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Abstra
t

This paper provides suÆ
ient 
onditions for global asymptoti
 stability of autonomous

dynami
al systems on eu
lidean spa
es. For dimension greater than two, the te
h-

nique 
ombines a version of the argument used by Ole
h on the bidimensional 
ase and

Lyapunov method. A Palais-Smale type 
ondition is used to study the behaviour of

unbounded orbits. Global stability for the bidimensional problem is established under

hypotheses whi
h do not imply the Markus-Yamabe 
ondition.

AMS(MOS) subje
t 
lassi�
ation: 58C99, 58E05.

1 Introdu
tion

In this arti
le we study the global asymptoti
 stability of the autonomous system

(AS) _u(t) = X(u(t)).

where X : IR

m

! IR

m

is a ve
tor �eld of 
lass C

1

satisfying X(0) = 0. We also suppose

the origin is a lo
al asymptoti
 attra
tor for system (AS).

In our �rst result, we assume that m � 3 and write IR

m

= IR

2+n

= IR

2

� IR

n

and

X = (F;G) : IR

2+n

! IR

2+n

. To establish the global asymptoti
 stability of system (AS)

on this 
ase, we suppose that Markus-Yamabe 
ondition holds on the plane IR

2

= IR

2

�f0g.

We also assume the existen
e of a Lyapunov fun
tion on IR

2+n

n IR

2

satisfying a Palais-

Smale type 
ondition with respe
t to the ve
tor �eld X. The te
hnique used 
ombines a

version of Ole
h's argument for the planar problem with the well known Lyapunov method.

We re
all that a ve
tor �eld X : IR

m

! IR

m

satis�es the Markus-Yamabe 
ondition

[denoted (MY)℄ if the eigenvalues of X

0

(u) have negative real part for every u 2 IR

m

. By X ,

�

Resear
h partially supported by CNPq/Brazil: 307014/89-4 and Pronex:"Equa�
~oes Diferen
iais Par
iais

n~ao Lineares".

y

Resear
h partially supported by CNPq/Brazil: 301251/78-9 and Pronex:"Teoria Qualitativa das

Equa�
~oes Diferen
iais Ordin�arias" and FAPESP/Brazil: 97/10735-3.

1



we denote the spa
e of ve
tor �elds of 
lass C

1

from IR

m

on itself whi
h have the origin as

a lo
al attra
tor for the asso
iated system. The following 
ondition is our basi
 assumption

(H0) IR

m

= IR

2+n

= IR

2

� IR

n

, X = (F;G) : IR

2+n

! IR

2+n

and there exist C

1

maps

L : IR

2

! IR

2

, H : IR

2+n

! IR

2

satisfying

(i) L satis�es (MY) 
ondition on IR

2

.

(ii) F (x; y) = L(x) +H(x; y), for every (x; y) 2 IR

2+n

,

(iii) X(x; 0) = (L(x); 0), for every x 2 IR

2

.

As observed above, our results are also based on the existen
e of a Lyapunov fun
tion

for system (AS). More spe
i�
ally, we suppose

(H1) There exists a fun
tion V 2 C

1

(IR

2+n

; [0;1)) satisfying

(i) lim

kxk!1

inffV (x; y) j kyk � Æg > 0, for every Æ > 0,

(ii) < rV (x; y);X(x; y) >< 0, for every (x; y) 2 IR

2+n

n IR

2

,

It is worthwhile to mention that 
ondition (H1) does not imply that the origin is a global

attra
tor for (AS) sin
e we may have V (x; 0) = 0 for every x 2 IR

2

(See the appli
ations

in se
tion 4). Moreover, we emphasize that our Lyapunov 
onditions do not imply that

the solutions of the system are bounded at all. The following 
onditions allow us to use a

variant of Ole
h's argument [9℄ for the planar 
ase. Considering X 2 X , L given by (H0),

and the Lyapunov Fun
tion V , given by (H1), we assume

(H2) There exist 
;M;R > 0 and � 2 (0;1℄ su
h that, for every kxk > R, kyk < �, we

have

(i) j < L(x)

?

;H(x; y) > j �MV (x; y),

(ii) < rV (x; y);X(x; y) >� �
V (x; y),

and

(H3) There exists Æ 2 [0; 1) su
h that

lim

kxk!1;kyk!0

kH(x; y)k

kL(x)k

� Æ:

In (H2), L

?

represents the ve
tor �eld orthogonal to L, obtained by a 
ounter
lo
kwise

rotation. The folowing de�nition introdu
es the notion of Palais-Smale 
ondition [1, 11℄

with respe
t to a given ve
tor �eld X,

De�nition 1.1 Given a ve
tor �eld X 2 C(IR

m

; IR

m

), we say that the V 2 C

1

(IR

m

; IR)

satis�es the Palais-Smale 
ondition with respe
t to X at level 
 2 IR [denoted (PS)

(X;
)

℄ if

every sequen
e (u

k

) � IR

m

su
h that V (u

k

) ! 
 and < rV (u

k

);X(u

k

) >! 0, as k !1,

possesses a bounded subsequen
e.

Note that V 2 C

1

(IR

m

; IR) satis�es (PS)





ondition for 
 2 IR, if it satisfes (PS)

(rV;
)

.

Now, we are able to state our �rst result,
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Theorem A Suppose X 2 X satis�es (H0)-(H3), with V satisfying (PS)

(X;
)


ondition for

every 
 > 0. Assume further the semi-
ompletivity 
ondition of the solutions of (AS) (i.e.

they are de�ned on [0;1)). Then, the origin is a global attra
tor for system (AS).

The proof of Theorem A is obtained by the veri�
ation of two basi
 steps: First, we use


onditions (H0)-(H1) and the fa
t that V satis�es (PS)

(X;
)

, for 
 > 0,to verify that orbits

of (AS) whi
h do not 
onverge to the origin must approa
h asymptoti
ally the plane IR

2

.

Then, we apply a variant of Ole
h's argument [9℄ to 
on
lude that the origin is a global

attra
tor for (AS). Con
erning the semi-
ompletivity 
ondition assumed above, we observe

that in [2℄ is implied by some geometri
 hyphoteses whi
h 
ould be useful in our 
ontext.

We note that, by Gutierrez [6℄ (See also [4, 5℄) and (H0), L(x) = X(x; 0) : IR

2

! IR

2

is

an inje
tive ve
tor �eld. Consequently, by [9℄, the origin is a global attra
tor for the orbits

on the plane IR

2

.

In the se
ond part of this arti
le, we present a result of global asymptoti
 stability

for system (AS) on IR

2

when (MY ) 
ondition does not hold. Setting S

(�
;
)

(f) = fu 2

IR

m

j � 
 � f(u) � 
g, for f : IR

m

! IR and 
 � 0, and denoting by X

i

, i = 1; 2, the

i-
oordinate of X : IR

2

! IR

2

, we suppose

(H4) Tra
e(X

0

(u)) < 0, for every u 2 IR

2

,

(H5) There exists 
 > 0 su
h that

det(X

0

(u)) 6= 0; 8 u 2 S

(�
;
)

(X

1

);

(H6) rX

1

(u) 6= 0, for every u 2 IR

2

.

Re
alling that f 2 C

1

(IR

m

; IR) satis�es (PS) 
ondition when it satis�es (PS)




for every


 2 IR, we may state

Theorem B Suppose X : IR

2

! IR

2

belongs to X and satis�es (H4)-(H6), with X

1

satis-

fying (PS). Then, the origin is a global attra
tor for system (AS).

If we assume the following version of 
ondition (H0),

(

^

H0) IR

m

= IR

2+n

= IR

2

� IR

n

, X = (F;G) : IR

2+n

! IR

2+n

and there exist C

1

maps

L : IR

2

! IR

2

, H : IR

2+n

! IR

2

satisfying (H0)-(ii), (H0)-(iii) and

(iv) L satis�es (H4)-(H6) with L

1

satisfying (PS) 
ondition,

Theorem B and the argument employed in the proof of Theorem A (See Proposition 2.22

and Remark 2.23) provide

Theorem C Suppose X 2 X satis�es (

^

H0), (H1)-(H3) with V satisfying (PS)

(X;
)


ondi-

tion for every 
 > 0. Assume further the semi-
ompletivity 
ondition of the the solutions of

(AS). Then, the origin is a global attra
tor for system (AS).

