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SUMMARY

The skew normal model (Azzalini, 1985) is being used successfully in various statistical applica-

tions. The main purpose of this paper is to consider local influence analysis, which is a well-recognized

important step of data analysis. In this paper local influence measures are developed via Zhu and

Lee’s (2001) approach, that is closely related to the EM-algorithm. The diagnostic measures derived

under this approach are invariant under reparameterization. Some useful perturbation schemes are

discussed. The Cook’s approach is also calculated and compared with Zhu and Lee’s approach. Re-

sults that are obtained from analysis of a real data example are presented to illustrate the developed

methodologies.
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1 INTRODUCTION

The normal distribution and normal linear regression models have played an essential role in

statistics. However, there is indication that the normality assumption does not work well in certain

situations, being specially sensitive to the presence of extreme (outlying) observations. Alternative

distributions have been considered, some of which are the Student-t, logistic, exponential-power

and contaminated normal, which are particular members of the symmetric distributions. See, for
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example, Fang et al. (1990) and Fang and Zhang (1990). This class of symmetric distributions

contains many distributions with heavier tails than the normal distribution.

Linear symmetrical models have been investigated by various authors. For example, Lange et al.

(1989) present an approach for modeling student-t distributions. Galea et al. (1997) and Liu (2000)

discuss diagnostics methods for multivariate symmetrical linear regression models, while Galea et

al. (2003) present some diagnostic studies for univariate symmetrical models.

Although the class of symmetric distributions represents a better alternative proposal than that

of the normal distribution, it is not appropriate in situations where the sample distribution is asym-

metrical. For example, Hill and Dixon (1982) discuss and present examples with asymmetrical

structures.

From a practical viewpoint, many authors have used transformation of variables to achieve

normality, and in many situations their results are satisfactory. However, Azzalini and Capitanio

(1999) have pointed out some problems. They point out, among other problems, that the transformed

variables are more difficult to deal with because of interpretation problems, specially when each

variable is transformed using a different function. In many situations it is not possible to go back

to the original parameterization.

A parametric family of asymmetric distributions analytically tractable and able to accommodate

practical values of skewness and kurtosis and include the normal distribution as a special case was

introduced by Azzalini (1985, 1986) and is known and the shew-normal distribution.

Extensions, further properties and applications of the skew-normal distribution can also be found

in Genton (2004).

Based on the work by Azzalini (1985), many authors have considered the skew-normal distri-

butions and applied it in different areas such as economics, finance, oceanography, engineering and

biomedical sciences, among other. Additional results on skew-normal distributions and applications

can be found in Liseo and Loperfido (2003), Genton et al. (2001), Capitanio et al. (2003).

Recently, Azzalini (2005) presented a discussion on skew-normal distributions with applications

in regression models; Bauwens and Laurent (2005) consider a study on autocorrelated regression

models; Vilca-Labra and Leiva-Sánchez (2005) consider an asymmetric extension of the Birnbaum-

Saunders distribution. In the context of the linear model, Lachos et al. (2008) consider an application

of diagnostics in the linear mixed models. Also, the same authors consider a study with the skew-

normal distribution proposed by Sahu et al. (2003).

The advantages of Sahu’s et al. (2003) skew-normal distribution is that it facilitates the imple-

mentation of algorithms that are used to obtain the maximum likelihood estimators (MLE) and the

variance of the distribution is finite.

After the model is fitted, the influence diagnostic is an important step in the analysis of a data

set since it can indicate bad model fitting or the presence of influential observations. This kind
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of analysis has received a great deal of attention due to the paper by Cook (1977). Typically, the

analysis is based on the case-weight perturbation scheme, where the case (observation) is either

deleted or retained. This approach allows the assessment of the individual impact cases in the

estimation process (see, for example, Cook and Weisberg, 1982). However, deletion can be viewed

as one of the many ways of perturbing a model formulation. In Cook (1986) it is proposed a method

of assessing the local influence of minor perturbations of a statistical model. Since then many works

has been written with dealing with local influence studies.

Recently, Lachos et al. (2007) apply the local influence method to the Grubbs’s model; Lachos et

al.(2008) present a study of inference and local influence in skew-normal null intercept measurement

error models.

However, no application of local influence has been considered for the skew-normal regression

models. Thus, the main objective of this paper is to apply the approach of local influence to

the univariate regression models under the Sahu’s et al. (2003) skew-normal distribution. Several

perturbation schemes are considered. With this we hope to expand some results in Cook (1986) for

normal regression models.

Now, we present a small review of the univariate Sahu’s et al. (2003) skew-normal distribu-

tion. This new class of distributions is obtained by using transformation and conditioning. The

developments obtained are applied in a Bayesian regression model.

To describe this class, let φ and Φ be the probability density function (pdf) and the cumulative

distribution function (cdf), respectively of the N(0, 1). We say that a random variable Y has a

skew-normal distribution with location parameter µ, scale parameter σ2 and skewness parameter δ,

if the pdf of Y is given by

fY (y|µ, σ2, δ) =
2√

σ2 + δ2
φ

(
y − µ√
σ2 + δ2

)
Φ

(
δ

σ

y − µ√
σ2 + δ2

)
. (1.1)

We describe this by using the notation Y ∼ SN(µ, σ2, δ). For δ = 0 the pdf in (.) corresponds

to the normal distributions. The mean and variance of SN(µ, σ2, δ) are given by

E(Yj) = µ + cδ and V ar(Yj) = σ2 + (1− c2)δ2, (1.2)

where c =
√

2/π. Alternatively, it is possible to describe this distribution by using the stochastic

representation given by Y
d= δ|X0|+ X1, where X0 ∼ N(0, 1) and is independent of X1 ∼ N(µ, σ2).

