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Abstract

We consider the Boussinesq equations in either an exterior domain in Rn, the whole space
Rn, the half space Rn

+ or a bounded domain in Rn, where the space dimension n satisfies
n ≥ 3. We give a class of stable steady solutions, which improves and complements the
previous stability results. Our results give a complete answer to the stability problem for the
Boussinesq equations in weak-Lp spaces, in the sense that we only assume that the stable
steady solution belongs to scaling invariant class L

(n,∞)
σ . Moreover, some considerations about

the exponential decay (in bounded domains) and the uniqueness of the disturbance are done.

MSC subject classification: 35R30 76D03 76M55.

1 Introduction

The Boussinesq system of hydrodynamics equations arises from zero order approximation to the
coupling between the Navier-Stokes equations and the thermodynamic equation, modeling the fluid
movement by the natural convection (cf. [15]). The steady problem for the viscous Boussinesq
equations has the following form





−∆ū + ū · ∇ū +∇p̄ = κθ̄f, in Ω,
div ū = 0, in Ω,

−∆θ̄ + ū · ∇θ̄ = h, in Ω,
ū, θ̄ = 0, on ∂Ω,

(ū, θ̄) → (0, 0), as |x| → ∞,

(1.1)

where Ω ⊆ Rn is the spatial domain, ū(x) = (ū1(x), ..., ūn(x)) denotes the velocity of the fluid at
a point x ∈ Ω, p̄(x) is the hydrostatic pressure and θ̄(x) is the temperature (cf. [17]). The given
field f(x) = (f1(x), ..., fn(x)) represents the external force by unit of mass, h(x) is the reference
temperature and the constant κ > 0 denotes the coefficient of volume expansion. Without loss of
generality we are taking the density and the kinematic viscosity of the fluid equal to one.
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In this paper we consider Ω as either the whole space Rn, the half space Rn
+, a bounded domain

or an exterior domain with boundary ∂Ω enough smooth, where the dimension n ≥ 3. The aim
of this paper is to determine a new class of steady solutions (ū, θ̄) which is stable for nonsmooth
initial disturbance. We will start by describing the stability problem for (1.1).

If the pair (ū(x), θ̄(x)) is initially perturbed by (u0(x), θ0(x)), then the perturbed flow (ũ, p̃, θ̃)
is given by 




∂tũ−∆ũ + ũ · ∇ũ +∇p̃ = κθ̃f, in Ω× (0,∞),
div ũ = 0, in Ω× (0,∞),

∂tθ̃ −∆θ̃ + ũ · ∇θ̃ = h, in Ω× (0,∞),

θ̃(x, t), ũ(x, t) = 0, on ∂Ω× (0,∞),
ũ(x, 0) = ū(x) + u0(x), x ∈ Ω,

θ̃(x, 0) = θ̄(x) + θ0(x), x ∈ Ω,

(ũ, θ̃) → (0, 0), as |x| → ∞, t > 0.

(1.2)

Let (ũ, p̃, θ̃) be solution of the problem (1.2) and (u, p, θ) be the disturbance defined by

u(x, t) = ũ(x, t)− ū(x), θ(x, t) = θ̃(x, t)− θ̄(x), p(x, t) = p̃(x, t)− p̄(x).

Then the triple of functions (u, p, θ) satisfies the following system




∂tu−∆u + u · ∇u + ū · ∇u + u · ∇ū +∇p = κθf, in Ω× (0,∞),
div u = 0, in Ω× (0,∞),

∂tθ −∆θ + u · ∇θ + ū · ∇θ + u · ∇θ̄ = 0, in Ω× (0,∞),
θ(x, t), u(x, t) = 0, on ∂Ω× (0,∞),

u(x, 0) = u0(x), x ∈ Ω,
θ(x, 0) = θ0(x), x ∈ Ω,
(u, θ) = (0, 0), as |x| → ∞, t > 0.

(1.3)

Thus, our stability problem for (1.1) can be reduced to study the existence and large time behavior
of global solutions to (1.3). Next, we briefly review the main results concerning the stability of
steady solutions for the Boussinesq system, which can be found in [10, 9, 12, 13, 14]. In the exterior
of a three-dimensional sphere, the authors of [10, 9, 12] investigate, in the context of L2-norm, the
stability of a particular steady solution given by ū = 0, θ̄ = κ 1

|x| and p̄ = −κ2 1
2|x|2 + constant,

defined as the conduction solution. The authors of [9] studied the stability of weak solutions with
restrictions on the Reynolds number range. Through an energy method, the results of [12] improve
and supplement those in [10], in the sense that, it is proved a L∞- decay of disturbance with initial

data (u0, θ0) ∈ (D(A
1/4
2 )×L2(Ω)), where D(Aq) denotes the domain in W 2,q(Ω) of Stokes operator.

On the other hand, in [13] the convection problem in a bounded domain of R3 was considered, and
the existence of a global in time strong solution near to the steady state was also proved. In [13],
to obtain the global existence and large time behavior of solutions, an analysis of the semigroup (in
Lebesgue spaces Lp) generated by the linearized operator around the steady solution is established.
This linearized operator is given by

L
[

u
θ

]
=

[
Au + P(ū · ∇u + u · ∇ū− θf)

−∆θ + ū · ∇θ + u · ∇θ̄

]
. (1.4)
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It is worthwhile to recall that in [13], the stability of small steady solution (ū, θ̄) of system (1.1) was
obtained in the class D(A3) × D((−∆)m) ⊂ L∞ × L∞, m ∈ (1,∞), where D((−∆)q) denotes the
domain of the minus Laplacian operator. Later, in [14] dealing with the case where Ω is an exterior
domain of R3, the stability problem within the framework of L(p,∞)-theory was discussed. The
results of [14] were also obtained by considering the linearization of problem (1.3) and establishing
the L(p,∞)−L(q,∞) estimates for the semigroup e−tL generated by the linearized operator (1.4). This

analysis requires that the steady solution satisfies ū ∈ L
(3,∞)
σ (Ω), θ̄ ∈ L(m′,∞)(Ω) with ū,∇ū, θ̄ ∈

L∞(Ω) and ∇θ̄ ∈ Ld(Ω), 1 < m < 3, 1/d = (2/3 − 1/m)+, where (·)+ = max{0, ·} and m′ is
conjugate exponent of m. Hence d = ∞ for 3 ≤ m′ < ∞. These assumptions are used in order
to prove that the linearized operator −L generates a bounded analytic semigroup on the Lorenz
spaces L

(p,∞)
σ × L(q,∞).

The purpose of this paper is to improve the earlier results of [13, 14] and thus to give a complete
answer to the stability problem in L(p,∞)-spaces. For this we will show the stability of the steady
solutions (ū, θ̄) of (1.1) in the class L

(n,∞)
σ (Ω)×L(n,∞)(Ω) ( Theorems 2.5 and 2.8). More precisely,

we only assume that ū ∈ L
(n,∞)
σ (Ω), θ̄ ∈ L(n,∞)(Ω) (which can verify ū /∈ L∞(Ω) and θ̄ /∈ L∞(Ω)),

with sufficiently small norm and without any assumption on ∇ū,∇θ̄, opposed to the restrictions
of [13, 14]. We remark that in an exterior domain, the conduction solution ū = 0 and θ̄ =
−κ 1