We should mention that Theorem A was motivated by a re
ent 
ounter-example of

Markus-Yamabe 
onje
ture on IR

3

[3℄ whi
h possesses a divergent orbit that approa
hes

asymptoti
ally the plane IR

2

� f0g. We were also motivated by the observation that a

version of the famous Palais-Smale 
ondition, assumed frequently in 
riti
al point theory

(See [1, 11℄ and referen
es therein), may be 
ombined with the Lyapunov method to study

3



the behaviour of the orbits of a dynami
al system whi
h are not bounded. Finally, we note

that Theorem B was inspired by the observation that Ole
h's result for the bidimensional

problem is valid under hypotheses whi
h do not imply (MY) 
ondition.

Based in a former result by Gutierrez and Teixeira [7℄, we shall state a 
onje
ture

that we believe may have a proof similar to our proof of Theorem A. This 
onje
ture is


on
erned with the behaviour of the orbits of system (AS) on a neighborhood of in�nity at

the invariant plane IR

2

� f0g.

We say that a C

1

�ve
tor �eld L on IR

2

satis�es (GT) 
ondition if:

(i) L has at least one 
riti
al point (say 0),

(ii)Det(L

0

(u)) > 0 for every u 2 IR

2

;

(iii) there is � > 0 su
h that Tra
e(L

0

(u)) < 0 provided that kuk � �;

(iv) J

L

=

R

IR

2
Tra
e(L

0

(x; y))dxdy 6= 0:

The ve
tor �eld L satis�es the (H00) 
ondition if it satis�es the (GT) 
ondition, (H0)-

(ii) and (H0)-(iii). Denoting by P

1

= (1; 0) the point on IR

2+n

representing the 1 in

IR

2

� 0; we 
onsider

Conje
ture Assume that X 2 � satis�es (H00), (H1), (H2), (H3), with V satisfying

(PS)

(X;
)


ondition for every 
 > 0: Assume further the semi-
ompletivity 
ondition of the

solutions of (AS). Then, P

1

is a repellor (resp. attra
tor) for (AS) provided that J

L

< 0

(resp. J

L

> 0):

The arti
le has the following organization: In se
tion 2, we prove Theorem A. There, we

also state a version of this theorem when the origin is a global attra
tor for the bidimensional

problem asso
iated to L. In se
tion 3, after some preliminary results, we prove Theorem

B. Finally, in se
tion 4, we present appli
ations of Theorems A, B and C.

2 Proof of Theorem A

Arguing by 
ontradi
tion, we suppose that (AS) possesses a solution 
(t) = 
(t; u

0

), u

0

=

(x

0

; y

0

) 62 IR

2

, satisfying

k
(t; u

0

)k 6! 0; as t!1: (2.1)

The proof that su
h fa
t is not possible will be a
hieved by the veri�
ation of several

steps. First, we observe that we follow the standard notation for Lyapunov fun
tions, i.e.,

(

V (t) = V (
(t))

_

V (t) =

dV

dt

(t) =< rV (
(t));X(
(t)) > :

As our �rst step, we establish that every solution of system (AS) satisfying (2.1) 
onverges

asymptoti
ally to the plane IR

2

,

Lemma 2.1 Suppose X 2 X satis�es (H0), (H1). Assume 
(t) = 
(:; u

0

) : [0;1)! IR

2+n

is a solution of (AS) satisfying (2.1). Then, k
(t)k ! 1, as t! 1.
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Proof: Arguing by 
ontradi
tion, we suppose that the lemma is false. By [6℄, we must

have 
(t) 2 IR

2+n

n IR

2

, for every t 2 [0;1). Furthermore, we �nd 0 < R

1

< R

2

<1 and

sequen
es 0 < t

1

< s

1

< : : : < t

k

< s

k

< : : : su
h that t

k

!

�

t 2 IR [ f1g, as k !1, and,

for every k 2 IN ,

8

>

<

>

:

k
(t

k

)k = R

1

;

k
(s

k

)k = R

2

;

R

1

� k
(t)k � R

2

; for every t 2 [t

k

; s

k

℄:

(2.2)

Taking M

1

= maxfkX(x; y)k jR

1

� k(x; y)k � R

2

g, by (AS), we have

R

2

�R

1

� k
(s

k

)� 
(t

k

)k �M

1

(s

k

� t

k

); 8 k 2 IN: (2.3)

This implies that

�

t =1. Using that V is a Lyapunov fun
tion, we get

V (t) = V (
(t)) � V (0) <1; 8 t 2 [0;1):

Furthermore, sin
e the origin is a lo
al attra
tor for (AS) and a global attra
tor for orbits

on IR

2

; by 
ondition (H1), and the 
ompa
tness of (B

R

2

(0) n B

R

1

(0)), we �nd d > 0 su
h

that, for every k 2 IN ,

V (t) � d > 0; 8 t 2 [t

k

; s

k

℄:

Thus, invoking (H1) one more time, we �nd Æ > 0, independent of k 2 IN , su
h that

_

V (t) � �Æ > 0; 8 t 2 [t

k

; s

k

℄:

This implies, via (2.3), that V (s

k

) ! �1, as k ! 1, 
ontradi
ting the 
ontinuity of

V (x; y) and (2.2). The lemma is proved. 2

Lemma 2.2 Suppose X 2 X satis�es (H0) and (H1) with V satisfying (PS)

(X;
)

for every


 > 0. Assume 
(t; u

0

) = (x(t); y(t)) : [0;1)! IR

2+n

is a solution of (AS) satisying (2.1).

Then, kx(t)k ! 1 and ky(t)k ! 0, as t!1.

Proof: By Lemma 2.1, it suÆ
es to verify that ky(t)k ! 0, as t!1. First, we 
laim that

there exists a sequen
e t

k

!1, as k !1, su
h that

_

V (t

k

)! 0; as k !1:

E�e
tively, if we assume otherwise, we �nd T > 0 and K > 0 su
h that

_

V (t) � �K, for

every t � T . But this implies V (t) ! �1, as t ! 1, 
ontradi
ting (H1). The 
laim is

proved.

Now, we invoke Lemma 2.1, (H1) and we use that V satis�es (PS)

(X;
)

, for every 
 > 0,

to 
on
lude that V (t

k

) ! 0, as k ! 1. Observing that 0 < V (s) � V (t), for every s � t,

we obtain that V (t) ! 0, as t ! 1. Consequently, by (H1), ky(t)k ! 0, as t ! 1. The

lemma is proved. 2

Given a 
ontinuous 
urve � : [0; 1℄ ! IR

2

, we denote by l(�) = l(�([0; 1℄) its length.

The following basi
 result will be used to estimate the length of a 
losed 
urve whi
h winds

around the origin,
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Lemma 2.3 Suppose � : [0; 1℄! IR

2

is a 
losed 
ontinuous 
urve. Assume � satis�es

(�

1

) The origin belongs to a bounded 
omponent of IR

2

n �([0; 1℄),

(�

2

) There exist t

0

2 [0; 1℄ and d > 0 su
h that

k�(t

0

)k � d > 0:

Then, l(�) � 2d:

Proof: Without loss of generality, we may suppose that t

0

= 0. By (�

1

), there exist

t 2 (0; 1) and � > 0 su
h that �(t) = ���(0). Consequently, by (�

2

), l(�) = l(�([0; t℄) +

l(�([t; 1℄) � 2d. The lemma is proved. 2

Corollary 2.4 Let � : [0; 1℄ ! IR

2

n f0g be a 
losed simple 
urve of 
lass C

1

by parts

satisfying (�

2

). Suppose T : IR

2

! IR

2

is a ve
tor �eld of 
lass C

1

satisfying

(T

1

) T (0) = 0 and T (x) 6= 0, for every x 2 IR

2

n f0g:

(T

2

) < T (�(t); (�

0

(t))

?