The notation ” d=” means that both variables have the same distribution.

If Y ∼ SN(µ, σ2, δ), the square of the Mahalanobis distance D, is such that

D =
(Y − µ)2

σ2 + δ2
∼ χ2

1, (1.3)

that is, follows a chi-square distribution with 1 degrees of freedom.
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For skew-normal distribution the Fisher information matrix for θ = (µ, σ2, δ)>, can be written

as

IF (θ) = [Iγψ] , γ, ψ = µ, σ2, δ. (1.4)

where the components are given by

Iµµ =
1

σ2 + δ2

[
1 +

δ2

σ2
a02(δ/σ)

]
,

Iµσ2 =
δ

(σ2 + δ2)3/2

[
c

(σ2 + δ2)1/2
− 2σ2 + δ2

2σ3

(
a01(δ/σ)− δ

σ
a12(δ/σ)− δ2

σ2
a21(δ/σ)

)]
,

Iµδ =
1

(σ2 + δ2)3/2

[
2c

δ2

(σ2 + δ2)1/2
− δ

(
δ

σ
a21(δ/σ) + a12(δ/σ)

)
+ σa01(δ/σ)

]
,

Iσ2σ2 =
1

(σ2 + δ2)2

[
1
2

+
(2σ2 + δ2)2δ2

4σ6
a22(δ/σ)

]
,

Iσ2δ =
δ

(σ2 + δ2)2

[
1− (2σ2 + δ2)

2σ2
a22(δ/σ)

]
,

Iδδ =
1

(σ2 + δ2)2

[
2δ2 +

σ4

δ2
a22(δ/σ)

]
,

where c is as in (.) and ahk(x) = E[ZhW k
Φ(xZ)]. The values of the a01(·) and a21(·) are given by

a01(x) = c(x2 + 1)−1/2 and a21(x) = c(x2 + 1)−3/2.

The other values a12(·), a22(·) are obtained by using the approximation given in Rodŕıguez (2005).

2 THE SKEW-NORMAL LINEAR REGRESSION

MODEL

In this section we present the linear regression model under skew-normal distribution, which is an

extension of the ordinary normal regression model. In this paper we consider the regression models

under Sahu’s et al. (2003) skew-normal distributions. Hence, we consider that relating response and

covariates we have the model

Yj = β1 +
p∑

i=2

βixji + δzj + εj , (2.1)

where εj ∼ N(0, σ2) and zj ∼ HN1(0, 1), j = 1, . . . , n all independent, where HN1(0, 1) denotes the

univariate standardized half-normal distribution. By Sahu et al.(2003), it follows that δzj + εj ∼
SN(0, σ2; δ), j = 1, ...n. From the properties of the Skew-normal distributions, it follows that

Yj ∼ SN(x>j β, σ2, δ). Thus, we have n independent observed one-dimensional response variables Yj

with Yj ∼ SN(x>j β, σ2, δ), where x>j = (1, xj2, ..., xjp) and β = (β1, β2, ..., βp)>. Thus, the density
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function of Yj is given by

fYj
(yj |θ) =

2√
σ2 + δ2

φ

(
yj − x>j β√

σ2 + δ2

)
Φ

(
δ

σ

yj − x>j β√
σ2 + δ2

)
(2.2)

where φ and Φ are as in Section 1, that is, the density function and the cumulative distribution

function, respectively, of the N(0, 1) and θ = (β>, σ2, δ). The mean and variance of Yj are given by

E(Yj) = x>j β + cδ and V ar(Yj) = σ2 + (1− c2)δ2, (2.3)

where c is as (1.2). The log-likelihood function for θ given the observed sample Y1, ..., Yn is given

by l(θ) =
∑n

j=1 lj(θ), where

lj(θ) = log 2− 1
2

log(2π)− 1
2

log(σ2 + δ2)− 1
2
Aj + log Φ(Bj), (2.4)

with Aj = 1
σ2+δ2 (yj − X>

j β)2 and Bj = δ
σ
√

σ2+δ2 (yj − X>
j β). The log-likelihood above may be

written as

l(θ) = n log 2− n

2
log(2π)− n

2
log(σ2 + δ2)− 1

2(σ2 + δ2)
Q(β) +

n∑

j=1

log Φ(Bj), (2.5)

where Q(β) = (Y −Xβ)>(Y −Xβ), X = [x1, . . . ,xn]> and Bj is as in (2.4).

