
ar
X

iv
:0

80
2.

12
88

v1
  [

m
at

h.
PR

] 
 9

 F
eb

 2
00

8

FRACTIONAL TERM STRUCTURE MODELS: NO-ARBITRAGE

AND CONSISTENCY

ALBERTO OHASHI

Abstract. In this work we introduce Heath-Jarrow-Morton (HJM) interest
rate models driven by fractional Brownian motions. By using support argu-
ments we prove that the resulting model is arbitrage-free under proportional
transaction costs in the same spirit of Guasoni et al [20, 21, 22]. In particular,
we obtain a drift condition which is similar in nature to the classical HJM
no-arbitrage drift restriction.

The second part of this paper deals with consistency problems related to the
fractional HJM dynamics. We give a fairly complete characterization of finite-
dimensional invariant manifolds for HJM models with fractional Brownian
motion by means of Nagumo-type conditions. As an application, we investigate
consistency of Nelson-Siegel family with respect to Ho-Lee and Hull-White
models. It turns out that similar to the Brownian case such family does not
go well with the fractional HJM dynamics with deterministic volatility. In
fact, there is no nontrivial fractional interest rate model consistent with the
Nelson-Siegel family.

1. Introduction

Financial models driven by semimartingales and Markov noises have been inten-
sively studied over the last years by many authors. In general, absence of arbitrage
is the basic equilibrium condition which fulfills the minimum requirement for any
sensible pricing model. On the other hand, empirical studies propose models which
are not consistent with this basic assumption. In particular, some evidence of
non-trivial long-memory behavior in bond markets has been recently suggested by
many authors [4, 7, 39, 28]. In most cases, the presence of long-range dependence
in short-rate interest rates seems to be common and it is originated by the funda-
mentals of the economy. In this regard, it is important to study bond markets with
extrinsic memory driven by non-Markovian noises which allow nontrivial long-range
dependence over time.

Recall that in the classical Musiela parametrization ([29]) the forward rate rt

satisfies a stochastic partial differential equation (henceforth abbreviated by SPDE)
of the following form

(1.1) drt(x) =
( ∂

∂x
rt(x) + αHJM (t, x)

)

dt +
∑

j≥1

σj
t (x)dBj

t ,
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where αHJM is the so-called Heath-Jarrow-Morton (henceforth abbreviated by
HJM) drift condition which is completely determined by the volatilities (σj)j≥1

under a risk-neutral measure, (Bj)j≥1 is a sequence of stochastic noises and x is
the time to maturity. The forward rate rt is considered as a Hilbert space-valued
stochastic process. Due to this infinite-dimensional intrinsic nature, it is important
to understand the relation between forward curves x 7→ rt(x) at time t > 0 and
finite-dimensional parametrized families of smooth forward curves, frequently used
in estimating the term structure of interest rates (e.g Nelson-Siegel and Svensson
families).

Originally proposed by Björk and Christensen ([6]) and recently studied by Fil-
ipovic and Teichmann in a series of papers ([15, 18, 19]), the so-called consistency
problems regards to the characterization and existence of finite-dimensional invari-
ant manifolds with respect to t 7→ rt. In fact, the stochastic invariance is essentially
equivalent to a deterministic tangency condition on the coefficients ∂

∂x , αHJM , σ in
equation (1.1). In particular, if short-rate interest rates exhibit long-range de-
pendence then standard statistical procedures may be misspecified, since in this
case the classical HJM no-arbitrage drift restriction may not be the correct one.
Moreover, by fixing (non-semimartingale) long-memory stochastic noises (Bj)j≥1

in (1.1), one has to obtain new tangency conditions on the coefficients of (1.1) to
get appropriate arbitrage-free invariant parametrized families of smooth forward
curves. This is the program that we start to carry out in this work.

We have chosen the driving noise in equation (1.1) given by the fractional Brow-
nian motion (henceforth abbreviated by fBm) with Hurst parameter H ∈ (1/2, 1).
For many reasons (see e.g. [37]), the fBm appears naturally as the canonical process
with nontrivial time correlations inserting memory into system under consideration.
Indeed, the main difficulty in dealing with fBm is the fact that such process is a
semimartingale if and only if it is a standard Brownian motion (H = 1/2). This lack
of semimartingale property immediately implies from [10] that fBm allows arbitrage
opportunities (for any H 6= 1/2) in the absence of transaction costs.

The main goal of this work is to introduce arbitrage-free HJM interest rate mod-
els driven by a cilindrical fBm under arbitrary small proportional transaction costs
in the bond market. In this paper, the forward rate is considered as the solution
of a SPDE (in Skorohod sense) of type (1.1) under the Musiela parametrization.
In this work, we only treat the case of deterministic volatilities, leaving open the
general stochastic volatility case for future research. In particular, there is a gaping
lack of results for fractional SPDEs in Skorohod sense with general multiplicative
noise. See Section 5.5 for more details.

Under deterministic volatility assumption, we obtain a drift condition which is
similar in nature to the classical HJM no-arbitrage drift restriction. Although such
condition is not sufficient to ensure no-arbitrage in the market, when combined with
an additional mild condition on the volatilities it results in absence of arbitrage in
the same spirit of the works [20, 21, 22], where the support of the driving noise
plays a key rule in the no-arbitrage characterization for markets with transactions
costs.

In the second part of this paper, we characterize finite-dimensional invariant sub-
manifolds for HJM models driven by fBm by means of Nagumo-type conditions.
Such characterization is the key ingredient to tackle the consistency problems re-
lated to the model. As an application of these abstract results, we investigate
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consistency of the Nelson-Siegel family with respect to Ho-Lee and Hull-White
models driven by fBm. Similar to the Brownian case, such family is not consistent
with respect to these models. In general, we arrive at the same classical result of
the Brownian case: No nontrivial interest rate model with deterministic volatility
structure is consistent with Nelson-Siegel family.

This work is organized as follows. In Section 2, we give some general results
regarding portfolios and absence of arbitrage in fractional bond markets. In Section
3, we characterize finite-dimensional invariant forward manifolds with respect to
HJM models driven by fBm. In Section 4, we examine consistency of the Nelson-
Siegel family with respect to concrete interest rate models.

2. The bond market: Portfolios and no-arbitrage

In what follows, we are given a stochastic basis
(

Ω, (Ft)t≥0, P
)

satisfying the

usual conditions. Let us consider a sequence of fBm (βj
H)j≥1 with the same param-

eter 1/2 < H < 1 and adapted to (Ft)t≥0. We fix 1/2 < H < 1 once and for all.

In other words, for each j ≥ 1, βj
H is a centered Gaussian process with continuous

sample paths, βj
H(0) = 0 and covariance

E(βi
H(t) − βi

H(s))(βj
H(t) − βj

H(s)) = δij |t − s|2H−2.

Throughout this paper we omit the subscript H and we write βj
t instead of βj

H(t).
For each j ≥ 1 there exists a unique Brownian motion W j such that

βj
t =

∫ t

0

K(t, s)dW j
s ,

where K(t, s) is given by

(2.1) K(t, s) := cHs1/2−H

∫ t

s

(u − s)H−3/2uH−1/2du.

for some cH > 0 (see [25] for more details). For a detailed discussion on the
stochastic analysis of the fBm, the reader may refer to [25].

In what follows, we consider the following subset of R
2

∆2 := {(t, T ) ∈ R
2|0 ≤ t ≤ T < ∞}.

Let us consider a term structure of bond prices {P (t, T ); (t, T ) ∈ ∆2} where
P (t, T ) is the price of a zero coupon bond at time t maturing at time T . We
assume the usual normalization condition

P (t, t) = 1, ∀t > 0,

and P (t, T ) is a.s continuously differentiable in the variable T . In this way, we
introduce the term structure of interest rates {f(t, T ); (t, T ) ∈ ∆2} given by

(2.2) f(t, T ) = −
∂logP (t, T )

∂T
; (t, T ) ∈ ∆2.

Then the following relation holds

P (t, T ) = exp
(

−

∫ T

t

f(t, u)du
)

; (t, T ) ∈ ∆2.
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In this paper, we adopt the Musiela parametrization where x := T − t is the time
to maturity. Then we shall write

P (t, T ) = exp
(

−

∫ T−t

0

rt(x)dx
)

,

where rt(x) := f(t, t + x) for (t, x) ∈ R
2
+. We adopt the Heath-Jarrow-Morton

framework ([24]) in the fBm setting. In particular, we seek the forward curve
x 7→ rt(x) as a Hilbert space-valued stochastic process described by a SPDE

(2.3) drt =
( d

dx
rt + αt

)

dt + σtdBt, r0(·) = ξ ∈ E

in a separable Hilbert space E to be defined. The first-order derivative operator
d
dx is the infinitesimal generator of the right-shift family of operators {S(t); t ≥ 0}
acting on E. We seek the drift α as a function of the volatility σ in such way
that the resulting bond market is arbitrage-free under arbitrary small proportional
transaction costs. Here Bt is a cilindrical fBm with parameter 1/2 < H < 1 taking
values in a separable Hilbert space U . Formally we shall write

(2.4) Bt =
∞
∑

j=1

βj
t ej ,

for some orthonormal basis (ej)j≥1 in U . Of course, the SPDE (2.3) must be
interpreted in the integral form. Moreover, in this work the stochastic integral is
considered in the Skorohod sense [12] as a Paley-Wiener integral.

2.1. The specification of the model. Initially, let us fix a d−dimensional fBm
(β1, . . . , βd) on (Ω, (Ft)t≥0, P). Let us assume for the moment that the forward rate
is given by the following system of stochastic differential equations

(2.5) f(t, T ) = f(0, T ) +

∫ t

0

α(s, T )ds +

d
∑

i=1

∫ t

0

σi(s, T )dβi
s, 1 ≤ d < +∞.

