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Abstract. This paper deals with the dynamics of time-reversible Hamil-
tonian vector fields with 2 and 3 degrees of freedom around an elliptic
equilibrium point in presence of symplectic involutions. The main re-
sults discuss the existence of one-parameter families of reversible peri-
odic solutions terminating at the equilibrium. The main techniques used
are Birkhoff and Belitskii normal forms combined with the Liapunov-
Schmidt reduction.

1. Introduction

The resemblance of dynamics between reversible and Hamiltonian con-
texts, probably first noticed by Poincaré and Birkhoff, has caught much
attention since the sixties of the twentieth century. Since then many im-
portant results, e.g. KAM theory, Liapunov center theorems, etc, holding
in the Hamiltonian context have been carried over to the reversible one (see
[10, 17] and reference therein).

The concept of reversibility is linked with an involution R, i. e., a map
R : RN → RN such that R◦R = Id. Let X be a smooth vector field on RN .
The vector field is called R–reversible if the following relation is satisfied

X(R(x)) = −DRx.X(x).

Reversibility means that x(t) is a solution of X if and only if Rx(−t) is also
a solution. The set Fix(R) = {x ∈ RN : R(x) = x} plays an important
role in the reversible systems. We say that a singular point p is symmetric
if p ∈ Fix(R), and analogously we say that an orbit γ is symmetric if
R(γ) = γ.

Many dynamical systems that arise in the context of applications possess
robust structural properties, such as for instance symmetries or Hamiltonian
structure. In order to understand the typical dynamics of such systems, their
structure need to be taken into account, leading one to study phenomena
that are generic among dynamical systems with the same structure. In
the last decade there has been a surging interest in the study of systems
with time-reversal symmetries (see [15] and [8]). Symmetry properties arise
naturally and frequently in dynamical systems. In recent years, a lot of
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attention has been devoted to understand and use the interplay between
dynamics and symmetry properties. It is worthwhile to mention that one of
the characteristic properties of Hamiltonian and reversible systems is that
minimal sets appear in one-parameter families. So a number of natural
questions can be formulated, such as: (i) how do branches of such minimal
sets terminate or originate?; (ii) can one branch of minimal sets bifurcate
from another such branch?; (iii) how persistent is such branching process
when the original system is slightly perturbed? Recently, there has been a
surging interest in the study of systems with time-reversal symmetries and
we refer [11] for a survey in reversible systems and related problems.

Our main concern, in this article, is to find conditions for the existence
of one-parameter families of periodic orbits terminating at the equilibrium.

We present some relevant historical facts. In 1895 Liapunov published
his celebrated center theorem, see Abraham and Marsden [1] p 498. This
theorem, for analytic Hamiltonians with n degrees of freedom, states that
if the eigenfrequencies of the linearized Hamiltonian are independent over
Z, near a stable equilibrium point, then there exists n families of periodic
solutions filling up smooth 2-dimensional manifolds going through the equi-
librium point. Devaney [5] proved a time-reversible version of the Liapunov
center theorem. Recently this center theorem has been generalized to equi-
variant systems, by Golubitsky, Krupa and Lim [6] in the time-reversible
case, and by Montaldi, Roberts and Stewart [13] in the Hamiltonian case.
We recall that in [6] the Devaney’s theorem was extended and some extra
symmetries were considered. Contrasting Devaney’s geometrical approach,
they used Liapunov-Schmidt reduction, adapting an alternative proof of the
reversible Liapunov center theorem given by Vanderbauwhede [16]. In [13]
the existence of families of periodic orbits around an elliptic semi-simple
equilibrium is analyzed. Systems with symmetry, including time-reversal
symmetry, which are anti-symplectic are studied. Their approach is a con-
tinuation of the work of Vanderbauwhede, in [16], where the families of
periodic solutions correspond bijectively to solutions of a variational prob-
lem.

Recently Buzzi and Teixeira in [3] have analyzed the dynamics of time-
reversible Hamiltonian vector fields with 2 degrees of freedom around an
elliptic equilibrium point in presence of 1 : −1 resonance. Such systems ap-
pear generically inside a class of Hamiltonian vector fields in which the sym-
plectic structure is assumed to have some symmetric properties. Roughly
speaking, the main result says that under certain conditions the original
Hamiltonian H is formally equivalent to another Hamiltonian H̃ such that
the corresponding Hamiltonian vector field X

H̃
has two Liapunov families

of symmetric periodic solutions terminating at the equilibrium. It is worth
to say that all the systems considered there have been derived from the
expression of Birkhoff normal form.
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In this paper we address the problem to systems with 2 and 3 degrees of
freedom. Physical models of such systems were exhibited in [4, 9]. As usual
the main proofs are based on a combined use of normal form theory and the
Liapunov-Schmidt Reduction. It is important to mention that our results
concerning the existence of Liapunov families generalize those ones in [3].
As a matter of fact we deal with C∞ Hamiltonian vector fields and not only
with systems written in Birkhoff normal form.