2|x| belongs to ∩p∈(3/2,∞]W
p,∞(Ω) ⊂ L∞(Ω) ∩ L(n,∞)(Ω). On the other hand, it is important

to study the stability problem over spaces which are invariant by the scaling of (1.1), namely
(ū(x), θ̄(x)) → (λū(λx), λθ̄(λx)). In this spirit, our class covers the relevant case of the scaling
invariant ū, θ̄ ∈ L(n,∞)(Ω) and∇ū,∇θ̄ ∈ L(n/2,∞)(Ω), which was not dealt in the previous mentioned
works. In order to prove our results, an essential point in our approach is to solve the problem (1.3)
by introducing the notion of mild solution through the well known Stokes and heat semigroups,
and without making use of the semigroup generated by the linearized operator (1.4) (see Definition
2.4 below). So, we study the existence and uniqueness of global mild solutions in the space of

strong decay Eq = {(u, θ) : t1/2−n/2q(u, θ) ∈ BC((0,∞); L
(q,∞)
σ (Ω) × L(q,∞)(Ω))}, n < q < ∞, and

in the space of persistence E = BC((0,∞); L
(n,∞)
σ (Ω) × L(n,∞)(Ω)). Since we only assume that

ū, θ̄ ∈ L(n,∞)(Ω), if we try to prove directly the strong decay (i.e, the existence of solutions in Eq)
by using the L(p,∞) − L(q,∞) estimates of the Stokes and heat semigroups, then estimating

t1/2−n/2q

∥∥∥∥
∫ t

0

e−(t−s)AP(ū · ∇u + u · ∇ū)(s)ds

∥∥∥∥
(q,∞)

≤ C

∫ t

0

(t− s)−1s
α
2 ‖ū‖(n,∞) ‖u‖Eq

ds, (1.5)

a first difficulty arises on the left, since the integral is not finite. The same situation arises when
we estimate the norm

t1/2−n/2q

∥∥∥∥
∫ t

0

e(t−s)∆(ū · ∇θ + u · ∇θ̄)(s)ds

∥∥∥∥
(q,∞)

. (1.6)

In order to overcome these difficulties without using the restrictions stated in [13, 14], we need
to prove, among other things, the inequalities (3.3) and (3.5) (which will be proved by using the
Yamazaki’s estimate [23]), and the inequality (3.8) below.

We will also comment about the uniqueness of disturbance (u, θ) in the space of persistence E.
Let us stress that in our analysis we are always considering the three kinds of cited unbounded
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domains Ω. Moreover, in the case of bounded domains, we obtain exponential decay rate towards
steady solution (cf. Remark 3.4).

Observing the equation (1.3)1, to deal with the linear term
∫ t

0
e−tAP(κθf)(s)ds generated by the

coupling term κθf in the spaces Eq, E, we assume that supt>0 t1−
n
2b‖f(t, ·)‖b < ∞ with b ≥ n/2.

In particular, in case b = n/2, we can take f as being the gravitational field f(t, x) = f(x) =
G x
|x|3 ∈ L(n/2,∞)(Ω), where G is the gravitational constant. From the physical point of view, this

particular situation is important and it may be regarded as the Bénard problem (see e.g. [8]).
Let us comment that, unlike the references [10, 9, 12, 13, 14], in the proof of our coupling term
estimates, the L∞-norm of the field f does not play any role (cf. Lemma 3.6).

From another point of view, in the case Ω = Rn, our class of steady solutions allows the
existence of self-similar disturbance solutions, under right homogeneity conditions for the steady
solution (ū, θ̄), the gravitational field f and the initial disturbance (u0, θ0). More precisely, the
self-similar solutions correspond to homogeneous steady solutions and initial disturbance of degree
−1, and f being a homogeneous field of degree −2.

Furthermore we will also prove that assuming additional conditions on the initial disturbance
(u0, θ0), a best decay of the disturbance (u(t), θ(t)) can be obtained, complementing the results
of convergence for steady solutions provided by Theorems 2.5 and 2.8 (cf. Theorem 2.10). In
particular we will show that the disturbance (u, θ) converges to (0, 0) as t → ∞, in the Ln-norm

and in the norm t
1
2
− n

2q ‖ · ‖q (n < q < ∞), provided the initial disturbance lies in Ln
σ(Ω)× Ln(Ω).

Finally we mention that the stability problem for Navier-Stokes equations has been largely
studied and we refer the reader to the works [3, 16, 4]. Collecting the results of these works,

we obtain the space L
(n,∞)
σ (Ω) as a stability class for the steady state with the disturbance u ∈

BC((0,∞); L
(n,∞)
σ (Ω)) such that supt>0 t

1
2
− n

2q ‖u‖(q,∞) < ∞. Concerning the non-perturbed problem
(ū, θ̄) = (0, 0), results of global existence in some functional spaces, including the weak-Lp space,
were obtained in [6, 18, 19] and some references therein.

The outline of this paper is given as follows. In Section 2 we recall some preliminaries, intro-
duce the notion of mild solutions and state our main results. In Section 3 we prove our results.
Throughout this paper, some times, spaces of scalar-value and vector-value functions are denoted
in same way.

2 Functional spaces and main results

Before stating our results, we introduce some functional spaces. Let C∞
0,σ(Ω) denote the set of

all C∞- real functions ϕ = (ϕ1, ..., ϕn) with compact support in Ω, such that div ϕ = 0. The
closure of C∞

0,σ with respect to norm ‖ · ‖r of space (Lr)n , 1 < r < ∞, is denoted by Lr
σ(Ω).

Let us recall the Helmholtz decomposition: (Lr(Ω))n = Lr
σ(Ω) ⊕ Gr(Ω), 1 < r < ∞, where

Gr(Ω) = {∇p ∈ Lr(Ω) : p ∈ Lr
loc(Ω)} (see [3], [11], for instance). Pr denotes the projection

operator from Lr(Ω) onto Lr
σ(Ω). The Stokes operator Ar on Lr

σ is then defined by Ar = −Pr∆
with domain D(Ar) = {u ∈ (H2,r(Ω))n : u|∂Ω = 0} ∩ Lr

σ. It is well known that −Ar generates
a uniformly bounded analytic semigroup {e−tAr}t≥0 of class C0 in Lr

σ. The same result is true for
the Laplacian operator ∆r in Lr(Ω), that is, ∆r generates a uniformly bounded analytic semigroup
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{et∆r}t≥0 of class C0 in Lr.
Now we introduce some preliminaries about the Lorentz spaces. The reader interested in more

details on Lorentz spaces L(p,q)(Ω) and their properties, is refereed to [1]. Let 1 < p ≤ ∞ and
1 ≤ q ≤ ∞. A measurable function f defined on a domain Ω ⊂ Rn, with smooth boundary ∂Ω,
belongs to Lorentz space L(p,q)(Ω) if the quantity

‖f‖(p,q) =





(
p
q

∫ ∞

0

[
t

1
p f ∗∗(t)

]q dt

t

) 1
q

, if 1 < p < ∞, 1 ≤ q < ∞,

supt>0 t
1
p f ∗∗(t) , if 1 < p ≤ ∞, q = ∞,

is finite, where

f ∗∗(t) =
1

t

∫ t

0

f ∗(s) ds, f ∗(t) = inf{s > 0 : m{x ∈ Ω : |f(x)| > s} ≤ t}, t > 0.

The space L(p,q) with the norm ‖f‖(p,q) is a Banach space. Note that Lp(Ω) = L(p,p)(Ω). When
q = ∞, L(p,∞)(Ω) are called the Marcinkiewicz spaces or weak-Lp spaces. Moreover, L(p,q1)(Ω) ⊂
Lp(Ω) ⊂ L(p,q2)(Ω) ⊂ L(p,∞)(Ω) for 1 ≤ q1 ≤ p ≤ q2 ≤ ∞. We recall that the space C∞

0 (Ω) is not
dense in L(p,∞)(Ω).

Next, we recall the Hölder’s inequality in the framework of Lorentz spaces (cf. [22]).