From now on the coefficients (σ1, . . . , σd) and α are deterministic functions.
Equation (2.5) is well-defined if for each i = 1, . . . , d

∫ T

0

|α(s, T )|ds +

∫ T

0

∫ T

0

|σi(s, T )||σi(t, T )|φH(t − s)dsdt < ∞,

for all 0 < T < ∞, where φH(u) := H(2H − 1)|u|2H−2, u ∈ R.
Let {S(t); t ≥ 0} be the semigroup of right-shifts defined by S(t)g(x) := g(t + x)

for any function g : R+ → R. Fix (t, x) ∈ R
2
+. Then (2.5) can be written as

(2.6)

f(t, t + x) = S(t)f(0, x) +

∫ t

0

S(t− s)α(s, s + x)ds +

d
∑

i=1

∫ t

0

S(t− s)σi(s, s + x)dβi
s.

In (2.6) we deal with the parametrization T = t + x. The operator S(t) acts on
f(0, x), α(s, x + s) and σj(s, x + s) as functions of x. By setting
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rt(x) := f(t, t + x),

it follows that

P (t, T ) = exp
{

−

∫ T−t

0

rt(x)dx
}

; (t, T ) ∈ ∆2.

We can work out in an axiomatic way the minimal requirements on a Hilbert
space E such that (2.6) can be given a meaning when

(2.7) rt(·) = f(t, t + ·); t ∈ R+

is considered as an E−valued stochastic process in such way that {S(t); t ≥ 0} is a
strongly continuous semigroup in E with infinitesimal generator given by the first
order derivative d

dx . The strategy follows very similar to Filipovic [15]. So we omit
the details and the reader may refer to this work. We just want to mention that
the minimal requirements on the state-space E are the following:

(H1) The point-wise evaluation h 7→ h(x) is a continuous linear functional on E
for every x ∈ R+. Moreover, we assume that for every element h ∈ E there exists
a well-defined continuous representative, still denoted by h.
(H2) {S(t); t ≥ 0} is a strongly continuous semigroup on E with infinitesimal
generator (A, dom (A)), where A := d

dx .

Remark 2.1. We choose the state-space E as defined in Filipovic [15]. He proposed
a family of suitable Hilbert spaces to study HJM models in the semimartingale case.
One should notice that even in the fBm case, such spaces are regular enough to
attend our needs since they fulfill conditions (H1-H2). Moreover, they are coherent
with realistic economic assumptions on the forward rate.

At this point, we relax the hypothesis on the noise and we allow from now on
the cilindrical fBm B = (βj)∞j=1 defined in (2.4) on a separable Hilbert space U .

In the sequel, we denote L(2)(U, E) the space of Hilbert-Schmidt linear operators
from U into E with the usual norm ‖ · ‖(2).

We make use of the following notation: We set αt(·) := α(t, t+·) and σ = (σj)∞j=1,
where

σj
t := σtej := σj(t, t + ·),

σj
t (x) := σtej(x); (t, x) ∈ R

2
+, j ≥ 1.

In this paper, we are interested in Gaussian interest rate models where we assume
that the coefficients α : R+ → E and σ : R+ → L(2)(U, E) satisfy the following set
of assumptions:

(2.8)

∫ T

0

‖αs‖Eds +

∫ T

0

‖σs‖
2
(2)ds < ∞, for every 0 < T < ∞.

To ensure existence of a continuous version for the mild solution of equation (2.3)
we assume there exists γ ∈ (0, 1/2) such that
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(2.9)
∫ T

0

∫ T

0

u−γv−γ‖S(u)σu‖(2)‖S(v)σv‖(2)φH(u−v)dudv < ∞, for every 0 < T < ∞.

In order to get a well-defined expression for the bond prices {P (t, T ); (t, T ) ∈ ∆2}
we also assume the following growth conditions: In the sequel, we denote l2 the
usual Hilbert space of real sequences (ai)i≥1 such that ‖a‖2

l2 :=
∑∞

i=1 |ai|
2 < ∞.

We assume that

(2.10)

∫

[0,T ]4
‖σu(s)‖l2‖σv(r)‖l2φH(u − v)dudvdsdr < ∞, for every 0 < T < ∞;

(2.11)

∫

[0,T ]3
‖σu(t)‖l2‖σv(t)‖l2φH(u − v)dvdudt < ∞, for every 0 < T < ∞.

One should note that (2.8) yields
∫ T

0
‖S(t)σt‖

2
(2)dt < ∞ for every 0 < T < ∞,

and therefore we can write the stochastic convolution as an E-valued Gaussian
random variable given by

∫ t

0

S(t − s)σsdBs =

∞
∑

j=1

∫ t

0

S(t − s)σj
sdβj

s , t > 0.

Under the above assumptions one can easily show the following lemma.

Lemma 2.1. Assume that the coefficients α and σ satisfy assumptions (2.8), (2.9), (2.10)
and (2.11). Then the forward rate rt is the continuous mild solution of equa-
tion (2.3). Moreover, the term structure of bond prices is given by the continuous
process

(2.12)

P (t, T ) = P (0, T ) exp

{

∫ t

0

[

rs(0)−Iα(s, T )
]

ds+

∞
∑

j=1

∫ t

0

−Iσj (s, T )dβj
s

}

; (t, T ) ∈ ∆2,

where Iα(s, T ) :=
∫ T−s

0 αs(x)dx and Iσj (s, T ) :=
∫ T−s

0 σj
s(x)dx.

Proof. This is a straightforward application of stochastic Fubini theorem (see [27])
in the fBm setting by using conditions (2.10) and (2.11). Condition (2.9) allows
the existence of a continuous mild solution of (2.3) as in [12]. �

We assume the existence of a traded asset that pays interest. In other words,
the unit of money invested at time zero in this asset gives at time t the amount

S0(t) := exp
{

∫ t

0

rs(0)ds
}

,

where rt(0) = f(t, t) for t > 0. By considering S0 as a numéraire, the discounted
prices are then expressed by

(2.13) Zt(T ) :=
P (t, T )

S0(t)
, (t, T ) ∈ ∆2.
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Up to now the bond price P (t, T ) has been defined only for (t, T ) ∈ ∆2. It will
be convenient to work with P (t, T ) when t > T . For this, we make use of the same
trick as in [5]. We set P (t, T ) = S0(t)S−1

0 (T ) for t ≥ T .
Following the arguments in [38] and [5] we now introduce the notions of admis-

sible self-financing portfolios in our context. Let us denote M(R+) the space of
(finite) signed measures on R+ endowed with the total variation norm ‖ · ‖TV . Let
µ be a measure-valued elementary process of the form

(2.14) µt(ω, ·) :=

N−1
∑

i=0

χFi
(ω)χ(ti,ti+1](t)mi,

where mi ∈ M(R+), 0 = t0 < . . . < TN < ∞ and Fi ∈ Fti
. We assume the support

of µt is concentrated on [t,∞) for every (t, ω) ∈ R+ × Ω.
We denote by Sb the set of elementary processes of the form (2.14), endowed

with the following norm

(2.15) ‖µ‖2
V := E sup

0≤t<∞
‖µt‖

2
TV .

From now on all economic activity will be assumed to take place on the bounded
set [0, T ∗]2. So we assume that Z(t, T ) = 0 if (t, T ) /∈ [0, T ∗]2. Under the hypothe-
ses (2.8), (2.9), (2.10) and (2.11), the discounted price process Zt(T ) satisfies the
following condition:

(A1) {Zt(T ); (t, T ) ∈ [0, T ∗]2} is a jointly continuous real-valued stochastic process
such that

E sup
(t,T )∈R2

|Zt(T )|2 < ∞.

If µ ∈ Sb is given by (2.14) then we define

∫ t

0

µsdZs :=

N−1
∑

i=0

χFi

(

Zti+1∧t − Zti∧t

)

mi,

where Zti
mti

is the usual dual action. By Hölder inequality it follows that

(2.16) E sup
0≤t<∞

∣

∣

∣

∫ t

o

µsdZs

∣

∣

∣
≤ ‖µ‖VE

1/2 sup
0≤s,t<∞

‖Zs − Zt‖
2
∞ < ∞

where ‖ ·‖∞ denotes the usual (uniform topology) norm on the space of real-valued
bounded functions defined on R+. Let V be the completion of Sb with respect
to (2.15). By the estimate (2.16) and the definition of V we may easily define
∫ ·

0 µsdZs for every µ ∈ V.

In the sequel, we denote PT∗ the set of all partitions of [0, T ∗]. We also need the
following assumption:

(A2) ΠT∗(µ) := supπ∈PT∗

∑

ti∈π ‖µti+1
− µti

‖TV is square integrable.
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By taking into account proportional transaction costs in the bond market, the
liquidation value of a portfolio with zero initial capital is

V k
t (µ) :=

∑

ti<t

χFi

(

Zti+1∧t − Zti∧t

)

mi

− k
∑

ti<t

Zti
|µti+1

− µti
| − kZt|µt|,

where k is an arbitrary positive number and | · | denotes the total variation measure.
The first term accounts for the capital gain of holding an elementary strategy µ of
the form (2.14) (without transaction costs) during the interval [0, t]. The second
and third term account for the transaction costs incurred in various transactions
and the eventual liquidation value of the portfolio, respectively.

By passing from a finite number of transactions to continuous trading one can
easily show that if µ ∈ V satisfies assumption (A2) then the above quantities
converge to the following

(2.17) V k
t (µ) :=

∫ t

0

µsdZs − k

∫ t

0

Zsd|µs| − kZt|µt|.

See Appendix for more details, including the definition of the second integral
in (2.17). Now we are able to introduce the following notions:

Definition 2.1. We say that µ ∈ V is an admissible trading strategy if it
satisfies (A2), it is Ft−adapted and there exists a constant M > 0 such that
V k

t (µ) ≥ −M a.s for every t ≤ T ∗. An admissible trading strategy is an arbitrage
opportunity with transaction costs k > 0 on [0, T ∗], if V k

T∗(µ) ≥ 0 a.s and
P
{

V k
T∗(µ) > 0

}

> 0. Therefore, the bond market is k-arbitrage-free on [0, T ∗]

with transaction costs k if for every admissible strategy µ, V k
T∗(µ) ≥ 0 a.s only if

V k
T∗(µ) = 0 a.s.

