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Paraná (UTFPR), 80230-901, Curitiba, PR, Brazil

Abstract

We present a formula to calculate the probability density function to the solution of
the random linear transport equation in terms of the density functions of the velocity
and the initial condition. We also present an expression to the joint probability
density function of the solution in two different points. Our results have shown
good agreement with Monte Carlo simulations.
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1 Introduction

Uncertainties in data are natural in many models to real world problems that
use partial differential equations, specially in physical sciences. However, the
deterministic formulations have been traditional and convenient. Parameters
of differential equations are, in general, viewed as well defined local quanti-
ties that can be assigned at each point. In practice such parameters can, at
best, be measure at selected locations and interpretative procedures are used
at points where measurements are not available. Quite often the support of
measurements is uncertain and the data are corrupted by experimental and
interpretative errors. These errors and uncertainties render the random pa-
rameters and the corresponding stochastic differential equations.
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Once the statistical properties of relevant random parameters have been in-
ferred from data, the next step is to solve random differential equations. In
this paper we deal with the random linear transport equation,

Qt + A Qx = 0, t > 0, x ∈ R,

Q(x, 0) = Q0(x),
(1)

where the velocity, A, is a random variable and the initial condition, Q0(x),
is a random function.

The Monte Carlo method [1] have been widely used. This procedure entails
generating numerous equally likely random realization of the parameter fields,
solving the deterministic differential equation

qt + a qx = 0, t > 0, x ∈ R,

q(x, 0) = q0(x),
(2)

for each realization, and averaging the results to obtain the statistical mo-
ments. The solution to (2) is given by q(x, t) = q0(x− at). In general, numer-
ical methods are used to solve the deterministic realization. The Monte Carlo
method has the advantage of applying to a very broad range of both linear
and nonlinear problems with complex geometry and boundary condition. How-
ever, numerical errors in solving the deterministic equations, statistical errors
in generating the realizations and the large number of realizations required
make this method impracticable in complex situations in two-dimensional or
three-dimensional problems.

The second approach includes the methods by which one seeks the statistical
moments of the solution. In this approach, the main effort is usually concen-
trated [2–4] on the derivation of appropriate differential equations for average
quantities using, in general, small perturbations with some kind of closure.

In recent years the polynomial chaos have been used as a complete basis to rep-
resent random processes in stochastic Galerkin projections, transforming the
stochastic equation in a set of deterministic equations (see [5,6], for instance,
and the references there in).

Although the complete solution of a random differential equation would be
the (joint) Probability Density Function (PDF), it is difficult to construct
differential equations to this function. In a PDF method the density function
is modeled, (in one point and one time), by evolution equations. As far as we
know only few fields have been developed PDF methods. For instance, much
progress has been made in studying turbulent flows [7].

In this paper, we present a semi-explicit expression for the PDF of the solution
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to (1). The same ideas are also used to obtain the two-point joint PDF in terms
of the velocity and initial condition distributions. In Section 4 our approach
is compared with Monte Carlo simulations.

2 The Probability Density Function

Let U be a random variable with PDF given by fU . Its cumulative distribution
function is

FU(u) = P(U ≤ u) =
∫ u

−∞
fU(s)ds.

We begin with the random Riemann problem, a particular case of (1) in which
the initial condition is given by

Q0(x) =





L, x < 0,

R, x > 0,
(3)

with L and R being random variables. As shown in [8], under the natural
hypothesis of independence between the velocity and the initial condition, the
solution to (3) is

Q(x, t) = L + [R− L] B(x/t), (4)

where B is the Bernoulli random variable with P(B(ξ) = 1) = FA(ξ), where
P denotes the probability measure.

Following the same ideas we may show that, from (4),

FQ(x,t)(q) ≡ FQ(q; x, t) =P(Q(x, t) ≤ q)

=P(Q(x, t) ≤ q |B(x/t) = 0) P(B(x/t) = 0)+

P(Q(x, t) ≤ q |B(x/t) = 1) P(B(x/t) = 1)

=P(L ≤ q) [1− FA(x/t)] + P(R ≤ q) FA(x/t)

=FL(q) + [FR(q)− FL(q)] FA(x/t), (5)

where P(U | V ) denotes the conditional probability of U given V , and FL and
FR are the cumulative distribution functions of the initial states. Similarly,
from (3),

FQ0(x)(q) ≡ FQ0(q; x) = FL(q) + [FR(q)− FL(q)] H(x), (6)

where H(x) is the Heaviside (unitary) step function, i.e.,

H(x) =





1, if x ≥ 0,

0, if x < 0.
(7)
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Using the definition of FA(x/t) in (5), we have