Proposition 2.1 (Hölder’s inequality). Let 1 < p1 ≤ ∞, 1 < p2, r < ∞. Let f ∈ L(p1,q1)(Ω) and
g ∈ L(p2,q2)(Ω) where 1

p1
+ 1

p2
< 1, then the product h = fg belongs to L(r,s)(Ω) where 1

r
= 1

p1
+ 1

p2
,

and s ≥ 1 satisfies 1
q1

+ 1
q2
≥ 1

s
. Moreover,

‖h‖(r,s) ≤ C(r)‖f‖(p1,q1)‖g‖(p2,q2). (2.1)

Since in this paper we deal with the incompressible Boussinesq equations, we will recall the
Helmholtz decomposition in Lorentz spaces. Borchers and Miyakawa [3] established the following
Helmholtz decomposition of the Lorentz spaces, extending the operator Pr to a bounded operator on(
L(r,d)(Ω)

)n
, which we denote by Pr,d. Setting L

(r,d)
σ (Ω) = Range(Pr,d) and G(r,d)(Ω) = Kernel(Pr,d),

then
(
L(r,d)(Ω)

)n
= L

(r,d)
σ (Ω)⊕G(r,d)(Ω), with L

(r,d)
σ (Ω) = {u ∈ (

L(r,d)(Ω)
)n

: ∇·u = 0, u ·n|∂Ω = 0}
and G(r,d)(Ω) = {∇v ∈ (

L(r,d)(Ω)
)n

: v ∈ L
(r,d)
loc (Ω̄)}. For simplicity, we shall abbreviate the

projection operator and the Stokes Operator on Lorentz spaces as P and A, respectively. In view
of [3], the operator −A generates a bounded analytic semigroup {e−tA}t≥0 on L

(r,d)
σ (Ω). However,

we recall that if d = ∞, this semigroup is not strongly continuous at t = 0. The Laplacian operator
∆ also generates a bounded analytic semigroup {e∆t}t≥0 on L(r,d)(Ω).
Applying the operator projection to the (1.3)1 equation, we can treat the problem (1.3) as the
following problem of parabolic type:





ut + Au + P{u · ∇u + ū · ∇u + u · ∇ū} = κP(θf), in Ω× (0,∞),
θt −∆θ + u · ∇θ + ū · ∇θ + u · ∇θ̄ = 0, in Ω× (0,∞),

u(x, 0) = u0(x), x ∈ Ω,
θ(x, 0) = θ0(x), x ∈ Ω

(2.2)
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As usual, we use formally the Duhamel Principle in order to introduce the integral formulation
associated with the system (2.2):

u(t) = e−tAu0 −
∫ t

0

e−(t−s)AP(u · ∇u)(s)ds−
∫ t

0

e−(t−s)AP(ū · ∇u + u · ∇ū− κθf)(s)ds, (2.3)

θ(t) = et∆θ0 −
∫ t

0

e(t−s)∆(u · ∇θ)(s)ds−
∫ t

0

e(t−s)∆(ū · ∇θ + u · ∇θ̄)(s)ds. (2.4)

Remark 2.2 Let us comment about the sense in which is taken the equations (2.3)-(2.4). In gen-
eral, unlike the case Ω = Rn, the operators e−(t−s)AP and e(t−s)∆ do not commute with derivatives,
and consequently, we cannot use ∇e−(t−s)AP and ∇e(t−s)∆ to derive a notion of solution. Also, un-
der our weak condition over the steady solution (ū , θ̄) and the disturbance (u, θ), the terms within
the integrals in the right-hand side of (2.3)-(2.4) are not Bochner integrable. Therefore the integrals
must be understood in distributional sense, as in [23, pp. 642] and [3].

According with the integral equations (2.3)-(2.4) we define the following operators which will
be used from now on:

B((u1, θ1), (u2, θ2)) :=

(
−

∫ t

0

e−(t−s)AP(u1 · ∇u2)(s)ds,−
∫ t

0

e(t−s)∆(u2 · ∇θ1)(s)ds

)
, (2.5)

T (u, θ) := (T 1
ū (u) + Ff (θ), T

2
ū,θ̄(u, θ)), (2.6)

where

T 1
ū (u) = −

∫ t

0

e−(t−s)AP(ū · ∇u + u · ∇ū)(s)ds,

T 2
ū,θ̄(u, θ) = −

∫ t

0

e(t−s)∆(ū · ∇θ + u · ∇θ̄)(s)ds,

Ff (θ) =

∫ t

0

e−(t−s)AP(κθf)(s)ds.

We emphasize that the operators within (2.5)-(2.6) are in fact defined by duality, in other words,
in distributional sense. More precisely, and analogously to the other ones, T 1

ū (·) is the operator
that satisfies

〈
T 1

ū (u), φ
〉

=

∫ t

0

〈
(ū⊗ u(s) + u(s)⊗ ū),∇e−(t−s)Aφ

〉
ds

=
n∑

j,k=1

∫ t

0

〈
ūj(s)uk(s) + uj(s)ūk(s), Dxj

(e−(t−s)Aφ)k

〉
ds, (2.7)

for all vector test φ ∈ L
(n/(n−1),1)
σ (Ω) and t > 0, where Dxj

= ∂
∂xj

.

In the following, let us introduce suitable time-dependent functional spaces to study the initial
value problem (2.2).
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Definition 2.3 Let n < q < ∞ and α = 1− n/q. We define the following functional spaces

E = {(u, θ) : (u, θ) ∈ BC((0,∞); L(n,∞)
σ × L(n,∞))},

Eq = {(u, θ) : tα/2(u, θ) ∈ BC((0,∞); L(q,∞)
σ × L(q,∞))},

which are Banach spaces with the respective norms defined as:

‖(u, θ)‖E = max{sup
t>0

‖u(t)‖(n,∞), sup
t>0

‖θ(t)‖(n,∞)},

‖(u, θ)‖Eq = max{sup
t>0

tα/2‖u(t)‖(q,∞), sup
t>0

tα/2‖θ(t)‖(q,∞)}.

Now we are in position to give the precise definition of mild solution for (2.2). We assume that
the steady solutions (ū, θ̄) of system (1.1) satisfies

(ū, θ̄) ∈ L(n,∞)
σ (Ω)× L(n,∞)(Ω). (2.8)

Definition 2.4 Let (u0, θ0) ∈ L
(n,∞)
σ (Ω)×L(n,∞)(Ω). A pair of functions (u(t, x), θ(t, x)) verifying

lim
t→0+

(u(t), φ) = (u0, φ), lim
t→0+

(θ(t), ϕ) = (θ0, ϕ),

for all φ ∈ L
( n

n−1
,1)

σ (Ω), ϕ ∈ L( n
n−1

,1)(Ω), is said a global mild solution for the initial value prob-
lem (2.2) in the class Eq (or E), if (u, θ) satisfies the integral equations (2.3)-(2.4) in sense of
distribution (cf. Remark 2.2), for all t > 0.

Our main results are the following:

Theorem 2.5 Let n ≥ 3, n <q <∞ and (u0, θ0) ∈ L
(n,∞)
σ (Ω) × L(n,∞)(Ω). Assume the condition

(2.8) and f such that supt>0 tβ/2‖f(t)‖(b,∞) < ∞, where β = 2 − (n/b), b ≥ n/2. There are
constants Cq, K1, δq, , ηq > 0, with δq , ηq small enough, such that if max{‖u0‖(n,∞), ‖θ0‖(n,∞)} < δq

and max{‖ū‖(n,∞), ‖θ̄‖(n,∞)} + supt>0 tβ/2‖f(t)‖(b,∞) < ηq, then the initial value problem (2.2) has

a global mild solution u(t, x) ∈ Eq, which is the unique solution that satisfies ‖u‖Eq ≤ 2Cqδq

1−K1ηq
.