The score function for θ is given by

U(θ) =
∂`(θ)
∂θ

= (U(β)>, U(σ2), U(δ))>, (2.6)

where the elements of the U(θ) are given by

U(β) =
1

σ2 + δ2
X>(Y −Xβ)− δ

σ(σ2 + δ2)1/2
X>a, (2.7)

U(σ2) = −1
2

n

σ2 + δ2
+

1
2(σ2 + δ2)2

Q(β)− 1
2

2σ2 + δ2

σ2(σ2 + δ2)3/2

δ

σ
(Y −Xβ)>a, (2.8)

U(δ) = − nδ

σ2 + δ2
+

δ

(σ2 + δ2)2
Q(β) +

σ

(σ2 + δ2)3/2
(Y −Xβ)>a, (2.9)

where Q(β) is as in (2.5) and a = (a1, ..., an)>, with aj = WΦ(Bj) = φ(Bj)/Φ(Bj), j = 1, ..., n. A

joint iterative procedure to obtain the maximum likelihood estimates of β, σ2 and δ is given by

β(m+1) = (X>X)−1X>[Y − δ(m)

σ(m)
(σ2(m) + δ2(m))1/2a(θ(m))] (2.10)

and

(σ2(m+1), δ(m+1))> = argmaxσ2,δ

[
l(β(m+1), σ2, δ)

]
, (2.11)

for m = 0, 1, 2.... To perform the maximization with the last equation above we consider a multi-

variate secant method (see Dennis and Schnabel, 1996), so that the score functions used with this

maximization algorithm are given by (2.8) and (2.9). Initial values β(0), σ2(0) and δ(0) are required

to the procedure given by (2.10) and (2.11). Alternatively, since the parametrization of Sahu et al.
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(2003) is equivalent to the parametrization used in Azzalini and Capitanio (1999), then we also can

use the EM algorithm in this model.

2.1 The observed information matrix

Considering θ = (β>, σ2, δ)>, the observed information matrix is given by

L = −
[

∂2l(θ)
∂γ∂ψ>

]
, γ,ψ = β, σ2, δ, (2.12)

where

∂2l(θ)

∂β∂β>
= − 1

σ2 + δ2
X>X +

δ2

σ2(σ2 + δ2)
X>D(b)X

∂2l(θ)

∂β∂σ2
=

1

(σ2 + δ2)3/2

[
−X>(Y −Xβ)

(σ2 + δ2)1/2
+

δ(2σ2 + δ2)

2σ3

(
δ

σ

X>D(b)(Y −Xβ)

(σ2 + δ2)1/2
+ X>a

)]

∂2l(θ)

∂β∂δ
= − 1

(σ2 + δ2)3/2
X>

[
2δ

(σ2 + δ2)1/2
(Y −Xβ) + σa +

δ

(σ2 + δ2)1/2
D(b)(Y −Xβ)

]

∂2l(θ)

∂σ2∂σ2
=

1

(σ2 + δ2)2

[
n

2
− Q(β)

σ2 + δ2
+

δ(8σ4 + 8σ2δ2 + 3δ4)

4σ5(σ2 + δ2)1/2
(Y −Xβ)>a +

δ2(2σ2 + δ2)2

4σ6(σ2 + δ2)
Qb(β)

]

∂2l(θ)

∂σ2∂δ
=

1

(σ2 + δ2)2

[
nδ − 2δ

σ2 + δ2
Q(β) +

δ2 − 2σ2

2σ(σ2 + δ2)1/2
(Y −Xβ)>a− δ(2σ2 + δ2)

2σ2(σ2 + δ2)
Qb(β)

]

∂2l(θ)

∂δ2
=

1

(σ2 + δ2)2

[
n(δ2 − σ2) +

σ2 − 3δ2

σ2 + δ2
Q(β)− 3σδ

(σ2 + δ2)1/2
(Y −Xβ)>a +

σ2

σ2 + δ2
Qb(β)

]

where a is as in (2.6), Qb(β) = (Y − Xβ)>D(b)(Y − Xβ) and b> = (b1, · · · , bn), with bj =

W ′
Φ(Bj) = −WΦ(Bj)(Bj + WΦ(Bj)). In particular, for the normal model, the observed information

matrix for β and σ2 coincides with the expression given in Cook (1986).

Furthermore, from (2.6) and after some algebraic manipulations it follows that the information

matrix denoted by IF (θ) is given by

IF (θ) =




Iββ Iβσ2 Iβδ

. Iσ2σ2 Iσ2δ

. . Iδδ


 , (2.13)

where the components are given by
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Iββ =
1

σ2 + δ2

[
1 +

δ2

σ2
a02(δ/σ)

]
X>X,

Iβσ2 =
δ

(σ2 + δ2)3/2

[
c

(σ2 + δ2)1/2
− 2σ2 + δ2

2σ3

(
a01(δ/σ)− δ

σ
a12(δ/σ)− δ2

σ2
a21(δ/σ)

)]
X,

Iβδ
=

σ

(σ2 + δ2)3/2

[
2c

δ2

(σ2 + δ2)1/2
− δ

(
δ

σ
a21(δ/σ) + a12(δ/σ)

)
+ σa01(δ/σ)

]
X,

Iσ2σ2 =
n

(σ2 + δ2)2

[
1
2

+
(2σ2 + δ2)2δ2

4σ6
a22(δ/σ)

]
,

Iσ2δ =
nδ

(σ2 + δ2)2

[
1− (2σ2 + δ2)

2σ2
a22(δ/σ)

]
,

Iδδ =
n

(σ2 + δ2)2

[
2δ2 + σ2a22(δ/σ)

]
,

with c =
√

2/π and ahk(.) are as in (1.4).