FQ(q; x, t) = FL(q) + [FR(q)− FL(q)]
∫ x/t

−∞
fA(a) da

= FL(q) + [FR(q)− FL(q)]
∫ ∞

−∞
fA(a) H(x− at) da

=
∫ ∞

−∞
fA(a) {FL(q) + [FR(q)− FL(q)] H(x− at)} da

=
∫ ∞

−∞
fA(a) FQ0(q; x− at) da. (8)

Therefore, the differentiation with respect to q gives the PDF,

fQ(q; x, t) =
∫ ∞

−∞
fA(a) fQ0(q; x− at) da = EA[fQ0(q; x− At)], (9)

where EA denotes the expected value relative to the random variable A. In
summary, the solution given by equation (4) to the random Riemann prob-
lem lead us to the expression of the PDF of the solution at a fixed (x, t):
equation (9) is mathematically attractive and stimulated us in showing that
it holds for the general initial condition case.

Proposition 1 The PDF of the solution to (1), at a fixed (x, t), fQ(q; x, t),
is given by (9).

PROOF. The concept of conditional probability will play a role in calculating
the cumulative probability function of Q(x, t), FQ(q; x, t), for a fixed (x, t). In
fact, by the Law of Total Probability [9] we can write

FQ(q; x, t) = P(Q(x, t) ≤ q) = EX0 [P(Q(x, t) ≤ q |X0)], (10)

where X0 is the random function given by X0(x, t) = x− At. By the charac-
teristic method we observe that Q(x, t) ≤ q given that X0 = x0 is equivalent
to Q0(x0) ≤ q. Thus,

FQ(q; x, t) =
∫ ∞

−∞
P(Q0(x0) ≤ q) fX0(x0) dx0 =

∫ ∞

−∞
FQ0(q; x0) fX0(x0) dx0,

(11)
where FQ0(q; x0) is the cumulative probability function of Q0(x0) given in (1).
Taking the derivative with respect to q, we have

fQ(q; x, t) =
∫ ∞

−∞
fQ0(q; x0) fX0(x0) dx0. (12)

To find the PDF for X0 we use the fact that

FX0(x0) = P(x− At ≤ x0) = P(A ≥ (x− x0)/t) = 1− FA((x− x0)/t). (13)

4



Differentiating (13) with respect to x0 we arrive at

fX0(x0) =
d

dx0

FX0(x0) =
1

t
fA((x− x0)/t). (14)

Then, substituting (14) in (12), we obtain

fQ(q; x, t) =
∫ ∞

−∞
1

t
fA((x− x0)/t) fQ0(q; x0) dx0

=
∫ ∞

−∞
fA(a) fQ0(q; x− at) da, (15)

and the result follows. 2

From Proposition (1) it follows that the m-th moment, µm(x, t), m ≥ 1, of
the solution to (1) is given by

µm(x, t) =
∫ ∞

−∞
qm fQ(q; x, t) dq =

∫ ∞

−∞
qm

∫ ∞

−∞
fA(a) fQ0(q; x− at) da dq

=
∫ ∞

−∞
fA(a)

∫ ∞

−∞
qm fQ0(q; x− at) dq da =

∫ ∞

−∞
fA(a) µm

0 (x− at) da,

(16)

where µm
0 (x) is the m-th moment of Q0(x). Therefore,

µm(x, t) = EA[µm
0 (x− At)]. (17)

3 The Joint Probability Density Function

Let Q1 = Q(x, t) and Q2 = Q(y, τ) be the random solutions to (1) at (x, t)
and (y, τ) (t, τ > 0), respectively. In this section we study the joint cumulative
distribution of Q1 and Q2, FQ(q1, q2; x, t, y, τ), defined by

FQ(q1, q2; x, t, y, τ) = P(Q1 ≤ q1, Q2 ≤ q2)

= EX0,Y0 [P(Q1 ≤ q1, Q2 ≤ q2 |X0, Y0)], (18)

where, again, we have used the Law of Total Probability [9]. Here, X0 and Y0 are
the random functions X0(x, t) = x−At and Y0(y, τ) = y−Aτ . For simplicity,
we use for the joint distribution, FQ, the same notation as in the previous
section; the difference in the number of arguments of each one makes the
context clear. The same notation will be used for the joint distribution related
to Q0. Following the ideas in Proposition 1, by the characteristic method, Q1 ≤
q1 and Q2 ≤ q2 given that X0 = x0 and Y0 = y0 is equivalent to Q0(x0) ≤ q1
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and Q0(y0) ≤ q2, where Q0 is the initial condition in (1). Therefore, from (18)

