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Summary

In this paper we disuss the appliation of loal inuene in measurement

error regression model with null interepts under a Student t model with

dependent populations. The Student t distribution is a robust alternative

to modeling data sets involving errors with longer than Normal tails. We

derive the appropriate matries for assessing the loal inuene for di�erent

perturbation shemes and use a real data as an illustration of the usefulness

of the appliation.

KEY WORDS: Inuene diagnosti; Student t model; Likelihood dis-

plaement; Lak of �t; pretest/posttest data; Measurement error models.
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1 Introdution

In this paper, we disuss an appliation of the loal inuene method (Cook,

1986) in the measurement error regression models with null interept. The

motivation omes from the need of suh a model for dependent populations

involving errors with longer than normal tails. This approah is applied to the

data from a pretest/posttest study presented in Singer and Andrade (1997).

In that study, designed to ompare two types of toothbrushes with respet to

the eÆay in removing dental plaque, 26 preshoolers were evaluated with

respet to a dental plaque index before and after toothbrushing either with

a onventional or with an experimental (hugger) toothbrush. The reason for

onsidering null interepts is that null pretest dental plaque indies imply

null expeted posttest values. As the same individuals were evaluated under

two di�erent experimental onditions (toothbrushes), we need a model whih

takes into aount the possible within subjets orrelation struture. The

analysis of suh a model onsidering the Normal Distribution was studied

in Aoki (2001). See also Aoki et al. (2001). The extension of the model

onsidering Student t distribution is disussed in detail in the next setion.

Inuene diagnosti is an important step in the analysis of a data set, as

it provides us indiation of bad model �tting or of inuential observations.

This analysis has reeived a great deal of attention sine the paper by Cook

(1977). Usually the analysis is based on the ase-weight perturbation sheme

where the ase (observation) is either deleted or retained, so that the indi-

vidual impat of ases is assessed in the estimation proess (see, for example,

Cook (1986)), however deletion an be viewed as one of the many ways of per-

turbing a problem formulation. Cook (1986) proposed a method of assessing

the loal inuene of minor perturbations of a statistial model. Sine then

several papers have been written with respet to the loal inuene, but little

work has been found in the literature for the measurement error regression

models. Lee and Zhao (1996) employed loal inuene approah in gener-

alized linear measurement error models, while Abdullah (1995) ompared

several methods for deteting inuential observations in funtional measure-

ment error models. Reently, Kim (2000) applied the loal inuene method

in strutural measurement error models. Setion 2 presents the model. Se-

tion 3 reviews the onept of the loal inuene, as well as, the appliation

to the model de�ned in Setion 2 and the appropriate matries neessary to
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onstrut the inuene graphs are given in losed form expressions. Finally,

in Setion 4 we present the illustrative appliation using a real data from

pretest/posttest study desribed earlier in this setion.

2 Null Interept Measurement Error Regres-

sion under a Student t Model

The basi model is given by

Y

ij

= �

i

x

ij

+ e

ij

; (2.1)

X

ij

= x

ij

+ u

ij

; (2.2)

where Y

ij

and X

ij

, respetively, denote the observed values of the response

and explanatory variables for population i and subjet j, (i = 1; � � � ; p,

j = 1;� � � ;n), x

ij

; orrespond to the true values of the latter, �

i

; i = 1; � � � ; p

stand for the (unknown) slopes. Let us denote by Z

j

, the vetor of observa-

tions, i.e., Z

j

= (X

>

j

, Y

>

j

)

>

; with X

j

=(X

1j

; � � � ; X

pj

)

>

, Y

j

=(Y

1j

; � � � ; Y

pj

)

>

and assume that Z

j

� t

2p

(�;�; �), where t

k

(�;�; �) denotes a k-variate

Student t distribution with loation vetor �, sale matrix � and � degrees

of freedom and � = �b, � = �

2

x

bb

>

+ �

2

D(1

p

;�), with b = (1

>

p

;�

>

)

>

,

� = (�

1

; � � � ; �

p

)

>

, � = (�

1

; � � � ; �

p

)

>

, D denotes the diagonal matrix, 1

p

the vetor omposed by p ones, so that D(1

p

;�) denotes the diagonal ma-

trix with diagonal elements 1; � � �1; �

1

; � � � ; �

p

. The log-likelihood funtion of

model (2.1)-(2.2) is given by

L(�) =

n

X

j=1

l

j

(�); (2.3)

where

l

j

(�) = onst�

1

2

logj�j �

1

2

(� + 2p)log(� + d

j

(�)); (2.4)

with

d

j

(�) = d

j

= (Z

j

� �)

>

�

�1

(Z

j

� �); (2.5)

j = 1; :::; n and � = (�;�

>

; �

2

x

; �

2

;�

>

)

>

.
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Maximum Likelihood estimates for the vetor of parameters � may be ob-

tained by using iterative proedures, based on EM algorithm (whih are

desribed in the Appendix A), for example.

