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Abstrat

This paper provides suÆient onditions for global asymptoti stability of autonomous

dynamial systems on eulidean spaes. For dimension greater than two, the teh-

nique ombines a version of the argument used by Oleh on the bidimensional ase and

Lyapunov method. A Palais-Smale type ondition is used to study the behaviour of

unbounded orbits. Global stability for the bidimensional problem is established under

hypotheses whih do not imply the Markus-Yamabe ondition.

AMS(MOS) subjet lassi�ation: 58C99, 58E05.

1 Introdution

In this artile we study the global asymptoti stability of the autonomous system

(AS) _u(t) = X(u(t)).

where X : IR

m

! IR

m

is a vetor �eld of lass C

1

satisfying X(0) = 0. We also suppose

the origin is a loal asymptoti attrator for system (AS).

In our �rst result, we assume that m � 3 and write IR

m

= IR

2+n

= IR

2

� IR

n

and

X = (F;G) : IR

2+n

! IR

2+n

. To establish the global asymptoti stability of system (AS)

on this ase, we suppose that Markus-Yamabe ondition holds on the plane IR

2

= IR

2

�f0g.

We also assume the existene of a Lyapunov funtion on IR

2+n

n IR

2

satisfying a Palais-

Smale type ondition with respet to the vetor �eld X. The tehnique used ombines a

version of Oleh's argument for the planar problem with the well known Lyapunov method.

We reall that a vetor �eld X : IR

m

! IR

m

satis�es the Markus-Yamabe ondition

[denoted (MY)℄ if the eigenvalues of X

0

(u) have negative real part for every u 2 IR

m

. By X ,
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we denote the spae of vetor �elds of lass C

1

from IR

m

on itself whih have the origin as

a loal attrator for the assoiated system. The following ondition is our basi assumption

(H0) IR

m

= IR

2+n

= IR

2

� IR

n

, X = (F;G) : IR

2+n

! IR

2+n

and there exist C

1

maps

L : IR

2

! IR

2

, H : IR

2+n

! IR

2

satisfying

(i) L satis�es (MY) ondition on IR

2

.

(ii) F (x; y) = L(x) +H(x; y), for every (x; y) 2 IR

2+n

,

(iii) X(x; 0) = (L(x); 0), for every x 2 IR

2

.

As observed above, our results are also based on the existene of a Lyapunov funtion

for system (AS). More spei�ally, we suppose

(H1) There exists a funtion V 2 C

1

(IR

2+n

; [0;1)) satisfying

(i) lim

kxk!1

inffV (x; y) j kyk � Æg > 0, for every Æ > 0,

(ii) < rV (x; y);X(x; y) >< 0, for every (x; y) 2 IR

2+n

n IR

2

,

It is worthwhile to mention that ondition (H1) does not imply that the origin is a global

attrator for (AS) sine we may have V (x; 0) = 0 for every x 2 IR

2

(See the appliations

in setion 4). Moreover, we emphasize that our Lyapunov onditions do not imply that

the solutions of the system are bounded at all. The following onditions allow us to use a

variant of Oleh's argument [9℄ for the planar ase. Considering X 2 X , L given by (H0),

and the Lyapunov Funtion V , given by (H1), we assume

(H2) There exist ;M;R > 0 and � 2 (0;1℄ suh that, for every kxk > R, kyk < �, we

have

(i) j < L(x)

?

;H(x; y) > j �MV (x; y),

(ii) < rV (x; y);X(x; y) >� �V (x; y),

and

(H3) There exists Æ 2 [0; 1) suh that

lim

kxk!1;kyk!0

kH(x; y)k

kL(x)k

� Æ:

In (H2), L

?

represents the vetor �eld orthogonal to L, obtained by a ounterlokwise

rotation. The folowing de�nition introdues the notion of Palais-Smale ondition [1, 11℄

with respet to a given vetor �eld X,

De�nition 1.1 Given a vetor �eld X 2 C(IR

m

; IR

m

), we say that the V 2 C

1

(IR

m

; IR)

satis�es the Palais-Smale ondition with respet to X at level  2 IR [denoted (PS)

(X;)

℄ if

every sequene (u

k

) � IR

m

suh that V (u

k

) !  and < rV (u

k

);X(u

k

) >! 0, as k !1,

possesses a bounded subsequene.

Note that V 2 C

1

(IR

m

; IR) satis�es (PS)



ondition for  2 IR, if it satisfes (PS)

(rV;)

.

Now, we are able to state our �rst result,
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Theorem A Suppose X 2 X satis�es (H0)-(H3), with V satisfying (PS)

(X;)

ondition for

every  > 0. Assume further the semi-ompletivity ondition of the solutions of (AS) (i.e.

they are de�ned on [0;1)). Then, the origin is a global attrator for system (AS).

The proof of Theorem A is obtained by the veri�ation of two basi steps: First, we use

onditions (H0)-(H1) and the fat that V satis�es (PS)

(X;)

, for  > 0,to verify that orbits

of (AS) whih do not onverge to the origin must approah asymptotially the plane IR

2

.

Then, we apply a variant of Oleh's argument [9℄ to onlude that the origin is a global

attrator for (AS). Conerning the semi-ompletivity ondition assumed above, we observe

that in [2℄ is implied by some geometri hyphoteses whih ould be useful in our ontext.

We note that, by Gutierrez [6℄ (See also [4, 5℄) and (H0), L(x) = X(x; 0) : IR

2

! IR

2

is

an injetive vetor �eld. Consequently, by [9℄, the origin is a global attrator for the orbits

on the plane IR

2

.

In the seond part of this artile, we present a result of global asymptoti stability

for system (AS) on IR

2

when (MY ) ondition does not hold. Setting S

(�;)

(f) = fu 2

IR

m

j �  � f(u) � g, for f : IR

m

! IR and  � 0, and denoting by X

i

, i = 1; 2, the

i-oordinate of X : IR

2

! IR

2

, we suppose

(H4) Trae(X

0

(u)) < 0, for every u 2 IR

2

,

(H5) There exists  > 0 suh that

det(X

0

(u)) 6= 0; 8 u 2 S

(�;)

(X

1

);

(H6) rX

1

(u) 6= 0, for every u 2 IR

2

.

Realling that f 2 C

1

(IR

m

; IR) satis�es (PS) ondition when it satis�es (PS)



for every

 2 IR, we may state

Theorem B Suppose X : IR

2

! IR

2

belongs to X and satis�es (H4)-(H6), with X

1

satis-

fying (PS). Then, the origin is a global attrator for system (AS).

If we assume the following version of ondition (H0),

(

^

H0) IR

m

= IR

2+n

= IR

2

� IR

n

, X = (F;G) : IR

2+n

! IR

2+n

and there exist C

1

maps

L : IR

2

! IR

2

, H : IR

2+n

! IR

2

satisfying (H0)-(ii), (H0)-(iii) and

(iv) L satis�es (H4)-(H6) with L

1

satisfying (PS) ondition,

Theorem B and the argument employed in the proof of Theorem A (See Proposition 2.22

and Remark 2.23) provide

Theorem C Suppose X 2 X satis�es (

^

H0), (H1)-(H3) with V satisfying (PS)

(X;)

ondi-

tion for every  > 0. Assume further the semi-ompletivity ondition of the the solutions of

(AS). Then, the origin is a global attrator for system (AS).