FQ(q1, q2; x, t, y, τ) =
∫ ∞

−∞

∫ ∞

−∞
P(Q0(x0) ≤ q1, Q0(y0) ≤ q2) fX0,Y0(x0, y0) dx0dy0

=
∫ ∞

−∞

∫ ∞

−∞
FQ0(q1, q2; x0, y0) fX0,Y0(x0, y0) dx0dy0, (19)

where fX0,Y0(x0, y0) is the joint PDF of X0 and Y0, and FQ0(q1, q2; x0, y0) is the
joint cumulative probability function of Q0(x0) and Q0(y0), which is assumed
to be known. Taking the second-order mixed derivative in the above equation,
we arrive at

fQ(q1, q2; x, t, y, τ) =
∫ ∞

−∞

∫ ∞

−∞
fQ0(q1, q2; x0, y0) fX0,Y0(x0, y0) dx0dy0. (20)

To determine the joint PDF, fX0,Y0 , we start with,

FX0,Y0(x0, y0) = P(X0 ≤ x0, Y0 ≤ y0) = P(x− At ≤ x0, y − Aτ ≤ y0)

= P (A ≥ (x− x0)/t, A ≥ (y − y0)/τ)

= P(A ≥ m) = 1− FA(m), (21)

where

m = max {(x− x0)t, (y − y0)/τ} = max{u, v}, (22)

with u = (x− x0)/t and v = (y − y0)/τ . In the sense of distributions we have
that

∂m

∂u
= H(u− v), and

∂m

∂v
= H(v − u), (23)

where H is given by (7). Moreover, the derivative of H is the Dirac (delta)
distribution, i.e., H ′(α) = δ(α). Consequently,

∂m

∂x0

=
∂m

∂u
· ∂u

∂x0

= −1

t
H(u− v),

∂m

∂y0

=
∂m

∂v
· ∂v

∂y0

= −1

τ
[1−H(u− v)], and

∂2m

∂y0∂x0

= − 1

tτ
δ(u− v). (24)

Finally, taking the second-order mixed derivative in (21), we find

fX0,Y0(x0, y0) = −∂2FA(m)

∂y0∂x0

=
1

tτ
fA(m)δ(u− v) =

1

tτ
fA(u)δ(u− v), (25)
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since g(α)δ(α) = g(0)δ(α). Substituting this expression in (20) we obtain

fQ(q1, q2; x, t, y, τ) =
1

tτ

∫ ∞

−∞

∫ ∞

−∞
fQ0(q1, q2; x0, y0) fA(u) δ(u− v) dx0dy0

=
∫ ∞

−∞

∫ ∞

−∞
fQ0(q1, q2; x− at, y − bτ) fA(a) δ(a− b) da db

=
∫ ∞

−∞
fQ0(q1, q2; x− at, y − aτ) fA(a) da

= EA[fQ0(q1, q2; x− At, y − Aτ)]. (26)

These arguments show the following result:

Proposition 2 Let Q1 = Q(x, t) and Q2 = Q(y, τ) be the random solution
to (1) at (x, t) and (y, τ) (t, τ > 0), respectively. The joint PDF of these
random variables is given by

fQ(q1, q2; x, t, y, τ) = EA[fQ0(q1, q2; x− At, y − Aτ)]. (27)

In view of Propositions (1) and (2), it follows that the covariance of the solution
to (1) at (x, t) and (y, τ) (t, τ > 0) is given by

Cov[Q(x, t), Q(y, τ)] = E[Q(x, t) Q(y, τ)]− E[Q(x, t)] E[Q(y, τ)]

= EA[Cov(Q0(x− At), Q0(y − Aτ))]

− EA[µ0(x− At)] EA[µ0(y − Aτ)]. (28)

4 Numerical Experiments

We have done several computational experiments to validate our approach,
and to show the influence of the velocity averaging process in transport dif-
ferential equations. Some numerical results are presented in this section. We
have also considered a simplified version of (1), taking E[A] as the velocity. In
this case, the random initial condition is transported along the characteristic
x = x0 + E[A] t. In our experiments, we used this simplified version to show
the influence of considering the variability of random velocities in transport
equations.