Remark 2.2. Since the main dynamics takes place on ∆2 we do assume that
all admissible strategies µ are Markovian in the sense that the support of µs is
concentrated on [s, +∞).

It is straightforward to prove the following result in the same spirit of Gua-
soni ([20] - Proposition 2.1). Thus we omit the details.

Proposition 2.1. Let us fix k > 0. If for every (Ft)t≥0−stopping time τ such that
P{τ < T ∗} > 0 we have

(2.18) P

{

sup
τ≤t≤T≤T∗

∣

∣

∣

Zτ (τ)

Zt(T )
− 1
∣

∣

∣
< k, τ < T ∗

}

> 0,

then the bond market is arbitrage-free on [0, T ∗] with transaction costs k.

One can also show by using similar arguments from Guasoni et al ([21]) that the
k-arbitrage-free property in Definition 2.1 is essentially equivalent to the existence
of a k-consistent price system. Thus (2.18) is also a sufficient condition for it. In
fact, a sufficient condition for no-arbitrage is the conditional full support property
for Z which is equivalent to full support only if Z is Markovian. Hence in the
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non-Markovian setting it is more natural to find mild conditions on the volatility
in such way that log Z has only full support. See Lemmas 3.1 and 3.2 for details.

In the sequel, we consider K∗ the usual isometry between the reproducing kernel
Hilbert space of the fBm and L2(0, T ∗; R). See [2, 3] for this notation.

Lemma 2.2. Assume that assumptions (2.8), (2.9), (2.10) and (2.11) hold. Then
the discounted bond price process satisfies the following stochastic differential equa-
tion

(2.19) dZt(T ) =
[

− Iα(t, T ) + Σσ(t, T )
]

Zt(T )dt +

∞
∑

j=1

−Iσj (t, T )Zt(T )dβj
t ,

where Σσ(t, T ) := 1
2

∑∞
j=1

∂
∂t

∫ t

0

[

K∗
t (Iσj (·, T ))r

]2

dr.

Proof. Consider 1 ≤ d < +∞ and notice that Itô formula [2, 3] applied to (2.13)
yields

dZd
t (T ) =

[

− Iα(t, T ) + Σd
σ(t, T )

]

Zd
t (T )dt +

d
∑

j=1

−Iσj (t, T )Zd
t (T )dβj

t ,

where Σd
σ(t, T ) := 1

2

∑d
j=1

∂
∂t

∫ t

0

[

K∗
t (Iσj (·, T ))r

]2

dr and Zd
t (T ) is given in (2.13)

with 1 ≤ d < ∞. Here K∗
t (·) := K∗(χ[0,t]·) in the notation of [2].

By applying again Itô formula with respect to the cilindrical fBm and considering
the mapping Π(σ) : [0, T ] → L(2)(U ; R) defined by

Πs(σ)ei :=

∫ T−s

0

σsei(y)dy; s ∈ [0, T ],

we may conclude the proof. �

3. Absence of Arbitrage

For simplicity, we assume from now on that the driving noise in equation (2.3) is
given by a d-dimensional fBm with d < ∞. We prove that under suitable conditions
on the volatility σ = (σj)j≥1, the bond market model is k-arbitrage-free for every
k > 0. The main ingredient in the no-arbitrage argument consists in the full
support property on C(∆2

T∗ ; R), the space of real-valued continuous functions on
∆2

T∗ := {(t, T ); 0 ≤ t ≤ T ≤ T ∗} endowed with the sup norm. This property
together with a suitable choice on the drift will result in k-no-arbitrage for every
k > 0. Recall that if X is a Polish space then a random element ξ : Ω → X has P−
full support when Pξ := P ◦ ξ−1(U) > 0 for every non-empty open set U in X .

Lemma 3.1. Let Y : Ω → C(∆2
T∗ ; R) be a measurable map such that X := log Y

has P− full support. Then Y satisfies assumption in Proposition 2.1.

Proof. Given ε > 0 and τ a Ft−stopping time such that P{τ < T ∗} > 0, it is
sufficient to check that

P

{

sup
τ≤t≤T≤T∗

|X(t, T ) − X(τ, τ)| < ε, τ < T ∗
}

> 0.

If p ∈ C(∆2
T∗; R) then triangle inequality yields
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{

sup
(t,T )∈∆2

T∗

|X(t, T ) − p(t, T )| < ε/2, τ < T ∗
}

⊂
{

sup
τ≤t≤T≤T∗

|X(t, T ) − X(τ, τ)| < ε, τ < T ∗
}

.

Let us consider P the set of polynomials p on ∆2
T∗ with rational coefficients such

that p(0, 0) = 0. We claim that there exists p ∈ P such that

(3.1) P

{

sup
(t,T )∈∆2

T∗

|X(t, T ) − p(t, T )| < ε/2, τ < T ∗
}

> 0.

Suppose that (3.1) is violated for every p ∈ P . Then we obtain

{

sup
(t,T )∈∆2

T∗

|X(t, T ) − p(t, T )| < ε/2, τ < T ∗
}

⊂
{

τ ≥ T ∗
}

P − a.s, ∀p ∈ P .

Therefore

(3.2)
⋃

p∈P

{

sup
(t,T )∈∆2

T∗

|X(t, T ) − p(t, T ) < ε/2
}

⊂ {τ ≥ T ∗} P − a.s.

By the density of P in C(∆2
T∗ ; R) and the full support of X it follows that

P

{

⋃

p∈P

{

sup
(t,T )∈∆2

T∗

|X(t, T ) − p(t, T ) < ε/2
}

}

= 1

and therefore P{τ < T ∗} = 0 which is a contradiction. �

Remark 3.1. Recall that the fBm has γ- Hölder continuous paths a.s for any
γ < H. Moreover, one can prove the existence of the fBm Wiener measure on a
separable Banach space W continuously imbedded on the space C(R+, R) such that
the elements of W are γ- Hölder continuous functions on any compact interval.
See [23] for the proof of this fact.

The following remark turns out to be very useful for the approach taken in this
work.

Lemma 3.2. Assume that Iσj (t, T ) is λ-Hölder continuous on ∆2
T∗ for every j ≥ 1

where 1/2 < λ < 1. Then the process
∑d

j=1

∫ t

0
Iσj (s, T )dβj

s has P-full support on

C(∆2
T∗ ; R).

Proof. Fix (ξj)d
j=1 a sequence of γ- Hölder continuous functions on [0, T ∗] where

1/2 < γ < H . We recall that if Iσj (t, T ) is λ-Hölder continuous on ∆2
T∗ then the

pathwise Young integral
∫ t

0 Iσj (s, T )dξj
s is well-defined and there exists a constant

C > 0 which depends only on T ∗, γ and λ such that

(3.3)

∥

∥

∥

∥

∥

∫ ·

0

Iσj (s, ··)dξj
s

∥

∥

∥

∥

∥

γ

≤ C‖Iσj‖λ‖ξ
j‖γ , j = 1, . . . , d,
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where ‖ · ‖η denotes the usual η-Hölder norm.
Moreover, the pathwise Young integral coincides with the symmetric integral in

Russo and Vallois [35]. Recall that we are assuming that the volatilities are deter-
ministic functions and therefore the Gross-Sobolev derivative of Iσj (t, T ) vanishes
for each j ≥ 1 and (t, T ) ∈ ∆2

T∗ . Since the fBm has γ- Hölder continuous paths a.s,
Proposition 3 in [2] tells that the Skorohod integral

∫ t

0

Iσj (s, T )dβj
s ; j ≥ 1,

can be interpreted as a pathwise Young integral. By the estimate (3.3) and Re-
mark 3.1 it follows that each

∫ ·

0 Iσj (s, ··)dβj
s has P-full support on C(∆2

T∗ ; R). More-

over, since (βj)j≥1 is a sequence of real-valued independent fBm we then conclude
that

(t, T ) 7→

d
∑

j=1

∫ t

0

Iσj (s, T )dβj
s

has P-full support as well. �

By Lemma 3.1 and Proposition 2.1 we know that if log Z has P−full support
then the bond market is k-arbitrage-free for every k > 0. One should notice that
assuming that the volatility σ = (σj)j≥1 satisfies the assumptions in Lemma 3.2,
there are infinitely many choices of α which give the full support property for log Z
and therefore absence of arbitrage in the fractional bond market. But there is a
canonical choice for the drift which gives the desirable property:

(3.4) EZt(T ) = P (0, T ) ∀(t, T ) ∈ ∆2.

As a direct consequence of Lemma 2.2 we have the following basic result.

Corollary 3.1. Condition (3.4) holds if and only if the drift α satisfies the following
equality

(3.5)

αt(·) =

d
∑

j=1

{

σj
t (·)

∫ t

0

Iσj (θ, ·+t)φH(t−θ)dθ+

∫ ·

0

σj
t (y)dy

∫ t

0

σj
θ(·+t−θ)φH(t−θ)dθ

}

.

Proof. By Lemma 2.2 we know that Zt(T ) satisfies the stochastic differential equa-
tion (2.19). Since Skorohod integrals has zero expectation, we choose α in such way
that

Iα(t, T ) = Σd
σ(t, T ),

for each (t, T ) ∈ ∆2. Therefore,

(3.6) α(t, t + T − t) =
∂

∂T
Σd

σ(t, T ).

Differentiating expression (3.6) and taking into account that
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|t − θ|2H−2 =
(tθ)H− 1

2

β(2 − 2H, H − 1
2 )

×

∫ t∧θ

0

v1−2H(t − v)H− 3
2 (θ − v)H− 3

2 dv,

and

∂K

∂r
(r, s) = cH

(r

s

)H− 1
2

(r − s)H− 3
2 ,

where β(·, ·) denotes the beta function, we then arrive at the expression (3.5) by
considering the parametrization x = T − t. By observing that Zt(T ) > 0 a.s for
every (t, T ) ∈ ∆2 we conclude the proof. �

Remark 3.2. We notice that if H = 1/2 then the operator K∗ in Lemma 2.2 is
just the identity and we therefore arrive at the classical HJM drift condition in
Corollary 3.1

αt(·) =

d
∑

j=1

σj
t (·)

∫ ·

0

σj
t (y)dy.