Several authors have onsidered the Student t distribution as an alternative

to the normal distribution as it an naturally aommodate outliers present

in the data. Lange et. al. (1989) disussed the use of the Student t distri-

bution in regression models, as well as in problems related to multivariate

analysis; Bolfarine and Arellano-Valle (1994) introdued Student t funtional

and strutural measurement error models, Bolfarine and Galea (1996) onsid-

ered the Student t distribution in omparative alibration models and Aoki

et al. (2003) studied the null interept strutural measurement error model

de�ned in (2.1) and (2.2) onsidering a bayesian approah.

The Student t distribution inorporates an additional parameter, �, namely

the degrees of freedom, whih allows adjusting for the kurthosis of the distri-

bution. This parameter an be �xed previously. In Lange et al. (1989) and

Berkane et al. (1994) it was reommended to take � = 4 or, otherwise, to get

information about it from the data set. For some diÆulty in the estimation

of �, see Fern�andez and Steel (1999).

3 Loal inuene diagnostis

Case deletion is a popular way to asses the individual impat of ases on

the estimation proess. This approah an be regarded as a global measure

of inuene. An alternative methodology for the identi�ation of groups of

ases whih may require some onern is loal inuene wih is based on

di�erential geometry instead of omplete deletion. It employs a di�erential

omparison of parameter estimates before and after perturbation to data

values or model assumptions. As onsidered in Cook (1986), the likelihood

displaement is used as the metri to assess the loal inuene.

Let L(�) denote the log-likelihood funtion given in (2.3), !, q � 1, the

perturbation introdued in the model, where ! 2 
 � R

q

, 
 an open subset

and L(�j!) the log-likelihood funtion orresponding to the perturbed data

or model. Let

b

� and

b

�

!

denote the maximum likelihood estimates under the
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model de�ned by L(�) and L(�j!), respetively, and assume that there is

an !

0

2 
 representing no perturbation, suh that L(�)=L(�j!

0

) for all �.

The inuene of ! an be assessed by the log-likelihood displaement

LD(!) = 2[L(

b

�)� L(

b

�

!

)℄; (3.1)

where

b

� =

b

�

!

0

. Beause evaluation of LD(!) for all ! is pratially unfea-

sible, Cook (1986) proposed to study the loal behaviour of LD(!) around

!

0

, whih an be performed by evaluating the normal urvature C

l

of LD(!)

at !

0

in the diretion of some unit vetor l.

Cook (1986) showed that the normal urvature in the diretion l takes the

form

C

l

= 2jl

>

�

>

I

�1

�lj; (3.2)

where klk = 1, I = �

�

2

L(�)

����

>

is a (2p + 3) � (2p + 3) observed information

matrix, and

� =

�

2

L(�=!)

���!

>

(3.3)

are both evaluated at � =

b

� and ! = !

0

.

There are many ways of studying the inuene of minor perturbations on-

sidering C

l

. Let l

max

be the diretion of the maximum normal urvature

(C

max

). Then, it is the perturbation that produes the greatest loal hange

in

b

�. The most inuential elements of the data may be identi�ed by looking

at the omponents of the vetor l

max

, whih are relatively large. Furthermore,

l

max

is the eigenvetor orresponding to the largest eigenvalue of �

>

I

�1

�,

whih is C

max

. Other important diretion is l = e

j

, denoting that the ele-

ment of the jth position is one. In that ase, the normal urvature, alled

the total loal inuene of individual j, is given by C

j

= 2�

>

j

I

�1

�

j

, where

�

j

is the jth olumn of �, j = 1; :::; n. We use l

max

and C

max

as diagnostis

for loal inuene. From (2.3), it follows that I takes the form

I = �

��

�

2

L(�)

���

>

��

;

where, ; � = �;�; �

2

x

; �

2

;�. The elements of the matrix I are presented in

the Appendix B.
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When a subset �

1

from the partition � = (�

>

1

; �

>

2

)

>

is of interest, inuene

diagnostis an be based on (Cook, 1986)

�

>

(I

�1

�B

22

)�;

with

B

22

=

�

0 0

0 I

�1

22

�

and I

22

is determined by the partition of I aordingly with the partition of

�. We onsider several perturbation shemes for the model de�ned in (2.1)

and (2.2), whih is given in the next subsetions.