We should mention that Theorem A was motivated by a reent ounter-example of

Markus-Yamabe onjeture on IR

3

[3℄ whih possesses a divergent orbit that approahes

asymptotially the plane IR

2

� f0g. We were also motivated by the observation that a

version of the famous Palais-Smale ondition, assumed frequently in ritial point theory

(See [1, 11℄ and referenes therein), may be ombined with the Lyapunov method to study
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the behaviour of the orbits of a dynamial system whih are not bounded. Finally, we note

that Theorem B was inspired by the observation that Oleh's result for the bidimensional

problem is valid under hypotheses whih do not imply (MY) ondition.

Based in a former result by Gutierrez and Teixeira [7℄, we shall state a onjeture

that we believe may have a proof similar to our proof of Theorem A. This onjeture is

onerned with the behaviour of the orbits of system (AS) on a neighborhood of in�nity at

the invariant plane IR

2

� f0g.

We say that a C

1

�vetor �eld L on IR

2

satis�es (GT) ondition if:

(i) L has at least one ritial point (say 0),

(ii)Det(L

0

(u)) > 0 for every u 2 IR

2

;

(iii) there is � > 0 suh that Trae(L

0

(u)) < 0 provided that kuk � �;

(iv) J

L

=

R

IR

2
Trae(L

0

(x; y))dxdy 6= 0:

The vetor �eld L satis�es the (H00) ondition if it satis�es the (GT) ondition, (H0)-

(ii) and (H0)-(iii). Denoting by P

1

= (1; 0) the point on IR

2+n

representing the 1 in

IR

2

� 0; we onsider

Conjeture Assume that X 2 � satis�es (H00), (H1), (H2), (H3), with V satisfying

(PS)

(X;)

ondition for every  > 0: Assume further the semi-ompletivity ondition of the

solutions of (AS). Then, P

1

is a repellor (resp. attrator) for (AS) provided that J

L

< 0

(resp. J

L

> 0):

The artile has the following organization: In setion 2, we prove Theorem A. There, we

also state a version of this theorem when the origin is a global attrator for the bidimensional

problem assoiated to L. In setion 3, after some preliminary results, we prove Theorem

B. Finally, in setion 4, we present appliations of Theorems A, B and C.

2 Proof of Theorem A

Arguing by ontradition, we suppose that (AS) possesses a solution (t) = (t; u

0

), u

0

=

(x

0

; y

0

) 62 IR

2

, satisfying

k(t; u

0

)k 6! 0; as t!1: (2.1)

The proof that suh fat is not possible will be ahieved by the veri�ation of several

steps. First, we observe that we follow the standard notation for Lyapunov funtions, i.e.,

(

V (t) = V ((t))

_

V (t) =

dV

dt

(t) =< rV ((t));X((t)) > :

As our �rst step, we establish that every solution of system (AS) satisfying (2.1) onverges

asymptotially to the plane IR

2

,

Lemma 2.1 Suppose X 2 X satis�es (H0), (H1). Assume (t) = (:; u

0

) : [0;1)! IR

2+n

is a solution of (AS) satisfying (2.1). Then, k(t)k ! 1, as t! 1.
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Proof: Arguing by ontradition, we suppose that the lemma is false. By [6℄, we must

have (t) 2 IR

2+n

n IR

2

, for every t 2 [0;1). Furthermore, we �nd 0 < R

1

< R

2

<1 and

sequenes 0 < t

1

< s

1

< : : : < t

k

< s

k

< : : : suh that t

k

!

�

t 2 IR [ f1g, as k !1, and,

for every k 2 IN ,

8

>

<

>

:

k(t

k

)k = R

1

;

k(s

k

)k = R

2

;

R

1

� k(t)k � R

2

; for every t 2 [t

k

; s

k

℄:

(2.2)

Taking M

1

= maxfkX(x; y)k jR

1

� k(x; y)k � R

2

g, by (AS), we have

R

2

�R

1

� k(s

k

)� (t

k

)k �M

1

(s

k

� t

k

); 8 k 2 IN: (2.3)

This implies that

�

t =1. Using that V is a Lyapunov funtion, we get

V (t) = V ((t)) � V (0) <1; 8 t 2 [0;1):

Furthermore, sine the origin is a loal attrator for (AS) and a global attrator for orbits

on IR

2

; by ondition (H1), and the ompatness of (B

R

2

(0) n B

R

1

(0)), we �nd d > 0 suh

that, for every k 2 IN ,

V (t) � d > 0; 8 t 2 [t

k

; s

k

℄:

Thus, invoking (H1) one more time, we �nd Æ > 0, independent of k 2 IN , suh that

_

V (t) � �Æ > 0; 8 t 2 [t

k

; s

k

℄:

This implies, via (2.3), that V (s

k

) ! �1, as k ! 1, ontraditing the ontinuity of

V (x; y) and (2.2). The lemma is proved. 2

Lemma 2.2 Suppose X 2 X satis�es (H0) and (H1) with V satisfying (PS)

(X;)

for every

 > 0. Assume (t; u

0

) = (x(t); y(t)) : [0;1)! IR

2+n

is a solution of (AS) satisying (2.1).

Then, kx(t)k ! 1 and ky(t)k ! 0, as t!1.

Proof: By Lemma 2.1, it suÆes to verify that ky(t)k ! 0, as t!1. First, we laim that

there exists a sequene t

k

!1, as k !1, suh that

_

V (t

k

)! 0; as k !1:

E�etively, if we assume otherwise, we �nd T > 0 and K > 0 suh that

_

V (t) � �K, for

every t � T . But this implies V (t) ! �1, as t ! 1, ontraditing (H1). The laim is

proved.

Now, we invoke Lemma 2.1, (H1) and we use that V satis�es (PS)

(X;)

, for every  > 0,

to onlude that V (t

k

) ! 0, as k ! 1. Observing that 0 < V (s) � V (t), for every s � t,

we obtain that V (t) ! 0, as t ! 1. Consequently, by (H1), ky(t)k ! 0, as t ! 1. The

lemma is proved. 2

Given a ontinuous urve � : [0; 1℄ ! IR

2

, we denote by l(�) = l(�([0; 1℄) its length.

The following basi result will be used to estimate the length of a losed urve whih winds

around the origin,
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Lemma 2.3 Suppose � : [0; 1℄! IR

2

is a losed ontinuous urve. Assume � satis�es

(�

1

) The origin belongs to a bounded omponent of IR

2

n �([0; 1℄),

(�

2

) There exist t

0

2 [0; 1℄ and d > 0 suh that

k�(t

0

)k � d > 0:

Then, l(�) � 2d:

Proof: Without loss of generality, we may suppose that t

0

= 0. By (�

1

), there exist

t 2 (0; 1) and � > 0 suh that �(t) = ���(0). Consequently, by (�

2

), l(�) = l(�([0; t℄) +

l(�([t; 1℄) � 2d. The lemma is proved. 2

Corollary 2.4 Let � : [0; 1℄ ! IR

2

n f0g be a losed simple urve of lass C

1

by parts

satisfying (�

2

). Suppose T : IR

2

! IR

2

is a vetor �eld of lass C

1

satisfying

(T

1

) T (0) = 0 and T (x) 6= 0, for every x 2 IR

2

n f0g:

(T

2

) < T (�(t); (�

0

(t))

?