>� 0(� 0), for every t 2 [0; 1℄ su
h that �

0

(t) is de�ned.

Then, l(�) � 2d.

Remark 2.5 As observed in the introdu
tion, Gutierrez [6℄ has proved that L;L

?

: IR

2

!

IR

2

is inje
tive if it satis�es (MY ) 
ondition. Hen
e, under this 
ondition and L(0) = 0,

(T

1

) holds.

Proof: Consider the autonomous system asso
iated to T ,

_x(t) = T (x(t)):

Using (T

1

), (T

2

), �([0; 1℄) � IR

2

n f0g, and the fa
t that � is a 
losed simple 
urve, we


on
lude that the origin must belong to the bounded 
omponent of IR

2

n �([0; 1℄). Hen
e,

by (�

2

) and Lemma 2.3, l(�) � 2d. The Corollary is proved. 2

In the following step, we apply a version of Ole
h's argument [9℄, making use of Green's

Theorem in IR

2

, to obtain a 
ontradi
tion. For that, we �x 
(t) = (x(t); y(t)) = 
(t; u

0

),

u

0

= (x

0

; y

0

) 62 IR

2

su
h that 
 satis�es (2.1)

Considering R; � > 0 given by (H2) and taking R > 0 larger and � > 0 smaller if

ne
essary, we invoke the inje
tivity of L, (H0) and (H3) to �nd d > 0 and 0 �

^

Æ < 1 su
h

that

(

kL(x)k � d > 0; 8 kxk � R;

kH(x; y)k �

^

ÆkL(x)k; 8 kxk � R; kyk � �:

(2.4)

Now, we use Lemma 2.2 to �nd T � 0 su
h that

(

kx(t)k � 3R; 8 t � T;

ky(t)k � �; 8 t � T:

(2.5)

The following lemma provides an estimate for the 
ow of L a
ross the proje
tion on

IR

2

of the orbit 
([T;1)),

6



Lemma 2.6 There exists T

1

� T , T given by (2.5), su
h that

Z

1

T

1

j < L(x(s)); F

?

(x(s); y(s)) > j ds <

dR

2

:

Proof: By (H0), (H2)(i) and (2.5), for every S � T , we get

Z

1

S

j < L(x(s)); F

?

(x(s); y(s)) > j ds � b

Z

1

S

V (s) ds:

On the other hand, by (H2)(ii) and (2.5), we have V (s) � V (S)e

�
(s�S)

for every s � S � T .

Hen
e,

Z

1

S

V (s) ds � bV (S)

Z

1

S

e

�
(s�S)

ds =

bV (S)




:

Sin
e V (S)! 0, as S !1, we obtain the desired estimate by taking T

1

= S > 0 suÆ
iently

large. The lemma is proved. 2

Considering x

T

1

= (x(T

1

); 0) 2 IR

2

, we take 
(t; x

T

1

), the solution of (AS) with 
(0) =

x

T

1

. Sin
e X = (F;G) satis�es (H0), we have that 
(t; x

T

1

) 2 IR

2

, for every t 2 IR, and


(t; x

T

1

)! 0, as t!1.

Remark 2.7 Using that system (AS) is autonomous, it is not diÆ
ult to show that we

may suppose T

1

= T = 0 and

x((0;1)) \ 
((0;1); x

0

) = ;: (2.6)

Now, we study the behaviour of the 
urve x : [0;1)! IR

2

.

Lemma 2.8 The appli
ation x : [0;1)! IR

2

is lo
ally inje
tive.

Proof: Arguing by 
ontradi
tion, we suppose there exist s

0

2 [0;1) and sequen
es (t

k

); (s

k

) �

[0;1) su
h that

8

>

<

>

:

t

k

< s

k

; 8 k 2 IN;

x(t

k

) = x(s

k

); 8 k 2 IN;

t

k

! s

0

; s

k

! s

0

; as k !1:

(2.7)

Sin
e 
(s; u

0

) = (x(s); y(s)) solves (AS), we have

x(s

k

) = x(t

k

) +

Z

s

k

t

k

(L(x(s)) +H(x(s); y(s))) ds:

Taking the inner produ
t with L(x(s

0

)) and 
onsidering (2.7), we get

kL(x(s

0

))k �

�

max

t

k

�s�s

k

fkL(x(s)) � L(x(s

0

))k + kH(x(s); y(s))kg

�

:

Hen
e, by (2.4) and (2.5), we obtain
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0 < (1�

^

Æ)d � max

t

k

�s�s

k

kL(x(s))� L(x(s

0

))k:

However, this last relation 
ontradi
ts (2.7) and the 
ontinuity of L(x(s)). The Lemma is

proved. 2

Given � 2 IR, we 
onsider �(t; �) = �(t; 
(�; x

0

)), the solution in IR

2

of the system

(AS)

?

(

_x(t) = L

?

(x(t))

x(0) = 
(�; x

0

) 2 IR

2

:

Denoting by (w

�

(�); w

+

(�)) the maximum interval of de�nition for the solution of

(AS)

?

, we set

O = f(s; t; �) 2 IR

3

j s 2 IR; � 2 IR; t 2 (w

�

(�); w

+

(�))g;

and we de�ne � : O ! IR

2

by �(s; t; �) = x(s) � �(t; �), for (s; t; �) 2 O. Considering

L = (L

1

; L

2

) and H = (H

1

;H

2

), when �(s; t; �) = 0, we get

D

s;t

�(s; t; �) =

"

L

1

(x(s)) +H

1

(x(s); y(s)) L

2

(x(s)) +H

2

(x(s); y(s))

�L

2

(x(s)) L

1

(x(s))

#

:

Hen
e, By (2.4), (2.5), whenever �(s; t; �) = 0 and s � 0, we obtain

det[D

s;t

�(s; t; �)℄ � kL(x(s))k(kL(x(s))k � kH(x(s); y(s))k) > 0:

The following proposition is a dire
t 
onsequen
e of the above inequality and the Impli
it

Fun
tion Theorem.

Proposition 2.9 Given (s

0

; t

0

; �

0

) 2 O su
h that �(s

0

; t

0

; �

0

) = 0 and s

0

� 0, we may �nd

a neighborhood U

�

0

of �

0

and unique fun
tions of 
lass C

1

, �

1

(�); �

2

(�) : U

�

0

! IR su
h

that (�

1

(�

0

); �

2

(�

0

)) = (s

0

; t

0

) and

�((�

1

(�); �

2

(�); �)) = 0; 8 � 2 U

�

0

: (2.8)

Furthermore, if s 2 �

1

(U

�

0

), t 2 �

2

(U

�

0

) and � 2 U

�

0

satisfy �(s; t; �) = 0, then (s; t) =

(�

1

(�); �

2

(�)).

Corollary 2.10 Applying Proposition 2.9 to (s

0

; t

0

; �

0

) = (0; 0; 0), we may suppose that

�

1

: U

0

! IR is an in
reasing fun
tion.

Proof: Derivating (2.8) with respe
t to � at �

0

= 0, and taking the inner produ
t with

L(x

0

), we get

(kL(x

0

)k

2

� < H(x

0

; y

0

); L(x

0

) >)

_

�

1

(o) = kL(x

0

)k

2

:

Hen
e, by (2.4) and (2.5), we have that

_

�

1

(0) > 0 and, 
onsequently, we may assume that

�

1

: U

0

! IR is an in
reasing fun
tion with �

1

(�) > 0, for every � 2 U

0

, � > 0. The


orollary is proved. 2
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Remark 2.11 By (2.6), Corollary 2.10, and the fa
t that 
(t; x

0

) is not periodi
, we have

�

2

(�) 6= 0, for every � 2 U

0

, � > 0. Sin
e the proof on the other 
ase uses a similar

argument, without loss of generality, we suppose that �

2

(�) > 0, for every � 2 U

0

, � > 0.