We begin in Section 2 with an introduction of the terminology and ba-
sic concepts for the formulation of our results. In Section 3 the Belitskii
normal form is discussed. In Section 4 the Liapunov-Schmidt reduction is
presented. In Section 5 the usefulness of Birkhoff normal form in our ap-
proach is pointed. In Section 6 we study the Hamiltonian with 2 degrees of
freedom denoted by Ω0, and we generalize some results presented in [3] by
proving Theorem A. Theorem A says that there exists an open set U0 ⊂ Ω0,
in the C∞–topology, such that (a) U0 is determined by the 3–jet of the
vector fields; and (b) each X ∈ U0 possesses two 1–parameter families of
periodic solutions terminating at the equilibrium. In section 7 we study the
Hamiltonian with 3 degrees of freedom, and we prove Theorems B and C.
In Theorem B we consider the involution associated to the system satisfy-
ing dim(Fix(R)) = 2, and in Theorem C satisfying dim(Fix(R)) = 4. We
denote these spaces of reversible Hamiltonian vector fields by Ω1 and Ω2,
respectively. The conclusions are the following: In Theorem B there exists
an open set U1 ⊂ Ω1, in the C∞–topology, such that (a) U1 is determined
by the 2–jet of the vector fields, and (b) for each X ∈ U1 there is no pe-
riodic orbit arbitrarily close to the equilibrium. In Theorem C there exists
an open set U2 ⊂ Ω2, in the C∞–topology, such that (a) U2 is determined
by the 2–jet of the vector fields, and (b) each X ∈ U2 has infinitely many
one–parameter family of periodic solutions terminating at an equilibrium
with the periods tending to 2π/α.

2. Preliminaries

Now we introduce some of the terminology and basic concepts for the
formulation of our results.

We consider (germs of) smooth functions H : R2n, 0 → R having the
origin as a equilibrium point. The corresponding Hamiltonian vector field,
to be denoted by XH , has the origin as an equilibrium or singular point. We
recall that dH = ω(XH , ·), where ω = dx1∧dy1 +dx2∧dy2 + · · ·+dxn∧dyn

denotes the standard 2-form on R2n. In coordinates XH is expressed as:

ẋi =
∂H

∂yi
, ẏi = −∂H

∂xi
; i = 1, · · · , n.
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In R6 we have
ẋ1

ẏ1
...
ẋ3

ẏ3

 =



0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0





∂H
∂x1
∂H
∂y1

...
∂H
∂x3
∂H
∂y3


.

Here,

J =



0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0


is the symplectic structure associated with the 2-form ω given above.

We say that an involution is symplectic when it satisfies the equation
ω(DRp(vp), DRp(wp)) = ω(vp, wp). If the involution R is linear then this
definition is equivalent to JR = RTJ , where J is the symplectic structure
and RT is the transpose matrix of R.

The next proposition exhibits normal forms for linear symplectic involu-
tions on R6.

Proposition 2.1. Fixed the symplectic structure ω and given an involution
R there exists a symplectic change of coordinates that transforms R in one
of the following normal forms

(1) R0 = Id,
(2) R0(x1, y1, x2, y2, x3, y3) = (x1, y1, x2, y2,−x3,−y3),
(3) R0(x1, y1, x2, y2, x3, y3) = (x1, y1,−x2,−y2,−x3,−y3),
(4) R0 = −Id.

Before the proof we observe that the mapping ψ = (1/2)(R + L), where
L = DR(0), is a symplectic conjugacy between R and L, i. e., R◦ψ = ψ ◦L.
So we may and do assume, without lost of generality, that the involution R
is linear.

Lemma 2.2. If R is a linear symplectic involution, then we have that R6 =
Fix(R)⊕ Fix(−R) and ω(Fix(R),Fix(−R)) = 0.

Proof: For every u ∈ R6, we can write u = ((u+R(u))/2) + ((u−R(u))/2).
Notice that (u + R(u))/2 ∈ Fix(R) and (u − R(u))/2 ∈ Fix(−R). Now, let
u ∈ Fix(R) and v ∈ Fix(−R), so we have that ω(u, v) = ω(R(u),−R(v)).
By using that R is symplectic and R is linear, i. e, ω(R(u), R(v)) = ω(u, v).
So −ω(u, v) = ω(u, v), and we have proved that ω(Fix(R),Fix(−R)) = 0. �

A linear subspace U ∈ R6 is symplectic if ω is non-degenerate in U , i. e,
if ω(u, v) = 0 for all u ∈ U then v = 0.
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Lemma 2.3. Fix(R) and Fix(−R) are symplectic subspace.

Proof: Suppose u ∈ Fix(R) and u 6= 0 such that ω(u,R(u)) = 0. By using
Lemma 2.2, we have ω(Fix(R),Fix(−R)) = 0, so ω(u,Fix(−R)) = 0. Again
by Lemma 2.2 (R6 = Fix(R) ⊕ Fix(−R)) we have ω(u,R6) = 0 and so ω is
degenerate in R6 which is not true. Then Fix(R) is a symplectic subspace.
The proof for Fix(−R) is analogous. �

Proof of Proposition 2.1: Let R : R6 → R6 be a linear involution and ω be a
fixed symplectic structure. From Lemma 2.2, R6 = Fix(R) ⊕ Fix(−R) and
as Fix(R) is a symplectic subspace, then dim Fix(R) = 0, 2, 4, or 6.