>� 0(� 0), for every t 2 [0; 1℄ suh that �

0

(t) is de�ned.

Then, l(�) � 2d.

Remark 2.5 As observed in the introdution, Gutierrez [6℄ has proved that L;L

?

: IR

2

!

IR

2

is injetive if it satis�es (MY ) ondition. Hene, under this ondition and L(0) = 0,

(T

1

) holds.

Proof: Consider the autonomous system assoiated to T ,

_x(t) = T (x(t)):

Using (T

1

), (T

2

), �([0; 1℄) � IR

2

n f0g, and the fat that � is a losed simple urve, we

onlude that the origin must belong to the bounded omponent of IR

2

n �([0; 1℄). Hene,

by (�

2

) and Lemma 2.3, l(�) � 2d. The Corollary is proved. 2

In the following step, we apply a version of Oleh's argument [9℄, making use of Green's

Theorem in IR

2

, to obtain a ontradition. For that, we �x (t) = (x(t); y(t)) = (t; u

0

),

u

0

= (x

0

; y

0

) 62 IR

2

suh that  satis�es (2.1)

Considering R; � > 0 given by (H2) and taking R > 0 larger and � > 0 smaller if

neessary, we invoke the injetivity of L, (H0) and (H3) to �nd d > 0 and 0 �

^

Æ < 1 suh

that

(

kL(x)k � d > 0; 8 kxk � R;

kH(x; y)k �

^

ÆkL(x)k; 8 kxk � R; kyk � �:

(2.4)

Now, we use Lemma 2.2 to �nd T � 0 suh that

(

kx(t)k � 3R; 8 t � T;

ky(t)k � �; 8 t � T:

(2.5)

The following lemma provides an estimate for the ow of L aross the projetion on

IR

2

of the orbit ([T;1)),
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Lemma 2.6 There exists T

1

� T , T given by (2.5), suh that

Z

1

T

1

j < L(x(s)); F

?

(x(s); y(s)) > j ds <

dR

2

:

Proof: By (H0), (H2)(i) and (2.5), for every S � T , we get

Z

1

S

j < L(x(s)); F

?

(x(s); y(s)) > j ds � b

Z

1

S

V (s) ds:

On the other hand, by (H2)(ii) and (2.5), we have V (s) � V (S)e

�(s�S)

for every s � S � T .

Hene,

Z

1

S

V (s) ds � bV (S)

Z

1

S

e

�(s�S)

ds =

bV (S)



:

Sine V (S)! 0, as S !1, we obtain the desired estimate by taking T

1

= S > 0 suÆiently

large. The lemma is proved. 2

Considering x

T

1

= (x(T

1

); 0) 2 IR

2

, we take (t; x

T

1

), the solution of (AS) with (0) =

x

T

1

. Sine X = (F;G) satis�es (H0), we have that (t; x

T

1

) 2 IR

2

, for every t 2 IR, and

(t; x

T

1

)! 0, as t!1.

Remark 2.7 Using that system (AS) is autonomous, it is not diÆult to show that we

may suppose T

1

= T = 0 and

x((0;1)) \ ((0;1); x

0

) = ;: (2.6)

Now, we study the behaviour of the urve x : [0;1)! IR

2

.

Lemma 2.8 The appliation x : [0;1)! IR

2

is loally injetive.

Proof: Arguing by ontradition, we suppose there exist s

0

2 [0;1) and sequenes (t

k

); (s

k

) �

[0;1) suh that

8

>

<

>

:

t

k

< s

k

; 8 k 2 IN;

x(t

k

) = x(s

k

); 8 k 2 IN;

t

k

! s

0

; s

k

! s

0

; as k !1:

(2.7)

Sine (s; u

0

) = (x(s); y(s)) solves (AS), we have

x(s

k

) = x(t

k

) +

Z

s

k

t

k

(L(x(s)) +H(x(s); y(s))) ds:

Taking the inner produt with L(x(s

0

)) and onsidering (2.7), we get

kL(x(s

0

))k �

�

max

t

k

�s�s

k

fkL(x(s)) � L(x(s

0

))k + kH(x(s); y(s))kg

�

:

Hene, by (2.4) and (2.5), we obtain
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0 < (1�

^

Æ)d � max

t

k

�s�s

k

kL(x(s))� L(x(s

0

))k:

However, this last relation ontradits (2.7) and the ontinuity of L(x(s)). The Lemma is

proved. 2

Given � 2 IR, we onsider �(t; �) = �(t; (�; x

0

)), the solution in IR

2

of the system

(AS)

?

(

_x(t) = L

?

(x(t))

x(0) = (�; x

0

) 2 IR

2

:

Denoting by (w

�

(�); w

+

(�)) the maximum interval of de�nition for the solution of

(AS)

?

, we set

O = f(s; t; �) 2 IR

3

j s 2 IR; � 2 IR; t 2 (w

�

(�); w

+

(�))g;

and we de�ne � : O ! IR

2

by �(s; t; �) = x(s) � �(t; �), for (s; t; �) 2 O. Considering

L = (L

1

; L

2

) and H = (H

1

;H

2

), when �(s; t; �) = 0, we get

D

s;t

�(s; t; �) =

"

L

1

(x(s)) +H

1

(x(s); y(s)) L

2

(x(s)) +H

2

(x(s); y(s))

�L

2

(x(s)) L

1

(x(s))

#

:

Hene, By (2.4), (2.5), whenever �(s; t; �) = 0 and s � 0, we obtain

det[D

s;t

�(s; t; �)℄ � kL(x(s))k(kL(x(s))k � kH(x(s); y(s))k) > 0:

The following proposition is a diret onsequene of the above inequality and the Impliit

Funtion Theorem.

Proposition 2.9 Given (s

0

; t

0

; �

0

) 2 O suh that �(s

0

; t

0

; �

0

) = 0 and s

0

� 0, we may �nd

a neighborhood U

�

0

of �

0

and unique funtions of lass C

1

, �

1

(�); �

2

(�) : U

�

0

! IR suh

that (�

1

(�

0

); �

2

(�

0

)) = (s

0

; t

0

) and

�((�

1

(�); �

2

(�); �)) = 0; 8 � 2 U

�

0

: (2.8)

Furthermore, if s 2 �

1

(U

�

0

), t 2 �

2

(U

�

0

) and � 2 U

�

0

satisfy �(s; t; �) = 0, then (s; t) =

(�

1

(�); �

2

(�)).

Corollary 2.10 Applying Proposition 2.9 to (s

0

; t

0

; �

0

) = (0; 0; 0), we may suppose that

�

1

: U

0

! IR is an inreasing funtion.

