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Abstract

In this work we carry out a complete group classification of Burgers’ equations.
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1 Introduction

Let x ∈ M ⊆ Rn, M open, u : M → R a smooth function and k ∈ N. We use ∂ku to denote the
jet bundle corresponding to all kth partial derivatives of u with respect to x. We simply denote ∂1u
by ∂u.

Partial differential equations are used to model many different kinds of phenomena in science
and engeneering. Linear equations give mathematical description for physical, chemical or biological
processes in a first approximation only. In order to have a more detailed and precise description a
mathematical model needs to incoporate nonlinear terms. Nonlinear equations are difficult to solve
analytically. However, in the end of century XIX Sophus Lie developed a method that is widely useful
to obtain solutions of a differential equation. This method is currently called Lie point symmetry
theory. Some applications of this method in (nonlinear) differential equations can be found in [2, 3,
6, 7, 8, 9, 10, 11].

Lie used group properties of differential equations in order to actually solve them, i.e., to construct
their exact solutions. Nowadays symmetry reductions are one of the most powerful tools for solving
nonlinear PDEs.

A Lie point symmetry1 of a PDE F = F (x, u, ∂u, · · · , ∂mu) = 0 of order m is a vector field

S = ξi(x, u)
∂

∂xi
+ η(x, u)

∂

∂u
(1)

on M × R such that S(m)F = 0 when F = 0 and

S(m) := S + η
(1)
i (x, u, ∂u)

∂

∂ui
+ · · ·+ η

(m)
i1···im(x, u, ∂u, · · · , ∂mu)

∂

∂ui1···im

is the extended symmetry on the jet space (x, u, ∂u, · · · , ∂ku).
The functions η(j)(x, u, ∂u, · · · , ∂ju), 1 ≤ j ≤ m, are given by

η
(1)
i := Diη − (Diξ

j)uj ,

η
(j)
i1···ij := Dijη

(j−1)
i1···ij−1

− (Dijξ
l)ui1···ij−1l, 2 ≤ j ≤ m,

(2)

where
Di :=

∂

∂xi
+ ui

∂

∂u
+ uij

∂

∂uj
+ · · ·+ uii1···im

∂

∂ui1···im
+ · · ·

is the total derivative operator. We shall not present more preliminaries concerning the Lie point
symmetries of differential equations supposing that the reader is familiar with the basic notions and
methods of group analysis [2, 7, 10].

In a previous paper, Lagno and Samoilenko [8] made the group classification of quaselinear evolu-
tion equation

ut = F (x, t, u, ux, ut)uxx + G(x, t, u, ux, ut), (3)

where u = u(x, t), for general smooth functions F and G.
When F = 1 and G = −u ux, the equation is communly known like Burgers’ equation because it

was first studied by Burgers in the last century.
1In fact, a Lie point symmetry is given by the exponential map (exp S)(x, u) =: (x∗, u∗) ∈ Rn×R. We are identifying

the point transformation with its generator.
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In this article we shall call Burgers’ equation the general case of equation (3) when F = ν = const
and G = −g(u)ux, where g(u) is a smooth function. This is the same terminology used in [9].

In [11], the group classification of (3) is carried out with F = 0 and G = −g(u)ux, for particular
choices of the function g. In [9], the results obained in [11] are generalized for arbitrary g(u). These
equations are called inviscid Burguers’ equations.

In this paper we are interested in generalize the group classification obtained in [11, 9] to the
Burgers’ equation with ν > 0 and g(u) arbitrary. The linear case g(u) = k = const shall not be
considered here because we are interested only in nonlinear cases. To the particular case g(u) = 0, see
the group classification in [2, 10, 6]. To the Burgers’ equation uxx = ut+uux, the Lie point symmetries
can be found in [2, 10]. However, we shall present this case in this article for completeness.

The remaining of the paper is organized as follows. In section 2 we carry out the complete group
classification of equation

νuxx = ut + g(u)ux,

and in the section 3 we identify the classical Lie algebras that the symmetry Lie algebras are isomor-
phic.

2 Main result

Let us consider the equation

νuxx = ut + g(u)ux, (4)

with ν > 0 and g′(u) 6= 0. In the remaining of this paper, we shall be supposing that all functions are
smooths and they are well defined.

Lemma 1. Let
S = ξ(x, t, u)

∂

∂x
+ φ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
(5)

be a symmetry of equation (4). Then ξ = ξ(x, t), φ = φ(t) and η = α(x, t)u + β(x, t).

Proof. From [1, 2, 6], we conclude that ξ = ξ(x, t), φ = φ(x, t) and η = α(x, t)u + β(x, t). From [8],
φ = φ(t).

