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ABSTRACT. Some beautiful and important results in minimal
and harmonic surfaces on complex flag manifolds are looked
back. And several interesting open problems have been pro-
posed. .

§1. INTRODUCTION

There is plantiful accomploishment in harmonic surfaces on
complex flag manifold, in particular, conformal harmonic sur-
faces on complex Grassmannians (equivalently, branched min-
imal surfaces). Consider flag manifolds as reductive homoge-
neous spaces, they can be distributed two classes. The one
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has height 1, i.e. symmetric complex flag manifolds, i.e. com-
plex Grassmannians. The another has height > 2, i.e. non-
symmetric flag manifolds. The propose of the article is reviev
some developments following three aspects:

1. Harmonic surfaces on a complex projective space includ-
ing: Eells-Wood’ classification; isotropic condition; Veronese
sequence; Keahler angle and curvature, non-isotropic harmonic
surfaces; harmonic sequence;

2. The relation between harmonic surfaces on symmetric
and non-symimetric flag manifolds;

3. Harmonic surfaces on non-symmetric complex flag mani-

fold.

§2. MINIMAL AND HARMONIC SURFACS

Let (M, g) and (N, h) be two smooth Riemannian manifolds
and let ¢ : M — N be a smooth map, which we suppose
supp ¢ := {z € M,d¢p(x) # 0} C D (a compact doman of M).
The energy of ¢ is the number

E(¢) ::%/D<g, ¢*h >*1

A map ¢ : (M, g) — (N, h) is harmonic if and only if it is an
extremal of the energy, i.e. for arbitray a family of maps ¢;
such that ¢9 = ¢ and supp ¢y C D. Then %|t=0E(¢t) =0.
Now we consider maps from Riemann surface M. A bran-
ched minimal immersion from M to (IV, h) is a weakly confor-
mal harmonic map.
In this paper, we restrict N to complex flag manifold, i.e.

U(n)

N= U(rl)x---xU(rk);

r1+...+rk:n

In particular, when k£ = 2, N is symmetric, we call N complex
Grassmannian, i.e.

N = = G(T]_, n)
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Specially, N is said (n — 1)—dimensional complex projective
space if r; = 1, i.e.

U(n)

N = = vm=1

= G(1, n) :=CP" !

§3. CP"™ CASE

Study of harmonic surfaces has a long history which contains
many beautiful and interesting results. However one of the
most famous results, I think, is Eells-Wood’ work. Their result
was influced from two aspects.

Suppose that ¢ : 2 — S™ C R**! is a minimal immersion.
In 1967, E. Calabil®® showed that ¢ associate a holomorphic
map f : S? — CP" (the directix of ¢). Furthermore, if ¢ is full,
Le. Im¢p ¢ S~ 1 then n = 2m, for some m € Z and the area
of ¢ with respect to induced metric on S? is given by

m(m + 1)

A@g)=dnd,  Z3d>——

13 years later two physicsists, A.M.Din and W.J.Zakrzewski
[DZ21,DZ2] given a correspondence from

{¢: 52 Lurmonic, opny
onto

{(f, T)|f : Sz holomorphic C]Pn, rc {07 o ,n}}

full

After that, J.Eells and J.C.Wood discussed arbitrary har-
monic surfaces M on CP"EW], Their creative work are: start-
ing from full holomorphic map f : M — CP", define

¢:¢r = 7+_1me (1)
for r € {0,1,---,n}, where

o 0 fu 0% fu
Jooi=Lfunh 0z Ao 0z

|: M —- Gla+1,n+1)



is a-th associate curve of f and z is the local complex coordinate
on M. They proved that ¢, is a full harmonic map from M
to CP". Furthermore, if 0 < r < n, they showed that ¢ is not
holomorphic and anti-holomorphic. They called ¢, isotropic
map. And (f, r) is the directix of ¢, i.e.

However, L.Lemaire constructed many non-isotropic harmonic
maps from surface into CP' = S2. Hence finding the isotropy
conditions for harmonic surfaces on CP" is important and in-
teresting.

§4. ISOTROPY

It is clear that any harmonic topological sphere is isotropic
by Din-Zakrzewski (ref. §3). In their articlel®W1 J.Eells and
J.C.Wood showed that any harmonic topological torus with
non-zero Brouwer degree is isotropic, too.

For arbitrary closed Riemann surface M with genus g, the
isotropic condition due to Jensen and Regoli, in 1989, is

where 7(0g) (resp. 7(dp) is the 0’ (resp. 0”) second funda-
mental form of ¢ and r(Jp) denote the ramification index of
do-
Given CP" standard Fubini-Study metric such that it has
constant holomorphic sectional curvature 4. The first author
showed that, in 1991, any harmonic map ¢ : M — CP" is
isotropic whenever |deg¢| > |2(9 — 1)E(¢)/m| where E(¢) de-
note the energy of ¢ (ref. §2).