Proof: Derivating (2.8) with respet to � at �

0

= 0, and taking the inner produt with

L(x

0

), we get

(kL(x

0

)k

2

� < H(x

0

; y

0

); L(x

0

) >)

_

�

1

(o) = kL(x

0

)k

2

:

Hene, by (2.4) and (2.5), we have that

_

�

1

(0) > 0 and, onsequently, we may assume that

�

1

: U

0

! IR is an inreasing funtion with �

1

(�) > 0, for every � 2 U

0

, � > 0. The

orollary is proved. 2

8



Remark 2.11 By (2.6), Corollary 2.10, and the fat that (t; x

0

) is not periodi, we have

�

2

(�) 6= 0, for every � 2 U

0

, � > 0. Sine the proof on the other ase uses a similar

argument, without loss of generality, we suppose that �

2

(�) > 0, for every � 2 U

0

, � > 0.

Now, we let M > 0 and �� > 0 be suh that

(

2R < k(r; x

0

)k �M; 8 � 2 [0; �� ℄

k(�� ; x

0

)k = 2R:

(2.9)

By Lemma 2.2, there exists �s > 0 suh that

kx(s)k �M + 2R; 8 s � �s: (2.10)

Taking M

1

> 0 suh that

(

kL(x(s)) +H(x(s); y(s))k �M

1

; 8 0 � s � �s;

kL((�; x

0

))k �M

1

; 8 0 � � � �� ;

(2.11)

we set,

(

�̂

1

= minf

R

2M

1

; ��g

ŝ

1

= minf

R

2M

1

; �sg:

>From (2.11), (AS) and (AS)

?

, we obtain

(

l(x([0; ŝ

1

℄)) < R;

l(([0; �̂

1

℄; x

0

)) < R:

(2.12)

Lemma 2.12 x : [0; ŝ

1

℄! IR

2

is injetive.

Proof: Arguing by ontradition, we suppose that there exist 0 � s

�

1

< s

�

2

� ŝ

1

suh that

x(s

�

1

) = x(s

�

2

). First, we laim that we may assume that x : [s

�

1

; s

�

2

℄! IR

2

is a losed simple

urve. E�etively, onsidering

s

2

= supfs � s

�

1

jx : [s

�

1

; s

2

℄! IR

2

is injetiveg;

by Lemma 2.8, we have that s

�

1

< s

2

� s

�

2

. Using the de�nition of s

2

and Lemma 2.8

one more time, we �nd 0 < � < s

2

� s

�

1

, t

0

2 [s

1

; s

2

� �℄ and sequenes (t

k

) � [s

1

; s

2

� �℄,

(�

k

) � [s

2

; s

2

+ �℄ suh that x : [s

2

� �; s

2

� �℄ ! IR

2

is injetive, x(t

k

) = x(�

k

), for every

k 2 IN , and t

k

! t

0

, �

k

! s

2

, as k !1. Hene, x(t

0

) = x(s

2

). Moreover, it is not diÆult

to verify that x : [t

0

; s

2

℄! IR

2

is a losed simple urve. The laim is proved.

>From (2.5), x[s

�

1

; s

�

2

℄! IR

2

satis�es (�

2

), with d = 3R, and x([s

�

1

; s

�

2

℄) � IR

2

n f0g. By

(2.4), (2.5) and (H0), L

?

is transversal to x([s

�

1

; s

�

2

℄). Hene, L

?

satis�es (T

2

). Sine L

?

satis�es (T

1

), we may invoke Corollary 2.4 to onlude that l(x([s

�

1

; s

�

2

℄)) � 6R. But, this

ontradits (2.12). The lemma is proved. 2

Now, we onsider A

1

� [0; �̂

1

), the set formed by the points � 2 [0; �̂

1

) suh that there

exist t 2 [0; w

+

(�)) and s 2 [0; ŝ

1

) satisfying

9



(

�(t; �) = x(s);

l(�([0; t℄); �) < R:

(2.13)

Note that A

1

6= ; beause 0 2 A

1

. Moreover,

Lemma 2.13 Given � 2 A

1

, there exists a unique t 2 [0; w

+

(�)) satisfying (2.13).

Proof: Arguing by ontradition, we suppose that there exists � 2 A

1

and 0 � t

1

< t

2

<

w

+

(�) satisfying (2.13). Let 0 � s

1

; s

2

< ŝ

1

be suh that

(

�(t

1

; �) = x(s

1

);

�(t

2

; �) = x(s

2

):

(2.14)

We laim that s

1

6= s

2

. Assuming otherwise, we have that the urve �(t; �) is periodi with

respet to the variable t. Moreover, by (2.5), (2.13) and (2.14), �(:; �) : [t

1

; t

1

℄! IR

2

n f0g

and satis�es (�

2

) with d � 3R. Sine L is transversal to �([t

1

; t

2

℄; �) and satis�es (T

1

),

Corollary 2.4 implies that l(�([t

1

; t

2

℄) � 6R. But, this ontradits (2.13). The laim is

proved. Without loss of generality, we suppose that 0 � s

1

< s

2

< ŝ

1

. Using that L

?

is

transversal to the urve x([0;1)) and taking t

2

> t

1

smaller if neessary, we may assume

�(r; �) 62 x([s

1

; s

2

℄); 8 r 2 (t

1

; t

2

): (2.15)

By the argument used in the above laim, we have that �([t

1

; t

2

℄; �) is a simple urve. Using

this fat, (2.5), (2.13), (2.15) and Lemma 2.12, we onlude that � = �([t

1

; t

2

℄; �)[x([s

1

; s

2

℄)

is a losed simple urve satisfying � � IR

2

n f0g. The transversality of L

?

with respet to

x([s

1

; s

2

℄) (via (2.4)-(2.5)) and (AS)

?

imply that L

?

satis�es ondition (T

2

) with respet

to �. Sine L satis�es (T

1

), by (2.5) and Corollary 2.4, we have that l(�) � 6R. On the

other hand, by (2.12) and (2.13), l(�) � 2R. The lemma is proved. 2

As a diret onsequene of Lemmas 2.12 and 2.13, we have

Corollary 2.14 Given � 2 A

1

, there exists a unique s 2 [0; ŝ

1

) satisfying (2.13).

Based on Lemma 2.13 and Corollary 2.14, we may de�ne T

1

: A

1

! [0;1), S

1

: A

1

!

[0; ŝ

1

) by T

1

(�) = t, S

1

(�) = s, where t, s are given by (2.13). Considering [0; �̂

1

) with the

topology indued by the real line, we obtain

Lemma 2.15 A

1

is an open subset of [0; �̂

1

).

Proof: By Remark 2.11, �

2

(�) > 0 for every � 2 U

0

, � > 0. Hene, by Proposition 2.9,

there exists � > 0 suh that [0; �) � A

1

. Consequently, � = 0 is an interior point of A

1

.