Let us consider

SHσt(·) :=

d
∑

j=1

{

σj
t (·)

∫ t

0

Iσj
(θ, ·+t)φH(t−θ)dθ+

∫ ·

0

σj
t (y)dy

∫ t

0

σj
θ(·+t−θ)φH(t−θ)dθ

}

.

We assume that the volatilities are regular enough in such way that

(3.7)

∫ T

0

‖SHσt‖Edt < ∞

for every 0 < T < ∞. Indeed, it is not very restrictive to assume that the volatil-
ity σt satisfies such integrability condition on the forward curve space E given in
Remark 2.1. See Section 3.2 in [16] for more details.

3.1. Drift condition and quasi-martingale measure. Similar to the semi-
martingale case the measure P is considered as physical measure. This motivates
the following definition.

Definition 3.1. We say that an equivalent probability measure Q ∼ P is a quasi-
martingale measure if the discounted bond price process Zt(T ) has Q-constant
expectation, that is,

(3.8) EQZt(T ) = P (0, T ) ∀(t, T ) ∈ ∆2.

We now state the main result of this section. Before this, we present some
elementary results concerning Girsanov change of measures in the fBm setting.
Without any loss of generality we take U = l2. It is well-known (see e.g [9]) that
the following operator
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(3.9) Kh(t) :=

∫ t

0

K(t, s)h(s)ds; h ∈ L2(0, T ∗; l2); 0 < T ∗ < ∞,

is a bijection between L2(0, T ∗; l2) and the Sobolev space I
H+1/2
0+ (L2(0, T ∗; l2))

which is the image of the fractional integral I
H+1/2
0+ of order H + 1/2 defined on

L2(0, T ∗; l2). In general, if α ∈ (0, 1) then Iα
0+ admits an inverse given by the

Marchaud fractional derivative Dα
0+. See [36] for these notations and a complete

review on fractional calculus. Furthermore, one can show that K−1 is given by

(3.10) K−1v(t) = c−1
H tH− 1

2 D
H− 1

2

0+

(

u
1
2
−HDv

)

(t),

where D is the usual derivative operator. The next result is a straightforward
consequence of the representation of fBm in terms of the standard Brownian motion.

Lemma 3.3. Let {γ(t); 0 ≤ t ≤ T ∗} be an l2-valued measurable function such

that
∫ T∗

0
‖γ(t)‖l2dt < ∞ and R(·) :=

∫ ·

0
γ(s)ds ∈ I

H+1/2
0+ (L2(0, T ∗; l2)). Then

B̃t := Bt −
∫ t

0
γ(s)ds is a QT∗-cilindrical fBm on [0, T ∗] such that

(3.11)
dQT∗

dP
= E

(

K−1(R) . W
)

T∗
,

where

E
(

K−1(R) . W
)

T∗
:= exp

[

(

K−1(R) . W
)

T∗
−

1

2

∫ T∗

0

‖K−1R(t)‖2
l2dt

]

,

and
(

K−1(R) . W
)

T∗
is the usual Itô stochastic integral with respect to the cilindrical

Brownian motion W associated to B. In this case, we may formally write

B̃t =
∞
∑

j=1

β̃j
t ej ,

where β̃j
t := βj

t −
∫ t

0 γj
sds is a sequence of QT∗-real valued independent fBm.

Recall that all economic activity is assumed to take place on the finite hori-
zon [0, T ∗]. Let us fix k > 0 which corresponds to arbitrary small proportional
transaction costs in the bond market. The main result of this section is then the
following.

Theorem 3.1. Assume that the volatility satisfies assumptions in Lemma 3.2 and
there exists an l2-valued measurable function γt satisfying assumptions in Lemma 3.3
in such way that

(3.12) σtγt = SHσt − αt; t ≥ 0.

Then there exists a quasi-martingale measure for the bond market. In addition, the
market is arbitrage-free on [0, T ∗] with transaction costs k.
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Proof. The forward rate is the continuous mild solution of

rt = (Art + αt)dt +

d
∑

j=1

σj
t dβj

t ,

under the measure P. Assuming assumptions in Lemma 3.3 and (3.12), we may
write

rt =
(

Art + SHσt

)

dt +

d
∑

j=1

σj
t dβ̃j

t

under the equivalent probability measure Q with respect to P given in (3.11).
By (3.7) one should notice that the above equation is well defined under Q. By
changing the measure P to Q in Corollary 3.1 it follows that

EQZt(T ) = P (0, T ); ∀(t, T ) ∈ ∆2
T∗ ,

and therefore Q is a quasi-martingale measure. By Lemma 3.2 the two parameter

process (t, T ) 7→
∑d

j=1

∫ t

0
Iσj (s, T )dβ̃j

s has Q-full support and therefore log Z has Q-
full support as well. By Lemma 3.1 and Proposition 2.1 we conclude the proof. �

Remark 3.3. One should notice that if there exists a quasi-martingale measure
then it should be of the form (3.11), (3.12).

The next result gives an explicit formula for the term structure of bond prices in
terms of a conditional expectation. In the sequel, it will be convenient to express
the fBm through the following representations (See [34]):

β̃j
t = αH

∫ t

0

∫ t

r

sH−1/2(s − r)H−3/2dsdM j
r(3.13)

= αH

∫ t

0

sH−1/2

∫ s

0

(s − r)H−3/2dM j
r ds, j = 1, . . . , d(3.14)

where the processes M j = (M j
t )t≥0 are continuous martingales given by

M j
t = c1

∫ t

0

s1/2−H(t − s)1/2−Hdβ̃j
s ,

where c1 and αH are normalizing constants. In the sequel, we denote

θj(r, t) := αH

∫ t

r

σj(s, t)sH−1/2(s − r)H−3/2ds, j = 1 . . . , d

for 0 < r < t < ∞. We also write [M j] to denote the usual quadratic variation of
the martingale M j .

Proposition 3.1. Assume that Q is a quasi-martingale measure. Then the bond
price can be expressed by

P (t, T ) = eξ(t,T )
EQ

[

exp

(

−

∫ T

t

rs(0)ds

)∣

∣

∣

∣

∣

Ft

]

,

where the kernel ξ(t, T ) is given by
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ξ(t, T ) :=

∫ t

0

Σd
σ(s, T )ds −

d
∑

j=1

∫ t

0

Iσj (s, T )dβ̃j
s − G(t, T ),

where G(t, T ) :=
∑d

j=1

∫ t

0

∫ T

r θj(r, u)dudM j
r − 1

2

∑d
j=1

∫ T

t

(

∫ T

r θj(r, u)du
)2

d[M j ]r.

Proof. By the very definition

P (t, T ) = eξ(t,T )
EQ

[

exp

(

−

∫ T

t

rs(0)ds

)∣

∣

∣

∣

∣

Ft

]

,

where

ξ(t, T ) =

∫ t

0

Σd
σ(s, T )ds−

d
∑

j=1

∫ t

0

Iσj (s, T )dβ̃j
s−ln EQ

[

exp

(

−

d
∑

j=1

∫ T

0

Iσj (s, T )dβ̃j
s

)∣

∣

∣

∣

∣

Ft

]

.

We only need to compute the above conditional expectation. By using represen-
tation (3.13) it follows that

∫ t

0

σj(s, t)dβ̃j
s =

∫ t

0

θj(r, t)dM j
r .

By using conditions (2.8), (2.10) and (2.11) and changing the order of integration,
we obtain

∫ T

0

Iσj (s, T )dβ̃j
s =

∫ T

0

∫ t

r

θj(r, u)dudM j
r , j = 1, . . . , d

and therefore the conditional expectation can be written as

d
∑

j=1

∫ t

0

∫ T

r

θj(r, u)dudM j
r −

1

2

d
∑

j=1

∫ T

t

(

∫ T

r

θj(r, u)du

)2

d[M j ]r.

�

We end this section by showing some examples of familiar short-rate models in
the fBm setting as developed in this section under the quasi-martingale Q.

Example 1 (Ho-Lee) Let us assume that d = 1 and σt(x) = σ, a constant, for
all (t, x) ∈ R

2
+. Then in this case the model is k-arbitrage-free for every k > 0 and

the short-rate dynamics under Q is given by

rt(0) = r0(t) + σ2

∫ t

0

∫ s

0

[2t − (s + θ)]φH (s − θ)dθds + σβ̃t

and we recognize this as the Ho-Lee model with a deterministic time-varying drift.
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Example 2 (Hull-White) Again assume d = 1 but now take σt(x) = σ exp(−αx),
where σ and α are positive constants. Straightforward integration imply

rt(0) = r0(t) +
σ2

α

∫ t

0

e−α(t−s)

∫ s

0

[1 − e−α(t−θ)]φH(s − θ)dθds

+
σ2

α

∫ t

0

[1 − e−α(t−s)]

∫ s

0

e−α(t−θ)φH(s − θ)dθds + σ

∫ t

0

e−α(t−s)dβ̃s,

which is consistent with the Hull-White model or the Vasicek model with time-
varying drift parameters. Furthermore, in the fBm setting this model is k-arbitrage-
free for every k > 0.

4. Consistency for Fractional HJM Models

In this section, we study consistency problems related to HJM models introduced
in the previous section. We now assume that the following dynamics

(4.1) drx0(t) =

(

d

dx
r(t) + SHσ(t)

)

dt +

∞
∑

j=1

σjdβ̃j(t), r0 = x0 ∈ E,

(under a quasi-martingale measure Q) induces an arbitrage-free bond market as
described in the last section. We study the important case of time-homogeneous
HJM models, in the sense that the volatility σ does not depend on time t ∈ [0, T ]
where 0 < T < ∞ is a fixed terminal time.