3.1 Perturbation of ase weights

Consider the vetor w = (w

1

; :::; w

n

)

>

of ase-weights, so that the perturbed

log-likelihood funtion is given by

L(�=w) =

n

X

j=1

w

j

l

j

(�);

where l

j

(�) is as in (2.4). The vetor of no perturbations is denoted by

w

0

= 1

n

. Under this perturbation sheme the matrix � de�ned in (3.3) is

a (2p+ 3)� n matrix and given by � = (�

1

(�); :::;�

n

(�)), where �

j

(�) =

�l

j

(�)

��

with individual elements given by

�l

j

(�)

�

= �

1

2

�logj�j

�

�

1

2

� + 2p

(� + d

j

)

d

j

;

with d

j

=

�d

j

�

;  = �;�; �

2

x

; �

2

;� and d

j

as given in (2.5), j = 1; :::; n:

The omponents of matrix � is presented in Appendix B.

3.2 Perturbation of the response variables

One way of perturbing the response variable, when our interest is to detet

the sensitivity of the model when this kind of perturbation happens, we an

onsider for example, a sequene of sale fators S

1

; :::; S

n

, where
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Y

wj

= Y

j

+ S �w

j

;

with S = (S

1

; :::; S

p

)

>

, w

j

= (w

1j

; :::; w

pj

)

>

and � denotes Rademaker prod-

ut. The sale fator S

i

an be taken as S

i

= S

Y

i

, where S

Y

i

denotes for exam-

ple, the sample standard deviation of Y

i1

; :::; Y

in

, i = 1; :::; p. The perturbed

log-likelihood funtion is given by L(�=w) =

n

X

j=1

l

j

(�=w

j

), where l

j

(�=w

j

) is

as given in (2.4), swithing Y

wj

with Y

j

and w = (w

>

1

; :::;w

>

n

)

>

. Under this

perturbation sheme the vetor w

0

, representing no perturbation is given by

w

0

= 0 and the (2p + 3) � np matrix �, whih is given in (3.3) an be

expressed as � = (�

1

(�;w

1

); :::;�

n

(�;w

n

)), where �

j

(�;w

j

) is given by

�

j

(�;w

j

) =

�

�

2

l

j

(�=w

j

)

��w

>

j

�

;  = �;�; �

2

x

; �

2

;�;

with

�

2

l

j

(�=w

j

)

��w

>

j

=

1

2

� + 2p

(� + d

j

(w))

2

d

j

(w)d

>

jw

j

(w)�

1

2

� + 2p

� + d

j

(w)

d

jw

j

(w);

and

d

j

(w) =

�d

j

(w)

�

; d

jw

j

(w) =

�d

j

(w)

�w

j

; d

jw

j

(w) =

�

2

d

j

(w)

��w

>

j

; (3.4)

and d

j

(w) as de�ned in (2.5), swithing Y

w

j

with Y

j

, j = 1; :::; n. The

elements that ompose the matrix �, an be found in Appendix B1.

3.3 Perturbation of the explanatory variables

If we are interested in investigating the sensitivity of minor perturbation in

the explanatory variable, we an de�ne the following perturbation sheme

for the explanatory variable in the same way that was de�ned in the last

subsetion for the response variable. Let

X

wj

=X

j

+ S �w

j

;
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where S = (S

1

; :::; S

p

)

>

, w

j

= (w

1j

; :::; w

pj

)

>

and � denotes the Rademaker

produt. The sale fator S

i

an be de�ned as S

i

= S

X

i

, with S

X

i

denoting

the sample standard deviation of X

i1

; :::; X

in

, i = 1; :::; p. The log-likelihood

funtion for the perturbed model is denoted by L(�=w) =

n

X

j=1

l

j

(�=w

j

),

where l

j

(�=w

j

) is as de�ned in (2.4), swithing X

wj

with X

j

. The vetor

w

0

representing no perturbation is given by w

0

= 0 and the (2p + 3) � np

matrix � de�ned in (3.3) is given by

� = (�

1

(�;w

1

); :::;�

n

(�;w

n

)); with

�

j

(�;w

j

) =

�

�

2

l

j

(�=w

j

)