Now, given � 2 A

1

n f0g, we invoke (2.6) and the the fat that (�; x

0

) is not periodi to

onlude that T

1

(�) > 0. We laim that S

1

(�) > 0. Indeed, if we suppose otherwise, then

�(T

1

(�); �) = x(0) = x

0

. Taking t

�

2 [0; T

1

(�)) and �

�

2 (0; � ℄ suh that

(

�(t

�

; �) = (�

�

; x

0

);

�(r; �) 62 ([0; �

�

℄; x

0

); 8 r 2 (t

�

; T

1

(�));

10



we onsider � = ([0; �

�

℄; x

0

)[�((t

�

; T

1

(�)); �) and argue as in earlier results to derive that

l(�) � 6R. However, this ontradits (2.12) and (2.13). The laim is proved.

Now, we apply Proposition 2.9 at the point (�; T

1

(�); S

1

(�)) and we use T

1

(�) 2

(0; w

+

(�)), S

1

(�) 2 (0; ŝ

1

) and (2.13) to onlude that there exists an open neighborhood

U

�

of � suh that U

�

� A

1

. The lemma is proved. 2

Taking V

1

= [0; �

1

) � [0; �̂

1

), the omponent of A

1

whih ontains the origin, we have

Lemma 2.16 T

1

; S

1

: [0; �

1

) ! IR are ontinuous funtions satisfying T

1

(0) = 0, S

1

(0) =

0, and

(p

1

) T

1

(�) > 0, 0 < S

1

(�) < ŝ

1

, for every � 2 (0; �

1

).

(p

2

) There exists M > 0 suh that

jT

1

(�)j �M <1; 8 � 2 [0; �

1

):

(p

3

) S

1

(�) : [0; �

1

)! IR is an inreasing funtion.

Proof: By de�nition, T

1

(0) = 0 and S

1

(0) = 0. Furthermore, the argument used in the

proof of Lemma 2.15 shows that T

1

; S

1

: [0; �

1

)! IR are ontinuous and satisfy (p

1

). Now,

from (2.9) and (2.13), we get

R � k�(t; �)k �M +R; 8 t 2 [0; T

1

(�)℄; � 2 [0; �

1

): (2.16)

Therefore, by [6℄ and (AS)

?

, we �nd Æ > 0 suh that k _�(t; �)k � Æ > 0, for every t 2

[0; T

1

(�)℄. Consequently, invoking (2.13) one more time, we obtain

R > l(�([0; T

1

(�)℄; �) � ÆT

1

(�):

Hene, (p

2

) holds. Finally, we shall verify (p

3

): By Proposition 2.9, Corollary 2.10 and

Lemma 2.12, S

1

(�) = �

1

(�) for every � 2 U

0

. Thus, invoking Corollary 2.10 one more time,

we have _s(0) > 0. Consequently, S

1

is loally injetive and inreasing on a neighborhood of

� = 0. Hene, to prove (p

3

) it suÆes to verify that S

1

is loally injetive on (0; �

1

). Arguing

by ontradition, we suppose there exist �

0

2 (0; �

1

) and sequenes (�

1

k

), (�

2

k

) � (0; �

1

) suh

that

8

>

<

>

:

�

i

k

! �

0

; as k !1; i = 1; 2:

�

1

k

6= �

2

k

; 8 k 2 IN;

0 < S

1

(�

1

k

) = S

1

(�

2

k

); 8 k 2 IN:

(2.17)

By the transversality of L

?

and ((0;1); x

0

), there exists � > 0 suh that if t 2 (��; �),

� 2 (�

0

� �; �

0

+ �) and �(t; �) 2 ((�

0

� �; �

0

+ �); x

0

), then t = 0. By (2.17), (�

2

k

; x

0

) =

�(T

1

(�

1

k

) � T

1

(�

2

k

); �

1

k

), for every k 2 IN . Using the ontinuity of T

1

: [0; �

1

) ! IR and the

�rst relation in (2.17), we obtain that �

2

k

= �

1

k

for k suÆiently large. But, this ontradits

�

2

k

6= �

1

k

, for every k 2 IN . The lemma is proved. 2

We now onsider a sequene 0 < ~�

1

< : : : < ~�

k

< : : : < �

1

� �̂

1

satisfying ~�

k

!

�

1

, as k ! 1. We also onsider 0 < S

1

(~�

1

) < : : : < S

1

(~�

k

) < : : : < ŝ

1

and 0 <

11



T

1

(~�

1

); : : :; T

1

(~�

k

); : : : < 1 the assoiated sequenes. By (p

3

), S

1

(~�

k

) % s

1

� ŝ

1

. Fur-

thermore, invoking (p

2

), we may suppose without loss of generality that

T

1

(~�

k

)! t

1

; as k !1: (2.18)

As a diret onsequene of (2.13), we have

(

�(t

1

; �

1

) = x(s

1

);

l(�([0; t

1

℄; �

1

) � R:

(2.19)

The following result shows that we have a strit inequality on the seond relation of

(2.19)

Lemma 2.17 Considering t

1

given by (2.18), we have

l(�([0; t

1

℄; �

1

) < R:

Proof: First, we laim that the urve

�

�

= ([0; � ℄; x

0

) [ �((0; T

1

(�)℄; �) [ x((0; S

1

(�)))

is a simple losed urve for every � 2 (0; �

1

). E�etively, invoking Corollary 2.4 and using

the argument employed earlier, we obtain that ([0; � ℄; x

0

) and �([0; T

1

(�)℄; �) are simple

urves. Lemma 2.12 implies that x([0; S

1

(�)℄) is also a simple urve. By Lemma 2.13 and

(2.6), we have �([0; T

1

(�)℄; �)\x([0; S

1

(�))) = ; and ((0; � ℄; x

0

)\x((0; S

1

(�)℄) = ;, respe-

tively. Hene, to prove the laim, it suÆes to verify that �((0; T

1

(�)℄; �)\ ([0; � ℄; x

0

) = ;.

Assuming otherwise, we note that by (2.6) and �(T

1

(�); �) 2 x([0; ŝ

1

)), we must have

t 2 (0; T

1

(�)) and �

0

2 [0; � ℄ suh that �(t; �) = (�

0

; x

0

). But, on this ase S

1

(�) = S

1

(�

0

).

Thus, by (p

3

), we must have � = �

0

. Consequently, �(:; �) is periodi. Sine L satis�es (T

1

)

and is transversal to �([0; t℄; �), by (2.9) and Corollary 2.4, we must have l(�([0; t℄; �)) � 4R.

However, this ontradits (2.13) and t < T

1

(�). The laim is proved.

Taking �

1;k

= �

~�

k

and B

1;k

the bounded omponent of IR

2

n �

1;k

, by Green's Theorem

and (H0), we have

Z

�

1;k

< L;~n

1

> d� =

Z Z

B

1;k

(divL(x; y)) dxdy � 0;

where ~n

1

is the normal exterior to B

1;k

and d� is the arlength. Setting �

1

1;k

= ([0; ~�

k

℄; x

0

℄,

�

2

1;k

= �([0; T

1

(~�

k

)℄; ~�

k

) and �

3

1;k

= x([0; S

1

(~�

k

℄), by (H0), we get

Z

�

1

1;k

< L;~n

1

> d� = 0;

Furthermore, ~n

1

(�(r; ~�

k

) = L(�(r; ~�

k

)=kL(�(r; ~�

k

)k, for every r 2 (0; T

1

(~�

k

)). Using (AS),

(AS)

?