Let P be the interest rate model produced by rt and let M be a parametrized
family of smooth forward curves (e.g Nelson - Siegel or Svensson families). We
recall that a pair (P ,M) is consistent if all forward curves which may be produced
by the interest rate model P are contained within the family M, provided that the
initial curve is in M. There are several reasons, why in practice, one is interested in
consistent pairs (P ,M) with respect to HJM dynamics (see [6, 15]). In particular,
the following questions are of great importance in calibrating interest rate models:

Given an interest rate model P and a family of forward rate curves M, what are
the necessary and sufficient conditions for consistency? Let M be an exponential-
polynomial family of smooth forward curves. Is there a nontrivial P which is con-
sistent to M ?

The remainder of this paper will be devoted to answer the above problems in
the fBm setting.

4.1. Consistent pairs (P ,M). In this section, we give a fairly complete charac-
terization of a given M to be consistent with respect to P . We adopt an abstract
framework by considering M as a finite dimensional smooth submanifold of E. The
concept of invariance used in this work is the following:

Definition 4.1. A closed set K ⊂ E is said to be invariant for the forward rate
(r(t))0≤t≤T when

Q(rx0(t) ∈ K, ∀t ∈ [0, T ]) = 1, for every x0 ∈ K.
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Hence the pair (P ,M) is consistent if and only if M is invariant for the cor-
respondent forward rate rt. The main difficulty in characterizing consistent pairs
(P ,M) is the obtention of the topological support for the law of {r(t); 0 ≤ t ≤ T }
on the space C(0, T ; E) of the E-valued continuous functions on [0, T ]. We recall
that the topological support supp µ of a probability measure µ on a Polish space
X is the smallest closed set in X with total mass. Recall that the forward rate
satisfies the following equation

r(t) = S(t)x0 +

∫ t

0

S(t − s)SHσ(s)ds +

∫ t

0

S(t − s)σdB̃(s)

where {S(t), t ≥ 0} is the right-shift semigroup acting on the Hilbert space E and

B̃ is a cilindrical fBm (under Q) on a Hilbert space U . Let us denote

(4.2) Z(t) :=

∫ t

0

S(t − s)σdB̃(s),

and

(4.3) Jd(t) :=

d
∑

j=1

∫ t

0

S(t − s)σjdβ̃j(s), 1 ≤ d < ∞.

One should notice that E sup0≤t≤T ‖Z(t) − Jd(t)‖E → 0 as d → ∞.

Our main task is to characterize supp QZ on the space C(0, T ; E). For this
purpose, we take advantage of the fact that fBm is a centered Gaussian process.
The theory of Gaussian processes provides a sharp characterization for the support
of the measure QZ . A direct (but lengthy) calculation shows that the law of Z(·)
in L2(0, T ; E) is a symmetric Gaussian measure whose covariance operator is given
by

ΛHϕ(t) :=

∫ T

0

gH(t, s)ϕ(s)ds,

where

gH(t, s) :=

∫ s∧t

0

∫ s∧t

0

S(t − v)σσ∗S∗(s − u)φH(u − v)dudv.

By condition (2.9) it follows that QZ is concentrated on C0 = {u ∈ C([0, T ]; E) :

u(0) = 0}. Therefore, the closure of Image Λ
1/2
H in the C0−topology is the support

of QZ . This fact would lead to a straightforward characterization of supp QZ as
long as we know how to calculate the square root of the covariance operator ΛH .
In fact, a direct calculation proves to be very hard. Moreover, it is not trivial to
find a bounded linear operator A such that ΛH = AA∗. See Corollary B.4 in [8].
Therefore other non-direct techniques should be applied.

In the sequel, we consider the Wiener space (W , H,P) of the R
d-valued fBm,

where W is the space of the R
d-valued continuous functions f on [0, T ] such that

f(0) = 0, H is the correspondent Cameron-Martin space and P is the Wiener
measure on W . The set H is equal to Image K as a vector space, where K is the
operator defined in (3.9), and the respective inner product is given by
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〈Kh,Kg〉H := 〈h, g〉L2 ; h, g ∈ L2(0, T ; R
d).

We have the following sufficient conditions for inclusions of the support of the
law of an abstract Wiener functional V : W → X . See Aida et al [1] for the details.

Proposition 4.1. Let V : W → X be a measurable map, where X is a separable
Banach space.

(i) Let ζ1 : H → X be a measurable map, and let Jn : W → H be a sequence of
random elements such that for any ε > 0,

(4.4) lim
n

P

(

‖V − ζ1 ◦ Jn‖X > ε

)

= 0.

Then

supp PV ⊂ ζ1(H).

(ii) Let ζ2 : H → X be a map, and for each fixed h ∈ H let T h
n : W → W be a

sequence of measurable transformations such that PT h
n

≪ P for every n, and for
any ε > 0,

(4.5) lim sup
n

P

(

‖V ◦ T h
n − ζ2(h)‖X < ε

)

> 0.

Then supp PV ⊃ ζ2(H).

The remainder of this section will be devoted to characterize the topological
support of the forward rate r : Ω → C(0, T ; E) by using conditions (4.4) and (4.5).
Clearly, we only need to analyze the support of the probability measure QZ . The
strategy is to characterize invariant sets for HJM models via a controlled deter-
ministic equation associated to (4.1). In the sequel, we write E to denote the
expectation with respect to P.

4.2. Invariance for HJM Models. We now introduce a polygonal approximation
for the fBm. Let us recall the Volterra representation of the fBm

(4.6) β(t) =

∫ t

0

K(t, s)dW (s),

where W is the unique Wiener process that provides the integral representation (4.6)
and K(t, s) is the kernel defined in (2.1).

Remark 4.1. From the above representation we notice that W is adapted to the
filtration generated by the fBm β and both processes generate the same filtration.

Let Π = 0 = t0 < t1 < · · · < tn = T be a partition of [0, T ] where tk := k T
n

and |Π| := max0≤j≤n−1(tj+1 − tj) = T
n . Let us consider the following polygonal

approximations

(4.7) βΠ(t) :=

∫ t

0

K(t, s)dWΠ(s) =

∫ t

0

K(t, s)ẆΠ(s)ds
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where

WΠ(t) := W (tj) +
W (tj+1) − W (tj)

(tj+1 − tj)
(t − tj),

for tj ≤ t ≤ tj+1; j = 0, 1, . . . n − 1.
One can check (see [25]) that ∀γ < 1−H there exists a constant CH,γ independent

of Π such that

(4.8) E sup
0≤t≤T

|βΠ(t) − β(t)| ≤ CH,γ |Π|γ .

If ω ∈ W and |Π| = T/n then we define ω(n)(t) =
(

ω
(n)
1 (t), . . . , ω

(n)
d (t)

)

where

ω
(n)
i (t) :=

∫ t

0

K(t, s)ẆΠ,i(ω)(s)ds, 1 ≤ i ≤ d.

Obviously ω(n) ∈ H for all n ≥ 1 and ω ∈ W . For each h ∈ H we define

(4.9) T h
n ω := ω + (h − ω(n)).

Lemma 4.1. If h ∈ H then PT h
n
≪ P for all n ≥ 1.

Proof. Let us consider h = Kγ and J
(n)
h (ω) := Kγ − ω(n) for ω ∈ W and γ ∈

 L2(0, T ; R
d). By definition of WΠ it follows that

∫ t

0

K(t, s)ẆΠ(s)ds =

n−1
∑

i=0

∫ ti+1∧t

ti∧t

K(t, s)ẆΠ(s)ds

and therefore J
(n)
h is adapted to the internal filtration generated by the Brownian

motion W . By the Novikov condition

E

[

1/2 exp

(

∫ t

0

|γ(s) − Ẇ (s)|2ds

)]

< ∞

and the representation (4.6), Girsanov theorem (see [9]) for the fBm yields

PT h
n
∼ P.

�

The following result is crucial to get (4.4) in Proposition 4.1. In the sequel, we
write (Ψ · β) and (Ψ · βΠ) to denote the Paley-Wiener integrals with respect to β
and βΠ, respectively.

Proposition 4.2. Let βΠ be the polygonal approximation of the real-valued fBm.
If Ψ ∈ L2(0, T ; E) then

lim
‖Π|→0

E sup
0≤t≤T

‖(Ψ · β)(t) − (Ψ · βΠ)(t)‖E = 0
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Proof. We proceed by approximating Ψ by step functions f . Assume that

f(s) =

n−1
∑

i=0

αiχ[si,si+1)(s); 0 = s0 < s1 < . . . sn = T,

and consider the operator θH := I
H−1/2
0+ ◦D

H+1/2
0+ defined on I

H+1/2
0+

(

L2(0, T ; R)
)

.
By the semigroup property of fractional integrals and taking into account that

D
H+1/2
0+ is the inverse I

H+1/2
0+ it follows that

‖(f · β)(t) − (f · βΠ)(t)‖E =

∥

∥

∥

∥

∥

n−1
∑

i=0

αi

[

(

β(ti+1∧t) − β(ti ∧ t)
)

−

∫ ti+1∧t

ti∧t

θHβΠ(s)ds
]

∥

∥

∥

∥

∥

E

≤

n−1
∑

i=0

‖αi‖E

∣

∣

(

β(ti+1∧t) − β(ti ∧ t)
)

−
(

βΠ(ti+1 ∧ t) − βΠ(ti ∧ t)
)
∣

∣

By the estimate (4.8) we conclude that the assertion is true for step functions.
Now let us consider Ψ ∈ L2(0, T ; E) and a sequence (fn)n≥1 of step functions
which converges to Ψ in L2(0, T ; E). We have

sup
0≤t≤T

‖(Ψ · β)(t) − (Ψ · βΠ)(t)‖E ≤ sup
0≤t≤T

‖(Ψ · β)(t) − (fn · β)(t)‖E

+ sup
0≤t≤T

‖(fn · β)(t) − (fn · βΠ)(t)‖E

+ sup
0≤t≤T

‖(fn · βΠ)(t) − (Ψ · βΠ)(t)‖E

= T1(n) + T2(n, Π) + T3(n, Π).