Now, we let M > 0 and �� > 0 be su
h that

(

2R < k
(r; x

0

)k �M; 8 � 2 [0; �� ℄

k
(�� ; x

0

)k = 2R:

(2.9)

By Lemma 2.2, there exists �s > 0 su
h that

kx(s)k �M + 2R; 8 s � �s: (2.10)

Taking M

1

> 0 su
h that

(

kL(x(s)) +H(x(s); y(s))k �M

1

; 8 0 � s � �s;

kL(
(�; x

0

))k �M

1

; 8 0 � � � �� ;

(2.11)

we set,

(

�̂

1

= minf

R

2M

1

; ��g

ŝ

1

= minf

R

2M

1

; �sg:

>From (2.11), (AS) and (AS)

?

, we obtain

(

l(x([0; ŝ

1

℄)) < R;

l(
([0; �̂

1

℄; x

0

)) < R:

(2.12)

Lemma 2.12 x : [0; ŝ

1

℄! IR

2

is inje
tive.

Proof: Arguing by 
ontradi
tion, we suppose that there exist 0 � s

�

1

< s

�

2

� ŝ

1

su
h that

x(s

�

1

) = x(s

�

2

). First, we 
laim that we may assume that x : [s

�

1

; s

�

2

℄! IR

2

is a 
losed simple


urve. E�e
tively, 
onsidering

s

2

= supfs � s

�

1

jx : [s

�

1

; s

2

℄! IR

2

is inje
tiveg;

by Lemma 2.8, we have that s

�

1

< s

2

� s

�

2

. Using the de�nition of s

2

and Lemma 2.8

one more time, we �nd 0 < � < s

2

� s

�

1

, t

0

2 [s

1

; s

2

� �℄ and sequen
es (t

k

) � [s

1

; s

2

� �℄,

(�

k

) � [s

2

; s

2

+ �℄ su
h that x : [s

2

� �; s

2

� �℄ ! IR

2

is inje
tive, x(t

k

) = x(�

k

), for every

k 2 IN , and t

k

! t

0

, �

k

! s

2

, as k !1. Hen
e, x(t

0

) = x(s

2

). Moreover, it is not diÆ
ult

to verify that x : [t

0

; s

2

℄! IR

2

is a 
losed simple 
urve. The 
laim is proved.

>From (2.5), x[s

�

1

; s

�

2

℄! IR

2

satis�es (�

2

), with d = 3R, and x([s

�

1

; s

�

2

℄) � IR

2

n f0g. By

(2.4), (2.5) and (H0), L

?

is transversal to x([s

�

1

; s

�

2

℄). Hen
e, L

?

satis�es (T

2

). Sin
e L

?

satis�es (T

1

), we may invoke Corollary 2.4 to 
on
lude that l(x([s

�

1

; s

�

2

℄)) � 6R. But, this


ontradi
ts (2.12). The lemma is proved. 2

Now, we 
onsider A

1

� [0; �̂

1

), the set formed by the points � 2 [0; �̂

1

) su
h that there

exist t 2 [0; w

+

(�)) and s 2 [0; ŝ

1

) satisfying

9



(

�(t; �) = x(s);

l(�([0; t℄); �) < R:

(2.13)

Note that A

1

6= ; be
ause 0 2 A

1

. Moreover,

Lemma 2.13 Given � 2 A

1

, there exists a unique t 2 [0; w

+

(�)) satisfying (2.13).

Proof: Arguing by 
ontradi
tion, we suppose that there exists � 2 A

1

and 0 � t

1

< t

2

<

w

+

(�) satisfying (2.13). Let 0 � s

1

; s

2

< ŝ

1

be su
h that

(

�(t

1

; �) = x(s

1

);

�(t

2

; �) = x(s

2

):

(2.14)

We 
laim that s

1

6= s

2

. Assuming otherwise, we have that the 
urve �(t; �) is periodi
 with

respe
t to the variable t. Moreover, by (2.5), (2.13) and (2.14), �(:; �) : [t

1

; t

1

℄! IR

2

n f0g

and satis�es (�

2

) with d � 3R. Sin
e L is transversal to �([t

1

; t

2

℄; �) and satis�es (T

1

),

Corollary 2.4 implies that l(�([t

1

; t

2

℄) � 6R. But, this 
ontradi
ts (2.13). The 
laim is

proved. Without loss of generality, we suppose that 0 � s

1

< s

2

< ŝ

1

. Using that L

?

is

transversal to the 
urve x([0;1)) and taking t

2

> t

1

smaller if ne
essary, we may assume

�(r; �) 62 x([s

1

; s

2

℄); 8 r 2 (t

1

; t

2

): (2.15)

By the argument used in the above 
laim, we have that �([t

1

; t

2

℄; �) is a simple 
urve. Using

this fa
t, (2.5), (2.13), (2.15) and Lemma 2.12, we 
on
lude that � = �([t

1

; t

2

℄; �)[x([s

1

; s

2

℄)

is a 
losed simple 
urve satisfying � � IR

2

n f0g. The transversality of L

?

with respe
t to

x([s

1

; s

2

℄) (via (2.4)-(2.5)) and (AS)

?

imply that L

?

satis�es 
ondition (T

2

) with respe
t

to �. Sin
e L satis�es (T

1

), by (2.5) and Corollary 2.4, we have that l(�) � 6R. On the

other hand, by (2.12) and (2.13), l(�) � 2R. The lemma is proved. 2

As a dire
t 
onsequen
e of Lemmas 2.12 and 2.13, we have

Corollary 2.14 Given � 2 A

1

, there exists a unique s 2 [0; ŝ

1

) satisfying (2.13).

Based on Lemma 2.13 and Corollary 2.14, we may de�ne T

1

: A

1

! [0;1), S

1

: A

1

!

[0; ŝ

1

) by T

1

(�) = t, S

1

(�) = s, where t, s are given by (2.13). Considering [0; �̂

1

) with the

topology indu
ed by the real line, we obtain

Lemma 2.15 A

1

is an open subset of [0; �̂

1

).

Proof: By Remark 2.11, �

2

(�) > 0 for every � 2 U

0

, � > 0. Hen
e, by Proposition 2.9,

there exists � > 0 su
h that [0; �) � A

1

. Consequently, � = 0 is an interior point of A

1

.

Now, given � 2 A

1

n f0g, we invoke (2.6) and the the fa
t that 
(�; x

0

) is not periodi
 to


on
lude that T

1

(�) > 0. We 
laim that S

1

(�) > 0. Indeed, if we suppose otherwise, then

�(T

1

(�); �) = x(0) = x

0

. Taking t

�

2 [0; T

1

(�)) and �

�

2 (0; � ℄ su
h that

(

�(t

�

; �) = 
(�

�

; x

0

);

�(r; �) 62 
([0; �

�

℄; x

0

); 8 r 2 (t

�

; T

1

(�));
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we 
onsider � = 
([0; �

�

℄; x

0

)[�((t

�

; T

1

(�)); �) and argue as in earlier results to derive that

l(�) � 6R. However, this 
ontradi
ts (2.12) and (2.13). The 
laim is proved.

Now, we apply Proposition 2.9 at the point (�; T

1

(�); S

1

(�)) and we use T

1

(�) 2

(0; w

+

(�)), S

1

(�) 2 (0; ŝ

1

) and (2.13) to 
on
lude that there exists an open neighborhood

U

�

of � su
h that U

�

� A

1

. The lemma is proved. 2

Taking V

1

= [0; �

1

) � [0; �̂

1

), the 
omponent of A

1

whi
h 
ontains the origin, we have

Lemma 2.16 T

1

; S

1

: [0; �

1

) ! IR are 
ontinuous fun
tions satisfying T

1

(0) = 0, S

1

(0) =

0, and

(p

1

) T

1

(�) > 0, 0 < S

1

(�) < ŝ

1

, for every � 2 (0; �

1

).

(p

2

) There exists M > 0 su
h that

jT

1

(�)j �M <1; 8 � 2 [0; �

1

):

(p

3

) S

1

(�) : [0; �

1

)! IR is an in
reasing fun
tion.