, and taking k !1, we obtain

Z

t

1

0

kL(�(t; �

1

))k

2

dt�

Z

s

1

0

< L(x(s)); F

?

(x(s); y(s)) > ds � 0: (2.20)
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Hene, by (2.4), (2.16) and Lemma 2.6, we have

dl(�([0; t

1

℄; �

1

)) �

dR

2

:

This proves the lemma. 2

As a diret onsequene of (2.5), (2.9), (2.10), (2.19), Proposition 2.9 and Lemmas 2.15

and 2.17, we have that either �

1

= �̂

1

or s

1

= ŝ

1

, and �

1

< �� , s

1

< �s. Consequently,

�

1

+ s

1

�

R

2M

1

: (2.21)

For next step, we follow the same argument. Set

(

�̂

2

= minf�

1

+

R

2M

1

; ��g

ŝ

2

= minfs

1

+

R

2M

1

; �sg:

By (2.11), (AS) and (AS)

?

, we also have

(

l(x([s

1

; ŝ

2

℄)) < R;

l(([�

1

; �̂

2

℄; x

0

)) < R:

Moreover,

Lemma 2.18 x : [s

1

; ŝ

2

℄! IR

2

is injetive.

We also onsider A

2

� [�

1

; �̂

2

), formed by the points � 2 [�

1

; �̂

2

) suh that there exist

t 2 [0; w

+

(�)) and s 2 [s

1

; ŝ

2

) satisfying

(

�(t; �) = x(s);

l(�([0; t℄); �) < R:

(2.22)

By (2.19) and Lemma 2.17, �

1

2 A

2

. Furthermore, we may show that for every � 2 A

2

there exist unique t 2 [0; w

+

(�) and s 2 [s

1

; ŝ

2

) satisfying (2.22). As before, we de�ne

T

2

: [�

1

; �̂

2

) ! [0;1) and S

2

: [�

1

; �̂

2

) ! [s

1

; ŝ

2

) to be suh values. The following result

holds

Lemma 2.19 A

2

is an open subset of [�

1

; �̂

2

).

Proof: Applying Proposition 2.9 at the point (s

1

; t

1

; �

1

), we �nd a neighborhood U

�

1

of �

1

and funtions �

1

; �

2

: U

�

1

! IR

2

satisfying �

1

(�

1

) = s

1

, �

2

(�

1

) = t

1

and (2.8) . Furthermore,

by onstrution, we have �

1

(~�

k

) = S

1

(~�

k

), �

2

(~�

k

) = T

1

(~�

k

), for k suÆiently large. Arguing

as in the proof of Lemma 2.12, we may suppose, without loss of generality, that �

1

: U

�

1

!

IR

2

is injetive. Sine S

1

: [0; �

1

) ! [0; ŝ

1

) is an inreasing funtion, we also have that

�

1

: U

�

1

! IR is inreasing and, onsequently, �

1

(�) > s

1

for every � 2 U

�

1

, � > �

1

. This

fat, Lemma 2.17, t

1

> 0, s

1

< ŝ

2

and the ontinuity of �

i

, i = 1; 2, imply that �

1

is an

interior point of A

2

on [�

1

; �̂

2

). Now, given � 2 A

2

nf�

1

g, we argue as in the proof of Lemma

2.15 to onlude that T

2

(�) > 0, S

2

(�) > s

1

. Then, we use Proposition 2.9 and (2.22) to

obtain an open neighborhood U

�

of � suh that U

�

� A

2

. The lemma is proved. 2

Taking V

2

= [�

1

; �

2

) � [�

1

; �̂

2

), the omponent of A

2

whih ontains �

1

, we get
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Lemma 2.20 T

2

; S

2

: [0; �

2

)! IR are ontinuous funtions satisfying T

2

(�

1

) = t

1

, S

2

(�

1

) =

s

1

, and

(p̂

1

) T

2

(�) > 0, s

1

< S

2

(�) < ŝ

2

, for every � 2 (�

1

; �

2

).

(p̂

2

) There exists M > 0 suh that

jT

2

(�)j �M <1; 8 � 2 [�

1

; �

2

):

(p̂

3

) S

2

: [�

1

; �

2

)! IR is an inreasing funtion.

Proof: The proofs of (p̂

1

) and (p̂

2

) are similar to the proofs of (p

1

) and (p

2

), respetively.

For that reason, we omit them. For the proof of (p̂

3

), we �rst laim that S

2

is injetive

and inreasing on a neighborhood of �

1

. E�etively, onsidering �

i

, i = 1; 2, and U

�

1

given

in the proof of Lemma 2.19, we have that S

2

(�) = �

2

(�), for � 2 U

�

1

, � > �

1

. The laim

follows beause �

2

is an inreasing funtion on U

�

1

. Finally, we note that ondition (p̂

3

)

follows by verifying, as in the proof of (p

3

), that S

2

is loally injetive on (�

1

; �

2

). The

lemma is proved. 2

Now, we onsider a sequene �

1

< ~�

1

< : : : < ~�

k

< : : : < �

2

� �̂

2

satisfying ~�

k

! �

2

,

as k ! 1. We also have the assoiated sequenes (S

2

(~�

k

)) � [s

1

; ŝ

2

), (T

2

(~�

k

)) � IR.

Without loss of generality, we may suppose that S

2

(~�

k

)% s

2

� ŝ

2

, T

2

(~�

k

)! t

2

, as k !1.

Moreover,

(

�(t

2

; �

2

) = x(s

2

);

l(�([0; t

2

℄; �

2

) � R:

(2.23)

Lemma 2.21 Considering t

2

given by (2.23), we have

l(�([0; t

2

℄; �

2

) < R:

Proof: Arguing as in the proof of Lemma 2.17, we obtain that

�

�

= ([�

1

; � ℄; x

0

) [ �((0; T

2

(�)℄; �) [ x((0; S

2

(�))) [ �((0; t

1

); �

1

)

is a simple losed urve for every � 2 (�

1

; �

2

). Then, we take �

2;k

= �

~�

k

and B

2;k

the

bounded omponent of IR

2

n �

2;k

. By Green's Theorem and (H0), we get

Z

�

2;k

< L;~n

2

> d� =

Z Z

B

2;k

(divL(x; y)) dxdy � 0;

where ~n

2

is the normal exterior to B

2;k

and d� is the arlength. Setting �

1

2;k

= ([�

1

; ~�

k

℄; x

0

),

�

2

2;k

= �([0; T

2

(~�

k

℄; ~�

k

), �

3

2;k

= x([0; S

2

(~�

k

℄), and �

4

2;k

= �([0; t

1

℄; �

1

), by (H0), we have

Z

�

1

2;k

< L;~n

2

> d� = 0:

14



Furthermore, ~n

2

(�(r; ~�

k

)) = L(�(r; ~�

k

))=kL(�(r; ~�

k

))k, for every r 2 (0; ~�

k

), and ~n

2

(�(r; �

1

)) =

�L(�(r; �

1

))=kL(�(r; �

1

))k, for every r 2 (0; �

1

). Hene, using (AS), (AS)

?