By the first step we only need to estimate T1 and T3. Hölder inequality yields

(4.10) T3(n, Π) ≤ ‖fn − Ψ‖L2(0,T ;E)‖θHβΠ‖L2(0,T ;R) < ∞ a.s,

where we observe that ‖θHβΠ‖L2(0,T ;R) is square integrable for all partition Π. In
fact, we can rewrite (4.7) in the following way

βΠ(t) = cHI1
0+

(

uH−1/2I
H−1/2
0+

(

u1/2−HẆΠ

)

)

(t),

and therefore

θHβΠ(t) = I
H−1/2
0+ D

H+1/2
0+ βΠ(t) = cHtH−1/2I

H−1/2
0+ (u1/2−HẆΠ)(t), 0 ≤ t ≤ T.

Then E‖θHβΠ‖
2
L2(0,T ;R) < ∞ and therefore we can conclude that for each parti-

tion Π

lim
n→∞

ET3(n, Π) = 0.

It remains to estimate T1. For this we shall use the factorization method on the
fractional Wiener integral. Recall the identity
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(4.11)
π

sin πα
=

∫ t

σ

(t − s)α−1(s − σ)−αds; σ ≤ s ≤ t, 0 < α < 1.

Fix 0 < α < 1/2 and p > 1/2α. By using (4.11) and the stochastic Fubini theorem
for fractional Wiener integrals ([27]) we may write

((Ψ − fn) · β)(t) =
sin πα

π

∫ t

0

(t − s)α−1ym(s)ds,

where ym(s) :=
∫ s

0 (Ψ − fm)(σ)(s − σ)−αdβ(σ). Hölder inequality yields

sup
0≤t≤T

‖((Ψ − fn) · β)(t)‖2p
E ≤ C1

∫ T

0

‖ym(s)‖2p
E ds

where the constant C1 depends only on p, α and T . We now choose p = 1. The
ordinary Fubini theorem and the isometry of the fractional Wiener integral with
the reproducing kernel Hilbert space of the fBm (see [12, 3]) yields the following
estimate

ET 2
1 (n) ≤ C1

∫ T

0

E‖ym(s)‖2
Eds

= C1

∫ T

0

∫ s

0

∫ s

0

〈

(Ψ − fn)(u)(s − u)−α, (Ψ − fn)(v)(s − v)−α
〉

E

× φH(u − v)dudvds.

By estimate (11) in [3] we can find positive constants C2 and C3 such that

ET 2
1 (n) ≤ C2

∫ T

0

∫ s

0

‖(Ψ − fn)(u)(s − u)−α‖2
Eduds

≤ C3‖Ψ − fn‖L2(0,T ;E).

Summing up all the estimates we complete the proof of the proposition. �

In the sequel, with a slight abuse of notation we write θH = I
H−1/2
0+ ◦ D

H+1/2
0+

defined on I
H+1/2
0+

(

L2(0, T ;X )
)

where X can be R or the Hilbert space U , depending
on the context. In accordance with Proposition 4.1, we are now in position to define
the following mappings

(4.12) ζd
1h(t) :=

d
∑

i=1

∫ t

0

S(t − s)σiθHhi(s)ds, h ∈ H,

(4.13) Jn(ω) := ω(n), ω ∈ W ,
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(4.14) ζ1(t)g :=

∫ t

0

S(t − s)σθHg(s)ds, g ∈ I
H+1/2
0+ (L2(0, T ; U)).

Proposition 4.3. The support of the Wiener functional Z in (4.2) is given by

ζ1(I
H+1/2
0+ (L2(0, T ; U)))

Proof. For each fixed d ≥ 1 we apply Proposition 4.1 to the Wiener functional
Jd defined in (4.3) with the correspondent transformations ζd

1 , Jn and T h
n , defined

in (4.12), (4.13) and (4.9), respectively. Conditions (4.4) and (4.5) in Proposition 4.1
are direct consequences of Proposition 4.2 and Lemma 4.1. We then have the
following characterization

supp QJd
= ζd

1 (I
H+1/2
0+ (L2(0, T ; Rd))),

where I
H+1/2
0+ (L2(0, T ; R

d))) is equal (as a vector space) to the Cameron-Martin
space H.

We now consider the full sequence of independent fBm {β̃n; n ≥ 1}. At first, since
U is separable one should note that we have the following orthogonal Hilbertian
sum

(4.15) I
H+1/2
0+ (L2(0, T ; U)) ≡

∞
⊕

i=1

I
H+1/2
0+ (L2(0, T ; R)).

To shorten notation we set Od := ζd
1 (I

H+1/2
0+ (L2(0, T ; R

d))). Obviously the following
inclusions hold

Od ⊂ Od+1, for all d ≥ 1,

and therefore limd→∞ supp QJd
=
⋃∞

i=1 Od. On the other hand, we can approxi-
mate the stochastic convolution Z in probability uniformly in [0, T ] as follows

Z(t) =

∫ t

0

S(t − s)σdB̃(s) = lim
d→∞

Jd(t).

Therefore we have

supp QZ =

∞
⋃

n=1

On.

By the relation (4.15) we can conclude that supp QZ = ζ1(I
H+1/2
0+ (L2(0, T ; U))).

�

We say that a closed set K in E is invariant for the evolution equation

(4.16)
d

dt
y(x0,u)(t) = Ay(x0,u)(t)+SHσ(t)+σI

H−1/2
0+ u(t), y(0) = x0 ∈ E, u ∈ L2([0, T ]; U)

if for each initial condition x0 ∈ K and a control u ∈ L2([0, T ]; U) we have

y(x0,u)(t) ∈ K; for all t ∈ [0, T ].
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Theorem 4.1. A closed set is invariant for the differential equation (4.16) if and
only if it is invariant for the HJM equation (4.1). In particular,

supp Qrx0 = {y(x0,u); u ∈ L2(0, T ; U)}.

Proof. The hard part of the proof is the obtention of the support of the stochastic

convolution Z(t) =
∫ t

0
S(t− s)σdB̃(s). We know from Proposition 4.3 that the law

of Z is concentrated on the set of continuous functions of the form

∫ t

0

S(t − s)σI
H−1/2
0+ h(s)ds, h ∈ L2([0, T ]; U).

Then the proof follows the same lines of [30] and therefore we omit the details. �

4.3. Nagumo conditions and finite-dimensional invariant manifolds. In
this section we prove the main result of this section. We recall that if M is a
C1-manifold in E then the associated tangent space at x ∈ M may be written as

(4.17) TxM = {g ∈ E; lim inf
t↓0

1

t
dist[x + tg,M] = 0}; if x ∈ M,

where dist[y,M] denotes the distance between y ∈ E and the set M. We now
provide Nagumo-type conditions for an HJM model to be invariant with respect to
a given smooth manifold.

Proposition 4.4. Let M be a C1−submanifold in E, closed as a set and M ⊂
Dom (A). Then M is invariant for the stochastic equation (4.1) if and only if

(4.18) Ax + SHσ(t) + σν ∈ TxM,

for each x ∈ M, t ∈ [0, T ] and ν ∈ U

Proof. Let E be the set of U -valued piecewise constant functions. We claim that a
closed set K is invariant for equation (4.16) if and only if its mild solution satisfies
the following condition: For each x ∈ K and v ∈ E we have y(x,v)(t) ∈ K for all
t ∈ [0, T ]. We fix an arbitrary u ∈ L2(0, T ; U) and let us consider a sequence of
step functions un converging to u in L2(0, T ; U). Then

(4.19) ‖y(x,un)(t) − y(x,u)(t)‖E ≤ sup
0≤t≤T

‖

∫ t

0

S(t − s)σI
H−1/2
0+ (un − u)(s)ds‖E .

By Hölder inequality we have

(4.20)

sup
0≤t≤T

‖

∫ t

0

S(t − s)σI
H−1/2
0+ (un − u)(s)ds‖E ≤ C1

(

∫ T

0

‖σ(un − u)(r)‖2
Edr

)1/2

,

where C1 is a positive constant which depends on T and H . Since σ is bounded
we then have inequalities (4.19) and (4.20) imply that a closed set K is invariant
for (4.16) if and only if y(x,v)(t) ∈ K, t ∈ [0, T ] for all x ∈ K and all piecewise
constant U−valued function v. Thus proving our first claim.
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Now let M ⊂ E be a closed C1− submanifold where M ⊂ Dom(A). By Theorem
2 in Jachimiak ([26]) and Theorem 4.1, we know that M is invariant with respect
to equation (4.1) if and only if, for each x ∈ M, t ∈ [0, T ] and v ∈ E

lim inf
α↓0

1

α
dist[S(α)(x) + α(SHσ(t) + I

H− 1
2

0+ σv(t)),M] = 0.

By assumption M is contained in the domain of A and therefore the above
condition can be replaced by

(4.21) lim inf
α↓0

1

α
dist[(x + α(Ax + SHσ(t) + I

H− 1
2

0+ σv(t)),M] = 0

Since U is linear and σ is a bounded linear operator on U , the condition (4.21)
is equivalent to

lim inf
α↓0

1

α
dist[(x + α(Ax + SHσ(t) + σν),M] = 0,

for each x ∈ M, t ∈ [0, T ] and ν ∈ U . �

We end this section with the characterization of a given finite- dimensional in-
variant submanifold. In fact, by using Proposition 4.4 the proof of the following
results are minor modifications of the arguments given in [30].

Lemma 4.2. Let M ⊂ E be a finite-dimensional C1−submanifold and closed as a
set. If M is invariant for (4.1) then every rx0(t) mild solution of equation (4.1) is
also a strong solution for every x0 ∈ M. In particular, M ⊂ Dom (A).