In the case Ω = Rn, since in previous theorem we only assume conditions over scaling in-
variant norms, we can prove the existence of self-similar disturbance (u, θ) under assumptions of
homogeneity for u0, ū, θ0, θ̄ and f . This is the content of the next corollary.

Corollary 2.6 (Self-similarity in Rn) Under the assumptions of Theorem 2.5, assuming that Ω =
Rn; u0, ū, θ0, θ̄ being homogeneous of degree −1, and f satisfying the scale relation f(t, x) =
λ2f(λ2t, λx), then the disturbance solution (u, θ) obtained through Theorem 2.5 is self-similar, that
is, for λ > 0, λu(λ2t, λx) = u(t, x), λθ(λ2t, λx) = θ(t, x), almost everywhere x ∈ Rn, t > 0.

In the next corollary, we apply Theorem 2.5 in the physical context of Bénard problem.
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Corollary 2.7 (Bénard problem) Assume the same hypothesis of Theorem 2.5 with b = n/2 (β = 0)
and f = G x

|x|3 being the Newtonian gravitation field. If κG, is sufficiently small, then the initial

value problem (2.2) has a global mild solution (u(t, x), θ(t, x)) ∈ Eq.

Theorem 2.5 supplies the existence of solutions with a convergence rate to the steady solution.
Using only the classical estimate of the Stokes semigroup (3.1) and the analogous estimate for the
heat semigroup, we can bound the norm ‖ · ‖E of the operators (2.5) and (2.6) by working with the
norm ‖ · ‖Eq of the solution obtained, and thus, we guarantee that the solutions also lie in class
E. However, proceeding in the same way, we can not assure the uniqueness of disturbance (u, θ) in
E, because we have used the norm of space Eq to estimate the norm ‖ · ‖E. Happily, the bilinear
operator (2.5) and the coupling term (2.6) can be estimated using only the norm ‖ · ‖E of (u1, θ1)
and (u2, θ2) (see (3.10), (3.11) below). We have the following theorem:

Theorem 2.8 Let n ≥ 3, (u0, θ0) ∈ L
(n,∞)
σ (Ω)×L(n,∞)(Ω), and assume the condition (2.8). There

are constants Cn, K3, δ, η > 0, with δ, η small enough, such that if max{‖u0‖(n,∞), ‖θ0‖(n,∞)} < δ,
max{‖ū‖(n,∞), ‖θ̄‖(n,∞)}+ supt>0 tβ/2‖f(t)‖(b,∞) < η, β = 2− (n/b), b > n/2, then the initial value
problem (2.2) has a global mild solution (u(t, x), θ(t, x)) ∈ E, which is the unique solution that
satisfies ‖u‖E ≤ 2Cnδ

1−K3η
.

Remark 2.9 • (Uniqueness) Using the arguments found in [20] along with the estimates (3.10),
(3.11) below, and assuming that limt→0 ‖e−(t−s)Au0−u0‖(n,∞) = limt→0 ‖e(t−s)∆θ0−θ0‖(n,∞) =

0, we can prove the uniqueness of solution (including large solutions) in C([0, T ); L
(n,∞)
σ (Ω)×

L(n,∞)(Ω)). The last class of initial data contains C∞
0,σ(Ω)

‖·‖(n,∞) × C∞
0 (Ω)

‖·‖(n,∞) ⊃ Ln
σ(Ω) ×

Ln(Ω).

• (More decay) Firstly, since we already know that (u, θ) ∈ E, by real interpolation we observe
that for n < r < q < ∞, the solution obtained in Theorem 2.5 lies in the Lebesgue space
version of Er, that is, t

1
2
− n

2r (u, θ) ∈ BC ((0,∞), Lr
σ(Ω)× Lr(Ω)). On the other hand, in

previous theorems, assuming (u0, θ0) ∈ L
(n,∞)
σ ∩ L(p,∞) with 1 < p′ < n and considering

smallness assumptions on f, ū, u0, θ̄, θ0, we can prove that the previous solution (u, θ) verifies

the additional property (u, θ) ∈ BC((0,∞), L
(p,∞)
σ (Ω) × L(p,∞)(Ω)). Moreover, if p < r < n

then
t

n
2
( 1

r
− 1

p
)(u, θ) ∈ BC((0,∞), Lr

σ(Ω)× Lr(Ω)).

• (Bounded domains) If Ω is a bounded domain, the above results hold with a further exponential
decay rate. More exactly, the statements still are verified by replacing, respectively, the spaces
E and Eq by

Eexp = {(u, θ) : eµt(u, θ) ∈ BC((0,∞); L(n,∞)
σ × L(n,∞))},

Eq exp = {(u, θ) : eµttα/2(u, θ) ∈ BC((0,∞); L(q,∞)
σ × L(q,∞))},

where µ > 0 is a constant that depends on Ω (cf. Remark 3.4).
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Theorems (2.5) and (3.8) imply that ‖u‖(q,∞), ‖θ‖(q,∞) = O(t−α/2) and ‖u‖(n,∞), ‖θ‖(n,∞) = O(1)
as t → ∞, respectively. In the next theorem, by assuming additional conditions on the initial
disturbance (u0, θ0), one will show that ‖u‖(q,∞), ‖θ‖(q,∞) = o(t−α/2) and ‖u‖(n,∞), ‖θ‖(n,∞) = o(1)
as t →∞, which improve the previous results of convergence for steady solutions. Also, if the initial
disturbance of the steady solution belongs to Lebesgue space Ln

σ(Ω)×Ln(Ω), then the disturbance
(u(t), θ(t)) converges to (0, 0), as t →∞, in the Ln-norm and in the strong decay norm t

α
2 ‖ · ‖q (cf.

Remark 2.11). Our results now read as below.

Theorem 2.10 Assume that (u, θ) is a mild solution of (2.2) obtained through Theorem 2.5,

corresponding to steady solution (ū, θ̄) ∈ L
(n,∞)
σ (Ω) × L(n,∞)(Ω) and the initial data (u0, θ0) ∈

L
(n,∞)
σ (Ω)× L(n,∞)(Ω). If limt→∞ t

α
2

∥∥e−tAu0

∥∥
(q,∞)

= 0 and limt→∞ t
α
2

∥∥et∆θ0

∥∥
(q,∞)

= 0, then

lim
t→∞

t
α
2 ‖u(t)‖(q,∞) = lim

t→∞
t

α
2 ‖θ(t)‖(q,∞) = 0. (2.9)

Moreover, in Theorems 2.8, if limt→∞
∥∥e−tAu0

∥∥
(n,∞)

= limt→∞
∥∥et∆θ0

∥∥
(n,∞)

= 0, then

lim
t→∞

‖u(t)‖(n,∞) = lim
t→∞

‖θ(t)‖(n,∞) = 0. (2.10)

Finally, if (u0, θ0) ∈ Ln
σ(Ω)× Ln(Ω), the limits (2.9) and (2.10) hold.

Remark 2.11 • In the context of the Navier-Stokes equations,results of stability in L(n,∞) has
been studied in [2, 5, 4] and some references therein.

• Under additional smallness conditions, only on the norms ‖u0‖Ln , ‖θ0‖Ln , we can prove
that the mild solution obtained through Theorem 2.5 and Theorem 2.8 lies in the space
BC ((0,∞), Ln

σ(Ω)× Ln
σ(Ω)) and tα/2(u, t) ∈ BC ((0,∞), Lq

σ(Ω)× Lq
σ(Ω)) . Moreover, anal-

ogously to the Theorem 2.10, we can show the decay

lim
t→∞

‖u(t)‖Ln = lim
t→∞

tα/2 ‖u(t)‖Lq = 0 = lim
t→∞

‖θ(t)‖Ln = lim
t→∞

tα/2 ‖θ(t)‖Lq .