��w

>

j

�

;  = �;�; �

2

x

; �

2

;�; j = 1; : : : ; n; and

�

2

l

j

(�=w

j

)

��w

j

>

=

1

2

� + 2p

(� + d

j

(w))

2

d

j

(w)d

>

jw

j

(w)�

1

2

� + 2p

� + d

j

(w)

d

jw

j

(w);

where d

j

(w), d

jw

j

(w) and d

jw

j

(w) are as de�ned in (3.4) and d

j

(w) as

given in (2.5), swithing X

wj

with X

j

, j = 1; :::; n. The omponents of the

matrix � are given in the Appendix B2.

3.4 Perturbation of the degrees of freedom

When we assume a �xed known value of the degree of freedom, it is of interest

to study the e�et of the minor perturbation in the degree of freedom in the

estimation proess. In that way, we are going to onsider a known value of

the degree of freedom parameter, namely �

0

and the vetor of observed data

Z

j

, j = 1; � � � ; n as de�ned in Setion 2. The perturbation is introdued in

the model by onsidering

Z

j

ind

� t

2p

(�;�; �

0

g(!

j

)); (3.5)

where g is a di�erentiable positive funtion and we assume the existene of

!

0

j

, suh that g(!

0

j

)=1 and g

0

(!

0

j

) 6= 0, j = 1; :::; n. Under the perturbed
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model the log-likelihood funtion is as given in (2.3), swithing � with �

j

=

�

0

g(!

j

), j = 1; :::; n. The matrix � de�ned in (3.3) is given by

� = (�

1

(�; g(w

1

)); :::;�

n

(�; g(w

n

)));

where �

j

(�; g(w

j

)) is given by

�

j

(�; g(w

j

)) =

�

0

2

g

0

(!

0

j

)(d

j

� 2p)(�

0

+ d

j

)

�2

�d

j

��

;

j = 1; :::; n, evaluated at

b

�. The funtion g an be hosen, for example, as in

Esobar and Meeker (1992), where g(!

j

) = a

!

j

, with a > 0 and !

j

2 [�1; 1℄,

j = 1; :::; n. In that ase, �

j

= �

0

g(!

j

) 2 [�

0

=a; a�

0

℄. For instane, if we

assume that a = 2, g(!

j

) = 2

!

j

and g

0

(!

0

j

) = log2, for j = 1; :::; n.

4 Appliation

Considering the real data desribed in the Introdution and the model de�ned

by (2.1) and (2.2), it follows that the observed vetors X

j

=(X

1j

; X

2j

)

>

and

Y

j

=(Y

1j

; Y

2j

)

>

, j = 1; � � � ; n, orresponds respetiverly, to the dental plaque

index before and after toothbrushing with the hugger toothbrush (i = 1)

and the onventional toothbrush (i = 2), for the jth preshooler. First,

we are going to apply the perturbation of ase weights, where eah ase

is represented by the vetor Z

j

= (X

>

j

;Y

>

j

)

>

. Figure 1 orresponds to

the index plot of l

max

to assess the inuene of the perturbation ! on the

maximum likelihood estimator of the full parameter vetor �, onsidering the

degree of freedom parameter �=1, 4 and 50.

If we refer to the inuene graph in the model using 50 degrees of freedom,

we note that the observations 4 and 13 stand out. The same has happened

for 250, 500 and 10000 degrees of freedom and as expeted for the normal

distribution. On the other hand, if we onsider the model using low degrees

of freedom there are no inuent observations, whih means that the Student t

model with low degrees of freedom an aomodate these observations. In

Aoki et al. (2003) the model de�ned by the equations (2.1) and (2.2) was

analysed, onsidering the Bayesian approah and Student t distribution, as

well as the normal distribution. It was onluded that the Student t distri-

bution with low degrees of freedom, more spei�ally 4 degrees of freedom
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Figure 1: Perturbation of ase weights for � = 1; 4 and 50.

are more appropriate for this data set. Considering the normal distribution,

the most inuential observation in the data set is the observation 13, whih

is not the ase if we onsider the Student t distribution. In that way we

estimated the parameter values onsidering the normal and Student t distri-

bution with 4 degrees of freedom with the omplete data set and exluding

the observation 13 from the data set, wih is given in Table 1. As expeted,

onsidering the normal distribution, the observation 13 inuenes the pa-

rameters estimation, while if we onsider the student t distribution with 4

degrees of freedom the same observation has litte inuene in the estimation

proess.