Proof. Let a ∈ Dom A∗ where A∗ denotes the adjoint of A. By using a stochastic
Fubini theorem for the fractional Brownian motion (see ([27]) we obtain for t ∈ [0, T ]

〈a, rx0(t)〉 = 〈a, x0〉+

∫ t

0

〈A∗a, rx0(s)〉ds+

∫ t

0

〈a,SHσ(s))〉ds+

∫ t

0

〈a, σdB̃(s)〉, a.s.

Now we may apply the same arguments as in Lemma 2.3 in [30] to show that if M
satisfies the above assumptions and it is invariant for the stochastic equation (4.1)
then M ⊂ Dom (A) and therefore

Q(rx0(t) ∈ Dom (A), ∀t ∈ [0, T ]) = 1, for every x0 ∈ M.

This concludes the proof. �

Now we are in position to prove the main result of this section. In the sequel, we
write Im σ := σU .

Theorem 4.2. Let M be a finite-dimensional C1− submanifold in E (closed as
a set). Then M is invariant for an HJM model given by (4.1) if and only if
M ⊂ Dom (A), and

(4.22) Ax ∈ TxM,

(4.23) SHσ(t) + Im σ ⊂ TxM,

for every t ∈ [0, T ] and x ∈ M.
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Proof. Similar to the proof of Lemma 4.2 one can show that the above conditions
imply that every mild solution of the equation (4.16) is also a strong solution which
is given by

y(x,h)(t) = x +

∫ t

0

Ay(x,h)(s)ds +

∫ t

0

SHσ(s)(s)ds +

∫ t

0

σI
H−1/2
0+ h(s)ds,

for h ∈ L2(0, T ; U). Therefore differentiating the above expression at t = 0, we
conclude that Ax ∈ TxM for every x ∈ M. Proposition 4.4 implies that for each
x ∈ M, we have SHσ(t) + σν ∈ TxM for every t ∈ [0, T ] and ν ∈ U . Conversely,
let x ∈ M, v ∈ U and t ∈ [0, T ]. By Proposition 4.4 it is sufficient to check (4.18).
But this is a straightforward calculation using the parametrizations in M �

Next we examine concrete short rate models and smooth finite-dimensional man-
ifolds, in particular, Ho-Lee and Hull-White models together with the well-known
Nelson-Siegel family [31] are investigated.

5. Nelson-Siegel family

In this section, we are interested in investigating the Nelson-Siegel [31] exponen-
tial family M = {F (·, y); y ∈ Y} widely used to fit term structure of interest rates.
The form of the curve is given by the following expression

(5.1) F (x, y) = y1 + y2e
−y4x + y3xe−y4x, x ≥ 0,

where we restrict the parameters to the following state space Y := {y = (y1, . . . , y4) ∈
R

4|y4 6= 0}. Obviously, if η = F (·, y) is a generic element of M, then the tangent
space of M at the point η is given by TηM = Im Fy(·, y), where Fy(·, y) is the
Frechet derivative at point y ∈ Y with respect to y. Therefore, the tangency con-
ditions (4.22) and (4.23) can be written as

(5.2) Fx(·, y) ∈ Im Fy(·, y)

(5.3) SHσ(t) + Im σ ⊂ Im Fy(·, y)

for every (t, y) ∈ [0, T ] × Y, where Fx(·, y) is the derivative of F (·, y) with respect
to the variable x for each fixed y ∈ Y. Straightforward computation yields

(5.4) Fx(x, y) = (y3 − y2y4 − y3y4x)e−y4x,

(5.5) Fy(x, y) = [1, e−y4x, xe−y4x,−(y2 + y3x)xe−y4x].

As an example, we now study simple interest rate models. By using Theorem 4.2
(in particular relations (4.22) and (4.23)), the calculations are minor modifications
from [6] so we just sketch the details.
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5.1. Ho-Lee model. Let us consider the one-factor model under the Ho-Lee volatil-
ity structure given by a constant volatility, i.e., σt(x) = σ, for all (t, x) ∈ R

2
+. In

this case, the drift restriction is given by

(5.6) SHσ(t, x) = σ2
(

̺1
H(t, x) + ̺2

H(t)
)

, (t, x) ∈ R
2
+;

where ̺1
H(t, x) = 2x

∫ t

0 φH(t− θ)dθ and ̺2
H(t) = t

∫ t

0 φH(t− θ)dθ−
∫ t

0 θφH(t− θ)dθ.

One should notice that relation (5.2) is satisfied but because of the term ̺1
H(t, x)

in (5.6), relation (5.3) is not possible and therefore by Theorem 4.2 we conclude
that the Ho-Lee model is not consistent with the Nelson-Siegel family. On the other
hand, by restricting the state space we may obtain consistency as follows. Let us
consider the degenerate Nelson-Siegel family: We take Y0 = {y = (y1, . . . , y4) ∈
R

4|y2 = y4 = 0} and in this case

F (x, y) = y1 + y3x, (x, y) ∈ R+ × Y0.

Moreover, one can easily check invariance of the Ho-Lee model with general affine
manifolds.

5.2. Hull-White model. Let us consider the one-factor model under the Hull-
White volatility structure given by σt(x) = σe−αx where α and σ are positive
constants. In this case, the drift restriction is given by

(5.7)

SHσ(t, x) =
σ2

α
e−αx

[

∫ t

0

(

1+e−α(t−θ)
)

φH(t−θ)dθ

]

−
2σ2

α
e−2αx

∫ t

0

e−α(t−θ)φH(t−θ)dθ,

for each (t, x) ∈ R
2
+. By considering the full state space Y, clearly the Hull-White

model cannot be consistent with the Nelson-Siegel family. By restricting the state
space to Yα = {y = (y1, . . . , y4)|y4 = α}, the curve shape is then given by

F (x, y) = y1 + y2e
−αx + y3xe−αx.

Due to the second term in (5.7), the fractional Hull-White model is not consistent
with the Nelson-Siegel family on Yα. So an alternative is to consider the following
curve shape

(5.8) F (x, y) = y1e
−αx + y2e

−2αx.

Due to the term e−2αx we now notice that the family given in (5.8) is consistent
with the fractional Hull-White model. In fact, the following result is not surprising
in view of the previous examples.

Proposition 5.1. There is no nontrivial fractional interest rate model with deter-
ministic volatility which is consistent with the Nelson-Siegel family.

Proof. By using Theorem 4.2 the proof is analogous to [6; Proposition 7.1]. �

Using the same ideas, we could also study consistency of concrete multi-factor
HJM models by checking relations (5.2) and (5.3). See the works [15, 16, 5]. We
conclude this paper by discussing possible extensions of our results. The first exten-
sion is a direct consequence of the results of this paper. The other two extensions
are less obvious and require further investigation.



FRACTIONAL TERM STRUCTURE MODELS: NO-ARBITRAGE AND CONSISTENCY 27

5.3. Mixed noises and multiple scales. One can consider the case where the
HJM equation is driven by several independent fBms with different values of the
Hurst parameter H̃ = (H1, . . . , Hd) ∈ (1/2, 1)d:

dr(t) =
( d

dx
r(t) + SH̃σ(t)

)

dt +
d
∑

i=1

σidβi
Hi(t).

It can be seen that in this case, there is no conceptual obstruction to the use of
the method of the proof of this work. In this case, the proof follows the same lines
as before since we are able to perform a Wong-Zakai approximation for the above
equation. In fact, the strategy used in this paper works for fairly general continuous
Gaussian process.

5.4. Fractional gaussian noises with jumps. Alternatively, one can consider
the case where the fractional HJM is perturbed by a jump process as follows

drt =
( d

dx
rt + SHσt

)

dt +

d
∑

i=1

σidβi
t + δ(t, y)m(dt, dy),

where m(dt, dy) is a marked point process. In this case, log Z is no longer a
continuous process and therefore the full support no-arbitrage argument given in
Lemma 3.1 does not work. Further investigation is needed on the relation between
càdlàg (right-continuous with left-limits) price processes and condition (2.18). In
the continuous case, the (conditional) full support for log Z has a prominent role
in determining absence of arbitrage. In the càdlàg case, new topological con-
ditions have to be derived to ensure no-arbitrage via Proposition 2.1. See the
works [20, 21, 22] for more details in the case of stock markets.

5.5. Fractional HJM models with multiplicative noise in Skorohod sense.
One can naturally ask if the results of this paper can be extended to multiplicative
noise as follows

drt =
( d

dx
rt + SHσ(rt)

)

dt +

d
∑

i=1

σi
t(rt)dβi

t.

The stochastic integral appearing above is considered in the Skorohod sense. In
this case, as already commented in the Introduction, it will require using subsequent
work in the stochastic analysis of the fBm. Technical difficulties arise in the Picard
iteration of the above equation when the noise enters in a nonlinear way. At our
knowledge we only know how to solve such equations when the noise enters linearly
which becomes unsuitable for financial applications (see e.g [13, 32]).

Moreover, assuming the existence of solution, more refined probabilistic esti-
mates are required. In fact, by performing Itô formula in (2.13) it will appear
additional random terms in the SDE of log Zt(T ) which involve the Gross-Sobolev
derivatives of σi(r·) and SHσ(r·). Here SHσ : E → E must be a suitable Lipschitz
mapping chosen in such way that EQZt(T ) = P (0, T ) for every (t, T ) ∈ ∆2 and
log Z admits full support. In this case, a mild sufficient condition on the volatility
structure (σi)∞i=1 to produce full support for log Z is not clear in this context. In
fact, more refined properties on the support of Skorohod integrals plus bounded
variation processes should be developed in this context.
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APPENDIX

6. Integration for C(R+; R)−valued process

In this section we introduce a suitable integral to deal with bond markets driven
by fBm. Let

(

Ω, (Ft)t≥0, P
)

be a stochastic basis where the filtration (Ft)t≥o satis-
fies the usual hypotheses. We denote M(R+) the space of (finite) signed measures
on R+ with the total variation topology ‖ · ‖TV . We also write C0(R+; R) the
space of continuous functions from R+ into R converging to zero at infinity. For
m ∈ M(R+) and l ∈ C0(R+; R) we put

(6.1) lm :=

∫

l(θ)m(dθ)

Let us consider elementary measure - valued processes of the following form

(6.2) µt(ω, ·) :=

N−1
∑

i=0

χFi
(ω)χ(ti,ti+1](t)mi

where mi ∈ M(R+), 0 = t0 < . . . < TN < ∞ and Fi ∈ Fti
. We assume that the

support of µ is concentrated on [t,∞) for all (t, ω) ∈ R+ × Ω. We denote by Sb

the set of elementary processes of the form (6.2). We endow Sb with the following
norm

(6.3) ‖µ‖2
V := E sup

0≤t<∞
‖µt‖

2
TV

The class of integrators will be C0(R+; R)- valued stochastic processes satisfying
the following hypothesis.