• if dim Fix(R) = 0, then we can find a coordinate system such that
R0 = −Id;

• if dim Fix(R) = 6, then we can find a coordinate system such that
R0 = Id;

• if dim Fix(R) = 4, consider the bases β1 = {e1, e2, e3, e4} for Fix(R)
and β2 = {f1, f2} for Fix(−R). So β = {e1, e2, e3, e4, f1, f2} is a
basis for R6. Let’s show that β can be chosen such that [ω]β = J

and [R]β = R0 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


.

Note that ω(ei, ei) = 0 and ω(fj , fj) = 0, i = 1, 2, 3, 4 and j = 1, 2.
By the Lemma 2.2 ω(ei, fj) = 0, i = 1, 2, 3, 4 and j = 1, 2. And as
ω is alternative, then ω(f1, f2) = 1 and ω(f2, f1) = −1.

Define ω(ei, ej) for i 6= j. From Darboux’s Theorem there exists a
coordinate system around 0 such that ω|β1 in this coordinate system
is the symplectic structure J .

• if dim Fix(R) = 2, in the same way as above, we get

R0 = [R]β =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


.

�

Following Proposition 2.1 the following cases will be considered:

i) the associated involution is R1(x1, y1, x2, y2, x3, y3) = (x1, y1, −x2,
−y2, −x3, −y3) (called the 6 : 2–case); and

ii) the associated involution is R2(x1, y1, x2, y2, x3, y3) = (x1, y1, x2, y2,
−x3, −y3) (called the 6 : 4–case).
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2.1. Linear part of a Rj–reversible Hamiltonian vector field in R6.
Denote by Ωj the space of all Rj–reversible Hamiltonian vector field XHj

in R6 with 3-degrees freedom where Hj denotes the associate Hamiltonian.
Fix the coordinate system (x1, y1, x2, y2, x3, y3) ∈ R6, 0, j = 1, 2. We endow
Ωj with the C∞–topology.

The symplectic structure given by J is:

J =



0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0


.

Observe that the involution Rj is symplectic, i.e, J.Rj −RT
j .J = 0, j = 1, 2.

As the involution is symplectic, then the vector field is Rj−reversible if
and only if the Hamiltonian function Hj is Rj−anti-invariant, j = 1, 2. This
is equivalent to say that Hj ◦Rj = −Hj . (See [3])

Define Hj(x1, y1, x2, y2, x3, y3) = a01x
2
1 + a02x1y1 + a03x1x2 + a04x1y2 +

a05x1x3 + a06x1y3 + a07y
2
1 + a08y1x2 + a09y1y2 + a10y1x3 + a11y1y3 + a12x

2
2 +

a13x2y2 +a14x2x3 +a15x2y3 +a16y
2
2 +a17y2x3 +a18y2y3 +a19x

2
3 +a20x3y3 +

a21y
2
3 + h.o.t.

First of all we impose the Rj–reversibility on our Hamiltonian system,
j = 1, 2. So:

a) case 6 : 2

R1 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


.

From H1 ◦R1 = −H1, we have

H1 = a03x1x2 + a04x1y2 + a05x1x3 + a06x1y3+
a08x2y1 + a09y1y2 + a10x3y1 + a11y1y3 + h.o.t.,

with a03, a04, a05, a06, a08, a09, a10 ∈ R. Then, the linear part of Hamil-
tonian vector field XH1 is

A1 =



0 0 a b c d
0 0 e f g h
−f b 0 0 0 0
e −a 0 0 0 0
−h d 0 0 0 0
g −c 0 0 0 0


.
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Just to simplify the notation we replace a03, a04, a05, a06, a08, a09,
a10, a11 by a, b, c, d, −e, −f, −g, −h respectively. Note that A1 is
R1−reversible (i. e, R1.A1 +A1.R1 = 0). The eigenvalues of A1 are
{0, 0,±

√
be− af + dg − ch,±

√
be− af + dg − ch}. We restrict our

attention to those systems satisfying the inequality:

(2.1) be− af + dg − ch < 0.

We shall use the Jordan canonical form from A1. So we stay, for
while, away from the original symplectic structure. We call α =√
−be+ af − dg + ch, and so the transformation matrix is

P1 =



0 0 −d
dg−chα 0 −c

dg−chα 0
0 0 −h

dg−chα 0 −g
dg−chα 0

df−bh
be−af

cf−bg
be−af 0 −df+bh

dg−ch 0 −cf+bg
dg−ch

−de+ah
be−af

−ce+ag
be−af 0 de−ah

dg−ch 0 ce−ag
dg−ch

0 1 0 0 1
1 0 0 1 0 0


.

So

Â1 = P−1
1 .A1.P1 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 α 0 0
0 0 −α 0 0 0
0 0 0 0 0 α
0 0 0 0 −α 0


,

where P−1
1 is the inverse matrix. Moreover, in this way, R̂1 =

P−1
1 .R1.P takes the form

R̂1 =



−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1


.

b) case 6 : 4
We proceed in the same way as in the previous case. The involu-

tion is

R2 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


.

and the Hamiltonian function in this case has the form:
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H2 = a05x1x3 + a14x2x3 + a10x3y1 + a17x3y2+
a06x1y3 + a15x2y3 + a11y1y3 + a18y2y3 + h.o.t.