Next, we illustrate the perturbation of the degrees of freedom onsidering

g(!

j

) = 2

!

j

, j = 1; : : : ; n. In this ase, we obtained the following inuene

graphs (Figure 2) for �= 1, 2 and 4 degrees of freedom.

Figure 2: Perturbation of degree of freedom for � = 1; 2; and 4.
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Table 1: Maximum likelihood estimates

Normal Distribution

^

�

1

^

�

2

�̂ �̂

2

x

�̂

2

^

�

1

^

�

2

omplete 0,147 0,454 1,759 0,540 0,481 0,102 0,267

data set

without 0,135 0,464 1,760 0,594 0,367 0,091 0,310

obs. 13

Student t Distribution with 4 degrees of freedom

^

�

1

^

�

2

�̂ �̂

2

x

�̂

2

^

�

1

^

�

2

omplete 0,130 0,441 1,654 0,594 0,384 0,083 0,263

data set

without 0,125 0,447 1,652 0,608 0,390 0,075 0,278

obs. 13

Considering these graphis, we onlude that there are no inuent observa-

tions and as we assumed a �xed known value of the degree of freedom it is

important to know the e�et of a minor perturbation in the degree of freedom

in the estimation proess.

Appendix A: EM Algorithm

Considering the model de�ned in Setion 2, we are going to present an itera-

tive proedure to obtain the maximum likelihood estimates of the parameter

�, as the log likelihood funtion given by (2.3) has no expliit solutions for

the likelihood equations. In that way, we are going to implement the EM

algorithm. Let us de�ne by T

j

= (x

j

;Z

>

j

)

>

, with Z

j

= (X

>

j

;Y

>

j

)

>

. As

de�ned in Setion 2, Z

j

� t

2p

(�;�; �) and T

j

� t

2p+1

(�

T

;�

T

; �) where

�

T

= (�;�

>

)

>

, �

T

=

�

�

2

x

�

2

x

b

>

�

2

x

b �

�

. Let us de�ne by Q

j

�

�

2

(�)

�

, � >

0, j = 1; � � � ; n and T

j

j(Q

j

= q

j

) � N

2p+1

(�

T

; q

�1

j

�

T

), so that T

j

�
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t

2p+1

(�

T

;�

T

; �). Note that if f(t

j

; q

j

) denotes the joint density of (T

j

; Q

j

),

j = 1; � � � ; n, then f(t

j

; q

j

) = f

1

(t

j

=q

j

)f

2

(q

j

), so that the omplete log likeli-

hood funtion is given by

L



(�) = onst�

n

2

log[(�

2

)

2p

p

Y

i=1

�

i

�

2

x

℄�

1

2

n

X

j=1

q

j

f

(x

j

� �)

2

�

2

x

+

1

�

2

(Z

j

� bx

j

)

>

D

�1

(1

p

;�)(Z

j

� bx

j

)g+

n

X

j=1

log f

2

(q

j

); (3.6)

where � = (�;�

>

; �

2

x

; �

2

;�

>

)

>

. Eah yle of the EM algorithm has two

steps, namely the E and M steps.

E Step

The E step is de�ned by the equations

1) q̂

j

= E(q

j

jZ; �) =

� + 2p

� + d

j

;

2) x̂

j

= E(x

j

jZ; �) = �

+

�

2

x

�

2

b

>

D

�1

(1

p

;�)(Z

j

� �b)

and

3) x̂

2

j

= E(x

2

j

jZ; �) = bx

2

j

+

�

2

x



� + d

j

� + 2p� 2

;

with d

j

as de�ned in (2.5), j = 1; � � � ; n.

M Step

In this step the omplete data log likelihood funtion given in (3.6) is max-

imized. Equating the likelihood equations to zero, we obtain after algebrai

manipulations

�̂ =

P

n

j=1

q̂

j

x̂

j

P

n

j=1

q̂

j

; �̂

2

=

1

np

n

X

j=1

q̂

j

p

X

i=1

(X

2

ij

�2x̂

j

X

ij

+x̂

2

j

); �̂

2

x

=

1

n

n

X

j=1

q̂

j

(x̂

2

j

��̂

2

);
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^

�

i

=

P

n

j=1

q̂

j

x̂

j

Y

ij

P

n

j=1

q̂

j

x̂

2

j

and

^

�

i

=

1

np�̂

2

n

X

j=1

q̂

j

(Y

2

ij

� x̂

2

j

^

�

2

i

); i = 1; � � � ; p:

The EM algorithm yles between equations given in the E step and the

equations given in M step until onvergene (Dempster et.al., 1977). Note

that as no additional iterative proedure is requered to solve the M step

within eah yle of the algorithm, this proedure is extremely simple to

implement and omputationally inexpensive. Considering the model de�ned

in Setion 2, the following maximum likelihood estimates were obtained for

�xed values of the degrees of freedom.