In particular under the normal distribution, δ = 0, so that the information matrix for β and σ2

reduces to the matrix

IF (β, σ2) =




1
σ2 X>X 0

0 n
2σ4


 , (2.14)

which has the same form as in Cook (1986).

3 Local influence diagnostics

Case deletion is a popular way to asses the individual impact of cases on the estimation process.

This approach can be regarded as a global measure of influence. An alternative methodology for the

identification of groups of cases which may require some concern is local influence which is based on

differential geometry instead of complete deletion. It employs a differential comparison of parameter

estimates before and after perturbation to data values or model assumptions. This first approach

was proposed by Cook (1986) there the likelihood displacement is used as the metric to assess the

local influence. Recently, inspired by the basic idea of the EM-algorithm, Zhu and Lee (2001) pro-

posed a unified method for local influence analysis of general statistical models with missing data

on the basis of the Q- displacement function that we define further on.

Cook’s approach:

Let l(θ) denote the log-likelihood function given in (2.5), ω, q × 1, the perturbation introduced

in the model, where ω ∈ Ω ⊆ Rq, Ω is an open subset and l(θ|ω) the log-likelihood function

corresponding to the perturbed data or model. Let θ̂ and θ̂ω denote the maximum likelihood

estimates under the model defined by l(θ) and l(θ|ω), respectively, and assume that there is a ω0 ∈
Ω representing no perturbation, such that l(θ)=l(θ|ω0) for all θ. The influence of ω can be assessed
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by the log-likelihood displacement

LD(ω) = 2[l(θ̂)− l(θ̂ω)], (3.1)

where θ̂ = θ̂ω0 . Because evaluation of LD(ω) for all ω is practically unfeasible, Cook (1986)

proposed to study the local behavior of LD(ω) around ω0, which can be performed by evaluating

the normal curvature Cl of LD(ω) at ω0 in the direction of some unit vector l.

Cook (1986) showed that the normal curvature in the direction l takes the form

Cl = 2|l>∆>L̈
−1

∆l|, (3.2)

where ‖l‖ = 1, L̈ = −∂2L(θ)
∂θ∂θ>

is a (p + 2)× (p + 2) observed information matrix, and

∆ =
∂2L(θ/ω)
∂θ∂ω>

(3.3)

are both evaluated at θ = θ̂ and ω = ω0.

Let lmax be the direction of the maximum normal curvature (Cmax), which is the perturbation

that produces the greatest local change in θ̂. The most influential elements of the data may be

identified by looking at the components of the vector lmax, which are relatively large. Furthermore,

lmax is just the eigenvector corresponding to the largest eigenvalue, (Cmax), of ∆>L̈
−1

∆. Other

important direction is l = ej , denoting that the element of the j-th position is one. In that case,

the normal curvature, called the total local influence of individual j, is given by Cj = 2∆>
j L̈

−1
∆j ,

where ∆j is the j-th column of ∆, j = 1, ..., n. We use lmax and Cmax as diagnostics for local

influence. When a subset θ1 from the partition θ = (θ>1 , θ>2 )> is of interest, influence diagnostics

can be based on (Cook, 1986) ∆>(L̈
−1 −B22)∆, with B22 = diag(0, L̈

−1

22 ) and L̈22 is determined

by the partition of L̈ accordingly with the partition of θ.

Zhu and Lee’s approach:

Consider a perturbation vector w varying in an open region Ω ∈ Rq. Let lc(θ,w|yc), θ ∈ Rp be

the complete-data log-likelihood of the perturbed model. We assume that there is a w0 such that

lc(θ,w0|Yc) = lc(θ|Yc) for all θ. Let θ̂(w) denotes the maximum θ of the function Q(θ, w|θ̂) =

E[lc(θ, w|Yc)|y, θ̂]. The graph of influence is defined as α(w) = (w>, fQ(w))>, where fQ(w) is the

Q-displacement function defined as

fQ(w) = 2
[
Q

(
θ̂|θ̂

)
−Q

(
θ̂(w)|θ̂

)]
.

Following the approach developed in Cook (1986) and Zhu and Lee (2001), the normal curvature

CfQ,d, of α(w) at w0 in the direction of some unit vector d can be used to summarize the local

behavior of the Q-displacement function. It can be shown that (see, Zhu and Lee, 2001)

CfQ,d = −2d>Q̈w0d = 2d>∆>
w0

{
−Q̈θ(θ̂)

}−1

∆w0d
>
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where Q̈θ(θ̂) =
∂2Q(θ|θ̂)
∂θ∂θ>

∣∣∣∣
θ=θ̂

and ∆w =
∂2Q(θ, w|θ̂)

∂θ∂w>

∣∣∣∣
θ=θ̂(w)

.

As in Cook (1986), the expression −Q̈w0 is the fundamental equation for detecting influential

observations. A clear picture of −Q̈w0 (a symmetric matrix), is given by its spectral decomposition

−2Q̈wo =
n∑

k=1

λkeke′k,

where (λ1, e1), . . . , (λn, en) are the eigenvalue-eigenvector pairs of the matrix −2Q̈wo
with λ1 ≥

. . . ≥ λq, λq+1 = . . . = λn = 0 and e1, . . . , en are elements of the associated orthonormal basis.