• (Bounded domains) According Remark 2.9, in the case of bounded domains, Theorem 2.10 can
be improvement. In fact, by assuming limt→∞ eµtt

α
2

∥∥e−tAu0

∥∥
(q,∞)

= limt→∞ eµtt
α
2

∥∥et∆θ0

∥∥
(q,∞)

=

0, we obtain
lim
t→∞

eµtt
α
2 ‖u(t)‖(q,∞) = lim

t→∞
eµtt

α
2 ‖θ(t)‖(q,∞) = 0,

and, analogously, the exponential decay version of (2.10) also holds.

3 Proof of Results

In this section we will develop the proofs of the results stated in Section 2. For this, we start with
the following lemma in a generic Banach space, (cf. [7]), which generalizes the Theorem 13.2 of
[20]. For a proof we also refer the reader to [18]. The proof is based on the Banach fixed point
theorem.
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Lemma 3.1 Let X be a Banach space with norm ‖ · ‖X , T : X → X a linear continuous map with
norm ‖ · ‖T ≤ τ < 1 and B : X ×X → X a continuous bilinear map, that is, there is a constant
K > 0 such that for all x1 and x2 in X we have

‖B(x1, x2)‖X ≤ K ‖ x1‖X ‖ x2‖X .

Then, if 0 < ε < (1−τ)2

4K
and for any vector y ∈ X, y 6= 0, such that ‖y‖X ≤ ε, there is a solution

x ∈ X for the equation x = y + B(x, x) + T (x) such that ‖x‖X ≤ 2ε
1−τ

. The solution x is unique

in the ball B(0, 2ε
1−τ

). Moreover, the solution depends continuously on y in the following sense: If

‖ỹ‖X ≤ ε, x̃ = ỹ + B(x̃, x̃) + T (x̃) and ‖x̃‖X ≤ 2ε
1−τ

, then

‖ x− x̃‖X ≤ 1− τ

(1− τ)2 − 4Kε
‖ y − ỹ‖X .

In order to prove the theorems of Section 2, we will need some lemmas.

Lemma 3.2 Let γ < 2 and 1 < p ≤ q < ∞, with the additional restrictions q ≤ n if Ω is an
exterior domain. Then, there is a constant C = C(n, p, q) > 0 such that

sup
t>0

t
n
2
( 1

p
− 1

q
)+ j

2

∥∥∇je−tAφ
∥∥

(q,1)
≤ C ‖φ‖(p,∞) , ∀φ ∈ L(p,∞)

σ (Ω), j = 0, 1, (3.1)

∫ t

0

(t− s)
n
2
( 1

p
− 1

q
)−1

∥∥e−(t−s)Aφ
∥∥

(q,1)
ds ≤ C ‖φ‖(p,1) , ∀φ ∈ L(p,1)

σ (Ω), t > 0, (3.2)

∫ t

0

s−
γ
2 (t− s)

n
2
( 1

p
− 1

q
)−1

∥∥e−(t−s)Aφ
∥∥

(q,1)
ds ≤ Ct−

γ
2 ‖φ‖(p,1) , ∀φ ∈ L(p,1)

σ (Ω), t > 0, (3.3)

∫ t

0

(t− s)
n
2
( 1

p
− 1

q
)− 1

2

∥∥∇e−(t−s)Aφ
∥∥

(q,1)
ds ≤ C ‖φ‖(p,1) , ∀φ ∈ L(p,1)

σ (Ω), t > 0, (3.4)

∫ t

0

s−
γ
2 (t− s)

n
2
( 1

p
− 1

q
)− 1

2

∥∥∇e−(t−s)Aφ
∥∥

(q,1)
ds ≤ Ct−

γ
2 ‖φ‖(p,1) , ∀φ ∈ L(p,1)

σ (Ω), t > 0. (3.5)

Remark 3.3 When Ω is an exterior domain, in the estimates (3.1) (case j = 0), (3.2), (3.3) it
is not necessary the additional assumption q ≤ n. In the case of the heat semigroup {e∆t}t≥0, the
corresponding estimates (3.1)-(3.5) are also true for all φ ∈ L(p,1)(Ω).

Proof.- The proof of (3.1) is well known and it follows by using the well known Lp−Lq estimates
of the Stokes semigroup together real interpolation (cf. [23, pp. 648-649]). On the other hand,
the estimates (3.2) and (3.4) are due to Yamazaki and it can be found in [23]. So, we only prove
the inequality (3.3) and posteriorly, we comment about the proof of (3.5). For this, we split the

integral in the left-side of (3.3) in two parts
∫ t/2

0
+

∫ t

t/2
= I1 + I2. Then, we use (3.1) with j = 0

and the inequality (t− s)−1 ≤ 2t−1 for 0 ≤ s ≤ t
2
, in order to estimate I1 as follows:

I1 ≤ C

∫ t/2

0

s−
γ
2 (t− s)−1 ‖φ‖(p,1) ds ≤ Ct−1

∫ t/2

0

s−
γ
2 ds ‖φ‖(p,1) = Ct−

γ
2 ‖φ‖(p,1) .
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Next, we use the inequality s−
γ
2 ≤ 2

γ
2 t−

γ
2 for t

2
≤ s ≤ t, and (3.2), in order to estimate I2 as follows:

I2 ≤ 2
γ
2 t−

γ
2

∫ t

t/2

(t− s)
n
2
( 1

p
− 1

q
)−1

∥∥e−(t−s)Aφ
∥∥

(q,1)
ds

≤ 2
γ
2 t−

γ
2

∫ ∞

0

s
n
2
( 1

p
− 1

q
)−1

∥∥e−sAφ
∥∥

(q,1)
ds ≤ Ct−

γ
2 ‖φ‖(p,1) ,

and hence the proof of (3.3) is finished. The inequality (3.5) follows by using analogous arguments
to these presented in the proof of (3.3), applying (3.1) with j = 1 and (3.4) instead of (3.2) (cf.
[4]). ¦

Remark 3.4 As we have already said, the proof of (3.1) follows by using the well known Lp − Lq

estimates of the Stokes semigroup together real interpolation. Moreover, the time decay of Lp − Lq

estimates is preserved. However, in a bounded domain, Lp − Lq estimates can be improved by a
exponential decay, namely

sup
t>0

eµtt
n
2
( 1

p
− 1

q
)+ j

2

∥∥∇je−tAφ
∥∥

Lq ≤ C ‖φ‖Lp , ∀φ ∈ Lp
σ(Ω),

where µ > 0. On the other hand, the proof of estimates (3.2) and (3.4) relies basically in real
interpolation and using (3.1). In view of the above comments and proceeding in an entirely parallel
way to [23, pp. 648-649], we can prove a sharp version of (3.1), (3.2) and (3.4) with further
exponential decay. Finally, (3.3) and (3.5) are improved by using the sharp versions of (3.1),
(3.2), (3.4) and similar arguments to proof of Lemma 3.2. For instance, in place of (3.1) and
(3.5), we can obtain, respectively

sup
t>0

eµtt
n
2
( 1

p
− 1

q
)+ j

2

∥∥∇je−tAφ
∥∥

(q,1)
≤ C ‖φ‖(p,∞) ∀φ ∈ L(p,1)

σ (Ω),

∫ t

0

s−
γ
2 eµ(t−s)(t− s)

n
2
( 1

p
− 1

q
)− 1

2

∥∥∇e−(t−s)Aφ
∥∥

(q,1)
ds ≤ Ct−

γ
2 ‖φ‖(p,1) , ∀φ ∈ L(p,1)

σ (Ω), t > 0.