Table 3: Maximum likelihood estimates (MLE) of the parameters under the

model de�ned in Setion 2, via EM algorithmith for the data presented in

Singer and Andrade (1997).

degrees of Parameter

freedom �

1

�

2

� �

2

x

�

2

�

1

�

2

1 0.123 0.431 1.614 0.900 0.588 0.066 0.245

2 0.126 0.436 1.628 0.676 0.434 0.074 0.254

3 0.128 0.439 1.642 0.617 0.397 0.080 0.259

4 0.130 0.441 1.654 0.594 0.384 0.084 0.263

20 0.140 0.450 1.724 0.559 0.414 0.098 0.274

50 0.143 0.453 1.744 0.551 0.446 0.101 0.272

10000 0.147 0.454 1.759 0.539 0.481 0.102 0.267

Normal 0.147 0.454 1.758 0.539 0.482 0.102 0.267

Appendix B: Computing the observed information ma-

trix in the Student t strutural model

In this appendix we present the elements of the observed information matrix.

From (2.3), it follows that
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�
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1
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�logj�j

�

�
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2

� + 2p

(� + d

j

)

d

j

; (B.1)

with d

j

=

�d

j

(�)

�

;  = �;�; �

2

x

; �

2

;� and d

j

as given in (2.5) j = 1; :::; n.

After some algebrai manipulations it follows that

�logj�j

��

= 0;

�logj�j

��

= 2

�1

�

2

x

�
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D

�1

(�)�;

�logj�j
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x
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� 1

�
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x

;
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2

= �
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� 1
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2p

�

2

;
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= �

�1

�

2

x

�

2
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p

;
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4

A

2

j

d

j�

2

= �

1

�

2

d

j

+ 

�2

�

2

x

�

6

A

2

j

d

j�

= �

1

�

2

D(Y

j

� ��)D

�2

(�)(Y

j

� ��)

�

�2

�

4

x

�

6

A

2

j

D(�)D

�2

(�)� + 2

�1

�

2

x

�

4

A

j

D(�)D

�2

(�)(Y

j

� ��);

where  = 1+

�

2

x

�

2

(p+�

>

D

�1

(�)�) and A

j

= (X

j

�1

p

�)

>

1

p

+�

>

D

�1

(�)(Y

j

�

��).

From (A.1) it follows that the per element observed information matrix is

given by

I

j

= I

j

(�=Z

j

) = �

�

�

2

l

j

(�)

���

>

�

;
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where

�

2

l

j

(�)

���

>

= �

1

2

�

2

logj�j

���

>

+

1

2

� + 2p

(� + d

j

)

2

d

j

d

>

j�

�

1

2

� + 2p

� + d

j

d

j�

;

with d

j�

=

�

2

d

j

���

>

and ; � = �;�; �

2

x

; �

2

;�. The omponent of I

j

an

be expressed as

�

2

logj�j

���

>

= 0;  = �;�; �

2

x

; �

2

;�

�

2

logj�j

����

>

= 2

�1

�

2

x
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2

D

�1

(�)� 4

�2
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4
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4

D
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(�)��
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2
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�
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����

2

= �2

�2

�

2

x

�

4

D

�1
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�

2
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����

>

= 2

�1

�

2

x

�

2

[

�1

�

2

x

�

2

D

�1

(�)��

>

D

�2

(�)D(�)�D

�2

(�)D(�)℄;

�

2

logj�j

��

2

x

��

2

x

= �

�2

(� 1)

2

=�

4

x

;

�

2

logj�j
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2

x

��

2

= �

�2

(� 1)=(�

2

�

2

x
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�

2

logj�j

��

2

x
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>
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Appendix B1: Perturbation of the response variables

Elements of the � matrix evaluated at w = 0.
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Appendix B2: Perturbation of the explanatory vari-

ables

Elements of the � matrix evaluated at w = 0.
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