a contact man-
ifold if there exist an open covering Ui of M and a 1-form �i on each Ui
such that (1) �i

V
(d�i)

n 6= 0 everywhere on Ui and (2) if Ui \ Uj 6= ; then
�i = �ij�j, where �ij is a function on Ui \ Uj. If M is orientable, there
exists a 1-form � (called a contact form) on M such that (1) �

V
(d�)n 6= 0

everywhere on M and (2) �i = �i� on Ui, where �i is a function on Ui. For
a deeper discussion of contact manifolds we refer the reader to [6].

Let M be an orientable contact manifold and � be a contact form. Sup-
pose that M is endowed with two symmetric connection r and r0. Let X
be a (r;P)-martingale in M and Y be a (r0;P)-martngale in M . Let us

5



denote Z = exp(�
R
�dr

0

Y ) and Qr
0

�;Y = ZP. It is clear that Qr
0

�;Y and P
are equivalent probabilities. Then by Corollary 3.2Z t

0
�drXs +

�Z t

0
�dr

0

Ys;

Z t

0
�drXs

�

is a Qr
0

�;Y -local martingale for each � 2 T �M . �

4 Projective maps

The following de�nition is due to J. Hebda [9].

De�nition 4.1 LetM be a di�erential manifold whit symmetric connection
rM . Let  : (a; b)!M be a smooth curve.
1. The acceleration bivector �eld along  is the smooth map
� : (a; b) ! TM ^ TM de�ned by � = _ ^ rM

_ _, where _ is the tan-
gent vector �eld along .
2. The curve  is a pregeodesic if � � 0.
3. A regular pregeodesic is called a geodesic.

J. Hebda and T. Nore in [9, 11] de�ne projective map and strongly
projective map, respectively, in the following way.

De�nition 4.2 Let M and N be di�erential manifolds endowed with sym-
metric connections, and let � :M ! N be a smooth map.
1. We say that � is projective map if � �  is a pregeodesic of N for every
pregeodesic  of M .
2. � is called strongly projective if, for every geodesic  in M , f � is either
a geodesic or a constant curve in N .

The following remark will be useful for us.

Remark 4.1 Let � : M ! N be a projective map. J. Hebda in [9] showed
that ifM is connected then �� is either of rank � 1 everywhere or of constant
rank r � 2. In the latter case � is strongly projective.

T. Nore in [11] give the following characterization of strongly projective
map of constant rank.

Proposition 4.1 Let � : (M;rM )! (N;rN ) be a smooth map of constant
rank between smooth manifolds with symmetric connections. Then � is an
strongly projective map if and only if there exists a 1-form � on M such that

��(U; V ) = �(U)��V + �(V )��U; U; V 2 XM;
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where �� is the second fundamental form of �. We say that � is a 1-form
associated to �.

Proposition 4.2 Let M;N be di�erential manifolds equipped with symmet-
ric connections rM and rN , respectively. Let � :M ! N be a smooth map
of constant rank. Then � is strongly projective map if and only if there exists
a 1-form � on M such thatZ t

0
����(dXs; dXs) = 2[

Z t

0
�dr

M

Xs;

Z t

0
���dr

M

dXs]; (6)

for all semimartingale X in M and for all 1-form � on N .

Proof: Let � : M ! N a smooth map of constant rank. Suppose
that � is strongly projective. By Proposition 4.1, there exist a 1-form
� on M such that ��(U; V ) = �(U)��V + �(V )��U , U; V 2 XM . Let
X be a semimartingale in M and � be a 1-form on N . Let us computeR t
0 �

�
��(dXs; dXs). Let (x1; : : : ; xn) be a system of local coordinates in M .

Denote @i =
d
dxi
; i = 1; : : : ; n. From (1) we see thatZ t

0
����(dXs; dXs) =

Z t

0
(����)ij(Xs)d[X

i; Xj ]s;

where ���� = (����)ijdx
i 
 dxj . Applying �� in the vectors @1; : : : ; @n yields

����(@i; @j) = (����)ij . In the other side,

����(@i; @j) = �(�(@i)��@j + �(@j)��@i) = �i(�
��)j + �j(�

��)i;

where � = �idx
i and (���) = (���)idx

i. It follows thatZ t

0
����(dXs; dXs) =

Z t

0
(�i(�

��)j + �j(�
��)i)(Xs)d[X

i; Xj ]s

=

Z t

0
�i(�

��)j(Xs)d[X
i; Xj ]s+

Z t

0
�j(�

��)i(Xs)d[X
i; Xj ]s

= [

Z t

0
�i(Xs)dX

i
s;

Z t

0
(���)j(Xs)dX

j
s ]

+ [

Z t

0
(���)i(Xs)dX

i
s;