Assumption (A1). Let {G(t, T ); (t, T ) ∈ R
2
+} be a jointly continuous real-valued

stochastic process such that

E sup
(t,T )∈R2

|G(t, T )|2 < ∞.

If µ ∈ Sb and G satisfies (A1) then we define

∫ t

0

µsdGs :=

N−1
∑

i=0

χFi

(

Gti+1∧t − Gti∧t

)

mi.

By Hölder inequality it follows that

(6.4) E sup
0≤t<∞

∣

∣

∣

∫ t

o

µsdGs

∣

∣

∣
≤ ‖µ‖VE

1/2 sup
0≤s,t<∞

‖Gs − Gt‖
2
∞ < ∞,

where ‖ · ‖∞ denotes the usual (uniform topology) norm on the space C(R+; R).
Let V be the completion of Sb with respect to (6.3). By the estimate (6.4) and the
definition of V we may easily define

∫ ·

0 µsdGs for all µ ∈ V. Next we present some
elementary technical results.
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Lemma 6.1. Fix 0 < T ∗ < ∞ and consider tni := iT∗

2n for i = 0, 1, . . . , 2n; n ≥ 1.
Then if µ ∈ V and G satisfies assumption A1 then

limn→∞E

∥

∥

∥

∥

∥

2n−1
∑

i=0

µtn
i
(Gtn

i+1
∧· − Gtn

i
∧·) −

∫ ·

0

µsdGs

∥

∥

∥

∥

∥

∞

= 0

Proof. Straightforward estimates. �

Next we fix 0 < T ∗ < ∞ and consider

M
(n)
i (T ) := sup

tn
i
≤t≤tn

i+1

G(t, T ); T ≥ 0,

m
(n)
i (T ) := inf

tn
i
≤t≤tn

i+1

G(t, T ); T ≥ 0,

where tni := iT∗

2n for i = 0, 1, . . . , 2n; n ≥ 1. With these objects we then define

Gn(s) :=

2n−1
∑

i=0

χ(tn
i

,tn
i+1

](s)M
(n)
i ,

Gn(s) :=

2n−1
∑

i=0

χ(tn
i

,tn
i+1

](s)m
(n)
i ,

and

∫ t

0

Gn(s)dµs :=

2n−1
∑

i=0

M
(n)
i (µtn

i+1
∧t − µtn

i
∧t),

∫ t

0

Gn(s)dµs :=

2n−1
∑

i=0

m
(n)
i (µtn

i+1
∧t − µtn

i
∧t).

We denote PT∗ the set of all partitions of [0, T ∗]. In the sequel we consider the
following assumption:

Assumption (A2).

ΠT∗(µ) := sup
π∈PT∗

∑

ti∈π

‖µti+1
− µti

‖TV is square integrable.

Lemma 6.2. Assume that µ ∈ V where (A2) holds and consider G a stochastic
process such that (A1) holds. Then

(a) limn→∞ E sup0≤t≤T∗

∣

∣

∣

∣

∣

∫ t

0
Gndµ −

∫ t

0
Gndµ

∣

∣

∣

∣

∣

= 0,

(b) limn,m→∞ E sup0≤t≤T∗

∣

∣

∣

∣

∣

∫ t

0 Gndµ −
∫ t

0 Gmdµ

∣

∣

∣

∣

∣

= 0.
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Proof. We notice that

∣

∣

∣

∣

∣

∫ t

0

Gndµ −

∫ t

0

Gndµ

∣

∣

∣

∣

∣

≤

2n−1
∑

i=0

‖M
(n)
i − m

(n)
i ‖∞‖µtn

i+1
∧t − µtn

i
∧t‖TV

≤ max
i;i=0,...,2n−1

‖M
(n)
i − m

(n)
i ‖∞Π(µ) a.s, 0 ≤ t ≤ T ∗.

By continuity limn→∞ maxi;i=0,...,2n−1 ‖M
(n)
i − m

(n)
i ‖∞ = 0 a.s. Moreover, there

exists a constant C such that

max
i;i=0,...,2n−1

‖M
(n)
i − m

(n)
i ‖∞ ≤ C sup

0≤s,T≤∞
|G(s, T )| a.s ∀n ≥ 1.

By assumptions (A1-A2) and the dominated convergence theorem we conclude
part (a). Similarly, sup0≤s≤T∗,T≥0 |Gn(s; T )−Gm(s; T )| goes to zero a.s as n, m →
∞. Moreover, it is bounded by C sup0≤s,T<∞ |G(s, T )|. Again, by assumptions
(A1-A2) and dominated convergence theorem we conclude part (b). �

By Lemma 6.2 we shall define

∫ t

0

Gsdµs := lim
n→∞

∫ t

0

Gn(s)dµs = lim
n→∞

∫ t

0

Gn(s)dµs.

The next result is a straightforward integration by part formula.

Proposition 6.1. Assume that assumptions (A1) and (A2) hold. Then

(6.5)

∫ T∗

0

Gsdµs +

∫ T∗

0

µsdGs = GT∗µT∗ − G0µ0

Proof. By writing a telescoping sum we have

2n−1
∑

i=0

(Gtn
i+1

− Gtn
i
)(µtn

i+1
− µtn

i
) = GT∗µT∗ − G0µ0

−

2n−1
∑

i=0

(Gtn
i+1

− Gtn
i
)µtn

i
−

2n−1
∑

i=0

(µtn
i+1

− µtn
i
)Gtn

i
,

a.s for all n ≥ 1. By Lemma 6.1 and Lemma 6.2 we only need to show that the left-
side goes to zero as n → ∞. But this is an immediate consequence of hypotheses
(A1) and (A2) together with the continuity of G. �
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[2] Alòs. E., Mazet, O. and Nualart, D. (2001). Stochastic calculus with respect to Gaussian
processes. Ann. Probab. 29, 766-801.

[3] Alòs, E., and Nualart, D. (2003). Stochastic integration with respect to the fractional Brow-
nian motion. Stochastics. Stochastics. Rep. 75, 129-152.

[4] Backus, D. and Zin, S. (1993). Long memory inflation uncertainty: evidence of term structure
of interest rate. J. Money, Cred. Bank. 25, 687-700.

[5] Björk, T., Di Masi, G., Kabanov, Y Runggaldier, W. (1997). Towards a general theory of
bond markets. Finance Stoch. 1, 141-174.



FRACTIONAL TERM STRUCTURE MODELS: NO-ARBITRAGE AND CONSISTENCY 31

[6] Björk, T. and Christensen, B. (1999). Interest rate dynamics and consistent forward rate
curves. Math. Finance. 9, 323-348.

[7] Cajueiro, D. and Tabak, B. (2006). Testing for Long-Range Dependence in the Brazilian
Term Structure of Interest Rates. XXX Brazilian Econometric Metting.

[8] Da Prato, G., and Zabczyk, J. (1992). Stochastic Equations in Infinite Dimensions. Cam-
bridge Univ. Press.

[9] Decreusefond. L., and Ustunel. A.S. (1998). Stochastic analysis of the fractional Brownian
motion. Potential Analysis. 10, 177-214.

[10] Delbaen F., and Schachermayer, W. (1994). A General Version of the Fundamental Theorem
of Asset Pricing. Mathematische Annalen, 300, 463-520.

[11] De Donno, M. and Pratelli, M (2007). A theory os stochastic integration for bond markets.
Ann. Appl. Probab. 15, 2773-2791.

[12] Duncan, T. E., Maslowski, B., Pasik-Duncan, B. (2002). Fractional Brownian motions and
stochastic equations in Hilbert spaces. Stoch. Dyn. 2, 225-250.

[13] Duncan, T. E., Maslowski, B., Pasik-Duncan, B. (2005). Stochastic equations in Hilbert
spaces with a multiplicative fractional gaussian noise. Stoch. Proc. Appl. 115, 1357-1383.

[14] Filipovic, D. (1999). A note on the Nelson-Siegel family. Math. Finance 9, 349-359.
[15] Filipovic, D. (2001). Consistency problems for Heath-Jarrow-Morton interest rate models.

Lecture Notes in Math. 1760, Springer-Verlag.

[16] Filipovic, D.(2000). Consistency Problems for HJM Interest Rate Models. Thesis. ETH.
[17] Filipovic, D. Invariant manifolds for weak solutions to stochastic equations. Probab. Theory

Relat. Fields. 118, 323-341.
[18] Filipovic, D., and Teichmann. J. (2003). Existence of invariant manifolds for stochastic equa-

tions in infinite dimension. J. Func. Anal. 197, 398-432.
[19] Filipovic, D., and Teichmann. J. (2004). On the geometry of the term structure of interest

rates. Proc. R. Soc. Lond. A. 460, 129-167.
[20] Guasoni, P. (2006). No Arbitrage under Transaction Costs with Fractional Brownin Motion

and Beyond. Math. Finance 16, 569-582.
[21] Guasoni, P., Rásonyi, M., and Schachermayer, W. (2007). Consistent Price Systems and

Face-Lifting Pricing under Transaction Costs. Forthcoming in Ann. App.Probab.
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