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Abstract

We show that under quite general distributional conditions the asymp-

totic distribution of Hotteling’s T
2 statistic is the chi-square distribution,

which is also the asymptotic distribution of T
2 under the assumption of

normality.
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1 Introduction

1.1 Hotteling’s T
2 statistic under normality

Let X be a p-variate random vector with mean µ and variance-covariance ma-
trix Σ. A sample of n independent and identically distributed observations
X1, X2, ..., Xn of vector X is taken and the sample mean vector X̄(n) and
variance-covariance matrix S(n) are calculated, where:

X̄(n) =
1

n

n
∑

i=1

Xi and S(n) =
1

n − 1

n
∑

i=1

(Xi − X̄)(Xi − X̄)′.

Hotteling’s T 2 statistic is defined by:

T 2 = n(X̄(n) − µ)′(S(n))
−1

(X̄(n) − µ).

It is well known that if the sample vectors have a common multivariate

Normalp(µ,Σ) distribution the statistic T 2 is distributed as (n−1)p
(n−p) Fp,n−p and

that when n tends to infinity the limit distribution of T 2 is chi-square with p

degrees of freedom.
We will show that, replacing the normal distribution by any continuous

distribution with finite second order moments, the asymptotic distribution of
Hotteling’s T 2 statistic is also the chi-square distribution with p degrees of
freedom.

There exists a recent work - as in G. Willems and others (2002) - on
alternative robust versions of the Hotteling’s T 2 statistic in the finite sample
context. Also the asymptotic robustness of T 2 is often mentioned (as in the
book of Johnson and Wichern, (1998), page 187), but we believe that a rigorous
proof of this fact is still lacking.

1.2 Notation, norms and convergence

• N and R denote the sets of natural and real numbers, respectively.

1



• Let m ∈ N and k ∈ N, if A ∈ R
m×k, then A′ denotes the transpose of A.

• Define the norm of A = [aij ] ∈ R
m×k by:

‖ A ‖ = maximum{ | aij |, i = 1, ...,m, j = 1, ..., k}.

It is easy to see that if A ∈ R
m×k and B ∈ R

k×t, then

‖ AB ‖ ≤ k ‖ A ‖ ‖ B ‖ (1)

for m, k and t natural numbers.

• As usually, we say that a sequence An in R
m×k converges to A ∈ R

m×k

if and only if ‖ An − A ‖ converges to zero. We remark that all metrics
induced by norms are equivalent in R

m×k, in particular that convergence
in the norm ‖ ‖ is equivalent to coordinatewise convergence.

• If Z is a p-variate random vector, then PZ−1 denotes the probability
distribution induced by Z in R

p.

2 Tightness in general spaces of probability mea-

sures and convergence in probability in R
m×k

2.1 Tightness and relative-compactness of a family of dis-

tributions

Let F be the space of finite measures defined on the σ-algebra of the Borel sets
of a complete separable metric space (Ω, d) and denote by T the topology of
convergence in distribution (or the same, in law) in F .

Prohorov (1957)[2] proved that exists a metric π in F such that it induces
T and that (F , π) is separable and complete.

Prohorov also caracterized the relatively compact sets of (F , T ). In the case
of a family P of probability measures, Prohorov proved that P is relatively
compact if and only if the family is tight, that is, for any ε > 0 there exists a
compact set K = K(ε,P) in (Ω, d) such that

P (K) > 1 − ε for all P in P.

We use this property in the proof of the Proposition of Subsection 2.1.

2.2 Convergence in probability in R
m×k

In this subsection we prove de equivalence between coordinatewise convergence
in probability and convergence in probability in the sense of de norm ‖ ‖.

Lemma

Let {An, n ∈ N} a sequence in R
m×k, A ∈ R

m×k. Then: An → A coordi-
natewise in probability if and only if ‖ An − A ‖ → 0 in probability.

Proof
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i) First, because of the invariance under translations of the distances induced
by norms, it suffices to prove that:

An → 0 coordinatewise in prob. if and only if ‖ An ‖ → 0 in prob. ;

ii) Now, suppose that An → 0 coordinatewise in probability, that is that
| (An)ij | → 0 in prob., for i = 1, 2, ..., n and j = 1, 2, .., n

let ε > 0 and δ > 0 be given, we must prove that exists n0 ∈ N such that if
n ≥ n0 then

Probability(maximum{| (An)ij |, i = 1, ...,m, j = 1, ..., k} ≥ ε) ≤ δ ;

by the hipothesis of coordinatewise convergence, given ε > 0 and δ > 0 there
exist natural numbers nij , i = 1, ...,m, j = 1, ..., k such that if n ≥ nij then

Probability({| (An)ij |≥ ε}) ≤
δ

m × k
,

now call n0 = maximum{nij , i = 1, ...,m, j = 1, ..., k},
then if n ≥ n0

Probability({| (An)ij |< ε}) ≥ 1 −
δ

m × k
, i = 1, ...,m, j = 1, ..., k ,

hence

Probability(maximum{| (An)ij |, i = 1, ...,m, j = 1, ..., k} < ε) =

Probability





⋂

i=1,...,m,j=1,...,k

| (An)ij |< ε



 ≥ 1 − δ ;

iii) Finally, suppose that ‖ An ‖ → 0, that is,
maximum{ | (An)ij |, i = 1, ...,m, j = 1, ..., k} → 0 in probability ,
now we must prove that | (An)uv | → 0 for u = 1, ...,m, v = 1, ..., k ;
let ε > 0 and δ > 0 be given, then by hypothesis there exists a natural

number n0 such that if n ≥ n0 then

Probability(maximum{| (An)ij |, i = 1, ...,m, j = 1, ..., k} ≥ ε) ≤ δ

and this implies that for n ≥ n0

Probability({| (An)uv |} ≥ ε}) ≤ δ for any pair (u,v) with u = 1, ...,m, v = 1, ..., k •

3 Asymptotic normality of T
2

3.1 A consequence of Slustzky’s Theorem

The following proposition is a consequence of the well known Slutzky’s Theorem
about convergence of random variables.