In 1992, using the method of algebra geometry DonglP! ob-
tained isotropic condition by completely topological invariants
‘i.e.

|degg| > 2(n —1)(g — 1)
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Up to now, Liao’s result maybe is most beautiful in this field!*!,
i.e.
|degg| > n(g — 1)

Perhaps the most important isotropic harmonic maps from
surfaces into CP" are Veronese curve and its associate harmpnic
topological spheres. Their history can be returned to Boruvka
sphere. 1933, Boruvkal?] constructed minimal spheres in S2?
p(p—1+1)' When p = 2, §2 —=
S% is called Veronese surface. It is a very interesting example
of minimal immersion in Chern-do Carmo-Kobayashi’ pinching
theorem(©PXl. Suppose X : M™ — S™ is a minimal immer-
sion from closed m-dimensional Riemannian manifold into n-
dimensional standard Euclidean sphere, and B its second fun-
damental form. If o := ||B[|* < alg=2- L), then ei-

ther o = 0 (<= X is totaqlly geodesic) or o = 7 (<= M is
Veronese surface or Clifford minimal hypersurface). Thinking
S™ as the bouble cover space of real projective space RP", and
RP™ as totally geodesic submanifold of CP", 1987, S.Bando and

Y .OhnitaBO] constructed Veronese holomorphic curve

=1 \/@\/6]

where z is the complex coordinate on S? = C N {oo} and its
associated topological harmonic spheres (ref. §1)

¢17¢27"'7¢n

In particular, when n = 2p, ¢, is Brouvka sphere up to a holo-
morphic isotropy of CP". Usually f = ¢o, ¢1, -+, ¢ is called
Veronese sequence. Furthermore, Bando and Ohnita showed
that each ¢;(j = 0, -+, n) has constant (Gauss) curvature
with respect to induced metric. Then, a nice characterization
of all full harmonic two-sphere on CP"™ with constant Gauss
curvature was obtained by J.Bolton, G.Jensen, G.Regoli and
L.M.WoodwardB/EW] They proved these spheres belong to
Veronese sequence. Moreover, each element of Veronese se-
quence has constant Kahler angle.

with constant Gauss curvature




§5. KGHLER ANGLE

The Kahler angle for minimal immersion from Riemannian
surface into Kahler manifold was introduced by S.S.Chern and
J.G.Wolfson in 1983[€WH, TLet ¢ : M — CP" be a minimal
immersion and € the Kahler form of CP"™ with respect to its
standard Fubini-Study metric, then the Kahler angle, 6, of ¢ is
defined by

$*Q) = cosOdA

where dA is area element related to metric on M. Here cosf

is called Kihler function®CT]. Kahler angle is very important

geometric invariant for minimal immersion into CP" because it

gives a measure of the failure of ¢ to be holomorphic. Precisely,

¢ is holomorphic map if and only if its Kahler angle 6 is 0; ¢

is anti-holomorphic if and only if # is 7; and ¢ is totally real if
™

and only if 6 is 7, where ¢ is totally real means that

J(¢.TM)C T+M

(J is complex structure of CP™ and T+ M is the normal space
of ¢).

There are several interesting open problem on relation be-
tween Kahler angle and Gauss curvature. For instance:

(1)(by Bolton-Jensen-Regoli-Woodward) Let v : S — CP"
be a minimal immersion with constant Kahler angle, and sup-
pose that ¢ is neither holomorphic, antiholomorphic or totally
real. Then ¢ has constant Gauss curvatureB/EW],

(2)(by Y. Ohnita) Suppose that ¢ : M — CP" is a mini-
mal immersion from Riemannian surface with constant Gauss
curvature. Then ¢ has constant Kihler anglel©].

Question (1) was considered firstly by Bolton-Jensen-Rigoli-
Woodward in 1988. They gave a positive answer when n <
J[BJRW]

In 1994, the first author obtained another additional con-
dition for this problem, i.e. |cosf| > %, where cos ) is Kdahler
function of minimal immersion™?2!, Exactly, Bolton et al’s con-

jecture holds if ¢ is not too close to 7.
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However, in 1995, Z.Li found a counterexample ¢ : S? —

CP™ for (1) with cosf = %[Li]. Hence, now, as far I know (1)
become
(1) If5 <n<9or|cosf| € (3, £), is conjecture (1) true?

About the question (2). It is easy to see, by combining
two results due to Bolton-Jensen-Rigoli-Woodward (ref. §4),
Ohnita’s conjecture is true for any topological harmonic two
sphere. For the Riemannian surface with arbitriry genus, re-
cently, Kenmotsu and Masuda getted a positive answer when
n = 2EM]  Together with Eschenburg-Guadalupe-Tribuzy’
classification theorem in this case M is one of the following

(1). holomorphic and totally geodesic CP*;

(2). Veronese curve (ref. §4);

(3). totally real and totally geodesic RP?;

(4). Clifford flat torus.