Proof: By de�nition, T

1

(0) = 0 and S

1

(0) = 0. Furthermore, the argument used in the

proof of Lemma 2.15 shows that T

1

; S

1

: [0; �

1

)! IR are 
ontinuous and satisfy (p

1

). Now,

from (2.9) and (2.13), we get

R � k�(t; �)k �M +R; 8 t 2 [0; T

1

(�)℄; � 2 [0; �

1

): (2.16)

Therefore, by [6℄ and (AS)

?

, we �nd Æ > 0 su
h that k _�(t; �)k � Æ > 0, for every t 2

[0; T

1

(�)℄. Consequently, invoking (2.13) one more time, we obtain

R > l(�([0; T

1

(�)℄; �) � ÆT

1

(�):

Hen
e, (p

2

) holds. Finally, we shall verify (p

3

): By Proposition 2.9, Corollary 2.10 and

Lemma 2.12, S

1

(�) = �

1

(�) for every � 2 U

0

. Thus, invoking Corollary 2.10 one more time,

we have _s(0) > 0. Consequently, S

1

is lo
ally inje
tive and in
reasing on a neighborhood of

� = 0. Hen
e, to prove (p

3

) it suÆ
es to verify that S

1

is lo
ally inje
tive on (0; �

1

). Arguing

by 
ontradi
tion, we suppose there exist �

0

2 (0; �

1

) and sequen
es (�

1

k

), (�

2

k

) � (0; �

1

) su
h

that

8

>

<

>

:

�

i

k

! �

0

; as k !1; i = 1; 2:

�

1

k

6= �

2

k

; 8 k 2 IN;

0 < S

1

(�

1

k

) = S

1

(�

2

k

); 8 k 2 IN:

(2.17)

By the transversality of L

?

and 
((0;1); x

0

), there exists � > 0 su
h that if t 2 (��; �),

� 2 (�

0

� �; �

0

+ �) and �(t; �) 2 
((�

0

� �; �

0

+ �); x

0

), then t = 0. By (2.17), 
(�

2

k

; x

0

) =

�(T

1

(�

1

k

) � T

1

(�

2

k

); �

1

k

), for every k 2 IN . Using the 
ontinuity of T

1

: [0; �

1

) ! IR and the

�rst relation in (2.17), we obtain that �

2

k

= �

1

k

for k suÆ
iently large. But, this 
ontradi
ts

�

2

k

6= �

1

k

, for every k 2 IN . The lemma is proved. 2

We now 
onsider a sequen
e 0 < ~�

1

< : : : < ~�

k

< : : : < �

1

� �̂

1

satisfying ~�

k

!

�

1

, as k ! 1. We also 
onsider 0 < S

1

(~�

1

) < : : : < S

1

(~�

k

) < : : : < ŝ

1

and 0 <

11



T

1

(~�

1

); : : :; T

1

(~�

k

); : : : < 1 the asso
iated sequen
es. By (p

3

), S

1

(~�

k

) % s

1

� ŝ

1

. Fur-

thermore, invoking (p

2

), we may suppose without loss of generality that

T

1

(~�

k

)! t

1

; as k !1: (2.18)

As a dire
t 
onsequen
e of (2.13), we have

(

�(t

1

; �

1

) = x(s

1

);

l(�([0; t

1

℄; �

1

) � R:

(2.19)

The following result shows that we have a stri
t inequality on the se
ond relation of

(2.19)

Lemma 2.17 Considering t

1

given by (2.18), we have

l(�([0; t

1

℄; �

1

) < R:

Proof: First, we 
laim that the 
urve

�

�

= 
([0; � ℄; x

0

) [ �((0; T

1

(�)℄; �) [ x((0; S

1

(�)))

is a simple 
losed 
urve for every � 2 (0; �

1

). E�e
tively, invoking Corollary 2.4 and using

the argument employed earlier, we obtain that 
([0; � ℄; x

0

) and �([0; T

1

(�)℄; �) are simple


urves. Lemma 2.12 implies that x([0; S

1

(�)℄) is also a simple 
urve. By Lemma 2.13 and

(2.6), we have �([0; T

1

(�)℄; �)\x([0; S

1

(�))) = ; and 
((0; � ℄; x

0

)\x((0; S

1

(�)℄) = ;, respe
-

tively. Hen
e, to prove the 
laim, it suÆ
es to verify that �((0; T

1

(�)℄; �)\ 
([0; � ℄; x

0

) = ;.

Assuming otherwise, we note that by (2.6) and �(T

1

(�); �) 2 x([0; ŝ

1

)), we must have

t 2 (0; T

1

(�)) and �

0

2 [0; � ℄ su
h that �(t; �) = 
(�

0

; x

0

). But, on this 
ase S

1

(�) = S

1

(�

0

).

Thus, by (p

3

), we must have � = �

0

. Consequently, �(:; �) is periodi
. Sin
e L satis�es (T

1

)

and is transversal to �([0; t℄; �), by (2.9) and Corollary 2.4, we must have l(�([0; t℄; �)) � 4R.

However, this 
ontradi
ts (2.13) and t < T

1

(�). The 
laim is proved.

Taking �

1;k

= �

~�

k

and B

1;k

the bounded 
omponent of IR

2

n �

1;k

, by Green's Theorem

and (H0), we have

Z

�

1;k

< L;~n

1

> d� =

Z Z

B

1;k

(divL(x; y)) dxdy � 0;

where ~n

1

is the normal exterior to B

1;k

and d� is the ar
length. Setting �

1

1;k

= 
([0; ~�

k

℄; x

0

℄,

�

2

1;k

= �([0; T

1

(~�

k

)℄; ~�

k

) and �

3

1;k

= x([0; S

1

(~�

k

℄), by (H0), we get

Z

�

1

1;k

< L;~n

1

> d� = 0;

Furthermore, ~n

1

(�(r; ~�

k

) = L(�(r; ~�

k

)=kL(�(r; ~�

k

)k, for every r 2 (0; T

1

(~�

k

)). Using (AS),

(AS)

?

, and taking k !1, we obtain

Z

t

1

0

kL(�(t; �

1

))k

2

dt�

Z

s

1

0

< L(x(s)); F

?

(x(s); y(s)) > ds � 0: (2.20)
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Hen
e, by (2.4), (2.16) and Lemma 2.6, we have

dl(�([0; t

1

℄; �

1

)) �

dR

2

:

This proves the lemma. 2

As a dire
t 
onsequen
e of (2.5), (2.9), (2.10), (2.19), Proposition 2.9 and Lemmas 2.15

and 2.17, we have that either �

1

= �̂

1

or s

1

= ŝ

1

, and �

1

< �� , s

1

< �s. Consequently,

�

1

+ s

1

�

R

2M

1

: (2.21)

For next step, we follow the same argument. Set

(

�̂

2

= minf�

1

+

R

2M

1

; ��g

ŝ

2

= minfs

1

+

R

2M

1

; �sg:

By (2.11), (AS) and (AS)

?

, we also have

(

l(x([s

1

; ŝ

2

℄)) < R;

l(
([�

1

; �̂

2

℄; x

0

)) < R:

Moreover,

Lemma 2.18 x : [s

1

; ŝ

2

℄! IR

2

is inje
tive.

We also 
onsider A

2

� [�

1

; �̂

2

), formed by the points � 2 [�

1

; �̂

2

) su
h that there exist

t 2 [0; w

+

(�)) and s 2 [s

1

; ŝ

2

) satisfying

(

�(t; �) = x(s);

l(�([0; t℄); �) < R:

(2.22)

By (2.19) and Lemma 2.17, �

1

2 A

2

. Furthermore, we may show that for every � 2 A

2

there exist unique t 2 [0; w

+

(�) and s 2 [s

1

; ŝ

2

) satisfying (2.22). As before, we de�ne

T

2

: [�

1

; �̂

2

) ! [0;1) and S

2

: [�

1

; �̂

2

) ! [s

1

; ŝ

2

) to be su
h values. The following result

holds

Lemma 2.19 A

2

is an open subset of [�

1

; �̂

2

).

