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Abstract

We show that under quite general distributional conditions the asymp-
totic distribution of Hotteling’s T2 statistic is the chi-square distribution,
which is also the asymptotic distribution of T2 under the assumption of
normality.
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1 Introduction

1.1 Hotteling’s T? statistic under normality

Let X be a p-variate random vector with mean p and variance-covariance ma-
trix X. A sample of n independent and identically distributed observations
X1, Xo,..., X, of vector X is taken and the sample mean vector X(n) and
variance-covariance matrix S(n) are calculated, where:

Z X; and S(n Z - X).
Hotteling’s T2 statistic is defined by:

=n(X(n) = p)'(S(n)) " (X (n) - ).

It is well known that if the sample vectors have a common multivariate

Normal,(u,%) distribution the statistic 72 is distributed as ((7; ilp))p Fyyn—p and

that when n tends to infinity the limit distribution of 72 is chi-square with p
degrees of freedom.

We will show that, replacing the normal distribution by any continuous
distribution with finite second order moments, the asymptotic distribution of
Hotteling’s T2 statistic is also the chi-square distribution with p degrees of
freedom.

There exists a recent work - as in G. Willems and others (2002) - on
alternative robust versions of the Hotteling’s T2 statistic in the finite sample
context. Also the asymptotic robustness of T2 is often mentioned (as in the
book of Johnson and Wichern, (1998), page 187), but we believe that a rigorous
proof of this fact is still lacking.

1.2 Notation, norms and convergence

e N and R denote the sets of natural and real numbers, respectively.



e Let m € Nand k € N, if A € R™** then A’ denotes the transpose of A.

e Define the norm of A = [a;;] € R™*F by:

I Al =mazimum{ | a;; |,i=1,..m,5=1,...,k}.

It is easy to see that if A € R™** and B € R¥**, then
| AB[| <k | Al B (1)
for m, k and ¢ natural numbers.

e As usually, we say that a sequence A, in R™** converges to A € R™*k
if and only if || A, — A || converges to zero. We remark that all metrics
induced by norms are equivalent in R™>*, in particular that convergence
in the norm ||| is equivalent to coordinatewise convergence.

e If Z is a p-variate random vector, then PZ~! denotes the probability
distribution induced by Z in RP.

2 Tightness in general spaces of probability mea-
sures and convergence in probability in R™**

2.1 Tightness and relative-compactness of a family of dis-
tributions

Let F be the space of finite measures defined on the o-algebra of the Borel sets
of a complete separable metric space (2, d) and denote by 7 the topology of
convergence in distribution (or the same, in law) in F.

Prohorov (1957)[2] proved that exists a metric 7 in F such that it induces
7T and that (F, ) is separable and complete.

Prohorov also caracterized the relatively compact sets of (F,7). In the case
of a family P of probability measures, Prohorov proved that P is relatively
compact if and only if the family is tight, that is, for any € > 0 there exists a
compact set K = K(¢,P) in (£, d) such that

P(K)>1—e¢€ forall P in P.
We use this property in the proof of the Proposition of Subsection 2.1.

2.2 Convergence in probability in R™*¥

In this subsection we prove de equivalence between coordinatewise convergence
in probability and convergence in probability in the sense of de norm || ||.

LEMMA
Let {A,,n € N} a sequence in R™** A € R™>** Then: A, — A coordi-
natewise in probability if and only if || A, — A || — 0 in probability.

PRrROOF



i) First, because of the invariance under translations of the distances induced

by norms, it suffices to prove that:
A, — 0 coordinatewise in prob. if and only if || A, || — 0 in prob. ;

ii) Now, suppose that A,, — 0 coordinatewise in probability, that is that
| (An)ij | = 0in prob., fori=1,2,..,nand j =1,2,..,n

let € > 0 and § > 0 be given, we must prove that exists ng € N such that if
n > ng then

Probability(mazimum{| (An)i |, i=1,...m,j=1,..,k} >¢€) < ;

by the hipothesis of coordinatewise convergence, given € > 0 and § > 0 there
exist natural numbers n;;, i =1,...,m,j = 1, ...,k such that if n > n,; then

]

mxk’

Probability({| (An)ij |> €}) <

now call ng = maximum{n;;, i =1,...m,j=1,...,k},
then if n > ng

1)
m X k

,1=1,..

Probability({| (An)i; |<€}) >1—

hence

Probability(mazimum{| (An)i; |, i=1,..m,j=1,..,k} <e) =

Probability ﬂ | (An)ij l<e| >1-0;

i=1,...,m,j=1,...k

iii) Finally, suppose that || A, || — 0, that is,

mazimum{ | (A,); |,i =1,...,m,j=1,..,k} — 0 in probability ,

now we must prove that | (A,)uy | = 0foru=1,...muv=1,..,k ;

let € > 0 and § > 0 be given, then by hypothesis there exists a natural

number ng such that if n > ngy then
Probability(mazimum{| (An)i; |, i=1,..,m,j=1,... >e) <
and this implies that for n > ng

Probability({| (An)uw |} > €}) <6 for any pair (u,v) withu=1,...,m,v =

3 Asymptotic normality of 7>

3.1 A consequence of Slustzky’s Theorem

The following proposition is a consequence of the well known Slutzky’s Theorem
about convergence of random variables.