, (2.20), and tak-

ing k !1, we obtain

Z

t

2

0

kL(�(t; �

2

))k

2

dt�

Z

s

2

0

< L(x(s)); F

?

(x(s); y(s)) > ds � 0: (2.24)

The lemma is a diret onsequene of (2.4), (2.16), (2.24) and Lemma 2.6. 2

By (2.5), (2.9), (2.10), (2.23), Proposition 2.9 and Lemmas 2.19 and 2.21, we have that

either �

2

= �̂

2

or s

2

= ŝ

2

and �

2

< �� , s

2

< �s. Consequently, by (2.21),

�

2

+ s

2

� �

1

+ s

1

+

R

2M

1

�

R

M

1

:

Arguing in a similar way, we obtain sequenes ((t

k

; s

k

; �

k

)) � IR

3

, suh that t

k

2 (0;1),

s

k

2 (s

k�1

; �s), �

k

2 (�

k�1

; ��), for every k 2 IN , and

�

k

+ s

k

�

kR

2M

1

; 8 k 2 IN:

But, this ontradits �� + �s <1 and onludes the proof of Theorem A. 2

Condition (H0)-(i) has been used only to establish that IR

2

is on the domain of attration

of the origin and to show that the �rst equation in (2.4) holds. Thus if, we suppose

(

~

H0) IR

m

= IR

2+n

= IR

2

� IR

n

, X(F;G) : IR

2+n

! IR

2+n

and there exist C

1

maps

L : IR

2

! IR

2

, H : IR

2+n

! IR

2

satisfying (H0)-(ii), (H0)-(iii) and

(iv) The origin is a global attrator for the system assoiated to L,

(v) lim inf

kxk!1

kL(x)k > 0,

we obtain

Proposition 2.22 Suppose X 2 X satis�es (

~

H0), (H1)-(H3) with V satisfying (PS)

(X;)

ondition for every  > 0. Assume further that the solutions of (AS) are de�ned on [0;1).

Then, the origin is a global attrator for system (AS).

Remark 2.23 It is worthwhile to mention that ondition (H2) has been used only to prove

Lemma 2.6. Thus, any other ondition that provides that lemma implies the global asymp-

toti stability of system (AS).

3 Proof of Theorems B and C

In this setion we prove Theorems B and C. First, we need to state some preliminary results.

The following result is due to Oleh. For a question of ompleteness, we present its proof.

Lemma 3.1 Suppose X : IR

2

! IR

2

belongs to X and satis�es (H4) and

(H7) X(u) 6= 0, for every u 2 IR

2

n f0g,

15



(H8) There exist �; � > 0 suh that

kX(u)k � �; 8 u 2 IR

2

; kuk � �:

Then, the origin is a global attrator for system (AS).

Proof: Using (H4) and Green's Theorem, we obtain that (AS) does not have a periodi

solution. Denoting by w(u) the w-limit set of u, from (H4), (H7), (H8) and the argument

employed in the proof of Theorem A (See also [9℄), we onlude that A

1

= fu 2 IR

2

jw(u) =

;g is an open set. Sine the origin is a loal attrator for system (AS), we also have that

A

0

= fu 2 IR

2

jw(u) = f0gg is an open set. Furthermore, A

0

\A

1

= ; and A

0

6= ;. Hene,

to prove Lemma 3.1, it suÆes to verify that IR

2

= A

0

[A

1

.

Arguing by ontradition, we suppose that there exist u; v 2 IR

2

suh that v 2 w(u) n

f0g. Sine w(v) � w(u) and the intersetion of w(u) with a transversal setion to X

possesses at most a point, we have that w(v) annot have a regular point of X sine,

otherwise, (t; v) would be a periodi solution of (AS). Consequently, by (H7), w(v) = f0g

or w(v) = ;. As A

0

and A

1

are open sets, by de�nition of w-limite set, we obtain that

w(u) = f0g or w(u) = ;, respetively. However, this ontradits v 2 w(u)nf0g. The lemma

is proved. 2

Before stating our next lemma, we need to reall a result proved in [12℄: Let E be a

real Banah spae. Given f 2 C

1

(E; IR) and  2 IR, we denote by S



(f) and K



the sets

fu 2 E j f(u) = g and fu 2 E j f(u) = ; f

0

(u) = 0g. We say that  is an admissible level

of f if either  is a regular value of f , or the omponents of K



possesses only a point and

 is an isolated ritial value of f .

Theorem 3.2 (The Level Surfae Theorem) Suppose f 2 C

1

(E; IR) satis�es (PS). As-

sume  2 IR is an admissible level of f and that u and v are two distint points of S



(f).

Then, either

(i) u and v are in the same omponent of S



(f),

or

(ii) f has a ritial value d 6= .

Remark 3.3 Theorem 3.2 is true under a generalized version of (PS) ondition as proved

in [12℄. This implies that Theorem B also holds when L

1

satis�es suh onditiom.

Lemma 3.4 Suppose X 2 C

1

(IR

2

; IR

2

) satis�es X(0) = 0 and (H5)-(H6), with X

1

satis-

fying (PS). Then, X satis�es (H7)-(H8).

Proof: By X(0) = 0 and (H5), we have that det(X

0

(0)) 6= 0. Thus, invoking the Inverse

Funtion Theorem, we obtain two open balls entered at the origin, B(0; �

i

) � IR

2

, i = 1; 2,

suh that X : B(0; �

1

) ! IR

2

is injetive and B(0; �

2

) � X(B(0; �

1

)). Thus, to prove

Lemma 3.4, it suÆes to show that (H8) holds with � = �

1

and � = minf�

2

; g, with 

given by (H5).

Arguing by ontradition, we suppose that there exists u 2 IR

2

suh that kX(u)k < �

and kuk � �

1

. By our hoie of �, we have that u 2 S

(�;)

(X

1

) and X(u) 2 B(0; �

2

). Now,

16



let v 2 B(0; �

1

) be suh that X(v) = X(u). Sine X

1

satis�es (PS), by (H6) and Theorem

3.2, there exists  : [0; 1℄ ! IR

2

suh that (0) = v, (1) = u, and

X

1

((t)) = 

1

= X

1

(u); 8 t 2 [0; 1℄: (3.1)

Considering h : [0; 1℄ ! IR

2

de�ned by h(t) = X

2

((t)), for t 2 [0; 1℄, we have that h(0) =

h(1) = X

2

(u). Furthermore, from � � , (H6), (3.1) and the Impliit Funtion Theorem,

we �nd t

0

2 (0; 1) suh that h

0

(t

0

) =< X

2

((t

0

)); 

0

(t

0

) >= 0, < X

1

((t

0

)); 

0

(t

0

) >= 0,

and 

0

(t

0

) 6= 0. This implies that det(X

0

((t

0

))) = 0. However, this ontradits (H5) sine

(t

0

) 2 S

(�;)

(X

1

). The proof of Lemma 3.4 is onluded. 2

Theorem B is a diret onsequene of Lemmas 3.1 and 3.4. For the proof of Theorem

C, we �rst note that (

~

H0)-(v) is veri�ed sine, by Lemma 3.4, it satis�es (H8). This fat,

Theorem B and Proposition 2.22 imply that the origin is a global attrator for system (AS).