Then, the linear part of Hamiltonian vector field XH2 is expressed
by:

A2 =



0 0 0 0 a b
0 0 0 0 c d
0 0 0 0 e f
0 0 0 0 g h
−d b −h f 0 0
c −a g −e 0 0


.

Again we change the notation. The eigenvalues of A2 are given by
{0, 0,±

√
bc− ad+ fg − eh,±

√
bc− ad+ fg − eh}. We consider the

case

(2.2) bc− ad+ fg − eh < 0.

We call α =
√
−bc+ ad− fg + eh and consider the transforma-

tion matrix

P2 =



be−af
bc−ad

−bg+ah
bc−ad 0 −b

α 0 −a
α

de−cf
bc−ad

−dg+ch
bc−ad 0 −d

α 0 −c
α

0 1 0 −f
α 0 −e

α
1 0 0 −h

α 0 −g
α

0 0 0 0 1 0
0 0 1 0 0 0


,

and the Jordan canonical form of A2 is:

Â2 = P−1
2 .A2.P2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 α 0 0
0 0 −α 0 0 0
0 0 0 0 0 α
0 0 0 0 −α 0


.

Moreover, in this way, R̂2 = P−1
2 .R2.P2 takes the form

R̂2 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1


.
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3. Belitskii normal form

In this section we present the Belitskii Normal Form. When a vector
field is in this normal form we can write explicitly the resultant equation of
Liapunov–Schmitd reduction.

Consider a formal vector field expressed by

X̂(x) = Ax+
∑
k≥2

X(k)(x)

where X(k) is the homogeneous part of degree k. Let us look for a “simple”
form of the formal vector field Ŷ = φ̂∗X̂ by means of formal transformation

φ̂ = x+
∞∑
k

φ(k)(x).

The proof of the next theorem is in [2].

Theorem 3.1. Given a formal vector field

X̂(x) = Ax+
∑
k≥2

X(k)(x),

there is a formal transformation φ̂(x) = x + . . . bringing X̂ to the form
(φ̂∗X)(x) = Ax+h(x) where h is a formal vector field with zero linear part
commuting with AT , i.e

ATh(x) = h′(x)ATx,

where AT is the transposed matrix.

Here we call the normal form (φ̂∗X)(x) = Ax+ h(x) the Belitskii normal
form. By abuse of the terminology, call XH = A+ h.

4. Liapunov–Schmidt reduction

In this section we recall the main features of the Liapunov–Schmidt re-
duction. As a matter of fact, we adapt the setting presented in [18] into our
approach. In this way consider the R-reversible system expressed by

(4.3) ẋ = XH(x); x ∈ R6

satisfying XH(Rx) = −RXH(x) with R a linear involution in R6. Assume
that XH(0) = 0 and consider

(4.4) A = D1XH(0),

the Jacobian matrix of XH in the origin.
In our case the linear part of vector field has the following eigenvalues: 0

with the algebraic and geometric multiplicity 2, and ±αi, also with algebraic
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and geometric multiplicity 2, α ∈ R. Performing a time rescaling we may
take α = 1. We write the real form of the linear part of the vector field Xj :

A =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0


.

Let C0
2π the Banach space of de 2π−periodic continuous mappings x : R →

R6 and C1
2π the corresponding C1−subspace. We define an inner product

on C0
2π by

(x1, x2) =
1
2π

∫ 2π

0
< x1(t), x2(t) > dt

where < ·, · > denotes an inner product in R6.
The main aim is to find all small periodic solutions of (4.3) with period

near 2π.
Define the map F : C1

2π × R → C0
2π by

F (x, σ)(t) = (1 + σ)ẋ(t)−XH(x(t)).

Note that if (x0, σ0) ∈ C1
2π × R is such that

(4.5) F (x0, σ0) = 0,

then x̃(t) := x0((1 + σ0)t) is a 2π/(1 + σ0)−periodic solution of (4.3).
Our task now is to find the zeroes of F . Clearly, (x0, σ0) = (0, 0) is one

solution of F (x0, σ0) = 0. Let L := DxF (0, 0) : C1
2π → C0

2π, explicitly L is
given by

Lx(t) = ẋ(t)−Ax(t).

Consider the unique (S-N)-decomposition of A, A = S + N. Recall that
in our case A is semi-simple, i. e, A = S. Define the subspace N of C1

2π as

N = {q; q̇(t) = Sq(t)} =
{q; q(t) = exp(tS)x; x ∈ R6}.

Observe thatN ⊂ C1
2π and the solution’s base of q̇ = Sq is given by the set

{(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, cos(t), sin(t), 0, 0), (0, 0,− sin(t), cos(t),
0, 0), (0, 0, 0, 0, cos(t), sin(t)), (0, 0, 0, 0,− sin(t), cos(t))}.

In order to study certain properties of the operator L we introduce N ⊂
C1

2π and the following definitions and notations.
We will put the solution of F (x0, σ0) = 0 in one-to-one correspondence

with the solutions of an appropriate equation in N . Define the subspaces

X1 = {x ∈ C1
2π : (x,N ) = 0}

and
Y1 = {y ∈ C0

2π : (y,N ) = 0}
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as the orthogonal complements of N in C1
2π and C0

2π, respectively.
Let (q1, q2, q3, q4, q5, q6) with qi = exp(tS)ui where ui, i = 1, ..., 6, is a

basis for R6. Then we define a projection

P : C0
2π → C0

2π

by

P =
6∑

i=1

q∗i (·)qi ∈ L(C0
2π)

with q∗i (x) = (qi, x).
We have Im(P) = N and Ker(P) = Y1. Hence,

C1
2π = X1 ⊕N , C0

2π = Y1 ⊕N .