Proof: Applying Proposition 2.9 at the point (s

1

; t

1

; �

1

), we �nd a neighborhood U

�

1

of �

1

and fun
tions �

1

; �

2

: U

�

1

! IR

2

satisfying �

1

(�

1

) = s

1

, �

2

(�

1

) = t

1

and (2.8) . Furthermore,

by 
onstru
tion, we have �

1

(~�

k

) = S

1

(~�

k

), �

2

(~�

k

) = T

1

(~�

k

), for k suÆ
iently large. Arguing

as in the proof of Lemma 2.12, we may suppose, without loss of generality, that �

1

: U

�

1

!

IR

2

is inje
tive. Sin
e S

1

: [0; �

1

) ! [0; ŝ

1

) is an in
reasing fun
tion, we also have that

�

1

: U

�

1

! IR is in
reasing and, 
onsequently, �

1

(�) > s

1

for every � 2 U

�

1

, � > �

1

. This

fa
t, Lemma 2.17, t

1

> 0, s

1

< ŝ

2

and the 
ontinuity of �

i

, i = 1; 2, imply that �

1

is an

interior point of A

2

on [�

1

; �̂

2

). Now, given � 2 A

2

nf�

1

g, we argue as in the proof of Lemma

2.15 to 
on
lude that T

2

(�) > 0, S

2

(�) > s

1

. Then, we use Proposition 2.9 and (2.22) to

obtain an open neighborhood U

�

of � su
h that U

�

� A

2

. The lemma is proved. 2

Taking V

2

= [�

1

; �

2

) � [�

1

; �̂

2

), the 
omponent of A

2

whi
h 
ontains �

1

, we get

13



Lemma 2.20 T

2

; S

2

: [0; �

2

)! IR are 
ontinuous fun
tions satisfying T

2

(�

1

) = t

1

, S

2

(�

1

) =

s

1

, and

(p̂

1

) T

2

(�) > 0, s

1

< S

2

(�) < ŝ

2

, for every � 2 (�

1

; �

2

).

(p̂

2

) There exists M > 0 su
h that

jT

2

(�)j �M <1; 8 � 2 [�

1

; �

2

):

(p̂

3

) S

2

: [�

1

; �

2

)! IR is an in
reasing fun
tion.

Proof: The proofs of (p̂

1

) and (p̂

2

) are similar to the proofs of (p

1

) and (p

2

), respe
tively.

For that reason, we omit them. For the proof of (p̂

3

), we �rst 
laim that S

2

is inje
tive

and in
reasing on a neighborhood of �

1

. E�e
tively, 
onsidering �

i

, i = 1; 2, and U

�

1

given

in the proof of Lemma 2.19, we have that S

2

(�) = �

2

(�), for � 2 U

�

1

, � > �

1

. The 
laim

follows be
ause �

2

is an in
reasing fun
tion on U

�

1

. Finally, we note that 
ondition (p̂

3

)

follows by verifying, as in the proof of (p

3

), that S

2

is lo
ally inje
tive on (�

1

; �

2

). The

lemma is proved. 2

Now, we 
onsider a sequen
e �

1

< ~�

1

< : : : < ~�

k

< : : : < �

2

� �̂

2

satisfying ~�

k

! �

2

,

as k ! 1. We also have the asso
iated sequen
es (S

2

(~�

k

)) � [s

1

; ŝ

2

), (T

2

(~�

k

)) � IR.

Without loss of generality, we may suppose that S

2

(~�

k

)% s

2

� ŝ

2

, T

2

(~�

k

)! t

2

, as k !1.

Moreover,

(

�(t

2

; �

2

) = x(s

2

);

l(�([0; t

2

℄; �

2

) � R:

(2.23)

Lemma 2.21 Considering t

2

given by (2.23), we have

l(�([0; t

2

℄; �

2

) < R:

Proof: Arguing as in the proof of Lemma 2.17, we obtain that

�

�

= 
([�

1

; � ℄; x

0

) [ �((0; T

2

(�)℄; �) [ x((0; S

2

(�))) [ �((0; t

1

); �

1

)

is a simple 
losed 
urve for every � 2 (�

1

; �

2

). Then, we take �

2;k

= �

~�

k

and B

2;k

the

bounded 
omponent of IR

2

n �

2;k

. By Green's Theorem and (H0), we get

Z

�

2;k

< L;~n

2

> d� =

Z Z

B

2;k

(divL(x; y)) dxdy � 0;

where ~n

2

is the normal exterior to B

2;k

and d� is the ar
length. Setting �

1

2;k

= 
([�

1

; ~�

k

℄; x

0

),

�

2

2;k

= �([0; T

2

(~�

k

℄; ~�

k

), �

3

2;k

= x([0; S

2

(~�

k

℄), and �

4

2;k

= �([0; t

1

℄; �

1

), by (H0), we have

Z

�

1

2;k

< L;~n

2

> d� = 0:

14



Furthermore, ~n

2

(�(r; ~�

k

)) = L(�(r; ~�

k

))=kL(�(r; ~�

k

))k, for every r 2 (0; ~�

k

), and ~n

2

(�(r; �

1

)) =

�L(�(r; �

1

))=kL(�(r; �

1

))k, for every r 2 (0; �

1

). Hen
e, using (AS), (AS)

?

, (2.20), and tak-

ing k !1, we obtain

Z

t

2

0

kL(�(t; �

2

))k

2

dt�

Z

s

2

0

< L(x(s)); F

?

(x(s); y(s)) > ds � 0: (2.24)

The lemma is a dire
t 
onsequen
e of (2.4), (2.16), (2.24) and Lemma 2.6. 2

By (2.5), (2.9), (2.10), (2.23), Proposition 2.9 and Lemmas 2.19 and 2.21, we have that

either �

2

= �̂

2

or s

2

= ŝ

2

and �

2

< �� , s

2

< �s. Consequently, by (2.21),

�

2

+ s

2

� �

1

+ s

1

+

R

2M

1

�

R

M

1

:

Arguing in a similar way, we obtain sequen
es ((t

k

; s

k

; �

k

)) � IR

3

, su
h that t

k

2 (0;1),

s

k

2 (s

k�1

; �s), �

k

2 (�

k�1

; ��), for every k 2 IN , and

�

k

+ s

k

�

kR

2M

1

; 8 k 2 IN:

But, this 
ontradi
ts �� + �s <1 and 
on
ludes the proof of Theorem A. 2

Condition (H0)-(i) has been used only to establish that IR

2

is on the domain of attra
tion

of the origin and to show that the �rst equation in (2.4) holds. Thus if, we suppose

(

~

H0) IR

m

= IR

2+n

= IR

2

� IR

n

, X(F;G) : IR

2+n

! IR

2+n

and there exist C

1

maps

L : IR

2

! IR

2

, H : IR

2+n

! IR

2

satisfying (H0)-(ii), (H0)-(iii) and

(iv) The origin is a global attra
tor for the system asso
iated to L,

(v) lim inf

kxk!1

kL(x)k > 0,

we obtain

Proposition 2.22 Suppose X 2 X satis�es (

~

H0), (H1)-(H3) with V satisfying (PS)

(X;
)


ondition for every 
 > 0. Assume further that the solutions of (AS) are de�ned on [0;1).

Then, the origin is a global attra
tor for system (AS).

Remark 2.23 It is worthwhile to mention that 
ondition (H2) has been used only to prove

Lemma 2.6. Thus, any other 
ondition that provides that lemma implies the global asymp-

toti
 stability of system (AS).

3 Proof of Theorems B and C

In this se
tion we prove Theorems B and C. First, we need to state some preliminary results.

The following result is due to Ole
h. For a question of 
ompleteness, we present its proof.

Lemma 3.1 Suppose X : IR

2

! IR

2

belongs to X and satis�es (H4) and

(H7) X(u) 6= 0, for every u 2 IR

2

n f0g,

15



(H8) There exist �; � > 0 su
h that

kX(u)k � �; 8 u 2 IR

2

; kuk � �:

Then, the origin is a global attra
tor for system (AS).