Example 1: The main purpose of this example is to validate our approach
with the Monte Carlo method. In the computations the random initial condi-
tion, Q0(x), is normally distributed with E[Q0(x)] = 0.5 exp(−10x2) and an ex-
ponentially decaying covariance function, CovQ0(x, y) = σ2

0 exp (−|x− y|/β).
The covariance function is parameterized by the variance, Var[Q0(x)] = σ2

0

(which is assumed to be constant), and by the correlation length, β > 0,
which governs the decay rate of the time correlation. In the tests we used
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σ0 = 0.4 and β = 2. In the Figures 1–3 we depict the results of using ex-
pression (15) to calculate fQ(q; x, 1) with different velocity distributions, and
compare them with Monte Carlo simulations. As is well known, the Monte
Carlo method is based on the relative frequency approach of probability. Us-
ing the exact solution to (2) on 100 000 realizations, we computed the PDF
at point (x, 1). The characteristics crossing (x, 1) emanate from X0 = x − A
and, following our approach, fQ(q; x, 1) is the expectation of fQ0(q; x − A),
i.e., EA[fQ0(q; x − A)]. As pointed out below, we also plot in each experi-
ment the distribution fQ0(q; x− E[A]). We chose two representative values of
x for each velocity distribution. With these information the figures show the
effect of averaging the initial conditions caused by considering the velocity
A as a random variable. In Figure 1 the velocity has a normal distribution,
A ∼ N(0.1, 0.4); in Figure 2 the velocity is a log-normal random variable,
A = exp (ξ), with ξ ∼ N(0.1, 0.3); and Figure 3 corresponds to a velocity with
uniform distribution in the interval [−0.25, 0.25].

From the experiments we also observe that the shape of the PDF’s, fQ, is
strongly dominated by the initial condition distribution, fQ0 , which, in our
case, is a normal distribution.

Example 2: In this example we take other PDF’s for the velocity and initial
condition. Figures 4 and 5 show the PDF’s for a Cauchy distribution of velocity
A,

fA(a) = exp{−2|a− µ|}, µ = E[A] = 1,

and two different distributions for the initial condition Q0. In Figure 4 we
depict the results for Q0 with the same Cauchy distribution as A, but with
mean µ(x) = |x|/2. The expectations m1(x) for fQ0(q; x − E[A]), and µ1(x)
for fQ(q; x, 1) are m1(0) = 0.50, µ1(0) = 0.53, m1(1) = 0.00 and µ1(1) = 0.25.
Figure 5 shows the results for a uniform distribution of Q0 in the interval
[µ(x)− 1, µ(x) + 1] with the same µ as in the previous case. The expectations
are m1(−2) = 1.54, µ1(−2) = 1.50, m1(1) = 0.00 and µ1(1) = 0.25.

5 Conclusions

New formulas (15), (17), (27), and (28) were deduced from basic concepts
of probability theory and the characteristic method for differential equations.
With numerical integration of the data distributions they are a very simple,
and stable, way to calculate the usual measures of statistical properties of
the solution to (1), the moments. We point the following advantages of our
approach: we do not need differential equations to the statistical moments,
the effective equations; the PDF may be calculated in a particular point (x, t)
without the knowledge of the solution at other points but the initial condition;
boundary conditions may be included easily since our methodology is strongly
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supported by the characteristic method. Besides the mathematical arguments
used to show our results, Monte Carlo simulations have shown a very good
agreement with our expressions.
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Fig. 1. PDF’s of the solution for a normal distribution of velocity A and a normal dis-
tribution of the initial condition: exact fQ(q; x, 1) (solid line), simulated fQ(q; x, 1)
(circles), and averaged fQ0(q; x− E[A]) (dashed line).
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Fig. 2. PDF’s of the solution for a log-normal distribution of velocity A and a
normal distribution of the initial condition: exact fQ(q; x, 1) (solid line), simulated
fQ(q;x, 1) (circles), and averaged fQ0(q; x− E[A]) (dashed line).
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Fig. 3. PDF’s of the solution for a uniform distribution of velocity A and a nor-
mal distribution of the initial condition: exact fQ(q;x, 1) (solid line), simulated
fQ(q;x, 1) (circles), and averaged fQ0(q; x− E[A]) (dashed line).
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Fig. 4. PDF’s of the solution for a Cauchy distribution of velocity A and a Cauchy
distribution of the initial condition: exact fQ(q; x, 1) (solid line) and averaged
fQ0(q;x− E[A]) (dashed line).
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Fig. 5. PDF’s of the solution for a Cauchy distribution of velocity A and a uni-
form distribution of the initial condition: exact fQ(q; x, 1) (solid line) and averaged
fQ0(q;x− E[A]) (dashed line).
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