Lesaffre and Verbeke (1998), Poon and Poon (1999) and Zhu and Lee (2001) proposed to inspect

all eigenvectors corresponding to nonzero eigenvalues for more revealing information but it can be

computationally intensive for large n. Following Zhu and Lee (2001) and Lu and Song (2006), we

consider an aggregated contribution vector of all eigenvectors corresponding to nonzero eigenvalues.

Starting with some notation, let λ̃k = λk/(λ1 + . . . + λq) and e2
k = (e2

k1, . . . , e
2
kn), and

M(0) =
q∑

k=1

λ̃ke2
k.

Hence, the assessment of influential cases is based on {M(0)l, l = 1, . . . , n} and one can obtain

M(0)l via BfQ,ul
= −2u>l Q̈w0ul/tr[−2Q̈w0 ], where ul is a column vector in Rn with the l-th entry

equal to one and all other entries zero. Refer to Zhu and Lee (2001) for other theoretical proper-

ties of BfQ,ul
, such as invariance under reparameterization of θ. Additionally, Lee and Xu (2004)

propose to use 1/n + c∗SM(0) as a bench-mark to regard the l-th case as influential, where c∗ is

an arbitrary constant (depending on the real application) and SM(0) is the standard deviation of

{M(0)l, l = 1, . . . , n}.

3.1 Cook’s approach

3.1.1 Case weight Perturbation

Consider the vector w = (w1, ..., wn)> of case-weights, so that the perturbed log-likelihood

function is given by

L(θ/w) =
n∑

j=1

wj lj(θ),

where lj(θ) is as in (2.4). Here, we are interested in pinpointing influential data points among all

observations. This perturbation scheme is the most common perturbation scheme in the literature.

In this case, the vector of no perturbations is given by w0 = 1n, where 1n is an n × 1 vector with

all its elements equal to one. Under this perturbation scheme the matrix ∆ defined in (3.3) is a
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(p + 2)× n matrix and given by ∆ = (∆>(β),∆>(σ2),∆>(δ))>, where

∆(β) =
1

σ̃2 + δ̃2
X>D(e)− δ̃

σ̃(σ̃2 + δ̃2)1/2
X>D(ã),

∆(σ2) = − 1

2(σ̃2 + δ̃2)
1>n +

1

2(σ̃2 + δ̃2)2
e>D(e)− δ̃(2σ̃2 + δ̃2)

2σ̃3(σ̃2 + δ̃)3/2
e>D(ã)

∆(δ) = − δ̃

σ̃2 + δ̃2
1>n +

δ̃

(σ̃2 + δ̃2)2
e>D(e) +

σ̃

(σ̃2 + δ̃2)3/2
e>D(ã),

with a as in (2.6) and

e = (e1, · · · , en)> = Y −Xβ̃ (3.4)

is the vector of residual and ej = Yj − x>j β̃ denotes the component of the vector e.

Now, letting β∗ = (β2, · · · , βp)> = 0 in (2.1), we have the skew normal model SN(µ, σ2, δ), with

µ = β1, defined in Sahu et al. (2003). In this case the matrix ∆ = (∆>(µ),∆>(σ2),∆>(δ))>, is

given by

∆(µ) =
e>

σ̃2 + δ̃2
− δ̃

σ̃(σ̃2 + δ̃2)1/2
ã>,

∆(σ2) = − 1>n
2(σ̃2 + δ̃2)

+
1

2(σ̃2 + δ̃2)2
e>D(e)− δ̃(2σ̃2 + δ̃2)

2σ̃3(σ̃2 + δ̃)3/2
e>D(ã),

∆(δ) = − δ̃

σ̃2 + δ̃2
1>n +

δ̃

(σ̃2 + δ̃2)2
e>D(e) +

σ̃

(σ̃2 + δ̃2)3/2
e>D(ã),

where

e = (e1, · · · , en)> and ã = (ã1, · · · , ãn)>, (3.5)

with ej = yj − µ̃ and ãj = WΦ

(
δ̃
σ̃

yj−µ̃

(δ̃2+σ̃2)1/2

)
.

3.1.2 Response variable perturbation

One way of perturbing the response variable, when our interest is to detect the sensitivity of

the model when this kind of perturbation happens, the perturbation is introduced by considering

Ywj = Yj + Sjwj . The scale factor Sj can be taken as S = Sy, where Sy denotes for example, the

sample standard deviation of Y1, ..., Yn. The perturbed log-likelihood function is given by L(θ/w) =
n∑

j=1

lj(θ/wj), where lj(θ/wj) is as given in (2.4), switching Ywj with Yj and w = (w1, ..., wn)>.

Under this perturbation scheme the vector w0 is given by w0 = 0 and the (p + 2) × n matrix

∆ = (∆>(β),∆>(σ2),∆>(δ))>, can be expressed as

∆ =
Sy

σ̃2 + δ̃2




X>

1

σ̃2+δ̃2 e>

2δ̃

σ̃2+δ̃2 e>


− Sy




a2
0X

>D(b̃)

a0σ2

[
ã> + a0e>D(b̃)

]

−a0δ

[
ã> + a0e>D(b̃)

]


 , (3.6)
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where

a0 =
δ̃

σ̃(σ̃2 + δ̃2)1/2
, a0σ2 =

δ̃(2σ̃2 + δ̃2)

2σ̃3(σ̃2 + δ̃2)3/2
and a0δ =

σ̃

(σ̃2 + δ̃2)3/2
.