Proof: Using (H4) and Green's Theorem, we obtain that (AS) does not have a periodi


solution. Denoting by w(u) the w-limit set of u, from (H4), (H7), (H8) and the argument

employed in the proof of Theorem A (See also [9℄), we 
on
lude that A

1

= fu 2 IR

2

jw(u) =

;g is an open set. Sin
e the origin is a lo
al attra
tor for system (AS), we also have that

A

0

= fu 2 IR

2

jw(u) = f0gg is an open set. Furthermore, A

0

\A

1

= ; and A

0

6= ;. Hen
e,

to prove Lemma 3.1, it suÆ
es to verify that IR

2

= A

0

[A

1

.

Arguing by 
ontradi
tion, we suppose that there exist u; v 2 IR

2

su
h that v 2 w(u) n

f0g. Sin
e w(v) � w(u) and the interse
tion of w(u) with a transversal se
tion to X

possesses at most a point, we have that w(v) 
annot have a regular point of X sin
e,

otherwise, 
(t; v) would be a periodi
 solution of (AS). Consequently, by (H7), w(v) = f0g

or w(v) = ;. As A

0

and A

1

are open sets, by de�nition of w-limite set, we obtain that

w(u) = f0g or w(u) = ;, respe
tively. However, this 
ontradi
ts v 2 w(u)nf0g. The lemma

is proved. 2

Before stating our next lemma, we need to re
all a result proved in [12℄: Let E be a

real Bana
h spa
e. Given f 2 C

1

(E; IR) and 
 2 IR, we denote by S




(f) and K




the sets

fu 2 E j f(u) = 
g and fu 2 E j f(u) = 
; f

0

(u) = 0g. We say that 
 is an admissible level

of f if either 
 is a regular value of f , or the 
omponents of K




possesses only a point and


 is an isolated 
riti
al value of f .

Theorem 3.2 (The Level Surfa
e Theorem) Suppose f 2 C

1

(E; IR) satis�es (PS). As-

sume 
 2 IR is an admissible level of f and that u and v are two distin
t points of S




(f).

Then, either

(i) u and v are in the same 
omponent of S




(f),

or

(ii) f has a 
riti
al value d 6= 
.

Remark 3.3 Theorem 3.2 is true under a generalized version of (PS) 
ondition as proved

in [12℄. This implies that Theorem B also holds when L

1

satis�es su
h 
onditiom.

Lemma 3.4 Suppose X 2 C

1

(IR

2

; IR

2

) satis�es X(0) = 0 and (H5)-(H6), with X

1

satis-

fying (PS). Then, X satis�es (H7)-(H8).

Proof: By X(0) = 0 and (H5), we have that det(X

0

(0)) 6= 0. Thus, invoking the Inverse

Fun
tion Theorem, we obtain two open balls 
entered at the origin, B(0; �

i

) � IR

2

, i = 1; 2,

su
h that X : B(0; �

1

) ! IR

2

is inje
tive and B(0; �

2

) � X(B(0; �

1

)). Thus, to prove

Lemma 3.4, it suÆ
es to show that (H8) holds with � = �

1

and � = minf�

2

; 
g, with 


given by (H5).

Arguing by 
ontradi
tion, we suppose that there exists u 2 IR

2

su
h that kX(u)k < �

and kuk � �

1

. By our 
hoi
e of �, we have that u 2 S

(�
;
)

(X

1

) and X(u) 2 B(0; �

2

). Now,

16



let v 2 B(0; �

1

) be su
h that X(v) = X(u). Sin
e X

1

satis�es (PS), by (H6) and Theorem

3.2, there exists 
 : [0; 1℄ ! IR

2

su
h that 
(0) = v, 
(1) = u, and

X

1

(
(t)) = 


1

= X

1

(u); 8 t 2 [0; 1℄: (3.1)

Considering h : [0; 1℄ ! IR

2

de�ned by h(t) = X

2

(
(t)), for t 2 [0; 1℄, we have that h(0) =

h(1) = X

2

(u). Furthermore, from � � 
, (H6), (3.1) and the Impli
it Fun
tion Theorem,

we �nd t

0

2 (0; 1) su
h that h

0

(t

0

) =< X

2

(
(t

0

)); 


0

(t

0

) >= 0, < X

1

(
(t

0

)); 


0

(t

0

) >= 0,

and 


0

(t

0

) 6= 0. This implies that det(X

0

(
(t

0

))) = 0. However, this 
ontradi
ts (H5) sin
e


(t

0

) 2 S

(�
;
)

(X

1

). The proof of Lemma 3.4 is 
on
luded. 2

Theorem B is a dire
t 
onsequen
e of Lemmas 3.1 and 3.4. For the proof of Theorem

C, we �rst note that (

~

H0)-(v) is veri�ed sin
e, by Lemma 3.4, it satis�es (H8). This fa
t,

Theorem B and Proposition 2.22 imply that the origin is a global attra
tor for system (AS).

4 Appli
ations

In this se
tion we present appli
ations of the results proved in se
tions 2 and 3.

1. Consider X

�

= (F;G

�

) : IR

m

! IR

m

, � 2 IR, a ve
tor �eld of 
lass C

1

satisfying

(H

0

) with G

�

(x; y) = �Ay + �M(x; y), where A : IR

n

! IR

n

is a positive selfadjoint

operator. As before, we are 
onsidering IR

m

= IR

2+n

= IR

2

� IR

n

and F (x; 0) = L.

Suppose X

�

satis�es

(F1) There exist p;A;B > 0 and a fun
tion ' 2 C(IR IR) su
h that

(

kL(x)k � Akxk

p

+B; 8 x 2 IR

2

;

< F (x; y); x >� Akxk

2

'(kyk) +B; 8 (x; y 2 IR

m

;

(F2) For p > 0, given by (F1), there exist R; �;C > 0 su
h that, for every kxk > R,

kyk � �, we have

kH(x; y)k �

Ckyk

2

kxk

p

;

(G1) there exists D > 0 su
h that

kM(u)k � D; 8 u 2 IR

m

:

Then, there exists �

0

> 0 su
h that the system

(

_x(t) = L(x(t)) +H(x; y);

_y(t) = �Ay + �M(x; y)

has the origin as a global attra
tor for every � 2 IR, j�j < �

0

. E�e
tively, Consider

V : IR

m

! IR

m

de�ned by

17



V (x; y) =

1

2

< Ay; y >; 8 (x; y) 2 IR

m

:

Sin
e A is positive de�nite, V satis�es (H1)-(i). By (G1), there exist 
; �

0

> 0 su
h

that, for every j�j < �

0

,

< rV (u);X(u) >� �
V (u); 8 u 2 IR

m

:

This shows that (H1)-(ii) and (H2)-(ii) also hold. Furthermore, (H2)-(i) is 
onsequen
e

of (F1), (F2) and the de�nition of V and (H3) is obtained by invoking (F2). Finally,

we note that the solutions of the system is de�ned for every t � 0, by our 
hoi
e of

V , �

0

and the se
ond equation on (F1). Theorem A implies that the above system

has the origin as the global attra
tor.

2. Consider the system

8

>

<

>

:

_x

1

(t) = g

1

(x

1

(t); x

2

(t)) + h

1

(x

1

(t); x

2

(t); x

3

(t))x

3

(t);

_x

2

(t) = g

2

(x

1

(t); x

2

(t)) + h

2

(x

1

(t); x

2

(t); x

3

(t))x

3

(t);

_x

3

(t) = �x

3

(t)

where L = (g

1

; g

2

) and

^

H = (h

1

; h

2

) are of 
lass C

1

, (L +H)(0) = 0 and L satis�es

(MY). Taking X(u) = (F (u); G(u) = L(x

1

; x

2

) +

^

H(u)x

3

, for every u = (x

1

; x

2

; x

3

) 2

IR

3

, we suppose

(X1) There exist M;R; � > 0 su
h that, for every u = (x

1

; x

2

; x

3

) 2 IR

3

, we have

j(�g

1

h

2

+ g

2

h

1

)(u)j �M; 8 j(x

1

; x

2

)j > R; jx

3

j < �:

(X2) There exist A;B > 0 and � 2 C(IR; IR) su
h that

< F (u); u >� Ak(x

1

; x

2

)k�(jx

3

j) +B;

for every u = (x

1

; x

2

; x

3

) 2 IR

3

. Then, the above system is globally asymptoti
ally

stable. Consider V : IR

3

! IR de�ned by V (u) = jx

3

j, for every u = (x

1

; x

2

; x

3

) 2 IR

3

.