PRrROPOSITION



Let {Y,,n € N} and Y be p-dimensional random vectors, {A,,n € N} a
random subset of RP*? and A a fixed element of RP*P,
If Y, — Y in law and A,, — A in probability, then

(V) A, Y, —=Y'AY inlaw.
PRrROOF
i) Case A =0:
We must prove here that (Y,,)'A,Y,, — 0 in law, which is the same that
(V) A, Y, — 0 in probability (because 0 is a constant);
equivalently, we must prove that given € > 0 and § > 0, there exists a natural
number ngy such that

Probability({|| (Y,)' An Yy [|< €}) = Probability({] (Y,)' A, Yy |<€}) > 1= for all n > ng;

by hypothesis, the sequence (Y,,n € N) is convergent in law, hence the
family {P(Y,,)~!,n € N} is a relatively compact set in the space of probability
measures defined on de Borel sets of RP and then tight; this implies that, given
0 > 0, there exists a compact set K in RP such that

o
(P(Y,) M) (K)>1- B for all neN;
since compact sets are bounded in metric spaces, there exists a real number
M > 0 such that the set K is contained in the set [—M, M]P and then
4]
(P(Y,) ™ H([-M,MP) >1— 5 forall neN

and this is equivalent to say

Probability ({|| Y, || < M}) > 1 - g for all n € N; (2)

since A,, — 0 in probability, given € > 0, M > 0 and p, there exists a natural
number ngy such that

. € 0
Probability <{|| A |l < W}) >1— - forall n>mnyg. (3)

[\

Finally, in view of the equations (1), (2) and (3) we can say that

. / o €
Probability ({|| (Yn) An Y ||< €}) > Probability <{| Y. IS M} ﬂ{” A |I< W}) > 1-6.

ii) General case:
Tt is easy to see that (Y,)' 4, Y, = (Y,) (A, —A) Y, + (Y,)AY,;

observe now that the first term of the second member of the equality above
( (Yn)' (A, — A) Y, ) converges in probability to 0 (by i)) and that the second
one ( (¥,)'AY, ) converges in law to YA Y (because Y,, — Y in law and the
function g(Y) = Y'A Y is continuous in Y);

now apply to the random variables (Y,,)' (4, — A)Y,, and (Y,,)’A Y,, the
Slutzky’s Theorem, say: if U,,, U,V are random variables, ¢ is a constant, U, —
U in law and V,, — c in probability, then U, +V,, — U 4 c in law e



3.2 Limit distribution of 72

THEOREM

Let X be a p-variate random vector with continuous distribution, mean pu
and positive definite variance-covariance matrix X. A sample of n independent
and identically distributed observations X7, X, ..., X,, of vector X is taken.
Let X(n) and S(n) be the sample mean vector and sample variance-covariance
matrix S(n), respectively (defined in Subsection 1.1). Let T be the Hotteling’s
statistic,that is:

7% = n(X(n) = p)'(S(n)) " (X (n) - p).
Then the limit distribution of T2 is chi-square with p degrees of freedom.

Proor
i) By hypotheses, X has a continuous distribution and the variance-covariance
matrix ¥ is positive definite, then

Probability ({S(n) is positive definite }) =1

as may be seen in Seber(1984) ([3], pages 8 and 522), therefore we don’t worry
about the invertibility of S(n) ;

The existence of X implies the finiteness of ¥;;,1 < ¢ < p,1 < j < p. We
also have that E((S(n));;) = X;; and then the law of large numbers ensures
that :

(S(n))ij — Xi; in probability , ¢ =1,2,...,p and j=1,2,...,p;

hence, because the function A — A~ (RP*P — RP*XP) is continuous in the
invertible matrix ¥, we have:

((S(n))"1)ij — (()7')ij in probability i =1,2,...,p and j = 172,...7p,( |
4

now, as a consequence of (4) and the Lemma of Subsection 1.4, we have:

1 ((Sm)™") = ()" | = 0 in probability ; ()

ii) Otherwise, by the Central Limit Theorem, we know that:

[N

(X(n) —p) — (1, %) in distribution , (6)

n
iii) Finally, given (5), (6) and the Proposition of Subsection 2.1 we have:
T? =n2(X(n) — 1)/ S(n) " 'n> (X(n) — p) = n(W — p)/ S (W — p),

where W is distributed as Normal,(x,Y), and then 772 is distributed as a
chi-square with p degrees of freedom e
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