Now we consider

F (x, σ) = F (q + x1, σ) =: F̂ (q, x1, σ); q ∈ N , x1 ∈ X1.

The proof of next result can be found in [7].

Lemma 4.1. (Fredholm’s Alternative) Let A(t) be a matrix in C0
T and

let f be in CT . Here C0
T is the space of the matrices with entrances contin-

uous and T–periodic, and CT is the set of T -periodic maps from R to Rn.
Then the equation ẋ = A(t)x+ f(t) has a solution in CT if, and only if,∫ T

0
< y(t), g(t) > dt = 0

for all solution y of the adjoint equation

ẏ = −yA(t)

such that yt ∈ CT

As L(N ) ⊂ N this lemma implies the following:

Lemma 4.2. The mapping L̂ := L|X1 : X1 → Y1 is bijective.

Let’s study the solutions of F̂ (q, x1, σ) = 0. These solutions are equiva-
lents to the solutions of the system

(I − P) ◦ F̂ (q, x1, σ) = 0,
P ◦ F̂ (q, x1, σ) = 0.

With the Lemma 4.2 and the Implicit Function Theorem we can solve the
first equation as x1 = x∗1(q, σ). Then, (4.5) is reduced to

F̃ (q, σ) := P ◦ F̂ (q, x∗1(q, σ), σ) = 0.

This equation is solved if, and only if,

q∗i (F̂ (q, x∗1(q, σ), σ) = 0, i = 1, · · · , 6.
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Notice that (u, σ) is a solution of (4.5) provided that

(4.6) B(u, σ) = 0

with B : N × R → R6 defined by

B(u, σ) :=
1
2π

∫ 2π

0
exp(−tS)F (x∗(u, σ), σ)dt

and
x∗(u, σ) := exp(tS)u+ x∗1(exp(tS)u, σ).

Let’s present some properties of the mapping B.
The proof of next lemma can be found in [10].

Lemma 4.3. It holds
i) sφB(u, σ) = B(sφu, σ);
ii) RB(u, σ) = −B(Ru, σ), where sφ is the S1−action in R6 defined by

sφu = exp(−φS0)u.

Observe that under the above condition i) the mapping B is S1− equivari-
ant whereas condition ii) states that the mapping B is R− anti-equivariant,
i. e, B inherits the anti-symmetric properties of XH .

Assume that (4.3) is in Belitskii normal form truncated at the order p.
So XH(x) = Ax+ h(x) + r(x) where r(x) = O(‖ x ‖p+1). The proof of next
result is in [18].

Theorem 4.4. It holds
i) x∗(u, σ) = exp(tS)u+O(‖ x ‖p+1),
ii) B(u, σ) = (1+σ)Su−Au−h(u)+O(‖ x ‖p+1) for σ near the origin.

If (u, σ) is a solution of (4.6) then x = x∗(u, σ) corresponds to a 2π/(1+σ)-
periodic solution of (4.5).

Recall that the periodic solution of (4.6) is R-symmetric if and only if it
intersects Fix(R) in exactly two points. In conclusion, we obtain all small
symmetric periodic solutions of (4.6) by solving the equation

(4.7) G(u, σ) = B(u, σ) |Fix(R)= 0.

5. Birkhoff normal form

In this section we briefly discuss some points concerning the Birkhoff
normal form that will be useful in the sequel. The Belitskii normal form is
useful it preserves the simplectic structure. In our cases if the vector field is
in the Birkhoff normal form then it is in the Belitskii normal form, and so
we can apply Theorem 4.4.

The function {f, g} = ω(Xf , Xg) is called the Poisson bracket of the
smooth functions f and g. LetHn be the set of all homogeneous polynomials
of degree n. The application adjoint AdH2 : Hn → Hn is defined by
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(5.8) AdH2(H) = {H2,H} = ω(XH2 , XH) =< −XH2 ,∇H > .

The Birkhoff Normal Form Theorem [14] states that if we have a Hamil-
tonian H = H2 + H3 + H4 + · · · , where Hi ∈ Hi is the homogeneous
part of degree i, and Gi ⊂ Hi satisfies Gi ⊕ Range(AdH2) = Hi, then
there exists a formal symplectic power series transformation Φ such that
H ◦ Φ = H2 + H̃3 + H̃4 + · · · where H̃i ∈ Gi (i = 3, 4, . . . ). In particu-
lar, if AdH2 is semi-simple, as in our case, then Ker(AdH2) complements
Range(AdH2).