In the spacial case, when Yj ∼ SN(µ, σ2, δ), with µ = β1 and β∗ = 0, the matrix ∆ =

(∆>(µ),∆>(σ2),∆>(δ))>, is given by

∆ =
Sy

σ̃2 + δ̃2




1>n
1

σ̃2+δ̃2 e>

2δ̃

σ̃2+δ̃2 e>


− Sy




a2
0b̃
>

a0σ2

[
ã> + a0e>D(b̃)

]

−a0δ

[
ã> + a0e>D(b̃)

]


 ,

where e and ã are as in (3.5), with β∗ = 0 and b̃ = (̃b1, · · · , b̃n)>, with

b̃j = −WΦ

(
δ̃

σ̃

yj − µ̃

(δ̃2 + σ̃2)1/2

)[
δ̃

σ̃

yj − µ̃

(δ̃2 + σ̃2)1/2
+ WΦ

(
δ̃

σ̃

yj − µ̃

(δ̃2 + σ̃2)1/2

)]
, j = 1, ..., n.

3.1.3 Perturbation of the explanatory variable

If we are interested in investigating the sensitivity of minor perturbation in the explanatory

variable, we can define the following perturbation scheme for the explanatory variable in the same

way that was defined in Cook (1986) or Galea et al. (2003), namely

xtw = xt + Stw, t = 1, ..., p.

Here, xt is the t-th column of the matrix X, wj and denotes the n × 1 perturbation vector

and St is a scale factor that can be considered as the sample standard deviation of the elements of

xt = (x1t, ..., xnt)>. The log-likelihood function for the perturbed model L(θ/w) is as defined in

(2.5), switching xtw with xt. The vector w0 representing no perturbation is given by w0 = 0. The

(p + 2)× n matrix ∆ defined in (3.3) is given by ∆ = (∆>(β),∆(σ2),∆(δ))> with

∆ =
St

σ̃2 + δ̃2




epte> − β̃tX
>

− β̃t

σ̃2+δ̃2 e>

− 2δ̃β̃t

σ̃2+δ̃2 e>


 + St




a2
0β̃tX

>D(b̃)− a0eptã>

a0σ2 β̃t

[
ã> + a0e>D(b̃)

]

−a0δβ̃t

[
ã> + a0e>D(b̃)

]


 , (3.7)

where ep(t) is a p× 1 vector with 1 in the t-th position and zeros elsewhere.

3.1.4 Generalized leverage

Other concept that has been useful in the development of diagnostics in linear regression is the

leverage. The main idea behind the concept of leverage is that of evaluating the influence of yi on its

own predicted value (see, Emerson et al., 1989; Wei et al., 1998). This influence may be represented

by the derivative ∂ŷi/∂yi. Under normal linear case, ∂ŷi/∂yi = hii that is the i-th principal diagonal

element of the projection matrix H = X(X>X)−1X>.
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In the linear regression models under the skew-normal distribution, the expectation of the Y

is given by E(Y ) = µ(θ) = Xβ + cδ1n, then Ŷ = µ(θ̂) is the predicted response vector. The

generalized leverage proposed by Wei et al. (1998) is defined as

GL(θ̂) = Dθ(−L̈(θ))−1L̈θY, (3.8)

where −L̈ is observed information matrix given in (2.12), Dθ =
∂µ

∂θ>
and L̈θY

=
∂2LY(θ)
∂θ∂Y> . In the

skew-normal linear case, we have that

Dθ = [X, 0n, c1n, ] (3.9)

and

L̈θY =
1

σ2 + δ2




X>
(
− δ2

σ2 D(b) + In
)

− δ(2σ2+δ2)
2σ3(σ2+δ2)1/2

(
a> + δ2

σ(σ2+δ2)1/2 (Y −Xβ)>D(b)
)

+ 1
σ2+δ2 (Y −Xβ)>

σ
(σ2+δ2)1/2

(
a> + δ

σ2(σ2+δ2)1/2 (Y −Xβ)>D(b) + 2δ
(σ2+δ2)2 (Y −Xβ)>

)


 ,

where a and b are as in (2.6) and (2.12), respectively.
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3.2 Zhu and Lee’s approach

The model (2.1) can be obtained by stochastic representation

Yj |uj ∼ N(x>j β + δuj , σ
2)

uj ∼ HN(0, 1).
(3.10)

It follows that

uj |Yj ∼ HN

(
δ

σ2 + δ2
(yj − x>j β),

σ2

σ2 + δ2

)
. (3.11)

Now, let y = (y1, . . . , yn)>, u = (u1, . . . , un)> and treating u as missing data, it follows that

the complete log-likelihood function associated with yc = (y>,u>)> is given by

lc(θ|yc) ∝ −n

2
log σ2 − 1

2σ2
(y −Xβ)>(y −Xβ)− δ

σ2
u>(y −Xβ) +

δ2

2σ2

n∑

j=1

u2
j .