Notice that Clifford torus is non-isotropic harmonic surface
apart from Examples due to Lemairel“c). Tts construction orig-
inates Kenmotsu’s totally real minimal planes in CP". Suppose
z is the complex coordinate on R?, defined ¢ : R* — CP" by

B(2) = [roehs T T 2
where 7o, - -+, 7, are non-negative real numbers, and
Ko, ==y Hn

are complex numbers of unit modulus satisfying Z?:o rjz- = 1.
In 1985, Kenmotsu showed that ¢ is an non-isotropic totally
real minimal immersion if ¢; = ¢; = 0 where ¢, := Z?:o sz-,u;‘-’.

Using the method of moving frame, the first author getted
the harmonic equation of examples of (1), i.e.

Cc1 + Cicy = 261|01|2 (3)

Furthermore, the author proved that all harmonic surfaces whi-
ch come from (2) and (3) satisfy ¢*Q = 03],
Recently, Jensen and Liao reexamined (2)/7X], They showed
that Clifford solution of (2), i.e.
LY e 1

/'[,] — ¢en+l T'J =
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factors through 72 if and only if n = 2, 3, 5. Moreover, ¢ has
isotropy order > r when c¢3 = - -+ = ¢,, = 0 where ¢ has isotropy
order k£ means that ¢ is orthogonal to ¢1, -+ -, ¢ but not to
dr+1 and ¢ = ¢g, @1, --- is the harmonic sequrnce!V].

§6. HARMONIC SEQUENCE AND HARMONIC COVERING

For arbitrary harmonic map ¢ : M — CP", the image
of the second fundamental forms are still harmonicl€W2BW],
Repeated these process, J.G.Wolfson obtained a beautiful se-
quence of harmonic maps

¢07 ¢17 ¢27 e

called harmonic sequence. Furthermore, Wolfson showed that
harmonic map ¢ : M — CP" is isotropic if and only if the
isotropy order of ¢ = 400"l In this case, the second author
proved that ® = (¢g, ¢1, -+, ¢n) : M — F(n+ 1) is a equi-
harmonic map, i.e., each isotropic harmonic map can be cov-
ered by some equi-harmonic (i.e. harmonic with respect to each
left invariant metric) map into full complex flag manifold ™1,
Among all non-isotropic harmonic surfaces on CP", perhaps
most important ones are superconformal harmonic surfaces.
They are defined by the surfaces with orthogonal periodic har-
monic sequence.

In 1993, Bolton, Pedit and Woodward established the bridge
between superconformal harmonic surfaces and equi-harmonic
surfaces on full flag manifolds!BFW1. Their result is: for each
superconformal harmonic map ¢ : M — CP",

O = (o, "y In): M = F(n+1)

is a equi-harmonic map, too. Recently, Burstall considered all
finite isotropy order conformal (i.e. isotropy order> 2) har-
monic surfaces in CP". He showed that

P = (¢07 ¢17 Tty ¢7‘—17 (d)O D--- 69qu_l)_L)

:M — F(1,---,1,n+1—r;n+1) is a equi-harmonic map!Z-M],
——

T



§7. NON-HOLOMORPHIC HARMONIC
MAPS INTO FLAG MANIFOLDS

Equi-harmonic surfaces on complex flag manifolds play a
central role because there are many left-invariant metrics on a
non-symmetric flag manifold and the relative metric induced by
restricting the Killing form, denoted by g, is not well behaved
from the point of complex geometry. For instance, the second
author showed that g is never Kéhler metriclV2. Recently,
authors have proved that g is (1, 2)-symplectic if and only if
the height of flag manifold = 2[MN1],

However, in symmetric flag manifold case, up to a positive
number, we have unique left-invariant metric, i.e. standard
Fubini-Study metric. Hence equi-harmonicity is equivalent to
harmonicity.

The fundamental aspect of equi-harmonic surfaces on com-
plex flag manifolds is to construct non-holomorphic equi-har-
monic surfaces. The main reason is:

(1). In the symmetric case, Lichnerowicz!“! (also see [Ra))
each holomorphic curve on complex Grassmannian is harmonic;

(2). In non-symmetric case, Black asserted that each f—ho-
lomorphic curve on flag manifold with respect to some horizon-
tal f—structure is equi-harmonic.

Many non-holomorphic harmonic surfaces on CP" or G(k, n)
have been constructed by several people, such as Eells-Wood
for CP™ (ref. §2)IPW] Erdem-Wood[F"WI and Ishiharal/l. Re-
cently, authors manufactured a large class of equi-harmonic
tori on non-symmetric complex flag manifold which are not

f—holomorphic with respect to each horizontal f—structure
[MN2]
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