As Rj is symplectic, the change of coordinates Φ can be chosen in such
a way that H ◦ Φ satisfies H ◦ Φ ◦ Rj = −H ◦ Φ. In order to see this,
we can split Hi = H+

i ⊕ H−i , where H+
i = {H ∈ Hi : H ◦ Rj = H} and

H−i = {H ∈ Hi : H ◦Rj = −H}. If Rj is symplectic, then AdH2(H±i ) = H∓i .
In this case, if Hi = Gi ⊕ AdH2(Hi), then H−i = (Gi ∩ H−i ) ⊕ AdH2(H+

i ).
Now we can perform the change of coordinates restricted to H−i . It implies
that all monomial terms in the image of the adjoint restrict to H−

i can
be removed and it will remain only monomials in the kernel of the adjoint
restrict to H−

i . And so, the normal form is also Rj–reversible.

6. Two degrees of freedom

In [3] a Birkhoff normal form for each X ∈ Ω0 is derived and the following
result is obtained:

Theorem 6.1. Assume H is a Hamiltonian that is anti-invariant with re-
spect to the involution and the associated vector field XH has an elliptical
equilibrium point. Then there exists another Hamiltonian H̃, formally Ck–
equivalent to H, such that the vector field X

H̃
has two one–parameter fam-

ilies of symmetric periodic solutions, with period near 2π/
√
ad− bc, as in

the Liapunov’s Theorem, going through the equilibrium point.

Let Ω0 be the space of the C∞ R0–reversible Hamiltonian vector fields
with two degrees of freedom in R4 and fix the coordinate system (x1, y1, x2, y2) ∈
R4. We endow Ω0 with the C∞–topology. In this work we prove the follow-
ing result, which generalizes the previous one.

Theorem A: There exists an open set U0 ⊂ Ω0 such that

(a) U0 is determined by the 3–jet of the vector fields.
(b) each X ∈ U0 possesses 2–families of symmetric periodic solutions

terminating at the equilibrium point.
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Proof: Fix on R4 a symplectic structure as in the Proposition 2.1. So the
normal form of an involution has one of the following form: IdR4 or −IdR4

or R0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

. We work just with R0–reversible vector fields.

As in the cases in R6 we have that by the hypothesis the Hamiltonian H
satisfy H ◦R0 = −H, so the linear part of the vector field XH is given by

(6.9) A =


0 0 a b
0 0 c d
−d b 0 0
c −a 0 0

 ,

and their eigenvalues are {±
√
bc− ad,±

√
bc− ad}. We are interested in the

case with bc−ad < 0. We call α =
√
ad− bc and consider the transformation

matrix

P =


0 −b

α 0 −a
α

0 −d
α 0 −c

α
0 0 1 0
1 0 0 0

 .

So

Â = P−1.A.P =


0 α 0 0
−α 0 0 0
0 0 0 α
0 0 −α 0

 ,

where P−1 is the inverse matrix. Moreover, in this way, R̂0 = P−1.R0.P
takes the form

R̂0 =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 .

Performing a time rescaling we can assume that α = 1. We write the
canonical real Jordan form of A as

Â =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 .

First we obtain the Belitskii normal form of XH , by considering h : R4 →
R4 until 3rd order, which is given by XH(x1, y1, x2, y2) = A[x1, y1, x2, y2] +
h(x1, y1, x2, y2). And after we impose that the Belitskii normal form is
R̂0−reversible, i. e, XHR̂0 = −R̂0XH . Then the system obtained is given
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by
(6.10)

ẋ1 = y1 + (e21y1 + e23y2)(x2
1 + y2

1) + e30y2(x2
2 + y2

2)
+(e16x1 + e24x2)(y1x2 − x1y2) + e26y2(x1x2 + y1y2),

ẏ1 = −x1 + (−e21x1 − e23x2)(x2
1 + y2

1)− e30x2(x2
2 + y2

2)
+(e16y1 + e24y2)(y1x2 − x1y2)− e26x2(x1x2 + y1y2),

ẋ2 = y2 + (−d15y1 − d22y2)(x2
1 + y2

1)− (d20y1 + d29y2)(x2
2 + y2

2)
−(d17y1 + d25y2)(x1x2 + y1y2),

ẏ2 = −x2 + (d15x1 + d22x2)(x2
1 + y2

1) + (d20x1 + d29x2)(x2
2 + y2

2)
+(d17x1 + d25x2)(x1x2 + y1y2).

Now we apply the Birkhoff normal form. First of all we observe that the
canonical symplectic matrix

J =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 ,

after the linear change of coordinates P , is transformed in

Ĵ = P tJP =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 .

We take a general Hamiltonian functionH : R4 → R of 4th order, compute
the kernel of AdH2 defined on (5.8), where H2 is the homogeneous part of
degree 2 of H, and impose that H satisfies H ◦ R̂0 = −H. The Birkhoff
normal form until 3th order is given by hb(x) = Ĵ ·∇H(x) and its expression
is

(6.11)

ẋ1 = y1 + a1y1(x2
1 + y2

1) + a2(2x1x2y1 − x2
1y2 + y2

1y2)
+a3(3x2

2y1 − 2x1x2y2 + y1y
2
2),

ẏ1 = −x1 + (a2y1 + 2a3y2)(x2y1 − x1y2)− x1(a1(x2
1 + y2

1)
+a2(x1x2 + y1y2) + a3(x2

2 + y2
2)),

ẋ2 = y2 + (2a1x1 + a2x2)(−x2y1 + x1y2) + y2(a1(x2
1 + y2

1)
+a2(x1x2 + y1y2) + a3(x2

2 + y2
2)),

ẏ2 = −x2 + (2a1y1 + a2y2)(−x2y1 + x1y2)− x2(a1(x2
1 + y2

1)
+a2(x1x2 + y1y2) + a3(x2

2 + y2
2)).