Z t

0
�j(Xs)dX

j
s ]:

By de�nition of Itô integral,Z
����(dXt; dXt) = 2[

Z t

0
�dr

M

Xs;

Z t

0
���dr

M

dXs]:

7



Conversely, suppose that there exists a 1-form � onM such that the equation
(6) is satis�ed. In the same manner as above we can see thatZ t

0
((����)ij � �i(�

��)j � �j(�
��)i)(Xs)d[X

i; Xj ]s = 0;

for a system of local coordinates (x1; :::; xn) in M . As X is arbitrage semi-
martingale we have

(����)ij = �i(�
��)j + �j(�

��)i:

Therefore
�(��(@i; @j)) = �(�(@i)��(@j) + �(@j)��(@i)):

Since � is arbitrage, we see for U; V 2 X(M) that

��(U; V ) = �(U)��(V ) + �(U)��(V ):

From Proposition (4.1) we conclude that � is projecive map. �

Corollary 4.3 Let M;N be di�erential manifolds equipped with symmetric
connections rM and rN , respectively. Let � : M ! N be an strongly
projective map of constant rank. If X is a semimartingale in M , then, for
all � 2 T �N ,Z t

0
�dr

N

�(Xs) =

Z t

0
���dr

M

Xs + [

Z t

0
�dr

M

Xs;

Z t

0
���dr

M

dXs];

where � is a 1-form associated to �.

Proof: It follows easily from Itô geometric formula.

Theorem 4.4 Let M;N be smooth manifolds equipped with symmetric con-
nections rM and rN , respectively. Let � : M ! N be a smooth map
of constant rank. Then � is strongly projective if and only if there ex-
ist a 1-form � on M such that �(X) is (rN ;Qr

M

�;X)-martingale, for every

(rM ;P)-martingale X in M , where Qr
M

�;X = ZP and Z = exp(�
R
�dr

M

X).

Proof: Let � : M ! N be a smooth map of constant rank. Suppose that
� is strongly projective. By proposition 4.1, there exists a 1-form � on M
associated to �. Let X be a (rM ;P)-martingale in M and � be a 1-form on
N . By Corollary 4.3,Z t

0
�dr

N

�(Xs) =

Z t

0
���dr

M

Xs +

�Z t

0
�dr

M

Xs;

Z t

0
���dr

M

Xs

�
:

8



Write Zt = exp(�
R t
0 �d

rMXs) and Qr
M

�;X = ZP. It is clear that P and

Qr
M

�;X are equivalent probabilities. From Corollary 3.2 and equality above

we conclude that
R t
0 �d

rN�(Xs) is Q
rM

�;X -local martingale. As � is arbitrage

we have that �(X) is (rN ;Qr
M

�;X)-martingale.
Conversely, let � be a 1-form on M such that �(X) is a

(rN ;Qr
M

�;X)-martingale, for every (rM ;P)-martingale X in M , where

Qr
M

�;X = ZP and Zt = exp(�
R t
0 �d

rMXs). By geometric Itô formula, for
every � 2 T �N ,Z t

0
�dr

N

�(Xs) =

Z t

0
���dr

M

Xs +
1

2

Z t

0
����(dXs; dXs)

Adding and subtrating
hR t

0 �d
rMXs;

R t
0 �

��dr
M

Xs

i
we obtain

Z t

0
�dr

N

�(Xs) =

Z t

0
���dr

M

Xs +

�Z t

0
�dr

M

Xs;

Z t

0
���dr

M

Xs

�

�

�Z t

0
�dr

M

Xs;

Z t

0
���dr

M

Xs

�
+

1

2

Z t

0
����(dXs; dXs):

As �(X) is (rN ;Qr
M

�;X)-martingale we have that
R t
0 �d

rN�(Xs) is Q
rM

�;X -local
martingale. From Corollary 3.2 we see thatZ t

0
���dr

M

Xs +

�Z t

0
�dr

M

Xs;

Z t

0
���dr

M

Xs

�
:

is Qr
M

�;X -local martingale. Doob-Meyer decomposition now gives

Z t

0
����(dXs; dXs) = 2

�Z t

0
�dr

M

Xs;

Z t

0
���dr

M

Xs

�
:

From Proposition 4.2 we conclude that � is a projective map. �

J. Hebda shows that composition of projective maps is a projective map,
see Theorem 6.4 in [9]. We now prove this result for strongly projective map,
using Theorem 4.4.