Lemma 3.5 Let 3 ≤ n < q < ∞ and f such that supt>0 tβ/2‖f(t)‖(b,∞) < ∞, where β = 2 −
(n/b), b ≥ n/2. Then the following estimate holds

sup
t>0

tα/2‖Ff (θ)‖(q,∞) ≤ C sup
t>0

tβ/2‖f(t)‖(b,∞) sup
t>0

tα/2‖θ(t)‖(q,∞). (3.6)

Moreover, if we assume either, n ≥ 3 and b > n/2, or, n ≥ 4 and b = n/2, then

sup
t>0

‖Ff (θ)‖(n,∞) ≤ C sup
t>0

tβ/2‖f(t)‖(b,∞) sup
t>0

‖θ(t)‖(n,∞). (3.7)

Proof.- Firstly we prove the estimate (3.6) in case b = n/2 (β = 0). Let l be such that 1 < q′ < l
with 1

l
+ 1

q
+ 1

b
= 1 and thusn

2
( 1

q′ − 1
l
)− 1 = n

2
(1

b
)− 1 = 0. Applying Hölder’s inequality (2.1) and
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the estimate (3.3) with γ = α, q = l and p = q′, we obtain

|〈Ff (θ), φ〉| =
∣∣∣∣
∫ t

0

〈
κe−(t−s)AP(θf), φ

〉
ds

∣∣∣∣ =

∣∣∣∣
∫ t

0

〈
κθf, e−(t−s)Aφ

〉
ds

∣∣∣∣

≤ C

∫ t

0

‖θf‖( qb
q+b

,∞)

∥∥e−(t−s)Aφ
∥∥

(l,1)
ds

≤ C

∫ t

0

‖θ(s)‖(q,∞) ‖f(s)‖(n/2,∞)

∥∥e−(t−s)Aφ
∥∥

(l,1)
ds

≤ C

∫ t

0

s−α/2
∥∥e−(t−s)Aφ

∥∥
(l,1)

ds sup
t>0

‖f(t)‖(n/2,∞) sup
t>0

tα/2‖θ(t)‖(q,∞)

≤ Ct−α/2 ‖φ‖(q′,1) sup
t>0

‖f(t)‖(n/2,∞) sup
t>0

tα/2‖θ(t)‖(q,∞), ∀φ ∈ L(q′,1)
σ (Ω),

which, by duality, implies (3.6). In the case b > n/2, we bound the norm supt>0 tα/2‖Ff (θ)‖(q,∞)

by applying directly the inequality (3.1) and Hölder’s inequality (2.1). So we have

‖Ff (θ)‖(q,∞) ≤ C

∫ t

0

(t− s)−
n
2b‖f(s)‖(b,∞)‖θ(s)‖(q,∞)ds

≤ C

∫ t

0

(t− s)−
n
2b s−

β
2
−α

2 ds sup
t>0

tβ/2‖f(t)‖(b,∞) sup
t>0

t
α
2 ‖θ(t)‖(q,∞)

≤ Ct−
α
2 sup

t>0
tβ/2‖f(t)‖(b,∞) sup

t>0
t

α
2 ‖θ(t)‖(q,∞).

The proof of (3.7), when n ≥ 4 and b = n/2, follows in an analogous way to the proof of (3.6)
in the case b = n/2 (β = 0). Finally, the proof of (3.7), case n ≥ 3 and b > n/2, follows exactly as
the proof of (3.6) when b > n/2. Hence the proof of lemma is finished.

¦

Lemma 3.6 Let n ≥ 3, b ≥ n/2, n < q < ∞. Assume ū ∈ L
(n,∞)
σ (Ω), θ̄ ∈ L(n,∞)(Ω) and

supt>0 tβ/2‖f(t)‖(b,∞) < ∞, and consider the operators T (·), B(·, ·) defined by (2.5)-(2.6). Then
there are constants K1, K2, K3, K4 > 0 such that for all (u1, θ1), (u2, θ2) ∈ Eq, the following inequal-
ities hold:

‖T (u1, θ1)‖Eq ≤ K1( max{‖ū‖(n,∞), ‖θ̄‖(n,∞)}+ sup
t>0

tβ/2‖f(t)‖(b,∞) )‖(u1, θ1)‖Eq , (3.8)

‖B((u1, θ1), (u2, θ2))‖Eq
≤ K2 ‖(u1, θ1)‖Eq

‖(u2, θ2)‖Eq
, (3.9)

‖T (u1, θ1)‖E ≤ K3( max{‖ū‖(n,∞), ‖θ̄‖(n,∞)}+ sup
t>0

tβ/2‖f(t)‖(b,∞) )‖(u1, θ1)‖E, (3.10)

‖B((u1, θ1), (u2, θ2))‖E ≤ K4 ‖(u1, θ1)‖E ‖(u2, θ2)‖E . (3.11)

Proof.- When θ1 = θ2 = 0 the estimates (3.9) and (3.11) are reduced to the bi-continuity of the
bilinear form of the Navier-Stokes equation on the spaces Eq and E, respectively (see [20, 21, 23]).
Thus (3.9) and (3.11) are an extension for the context of Boussinesq system and its proof can be
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found in [18]. On the order hand, (3.10) elapses of (3.7) and (3.11) by making (u2, θ2) = (ū, θ̄).
Therefore we will only prove (3.8). Let us take l such that 1 < q′ < n

′
< l ≤ n satisfying

1
l
+ 1

q
+ 1

n
= 1. Observe that n

2
( 1

q′ − 1
l
)− 1

2
= 0. Since div(u) = div(ū) = 0, one can write ū · ∇u =

∇(ū ⊗ u) and u · ∇ū = ∇(u ⊗ ū). In order to deal with the norm supt>0 tα/2‖T 1
ū (u)‖(q,∞) we take

φ ∈ L
(q′,1)
σ (Ω) and bound

∣∣〈T 1
ū (u), φ

〉∣∣ =

∣∣∣∣
∫ t

0

〈
(ū⊗ u(s) + u(s)⊗ ū),∇e−(t−s)Aφ

〉
ds

∣∣∣∣

≤ C

∫ t

0

‖ū⊗ u(s)‖( qn
q+n

,∞)

∥∥∇e−(t−s)Aφ
∥∥

(l,1)
ds

≤ C

∫ t

0

‖ū‖(n,∞) ‖u(s)‖(q,∞)

∥∥∇e−(t−s)Aφ
∥∥

(l,1)
ds

≤ C ‖ū‖(n,∞) sup
t>0

t
α
2 ‖u(t)‖(q,∞)

∫ t

0

s−
α
2

∥∥∇e−(t−s)Aφ
∥∥

(l,1)
ds.