Observe that the Birkhoff normal form (6.11) is also in Belitskii normal
form (6.10) and so we can apply the Theorem 4.4.

The Liapunov-Schmidt reduction gives us all small R̂0–symmetric periodic
solutions by solving the equation

B(x, σ)|
x∈Fix(R̂0)

= 0,
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with

B(x, σ) = (1 + σ)Sx− Âx− hb(x), x ∈ R4,

S is the semi-simple part of (unique) S−N−decomposition of Â. (See [12]).

In our case, Â is semi-simple and Fix(R̂0) = {(0, y1, 0, y2); y1, y2 ∈ R}.
Recall that the reduced equation of the Liapunov-Schmidt, B(x, σ), is de-
fined inN×R, whereN = {exp(Ât)x;x ∈ V } ∈ C1

2π and V = ger{e1, e2, e3, e4} ≡
R4.

(6.12)

G(y1, y2, σ) = B(x, σ)|
x∈Fix(R̂0)

=
[
Fσ(y1, y2)
Kσ(y1, y2)

]
=

=
[
−y1(a1y

2
1 + a2y1y2 + a3y

2
2 − σ) + · · ·

−y2(a1y
2
1 + a2y1y2 + a3y

2
2 − σ) + · · ·

]
.

Notice that Kσ(0, 0) = 0 and
∂Kσ

∂y2
(0, 0) = σ 6= 0, so there exists a

neighborhood V of y1 = 0 and an unique function y2 = ασ(y1) with ασ(0) =
0 such that Kσ(y1, ασ(y1)) = 0. Moreover, we derive directly that α′σ(0) =
α′′σ(0) = 0 and ασ(y1) = O(3). Now we put y2 = ασ(y1) in the first equation
of (6.12) and consider a1 6= 0. So

F̃ (y1, σ) = y3
1 −

σ

a1
y1 +O(4).

From the Singularity Theory we get that, if
σ

a1
> 0 then the equation F̃ = 0

has two non zero solutions, ỹ1 and ŷ1. And the equation (6.12) has two
non zero solutions (ỹ1, ασ(ỹ1)) and (ŷ1, ασ(ŷ1)). Analogously, if a3 6= 0 and
σ

a3
> 0, then equation (6.12) has two non zero solutions.

Given X ∈ Ω0 denote by X∗ its corresponding Birkhoff normal form at
0.

We define U0 = U0
1 ∩ U0

2 where

U0
1 =

{
X ∈ Ω0; the canonical form of DX(0) satisfies ad− bc > 0

}
and
U0

2 =
{
X ∈ Ω0; the coefficients of X∗ satisfies a2

1 + a2
3 6= 0

}
.

In U0 = U0
1 ∩ U0

2 ⊂ Ω0 the equation G(y1, y2, σ) = 0 has two solutions
non zero that tend to zero when σ tends to zero. So, in the original problem
we have two one parameter families of periodic solutions terminating in the
origin (when σ → 0).
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7. Three degrees of freedom

As in previous Section, let Ω1 (respec. Ω2) be the space of the C∞

R1-reversible (respec. R2–reversible) Hamiltonian vector fields with three
degrees of freedom in R6 and fix a coordinate system (x1, y1, x2, y2, x3, y3) ∈
R6. We endow Ω1 and Ω2 with the C∞–topology.

7.1. Case 6:2.

Theorem B: There exists an open set U1 ⊂ Ω1 such that
(a) U1 is determined by the 2–jet of the vector fields.
(b) for each X ∈ U1 there is no symmetric periodic orbit arbitrarily close

to the equilibrium point.
Proof: First we obtain the Belitskii normal form of XH , by considering
h : R6 → R6 until 2nd order, and after we impose that the Belitskii normal
form is R̂1−reversible, i. e, XHR̂1 = −R̂1XH . After that we obtain the
Birkhoff normal form. The new symplectic structure is Ĵ = P t

1JP1, where
P1 is the linear matrix that brings the linear part of the vector field to the
Jordan canonical form. The Birkhoff normal form is obtained by taking a
general Hamiltonian function H : R6 → R of 3rd order, computing the kernel
of AdH2 and imposing that H satisfies H ◦ R̂1 = −H. The Birkhoff normal
form until 2nd order is given by hb(x) = Ĵ · ∇H(x). Finally, the Liapunov-
Schmidt reduction gives us all small R̂1–symmetric periodic solutions by
solving the equation

B(x, σ)|
x∈Fix(R̂1)

= 0,

with
B(x, σ) = (1 + σ)Sx− Â1x− hb(x), x ∈ R6,

and S is the semi-simple part of (unique) S − N−decomposition of Â1.
(See [12]). We observe here that, as in the R4 case, the Birkhoff nor-
mal form is also in the Belitskii normal form and so we can use the ex-
pression above for B(x, σ). In our case, Â1 is semi-simple and Fix(R̂1) =
{(0, 0, x2, 0, x3, 0); , x2, x3 ∈ R}. We recall that the reduced equation of the
Liapunov-Schmidt, B(x, σ), is defined in N×R, where N = {exp(Â1t)x;x ∈
V } ∈ C1