Proposition
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Let {Yn, n ∈ N} and Y be p-dimensional random vectors, {An, n ∈ N} a
random subset of R

p×p and A a fixed element of R
p×p.

If Yn → Y in law and An → A in probability, then

(Yn)′An Yn → Y ′A Y in law .

Proof

i) Case A = 0:
We must prove here that (Yn)′AnYn → 0 in law, which is the same that

(Yn)′An Yn → 0 in probability (because 0 is a constant);
equivalently, we must prove that given ε > 0 and δ > 0, there exists a natural

number n0 such that

Probability({‖ (Yn)′An Yn ‖≤ ε}) = Probability({| (Yn)′An Yn |≤ ε}) ≥ 1−δ for all n ≥ n0;

by hypothesis, the sequence (Yn, n ∈ N) is convergent in law, hence the
family {P (Yn)−1, n ∈ N} is a relatively compact set in the space of probability
measures defined on de Borel sets of R

p and then tight; this implies that, given
δ > 0, there exists a compact set K in R

p such that

(P (Yn)−1)(K) ≥ 1 −
δ

2
for all n ∈ N;

since compact sets are bounded in metric spaces, there exists a real number
M > 0 such that the set K is contained in the set [−M,M ]p and then

(P (Yn)−1)([−M,M ]p) ≥ 1 −
δ

2
for all n ∈ N

and this is equivalent to say

Probability ({‖ Yn ‖ ≤ M}) ≥ 1 −
δ

2
for all n ∈ N; (2)

since An → 0 in probability, given ε > 0, M > 0 and p, there exists a natural
number n0 such that

Probability

({

‖ An ‖ ≤
ε

M2p2

})

≥ 1 −
δ

2
for all n ≥ n0. (3)

Finally, in view of the equations (1), (2) and (3) we can say that

Probability ({‖ (Yn)′An Yn ‖≤ ε}) ≥ Probability

({

‖ Yn ‖≤ M}
⋂

{‖ An ‖≤
ε

M2p2

})

≥ 1−δ.

ii) General case:
It is easy to see that (Yn)′An Yn = (Yn)′(An − A) Yn + (Yn)′A Yn;

observe now that the first term of the second member of the equality above
( (Yn)′(An − A) Yn ) converges in probability to 0 (by i)) and that the second
one ( (Yn)′A Yn ) converges in law to Y ′A Y (because Yn → Y in law and the
function g(Y ) = Y ′A Y is continuous in Y );

now apply to the random variables (Yn)′(An − A)Yn and (Yn)′A Yn the
Slutzky’s Theorem, say: if Un, U, V are random variables, c is a constant, Un →
U in law and Vn → c in probability, then Un + Vn → U + c in law •
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3.2 Limit distribution of T
2

Theorem

Let X be a p-variate random vector with continuous distribution, mean µ

and positive definite variance-covariance matrix Σ. A sample of n independent
and identically distributed observations X1, X2, ..., Xn of vector X is taken.
Let X̄(n) and S(n) be the sample mean vector and sample variance-covariance
matrix S(n), respectively (defined in Subsection 1.1). Let T 2 be the Hotteling’s
statistic,that is:

T 2 = n(X̄(n) − µ)′(S(n))
−1

(X̄(n) − µ).

Then the limit distribution of T 2 is chi-square with p degrees of freedom.

Proof

i) By hypotheses, X has a continuous distribution and the variance-covariance
matrix Σ is positive definite, then

Probability ({S(n) is positive definite }) = 1

as may be seen in Seber(1984) ([3], pages 8 and 522), therefore we don’t worry
about the invertibility of S(n) ;

The existence of Σ implies the finiteness of Σij , 1 ≤ i ≤ p, 1 ≤ j ≤ p. We
also have that E((S(n))ij) = Σij and then the law of large numbers ensures
that :

(S(n))ij → Σij in probability , i = 1, 2, ..., p and j = 1, 2, ..., p ;

hence, because the function A → A−1 (Rp×p → R
p×p) is continuous in the

invertible matrix Σ, we have:

((S(n))−1)ij → ((Σ)−1)ij in probability i = 1, 2, ..., p and j = 1, 2, ..., p ,

(4)
now, as a consequence of (4) and the Lemma of Subsection 1.4, we have:

‖ ((S(n))−1) − ((Σ)−1) ‖ → 0 in probability ; (5)

ii) Otherwise, by the Central Limit Theorem, we know that:

n
1

2 (X̄(n) − µ) → (µ,Σ) in distribution , (6)

iii) Finally, given (5), (6) and the Proposition of Subsection 2.1 we have:

T 2 = n
1

2 (X̄(n) − µ)′S(n))
−1

n
1

2 (X̄(n) − µ) → n(W − µ)′Σ−1(W − µ),

where W is distributed as Normalp(µ,Σ), and then T 2 is distributed as a
chi-square with p degrees of freedom •
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