Letting ûj = E[Uj |θ = θ̂, yj ] and û2
j = E[U2

j |θ = θ̂, yj ], we obtain, using the moments of the

truncated normal distribution, it follows that

ûj =
δ̂

σ̂2 + δ̂2
ej +

σ̂

(σ̂2 + δ̂2)1/2
WΦ1

(
δ̂ej

σ̂
√

σ̂2 + δ̂2

)

û2
j =

σ̂2

σ̂2 + δ̂2
+

δ̂2

(σ̂2 + δ̂2)2
e2
j +

3δ̂σ̂

(σ̂2 + δ̂2)3/2
WΦ1

(
δ̂ej

σ̂
√

σ̂2 + δ̂2

)
ei (3.12)

where ej = yj − x>j β̂ and WΦ1(u) = φ1(u)/Φ1(u). It follows that the conditional expectation of the

complete log-likelihood function has the form

Q(θ|θ̂) = E[lc(θ|yc)|y, θ̂]

∝ −n

2
log σ2 − 1

2σ2
(y −Xβ)>(y −Xβ)− δ

σ2
û>(y −Xβ) +

δ2

2σ2

n∑

j=1

û2
j .

(3.13)

Thus, we have the following EM-algorithm:

E-step: Given θ = θ̂, compute ûj , û2
j for j = 1, .., n using (3.12).

M-step: Update θ̂ by maximizing Q(θ|θ̂) over θ, which leads to the following closed form expressions

β̂ = (X>X)−1X>y − δ̂(X>X)−1X>û, (3.14)

σ̂2 =
1
n

[
e>e− 2δ̂û>e + δ̂2

n∑

j=1

û2
j

]
,

δ̂ =
û>e

∑n
j=1 û2

j

,

where e = y −Xβ̂ and û = (û1, .., ûn)>. When δ = 0, the M-step equations reduces to the equa-

tions assuming the symmetric normal distribution. Note that if β̂N and σ̂2
N denote the maximum

likelihood estimates of β and σ2, respectively under normal distribution, then

β̂ = β̂N − δ̂(X>X)−1X>û and σ̂2 = σ̂2
N − δ̂

n
(2e>N (I−H)u + δ̂u>Hu + nδ̂ û2), (3.15)
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where eN = y −Xβ̂N , H = X(X>X)−1X> and û2 = 1
n

∑n
j=1 û2

j .

Now, to obtain the diagnostic measures for local influence of a particular perturbation scheme,

it is necessary to compute Q̈θ(θ̂). So, after some algebraic manipulations it follows that that the

matrix Q̈θ(θ̂) can be written as

Q̈θ(θ̂) = −

 Q̈(β̂, σ̂2) Q̈12(θ̂)

Q̈
>
12(θ̂) n

σ̂2
û2


 , (3.16)

Q̈(β̂, σ̂2) =




1

σ̂2
X>X 0

0 n

σ̂4


 and Q̈12(θ̂) =




1

σ̂2
X>û

0


 .

3.2.1 Case weight Perturbation

Let w = (w1, . . . , wn)> a n × 1 dimensional vector with w0 = (1, . . . , 1)>, then the expected

value of the perturbed complete-data log-likelihood function (perturbed Q-function), can be written

as

Q(θ, w|θ̂) = E[`c(θ,w|yc)] =
n∑

j=1

ωiE[`i(θ|yc)] =
n∑

j=1

wiQi(θ|θ̂).

In this case, the matrix ∆w0 is given by

∆w0 =
1

σ̂2




X>D(e)
1

2σ̂2
e>D(e)− 1

2
1>n

0


 +

1

σ̂2




−δ̂X>D(û)

− δ̂

σ̂2
e>D(û) +

δ̂2

2σ̂2
û2
>

e>D(û)− δ̂û2
>




, (3.17)

û2 = (û2
1, ..., û

2
n)>. Note that when δ = 0, the matrix ∆w0 reduces to normal distribution case ( for

β and σ2, see for instance, Cook, 1986).

3.2.2 Perturbation of the response variable

A perturbation of the response variables Y = (Y1, . . . , Yn)> is introduced by replacing Yi by

Yiw = Yi + wiSy, where Sy is the standard deviation of Y. The perturbed Q-function is given by

Q(θ, w|θ̂), switching Ywj with Yj and w = (w1, ..., wn)>. Under this perturbation scheme the vector

w0 is given by w0 = 0 and the matrix ∆w0 is given by

∆w0 =
Sy

σ̂2




X>

1

σ̂2
e>

0


 +

Sy

σ̂2




0

− δ̂

σ̂2
û>

û>




. (3.18)
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3.2.3 Perturbation of the explanatory variable

In this case we are interested in perturbing a specific explanatory variable. Under this condition

we have the following perturbed explanatory variable xtw = xt + Stw, t = 1, . . . , p, where St is

the standard deviation of the explanatory variable xt. In this case, w0 = 0 and the perturbed

Q-function is given by Q(θ, w|θ̂), switching xtw with xt. The (p + 2)× n matrix ∆w0 is given by

∆w0 =
St

σ̂2




ep(t)e> − β̂tX>

− β̂t

σ̂2
e>

0




+
St

σ̂2




−δ̂ep(t)û>

β̂t

σ̂2
δ̂û>

−β̂tû>




. (3.19)

In the equation above, ep(t) is, as before, a p × 1 vector with 1 in the t-th position and zeros

elsewhere.