2π and V = ger{e1, e2, e3, e4, e5, e6} ≡ R6.
We derive the following expression

(7.13)

G(x2, x3, σ) = B(x, σ)|
x∈Fix(R̂1)

=

=


b1x

2
2 + x3(b2x2 + b3x3) + · · ·

b4x
2
2 + x3(b5x2 + b6x3) + · · ·

x2(−σ + δ) + · · ·
x3(−σ + δ) + · · ·

 .
Observe that the equation b1x

2
2 + b2x2x3 + b3x

2
3 = 0, generically, has the

solution (x2, x3) = (0, 0) or has a pair of straight lines of solutions given
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by (c1x2 + d1x3)(c2x2 + d2x3) = 0. The equation b4x
2
2 + b5x2x3 + b6x

2
3 = 0

is analogous. We can conclude that if the two first components of (7.13)
has no comom factor of the form cx2 + dx3 then we have just the solution
(x2, x3) = (0, 0) for the two previous equations.

We define the following open sets:

U1
1 =

{
X ∈ Ω1; the canonical form of DX(0) satisfies (2.1)

}
,

U1
2 =

{
X ∈ Ω1; the 2–jet of the two first equations of (7.13)

have no common factor

}
.

Let U1 = U1
1 ∩ U1

2 be an open set in Ω1.
The pair (x2, x3) = (0, 0) is the unique solution of the equation G = 0.

So, near the origin there are no symmetric periodic orbits for this case.

7.2. Case 6:4.

Theorem C: There exists an open set U2 ⊂ Ω2 such that
(a) U2 is determined by the 2–jet of the vector fields.
(b) each X ∈ U2 has one 2–parameter family of periodic solutions γσ,λ

with σ ∈ (−ε, ε) and λ ∈ [0, 2π], such that, for each λ0, limσ→0 γσ,λ0 =
0 and the periods tend to 2π/α when σ → 0.

Proof: First of all we derive the reversible Belitskii normal form of XH until
2nd order. We observe that it coincides with the reversible Birkhoff normal
form and is given by:

(7.14) X∗ =



−b(x3y2 − x2y3)α2

β

a(x3y2 − x2y3)α2

β

(−ax1 − by1)y2 + αy2

x2(ax1 + by1)− x2α

(−ax1 − by1)y3 + αy3

x3(ax1 + by1)− x3α


Finally the Liapunov-Schmidt reduction gives us all small R̂2–symmetric

periodic solutions by solving the equation

B(x, σ)|
x∈Fix(R̂2)

= 0,

with
B(x, σ) = (1 + σ)Sx− Â2x− hb(x), x ∈ R6.
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As before S is the semi-simple part of (unique) S −N−decomposition of
Â2. (See [12]). In our case, Â2 is semi-simple and Fix(R̂2) = {(x1, y1, 0, y2, 0, y3);
x1, y1, y2, y3 ∈ R}. We recall that the reduced equation of the Liapunov-
Schmidt, B(x, σ), is defined in N×R, where N = {exp(Â2t)x;x ∈ V } ∈ C1

2π

and V = ger{e1, e2, e3, e4, e5, e6} ≡ R6.
We derive the following expression

(7.15)

G(x1, y1, y2, y3, σ) = B(x, σ)|
x∈Fix(R̂2)

=

[
Fσ(x1, y1, y2, y3)
Kσ(x1, y1, y2, y3)

]
=

[
y2(σ + a1x1 + a2y1) + · · ·
y3(σ + a1x1 + a2y1) + · · ·

]
.

Notice that (Fσ,Kσ)(0, 0, 0, 0) = 0 and
∣∣∣∣∂(Fσ,Kσ)
∂(y2, y3)

∣∣∣∣
(0,0,0,0)

= σ2 6= 0.

Then, there exist a neighborhood V of (x1, y1) = (0, 0) and an unique func-
tion y2 = ξσ(x1, y1) and y3 = δσ(x1, y1) in V such that (Fσ,Kσ)(x1, y1,

ξσ(x1, y1), δσ(x1, y1)) = (0, 0) and
∂(Fσ,Kσ)
∂(x1, y1)

∣∣∣∣
(0,0,0,0)

= 0. This implies that

the derivative
∂(ξσ, δσ)
∂(x1, y1)

is bounded in a neighborhood of the origin. For each

σ we consider γσ : (x1, y1) 7→(x1, y1, ξσ(x1, y1), δσ(x1, y1)). Now we take the
parametrization (x1, y1) 7→ (aσ, bσ) and γσλ0 : (aσ, bσ) 7→ (aσ, bσ, ξσ(aσ, bσ),
δσ(aσ, bσ)) where λ0 = a/b. Then, there exists a 2–parameter family of pe-
riodic orbits γσλ such that for each λ0 ∈ R, the family of periodic orbits γλ0σ

is a Liapunov family; i. e, limσ→0 γσλ0 = 0 and the period tends to 2π/α.
We define an open set in Ω2:

U2 =
{
X ∈ Ω2; the canonical form of DX(0) satisfies (2.2)

}
.
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