Lemma 2. The linearly independet set of determing equations of equation (4) is:

φ′(t) = 2ξx (6)

uαt − νuαxx + ug(u)αx + βt − νβxx + g(u)βx = 0, (7)

ξt + 2ναx − g(u)ξx − ug′(u)α− g′(u)β = 0. (8)

Proof. It follows from the invariance condition S(2)F = 0 whenever

F = νuxx − ut − g(u)ux = 0.

See also [8, 4, 5].
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Theorem 1. Group Classification Theorem

The widest Lie point symmetry group of Burgers’ equation (4) with an arbitrary g(u), is determined
by the operators

X =
∂

∂x
, T =

∂

∂t
. (9)

For some special choices of the function g(u) it can be extended in the cases listed below. We shall
write only the generators additional to (9).

1. If g(u) = u, then

B11 = tx
∂

∂x
+ t2

∂

∂t
+ (x− tu)

∂

∂u
, B12 = t

∂

∂x
+

∂

∂u
,

B13 = x
∂

∂x
+ 2t

∂

∂t
− u

∂

∂u
.

2. If g(u) = up, p 6= 0, 1, then the additional generator is

B2 = x
∂

∂x
+ 2t

∂

∂t
− 1

p
u

∂

∂u
.

3. If g(u) = log u, then the additional generator is

B3 = t
∂

∂x
+ u

∂

∂u
.

4. If g(u) = ebu, b = const 6= 0, then

B4 = x
∂

∂x
+ 2t

∂

∂t
− 1

b

∂

∂u
.

5. If g(u) =
1− u

1 + u
, then

B5 = (x− t)
∂

∂x
+ 2t

∂

∂t
+ (1 + u)

∂

∂u
.

6. If g(u) =
1

1 + u
, then

B6 = x
∂

∂x
+ 2t

∂

∂t
+ (1 + u)

∂

∂u
.

7. If g(u) =
u

1 + u
or g(u) =

u

1− u
, then the additional generator is

B7 = (x + t)
∂

∂x
+ 2t

∂

∂t
+ (1 + u)

∂

∂u
.

Proof. If g is an arbitrary function, in order to equations (7) and (8) be true, necessarily we have
ξt − 2ναx = ξx = α = β = 0. Then, from equations (6) and (8) we conclude that ξ = c1 = const and
φ = c2 = const. Then, the symmetry (5) is spanned by translations in x and t.

The proof of case g(u) = u can be found in [2, 10]. To other cases, substituting the functions listed
in the Theorem in equations (7) and (8), we obtain an identity in terms of u, g(u), g′(u) and ug′(u).
Solving it, we obtain the coefficients ξ, φ, α and β of symmetry (5).
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3 Symmetry Lie algebras

In this section we are interested in classify the symmetry Lie algebras of equation (4). In the next
theorem, we present only the non-null Lie brackets.

Theorem 2. The symmetry Lie algebras of the Burgers’ equation are

1. If g(u) = u, then
[X, B11] = B12, [X, B13] = X, [T,B11] = B13,

[T,B12] = X, [X, B13] = 2T, [B11, B13] = −2B11, [B12, B13] = −B12.

2. If g(u) = up, p 6= 0, 1, then
[X, B2] = X, [T,B2] = 2T.

3. If g(u) = log u, then
[T,B3] = X.

4. If g(u) = ebu, b = const, then
[X, B4] = X, [T,B4] = 2T.

5. If g(u) =
1− u

1 + u
, then

[X, B5] = X, [T,B5] = −X + 2T.

6. If g(u) =
1

1 + u
, then

[X, B6] = X, [T,B6] = 2T.

7. If g(u) =
u

1± u
, then

[X, B7] = X, [T,B7] = X + 2T.

Let g1 := {X, T,B11, B12, B13} and gi := {X, T,Bi} 2 ≤ i ≤ 7.
It is immediate that g2 ∼= g4 ∼= g6 and, under the change X 7→ −X, g5 ∼= g7.

Theorem 3. g2 ∼= g5.

Proof. Let e1 := X, e2 := X + T and e3 := B2. Then, [e1, e3] = e1 and [e2, e3] = 2e2.

The following result is a consequence from Theorems 2, 3 and [12, 13].

Theorem 4. g1 ∼= A5,40, g2 ∼= g4 ∼= g5 ∼= g6 ∼= g7 ∼= A2
3,5, g3 ∼= A3,1, where A3,1 is the Weyl-Heisenberg

algebra (see [3]).
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