Then, V 2 C

1

(IR

3

nIR

2

); IR). Furthermore, it is not diÆ
ult to verify that X satis�es

(H0) and (H1) and that V satis�es (PS)

(X;
)

on IR

3

n IR

2

, for every 
 > 0. By (X1),

X also stis�es (H2) on IR

3

n IR

2

. We also note that 
ondition (X2) implies that the

solutions of the system are de�ned on [0;1). Sin
e the proof of Theorem A is the

same under these 
onditions, we obtain that the origin is a global attra
tor for the

above system as 
laimed.

A parti
ular 
ase is obtained when X((x

1

; x

2

; x

3

)) = (x

1

(x

3

�1); x

2

(x

3

�1);�x

3

), for

every (x

1

; x

2

; x

3

) 2 IR

3

. This simple 
ase provides an example where (MY) 
ondition

is not satis�ed in IR

3

.
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3. Consider X : IR

2

! IR

2

the ve
tor �eld of 
lass C

1

de�ned by

X(x

1

; x

2

) = (�x

1

; h(x

1

) + �x

2

); 8 (x

1

; x

2

) 2 IR

2

: (4.1)

where � 2 IR and h 2 C

1

(IR; IR) satisfy

(a) h(s) < 1� �, for every s 2 IR,

(b) h(0) < ��.

Then, the origin is a global attra
tor for the asso
iated system. Indeed, sin
e

X

0

(x

1

; x

2

) =

"

�1 0

h

0

(x

1

)x

2

h(x

1

) + �

#

for every (x

1

; x

2

) 2 IR

2

, (a) implies that X satis�es (H4). Furthermore, it is 
lear

that X

1

satis�es (H6) and (PS). From (b) and the 
ontinuity of h, we �nd 
 > 0 su
h

that

det(X

0

(x

1

; x

2

)) = �(h(x

1

) + �); 8 (x

1

; x

2

) 2 IR

2

; jx

1

j < 
:

Consequently, X satis�es (H6). Furthermore, by (H4), X

1

(0) = 0 and the above

relation, we get that X 2 X . Invoking Theorem B, we 
on
lude that the origin is a

global attra
tor for the asso
iated system.

4. Suppose X : IR

2

! IR

2

is a ve
tor �eld of 
lass C

1

satisfying (4.1), with � 2 IR and

h 2 C

1

(IR; IR) satisfying (b) and the following stronger version of (a):

(â) There exists �̂ > � su
h that

h(s) � 1� �̂; 8 s 2 IR:

Now assume Y = (f; g) : IR

2

! IR

2

is a ve
tor a �eld of 
lass C

1

satisfying Y (0) = 0

and

(Y1) There exists M > 0 su
h that

kY k

C

1
= supfkY (u)k + kY

0

(u)k ju 2 IR

2

g < M <1;

(Y2) There exist M

1

; C

1

> 0 su
h that

lim

jx

2

j!1

sup

jx

1

j�C

1

�

�

�

�

�f

�x

2

(x

1

; x

2

)x

2

�

�

�

�

�M

1

<1:

Then, there exists �

0

> 0 su
h that the origin is a global attra
tor for the system

_u(t) = X(u(t)) + �Y (u(t));

for every � 2 IR, j�j < �

0

. Considering X

�

= X + �Y , by Theorem B it suÆ
es to

verify that X

�

belongs to X and satis�es (H4)-(H6). First, we note that
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Tra
e(X

0

�

(x

1

; x

2

)) = �1 + h(x

1

) + �

�

�f

�x

1

(x

1

; x

2

) +

�g

�x

2

(x

1

; x

2

)

�

:

Consequently, from (â) and (Y1), we �nd �

1

> 0 su
h that X

�

satis�es (H4) for

j�j < �

1

. Now, we use (b), (Y1) and (Y2) to obtain �

2

; 


2

> 0 su
h that, for every

j�j < �

2

,

det(X

0

�

((x

1

; x

2

)) > 0; 8 (x

1

; x

2

) 2 IR

2

; jx

1

j < 


2

: (4.2)

Observing that (X

�

)

1

(x

1

; x

2

) = �x

1

+�f(x

1

; x

2

), for (x

1

; x

2

) 2 IR

2

, we �nd 0 < �

0

<

minf�

1

; �

2

g and 
 > 0 su
h that, for every j�j < �

0

, we have

jx

1

j < 


2

; 8 (x

1

; x

2

) 2 S

(�
;
)

((X

�

)

1

): (4.3)

Using (4.2) and (4.3), we 
on
lude that X

�

satis�es (H5) for every j�j < �

0

. We also

note that X

�

2 X sin
e X

�

(0) = 0. Furthermore, by taking �

0

smaller if ne
essary,

we obtain that (X

�

)

1

satis�es (PS) and (H6). That 
on
ludes the veri�
ation that

the origin is a global attra
tor for the above system when j�j < �

0

.

5. Consider the system

8

>

>

>

<

>

>

>

:

_x

1

(t) = �x

1

+ x

2

x

3

+ x

4

;

_x

2

(t) =

1

2

(1� e

�x

2

1

+ sinx

1

) ar
tan x

2

+ x

1

x

3

+ x

3

;

_x

3

(t) = �x

3

(t) + x

4

sinx

1

;

_x

4

(t) = �x

4

(t):

Then, the origin is a global attra
tor. First of all, we observe that the asso
iated

ve
tor �eld satis�es (

^

H0) with L : IR

2

! IR

2

and H : IR

4

! IR

2

given by

L(x) = (�x

1

;

1

2

(1� e

�x

2

1

+ sinx

1

) ar
tan x

2

); 8x = (x

1

; x

2

) 2 IR

2

; (4.4)

and

H(u) = (x

1

x

3

+ x

4

; x

1

x

3

+ x

4

); 8u = (x

1

; x

2

; x

3

; x

4

) 2 IR

4

: (4.5)

Taking V : IR

4

! IR

2

de�ned by

V (u) =

1

2

x

2

3

+

1

2

x

2

4

; 8u = (x

1

; x

2

; x

3

; x

4

) 2 IR

4

;

we obtain that V satis�es (H1) and

< rV (u);X(u) >� �V (u); 8 u 2 IR

4

: (4.6)

This implies that V satis�es (PS)

(X;
)

for every 
 > 0. Now, given a solution 
(t) =

(x

1

(t); x

2

(t); x

3

(t); x

4

(t)) of the system and a > 0, we use the two �rst equations of

the system and (4.6) to �nd t

0

> 0 and A > 0 su
h that
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d

dt

(x

2

1

(t) + x

2

2

(t)) � a(x

2

1

(t) + x

2

2

(t)) +A; 8 t � t

0

Consequently, there exist B;C > 0 su
h that

x

2

1

(t) + x

2

2

(t) � Be

at

+ C; 8 t � 0: (4.7)

On the other hand, using the de�nition of L and H, we obtain D;E > 0 su
h that,

for every t � 0,

j < L

?

(
(t));H(
(t)) > j � D(jx

3

j+ jx

4

j) +E(jx

1

(t)j

2

+ jx

1

(t)j

2

)jx

3

(t)j:

Invoking (4.6)-(4.7), we 
on
lude that Lemma 2.6 holds. Hen
e, by Theorem C and

Remark 2.23, to show that the origin is a global attra
tor for the system, it suÆ
es

to verify that 
ondition (H3) is satis�ed. By Lemma 3.4, L satis�es (H8) sin
e it

satis�es (H5)-(H6) and L

1

satis�es (PS). Applying (4.4), (4.5) and (H8), we get

lim sup

kxk!1;kyk!0

kH(u)k

kL(x)k

� jx

3

j+

kyk

d

= 0:

Here, we have 
onsidered u = (x; y), x = (x

1

; x

2

) and y = (x

3

; x

4

). This 
on
ludes

the veri�
ation that the origin is a global attra
tor for the system.
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