3.2.4 Generalized Leverage

According with Wei, Fu e Fung (1998) as well as in the work of Zhu and Lee (2001), Salgado

(2006) defines the generalized leverage matrix for models with incomplete data by

GL(θ̂) = Dθ[−Q̈θ(θ̂)]−1Q̈θ,y(θ̂), (3.20)

where Dθ =
∂µ

∂θ>
, Q̈θ,y(θ̂) =

∂2Qθ(θ̂|θ̂)
∂θ∂y>

, Q̈θ(θ̂) =
∂2Q(θ|θ̂)
∂θ∂θ>

, where θ = (β>, σ2, δ)>.

The matrix Dθ is as in (3.9). The matrix Q̈θ,y
(θ̂) is well as in (3.18) without the term Sy and

Q̈θ(θ̂) is given in the Section 3.16.

Salgado (2006) propose to use c0p0/n, p0 =
∑n

j=1 GLjj(θ̂) = tr(GL(θ̂)), as a bench-mark to

regard the l-th case as leverage point, where c0 is a selected constant (depending on the real appli-

cation).

4 APPLICATION

A data set about life’s quality of women with breast cancer realized by Center of Integral

Attention to the Woman’s Health (State University from Campinas, Brazil) was adjusted to verify

the application of the skew normal regression model and the diagnostics analysis. The index of life’s

quality was obtained trough of a 36 items questionnaire (SF-36), largely utilized in sources of the

health’s area. The same index is composed by two components, a physical and a mental. Conde

et al. (2005) studied this data set, evaluating the associated factors to life’s quality of women with

breast cancer. The histogram of the index pcs is plotted in the Figure 2(a), showing a moderate

asymmetry.
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Figure 1: Data set about Life’s Quality. Adjust under normal linear model. (a) Histogram of the

residuals (b) Simulated envelope.

The regression model was built using as dependent variable the the physical component summary

of the index of life’s quality (pcs) and, as explanatory variables, the indicator variable dizziness and

the body mass index (bmi) of the individual. So, it has the skew normal linear regression model

pcsi = β0 + β1 ∗ dizzinessi + β2 ∗ bmii + ei, i = 1, . . . , 97,

ei ∼ SN(0, σ2, λ). (4.1)

After adjusting the model, the estimated parameters, jointly with with their corresponding esti-

mated standard errors (calculated using the observed information matrix), are described in the Table

1. The residual in the skew normal linear regression model is calculated by using yi − x>i β −
√

2
π δ.

Table 1: MLE of the data set of life’s quality (estimated standard error asymptotically in parentheses)

for normal linear and skew normal linear models.

Modelo β̂0 β̂1 β̂2 σ̂2 δ̂ `(θ)

SN 68.57 (4.64) -7.62(1.91) -0.35(0.17) 25.47(9.35) -4.65(1.09) -346.20

Normal 61.29(4.75) -7.92(1.91) -0.43(0.16) 79.13(11.73) - -348.14

The simulated envelope graphic built to validate the skew normal regression model, using the

stochastic representation given in (1.3), does not indicates points outside the confidence bounds

(Figure 2b). On the other hand, the simulated envelope for the normal linear regression model

(Figure 1b) indicate various points outside.
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According to Table 1, the estimates of β in the two models are similar. On the other hand,

the estimates of the scale σ2 parameters are different. The likelihood-ratio test (LR) for H0 : δ =

0 × H1 : δ 6= 0 is LR = 2(`(θ̂) − `(θ̂0)) = 3.88, with a p-value of 0.05. Or rather, a skew normal

model is more suitable than normal linear model.

The Cook and the Zhu and Lee’s approaches present similar results in the local influence analysis,

although the last presents more influence points. Both methodologies shows as influential under the

perturbation schemes the points on the upper part of the data (2, 6, 28, 52, 55 and 65). Another

way, the methodologies are similar in presenting the points 15, 21 and 23 as leverages (this last only

the Zhu and Lee’s approach), every on the outside of the data mass.
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Figure 2: Data set about Life’s Quality. Adjust under skew normal linear model. (a) Histogram of

the residuals and (b) Simulated envelope.

5 CONCLUSION

In this paper we have developed diagnostics analysis for skew normal regression models,

based on Zhu and Lee’s methodology, using the likelihood augmented of the EM algorithm, which

has analytical form on the M step. The diagnostics analysis is based in local influence and generalized

leverage. Case weight, response variable and explanatory variable perturbations were considered.

The Cook’s approach is also calculated and comparated with Zhu and Lee’s approach. The two

methodologies resulted similar conclusions, however, the Zhu and Lee’s approach appointed more

influence points. The schemes of local influence studied showed influence points on the top of data,

while the points outside data mass are appointed as leverage.
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Figure 3: Data set about Life’s Quality. Scatter plot of bmi by pcs, with and without dizziness.
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Figure 4: Data set about Life’s Quality. Diagnostics of case weight perturbation for (a) Cook’s

approach and (b) Zhu and Lee’s approach (benchmark with c∗ = 2 and 3).
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Figure 5: Data set about Life’s Quality. Diagnostics of response variable perturbation for (a) Cook’s

approach and (b) Zhu and Lee’s approach (benchmark with c∗ = 2 and 3).
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Figure 6: Data set about Life’s Quality. Diagnostics of the explanatory variable perturbation for

(a) Cook’s approach and (b) Zhu and Lee’s approach (benchmark with c∗ = 2 and 3).
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Figure 7: Data set about Life’s Quality. Generalized leverage for (a) Cook’s approach and (b) Zhu

and Lee’s approach (benchmark with c0 = 3).
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