Now we use the inequality (3.5) to obtain

∣∣〈T 1
ū (u), φ

〉∣∣ ≤ Ct−
α
2 ‖ū‖(n,∞) sup

t>0
t

α
2 ‖u(t)‖(q,∞) ‖φ‖(q′,1) ,

for all φ ∈ L
(q′,1)
σ (Ω) and all t > 0, which implies

sup
t>0

tα/2‖T 1
ū (u)‖(q,∞) ≤ C ‖ū‖(n,∞) sup

t>0
t

α
2 ‖u(t)‖(q,∞) . (3.12)

Analogously we have

sup
t>0

tα/2‖T 2
ū,θ̄(u, θ)‖(q,∞) ≤ C(‖ū‖(n,∞) sup

t>0
t

α
2 ‖θ(t)‖(q,∞) +

∥∥θ̄
∥∥

(n,∞)
sup
t>0

t
α
2 ‖u(t)‖(q,∞)). (3.13)

From (3.12), (3.13) and Lemma 3.5 we conclude the proof of (3.8).
¦

Proof of Theorem 2.5, Corollary 2.6 and Corollary 2.7

The proof of Theorem 2.5 is a direct application of Lemma 3.1, Lemma 3.6 (inequalities (3.8)
and (3.9)) and Lemma 3.2 (estimate (3.1)). In fact, firstly we take X = Eq, y = (e−tAu0, e

t∆θ0).
Moreover we take the bilinear operator B(·, ·) and the linear operator T (·) defined by (2.5), (2.6),
respectively. Let us denote by ‖ · ‖Tq the norm of linear operator T (·) : Eq → Eq. Now, we define

‖ · ‖Tq ≤ τq < 1, 0 < ηq < 1
K1

, 0 < εq < (1−τq)2

4K2
and 0 < δq = εq

Cq
, where K1,K2 are as in the Lemma

3.6, and Cq is as in the inequality (3.1) of the Lemma 3.2 when q = q and p = n. Hence, we have
that

‖y‖Eq
=

∥∥(e−tAu0, e
t∆θ0)

∥∥
Eq
≤ εq, provided max{‖u0‖(n,∞) , ‖u0‖(n,∞)} ≤ δq.
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On the other hand,

‖ · ‖Tq ≤ τq = ηqK1 < 1, provided max{‖ū‖(n,∞), ‖θ̄‖(n,∞)}+ sup
t>0

tβ/2‖f(t)‖(b,∞) < ηq.

Now, applying Lemma 3.1, we obtain the existence of a global mild solution (u, θ) ∈ Eq, which
satisfies the integral equations (2.3)-(2.4). Moreover the solution is unique in the ball B(0, 2εq

1−τq
) =

B(0, 2Cqδq

1−ηqK1
) of Eq. In order to check that solution (u, θ) ∈ Eq is the mild solution in the sense of

Definition 2.4, it remains to prove that limt→0+(u(t), φ) = (u0, φ) and limt→0+(θ(t), ϕ) = (θ0, ϕ),
but we omit this part because it is standard. Hence, the proof of Theorem 2.5 is finished.

Now we will prove the Corollary 2.6. Let Ω = Rn and note that, in this case, A = −P∆ = −∆
on L

(n,∞)
σ (Rn) and e−tAu0 = G(t, ·)∗u0, where the symbol ∗ denotes the convolution operator with

the Gauss kernel G(t, x) = 1

(4πt)
n
2
e−

|x|2
4t . Let u0, ū, θ0, θ̄ be homogeneous functions of degree −1

and f satisfying the scale relation f(t, x) = λ2f(λ2t, λx). Theorem 2.5 has been proved by using
Lemma 3.1. This method supplies the solution by a successive approximation method. Then, we
define the following scheme:

u1 = e−tAu0, θ1 = et∆θ0

um+1 = e−tAu0 −
∫ t

0

e−(t−s)AP(um · ∇um)ds+

−
∫ t

0

e−(t−s)AP(um · ∇ū + ū · ∇um − κθmf)ds,

θm+1 = et∆θ0 −
∫ t

0

e(t−s)∆(um · ∇θm)ds+

−
∫ t

0

e(t−s)∆(um · ∇θ̄ + ū · ∇θm)ds,

where m ∈ N. It is easy to verify that (u1(t, x), θ1(t, x)) satisfies the scaling property

u1(t, x) = λu1(λ
2t, λx), θ1(t, x) = λθ1(λ

2t, λx).

A simple induction argument proves that (um, θm) has this property for all m. Therefore, the
solution (u(t, x), θ(t, x)) which is the limit of the sequence {(um, θm)}, must verifies

u(t, x) = λu(λ2t, λx), θ(t, x) = λθ(λ2t, λx),

for almost everywhere λ > 0, t > 0 and x ∈ Rn.
Finally, in order to prove Corollary 2.7, we need to check the hypothesis of Theorem 2.5. Note

that as b = n/2 (β = 0) and f = G x
|x|3 , we have that f ∈ L(n/2,∞). Moreover, by using Lemma 3.5

(inequality (3.6)) we have that

sup
t>0

tα/2‖FG x
|x|3

(θ)‖(q,∞) ≤ κGC sup
t>0

tα/2‖θ‖(q,∞).
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Therefore, using that κG is sufficiently small along with the smallness of u0, ū, θ0, θ̄, we obtain the
existence of constants K1, ηq, δq verifying the hypothesis of Theorem 2.5 and hence the stability of
steady solution for the Bénard problem in Eq is proved. ¦

Proof of Theorem 2.8
To prove Theorem 2.8 we also apply Lemma 3.1. In this case we take X = E, y = (e−tAu0, e

t∆u0),
and B(·, ·), T (·) defined by (2.5), (2.6). Let us denote by ‖ · ‖T the norm of linear operator

T (·) : E → E. Now, we define ‖ · ‖T ≤ τ < 1, 0 < η < 1
K3

, 0 < ε < (1−τ)2

4K4
and 0 < δ = ε

Cn
, where

K3 and K4 are as in the Lemma 3.6, and Cn is as in the inequality (3.1) of the Lemma 3.2 when
q = p = n. Now, we have that

‖y‖E =
∥∥(e−tAu0, e

t∆u0)
∥∥

E
≤ ε, provided max{‖u0‖(n,∞) , ‖θ0‖(n,∞)} ≤ δ.

On the other hand,

‖ · ‖T ≤ τ = ηK3 < 1, provided (max{‖ū‖(n,∞), ‖θ̄‖(n,∞)}+ sup
t>0

tβ/2‖f(t)‖(b,∞)) < η.

Hence, Lemma 3.1 guarantees the existence of a global mild solution u ∈ E which satisfies
(2.3)-(2.4). The solution is unique in the ball B(0, 2ε

1−τ
) = B(0, 2Cnδ

1−ηK3
) of E. ¦

Proof of Theorem 2.10

We will only prove (2.9) because the proof of (2.10) follows a similar way. Before proceeding,
let us remark that in inequalities (3.14),(3.15) below, the integrals represent the corresponding
operators defined in a distributional sense (cf. Remark 2.2 and equality (2.7) ). Taking the norm
tα/2‖.‖(q,∞) in (2.3)-(2.4) we obtain

t
α
2 ‖u(t)‖(q,∞) ≤ t

α
2

∥∥e−tAu0

∥∥
(q,∞)

+ t
α
2

∥∥∥∥
∫ t

0

e−(t−s)AP∇((u⊗ u)(s))ds

∥∥∥∥
(q,∞)

+ t
α
2

∥∥∥∥
∫ t

0

e−(t−s)AP∇((ū⊗ u) + (u⊗ ū)(s))ds

∥∥∥∥
(q,∞)

+ t
α
2

∥∥∥∥
∫ t

0

e−(t−s)AP(κ(θf)(s))ds

∥∥∥∥
(q,∞)

(3.14)

and

t
α
2 ‖θ(t)‖(q,∞) ≤ t

α
2

∥∥et∆θ0

∥∥
(q,∞)

+ t
α
2

∥∥∥∥
∫ t

0

e(t−s)∆∇(θu(s))ds

∥∥∥∥
(q,∞)

+ t
α
2

∥∥∥∥
∫ t

0

e(t−s)∆∇(θū + θ̄u)(s)ds

∥∥∥∥
(q,∞)

. (3.15)

Making the change of variables s = tz and using that (u, θ) ∈ B(0, 2Cqδq

1−ηqK1
), we can estimate the

second norm on the right-hand side of (3.14) by the expression
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C(sup
t>0

tα/2 ‖u‖(q,∞))

∫ t

0

(t− s)
α
2
−1 ‖u(s)‖(q,∞) ds

≤ 2δqCq

1− ηqK1

C

∫ 1

0

(1− z)
α
2
−1z−

α
2 (tz)