Proposition 4.5 Let M;N;P be smooth manifolds equipped with symmet-
ric connections rM , rN and rP , respectively. Let � : M ! N and
 : N ! P be strongly projective maps of constant ranks. If  � � has
constant rank, then  � � is strongly projective map.
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Proof: Let X be a (rM ;P)-martingale in M . Because  is strongly
projective map of constant rank, from proposition 4.1 there exist an 1-form
� on N associated to  . By Corollary 4.3,Z t

0
�dr

P

 ��(Xs) =

Z t

0
 ��dr

N

�(Xs)+

�Z t

0
�dr

N

�(Xs);

Z t

0
 ��dr

N

�(Xs)

�
:

Since � is strongly projective map of constant rank, there exist 1-form ~� on
M associated to �. By Corollary 4.3,Z t

0
�dr

P

� �  (Xs) =

Z t

0
�� ��dr

M

Xs +

�Z t

0
~�dr

M

Xs;

Z t

0
�� ��dr

M

Xs

�

+

�Z t

0
�dr

N

�(Xs);

Z t

0
 ��dr

N

�(Xs)

�

From geometric Itô formula we deduce thatZ t

0
�dr

P

� �  (Xs) =

Z t

0
�� ��dr

M

Xs +

�Z t

0
�dr

M

Xs;

Z t

0
�� ��dr

M

Xs

�
;

where � = ~� +  ��. Write Zt = exp(�
R t
0 �d

rMXs) and Q
rM

�;X = ZP. It is

clear that Qr
M

�;X and P are equivalents probabilities. From Corollary 3.2 we
see that Z t

0
 ����dr

M

Xs +

�Z t

0
�dr

M

Xs;

Z t

0
�� ��dr

M

Xs

�

is Qr
M

�;X -local martingale, so is
R t
0 �d

rP � �  (Xs). Therefore � �  (X) is

(rN ;Qr
N

�;X)-martingale. From Theorem 4.4 we conclude that �� is strongly
projective map. �

Finally, we use Propostion 4.2 to prove the surprising result about pro-
jective maps.

Theorem 4.6 Let M and N be Riemannian manifolds endowed with sym-
metric connections rM and rN , respectively. Suppose that M is connected.
Then every projective map � : (M;rM ) ! (N;rN ) of rank � 2 is a�ne
map.

Proof: We �rst observe that dimN � 2. Let � : (M;rM )! (N;rN ) be a
projective map. By remark 4.1, � is strongly projective map. By proposition
4.1, there exists a 1-form � on M such that

��(U; V ) = �(U)��V + �(V )��U; U; V 2 TM:
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It is clear that TM = Ker� � (Ker�)?. For every V 2 TM we have
��(V; V ) = ��(�(V )V ). Therefore ��(V; V ) 2 ��((Ker�)

?). As dimension
of Ker� is n � 1 we have that dimension of ��((Ker�)

?) � 1. Let � be a
1-form on (��((Kerx�)

?)?)�, that is, �(V ) = 0 for V 2 ��((Ker�)
?). Let

X be a (r;P)-martingale in M. It follows thatZ t

0
����(dXs; dXs) = 0:

From Proposition 4.2 we see that

[

Z t

0
�dr

M

Xs;

Z t

0
���dr

M

dXs] = 0: (7)

Since X is (r;P)-martingale,
R t
0 �d

rMXs and
R t
0 �

��dr
M

dXs are P-local

martingale. From (7) we deduce that
R t
0 �d

rMXs �
R t
0 �

��dr
M

dXs is P-local
martingale. Taking expectation we obtain

EP(

Z t

0
�dr

M

Xs �

Z t

0
���dr

M

dXs) = 0:

From this we conclude almost surely thatZ t

0
�dr

M

Xs �

Z t

0
���dr

M

dXs = 0:

Since
R t
0 �

��dr
M

dXs is arbitrage,
R t
0 �d

rMXs = 0. Because X is arbitrage,
we see that � = 0. Hence �� = 0. It follows that � is a�ne map. �

Let M be a Riemannian manifold. Let us denoted by bA(M) the group
of a�ne transformation of M and by bP (M) the group of projective trans-
formation of M . A direct consequence of Theorem 4.6 is the following.

Corollary 4.7 IfM is a connected Riemannian manifold such that dimM �

2, then bA(M) is equal to bP (M).

Let M;N be Riemannian manifolds and � : M ! N an isometric im-
mersion. We observe that immersions have constant rank. We recall that �
is geodesic immersion if �� = 0 (see [4] for more details).

Corollary 4.8 Let M;N be Riemannian manifolds such that dimM � 2.
Let � : (M; g) ! (N;h) be an isometric immersion. If � is projective map,
then � is geodesic immersion.
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Other consequence of Theorem 4.6 is to give a new proof of Proposition
III.4.5 in [11] due to T. Nore.

Corollary 4.9 Projective map of rank � 2 between euclidian spaces are
a�ne.
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