α
2 ‖u(tz)‖(q,∞) dz, (3.16)

for all t > 0.
Now we deal with the third norm on the right-hand side of (3.14). It can be bounded by

t
α
2

∥∥∥∥
∫ tξ

0

e−(t−s)AP∇(ū⊗ u + u⊗ ū)(s)ds

∥∥∥∥
(q,∞)

+ t
α
2

∥∥∥∥
∫ t

tξ

e−(t−s)AP∇(ū⊗ u + u⊗ ū)(s)ds

∥∥∥∥
(q,∞)

:= I1 + I2,

where the constant ξ will be chosen later. We estimate I1 and I2 as follows:

I1 ≤ C ‖ū‖(n,∞) t
α
2

∫ tξ

0

(t− s)−1 ‖u(s)‖(q,∞) ds ≤ C ‖ū‖(n,∞)

∫ ξ

0

(1− z)−1z−
α
2 (tz)

α
2 ‖u(tz)‖(q,∞) dz,

(3.17)

I2 ≤ K1 ‖ū‖(n,∞) sup
tξ<s<t

s
α
2 ‖u(s)‖(q,∞) . (3.18)

Now we bound the forth norm on the right-hand side of (3.14). If b > n/2, working as in the
proof of (3.6) we have

t
α
2

∥∥∥∥
∫ t

0

e−(t−s)AP(κ(θf)(s))

∥∥∥∥
(q,∞)

≤ C

∫ t

0

(t− s)−n/2b‖f(s)‖(b,∞)‖θ(s)‖(q,∞)ds

≤ C sup
t>0

tβ/2‖f(s)‖(b,∞)

∫ 1

0

(1− z)−n/2bz−β/2‖θ(tz)‖(q,∞)dz. (3.19)

If b = n/2, we get

t
α
2

∥∥∥∥
∫ t

0

e−(t−s)AP(κθf)ds

∥∥∥∥
(q,∞)

≤ t
α
2

∥∥∥∥
∫ tξ

0

e−(t−s)AP(κθf)ds

∥∥∥∥
(q,∞)

+ t
α
2

∥∥∥∥
∫ t

tξ

e−(t−s)AP(κθf)ds

∥∥∥∥
(q,∞)

:= M1 + M2, (3.20)

where the constant ξ will be chosen later. Then we have

M1 ≤ C sup
t>0

‖f‖(n/2,∞)t
α
2

∫ tξ

0

(t− s)−1 ‖θ(s)‖(q,∞) ds

≤ C sup
t>0

‖f‖(n/2,∞)

∫ ξ

0

(1− z)−1z−
α
2 (tz)

α
2 ‖θ(tz)‖(q,∞) dz, (3.21)

M2 ≤ C sup
t>0

‖f‖(n/2,∞) sup
tξ<s<t

s
α
2 ‖θ(s)‖(q,∞) . (3.22)
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Now, we define Γ = max{Γ1, Γ2}, where

Γ1 = lim sup
t→∞

t
α
2 ‖u(t)‖(q,∞) , Γ2 = lim sup

t→∞
t

α
2 ‖θ(t)‖(q,∞) .

Then, computing lim supt→∞ in (3.14) and using the inequalities (3.16)-(3.22), we get

Γ1 ≤
(

2δqCq

1− ηqK1

C

∫ 1

0

(1− s)
α
2
−1s−

α
2 ds + CηqK1

∫ ξ

0

(1− z)−1z−
α
2 dz + ηqK1

)
Γ

≤
(

2δqCqK2

1− ηqK1

+ CηqK1(1− ξ)−1ξ1−α
2 + ηqK1

)
Γ. (3.23)

On the other hand, making the change of variables s = tz we can estimate the second norm on
the right-hand side of (3.15) by the expression

C(sup
t>0

tα/2 ‖θ‖(q,∞))

∫ t

0

(t− s)
α
2
−1 ‖θ(s)‖(q,∞) ds

≤ 2δqCq

1− ηqK1

C

∫ 1

0

(1− z)
α
2
−1z−

α
2 (tz)

α
2 ‖θ(tz)‖(q,∞) dz, (3.24)

for all t > 0. Now we deal with the third norm on the right-hand side of (3.15). It can be bounded
by

≤ t
α
2

∥∥∥∥
∫ tξ

0

e−(t−s)∆∇(θū + θ̄u)(s)ds

∥∥∥∥
(q,∞)

+ t
α
2

∥∥∥∥
∫ t

tξ

e−(t−s)∆∇(θū + θ̄u)(s)ds

∥∥∥∥
(q,∞)

:= J1 + J2,

where the constant ξ will be chosen later. We estimate J1 and J2 as follows:

J1 ≤ C ‖ū‖(n,∞) t
α
2

∫ tξ

0

(t− s)−1 ‖θ(s)‖(q,∞) ds + C
∥∥θ̄

∥∥
(n,∞)

t
α
2

∫ tξ

0

(t− s)−1 ‖u(s)‖(q,∞) ds

≤ C ‖ū‖(n,∞)

∫ ξ

0

(1− z)−1z−
α
2 (tz)

α
2 ‖θ(tz)‖(q,∞) dz

+ C
∥∥θ̄

∥∥
(n,∞)

∫ ξ

0

(1− z)−1z−
α
2 (tz)

α
2 ‖u(tz)‖(q,∞) dz, (3.25)

J2 ≤ K1 ‖ū‖(n,∞) sup
tξ<s<t

s
α
2 ‖θ(s)‖(q,∞) + K1

∥∥θ̄
∥∥

(n,∞)
sup

tξ<s<t
s

α
2 ‖u(s)‖(q,∞) . (3.26)

Computing lim supt→∞ in (3.15) we get

Γ2 ≤
(

2δqCqK2

1− ηqK1

+ C(‖ū‖(n,∞) +
∥∥θ̄

∥∥
(n,∞)

)(1− ξ)−1ξ1−α
2 + ηqK1

)
Γ

≤
(

2δqCqK2

1− ηqK1

+ CηqK1(1− ξ)−1ξ1−α
2 + ηqK1

)
Γ. (3.27)
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Since 2δqCqK2

1−ηqK1
+ ηqK1 < 1 (see Lemma 3.1 and the proof of Theorem 2.5), we can choose ξ > 0

sufficiently small, such that

2δqCqK2

1− ηqK1

+ CηqK1(1− ξ)−1ξ1−α
2 + ηqK1 < 1.

Consequently, from (3.23) and (3.27) we have that the number Γ = 0. This proves the first part
of theorem.

Now, let us deal with the last assertion of Theorem 2.10. It is sufficient to prove that, if the

initial data u0 ∈ Ln
σ(Ω) ∩ Lp(Ω)

‖·‖(n,∞) , θ0 ∈ Ln(Ω) ∩ Lp(Ω)
‖·‖(n,∞) , then

lim
t→∞

tα/2‖e−tAu0‖(q,∞) = 0, lim
t→∞

tα/2‖et∆θ0‖(q,∞) = 0.

Taking u0,k ∈ Ln
σ(Ω) ∩ Lp(Ω) with 1 < p < n < q, we have

tα/2‖e−tAu0‖(q,∞) ≤ t
α
2 ‖u0‖p t−

n
2
( 1

p
− 1

q
)

= ‖u0‖p t−( n
2p
− 1

2
) → 0 as t →∞.

Therefore, using the density of Ln
σ ∩ Lp in Ln

σ(Ω) ∩ Lp(Ω)
‖·‖(n,∞) , we can conclude that

limt→∞ tα/2
∥∥e−tAu0

∥∥
(q,∞)

= 0. Likewise we can prove limt→∞ tα/2
∥∥et∆θ0

∥∥
(q,∞)

= 0. ¦
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