4 Appliations

In this setion we present appliations of the results proved in setions 2 and 3.

1. Consider X

�

= (F;G

�

) : IR

m

! IR

m

, � 2 IR, a vetor �eld of lass C

1

satisfying

(H

0

) with G

�

(x; y) = �Ay + �M(x; y), where A : IR

n

! IR

n

is a positive selfadjoint

operator. As before, we are onsidering IR

m

= IR

2+n

= IR

2

� IR

n

and F (x; 0) = L.

Suppose X

�

satis�es

(F1) There exist p;A;B > 0 and a funtion ' 2 C(IR IR) suh that

(

kL(x)k � Akxk

p

+B; 8 x 2 IR

2

;

< F (x; y); x >� Akxk

2

'(kyk) +B; 8 (x; y 2 IR

m

;

(F2) For p > 0, given by (F1), there exist R; �;C > 0 suh that, for every kxk > R,

kyk � �, we have

kH(x; y)k �

Ckyk

2

kxk

p

;

(G1) there exists D > 0 suh that

kM(u)k � D; 8 u 2 IR

m

:

Then, there exists �

0

> 0 suh that the system

(

_x(t) = L(x(t)) +H(x; y);

_y(t) = �Ay + �M(x; y)

has the origin as a global attrator for every � 2 IR, j�j < �

0

. E�etively, Consider

V : IR

m

! IR

m

de�ned by

17



V (x; y) =

1

2

< Ay; y >; 8 (x; y) 2 IR

m

:

Sine A is positive de�nite, V satis�es (H1)-(i). By (G1), there exist ; �

0

> 0 suh

that, for every j�j < �

0

,

< rV (u);X(u) >� �V (u); 8 u 2 IR

m

:

This shows that (H1)-(ii) and (H2)-(ii) also hold. Furthermore, (H2)-(i) is onsequene

of (F1), (F2) and the de�nition of V and (H3) is obtained by invoking (F2). Finally,

we note that the solutions of the system is de�ned for every t � 0, by our hoie of

V , �

0

and the seond equation on (F1). Theorem A implies that the above system

has the origin as the global attrator.

2. Consider the system

8

>

<

>

:

_x

1

(t) = g

1

(x

1

(t); x

2

(t)) + h

1

(x

1

(t); x

2

(t); x

3

(t))x

3

(t);

_x

2

(t) = g

2

(x

1

(t); x

2

(t)) + h

2

(x

1

(t); x

2

(t); x

3

(t))x

3

(t);

_x

3

(t) = �x

3

(t)

where L = (g

1

; g

2

) and

^

H = (h

1

; h

2

) are of lass C

1

, (L +H)(0) = 0 and L satis�es

(MY). Taking X(u) = (F (u); G(u) = L(x

1

; x

2

) +

^

H(u)x

3

, for every u = (x

1

; x

2

; x

3

) 2

IR

3

, we suppose

(X1) There exist M;R; � > 0 suh that, for every u = (x

1

; x

2

; x

3

) 2 IR

3

, we have

j(�g

1

h

2

+ g

2

h

1

)(u)j �M; 8 j(x

1

; x

2

)j > R; jx

3

j < �:

(X2) There exist A;B > 0 and � 2 C(IR; IR) suh that

< F (u); u >� Ak(x

1

; x

2

)k�(jx

3

j) +B;

for every u = (x

1

; x

2

; x

3

) 2 IR

3

. Then, the above system is globally asymptotially

stable. Consider V : IR

3

! IR de�ned by V (u) = jx

3

j, for every u = (x

1

; x

2

; x

3

) 2 IR

3

.

Then, V 2 C

1

(IR

3

nIR

2

); IR). Furthermore, it is not diÆult to verify that X satis�es

(H0) and (H1) and that V satis�es (PS)

(X;)

on IR

3

n IR

2

, for every  > 0. By (X1),

X also stis�es (H2) on IR

3

n IR

2

. We also note that ondition (X2) implies that the

solutions of the system are de�ned on [0;1). Sine the proof of Theorem A is the

same under these onditions, we obtain that the origin is a global attrator for the

above system as laimed.

A partiular ase is obtained when X((x

1

; x

2

; x

3

)) = (x

1

(x

3

�1); x

2

(x

3

�1);�x

3

), for

every (x

1

; x

2

; x

3

) 2 IR

3

. This simple ase provides an example where (MY) ondition

is not satis�ed in IR

3

.
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3. Consider X : IR

2

! IR

2

the vetor �eld of lass C

1

de�ned by

X(x

1

; x

2

) = (�x

1

; h(x

1

) + �x

2

); 8 (x

1

; x

2

) 2 IR

2

: (4.1)

where � 2 IR and h 2 C

1

(IR; IR) satisfy

(a) h(s) < 1� �, for every s 2 IR,

(b) h(0) < ��.

Then, the origin is a global attrator for the assoiated system. Indeed, sine

X

0

(x

1

; x

2

) =

"

�1 0

h

0

(x

1

)x

2

h(x

1

) + �

#

for every (x

1

; x

2

) 2 IR

2

, (a) implies that X satis�es (H4). Furthermore, it is lear

that X

1

satis�es (H6) and (PS). From (b) and the ontinuity of h, we �nd  > 0 suh

that

det(X

0

(x

1

; x

2

)) = �(h(x

1

) + �); 8 (x

1

; x

2

) 2 IR

2

; jx

1

j < :

Consequently, X satis�es (H6). Furthermore, by (H4), X

1

(0) = 0 and the above

relation, we get that X 2 X . Invoking Theorem B, we onlude that the origin is a

global attrator for the assoiated system.

4. Suppose X : IR

2

! IR

2

is a vetor �eld of lass C

1

satisfying (4.1), with � 2 IR and

h 2 C

1

(IR; IR) satisfying (b) and the following stronger version of (a):

(â) There exists �̂ > � suh that

h(s) � 1� �̂; 8 s 2 IR:

Now assume Y = (f; g) : IR

2

! IR

2

is a vetor a �eld of lass C

1

satisfying Y (0) = 0

and

(Y1) There exists M > 0 suh that

kY k

C

1
= supfkY (u)k + kY

0

(u)k ju 2 IR

2

g < M <1;

(Y2) There exist M

1

; C

1

> 0 suh that

lim

jx

2

j!1

sup

jx

1

j�C

1

�

�

�

�

�f

�x

2

(x

1

; x

2

)x

2

�

�

�

�

�M

1

<1:

Then, there exists �

0

> 0 suh that the origin is a global attrator for the system

_u(t) = X(u(t)) + �Y (u(t));

for every � 2 IR, j�j < �

0

. Considering X

�

= X + �Y , by Theorem B it suÆes to

verify that X

�

belongs to X and satis�es (H4)-(H6). First, we note that
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Trae(X

0

�

(x

1

; x

2

)) = �1 + h(x

1

) + �

�

�f

�x

1

(x

1

; x

2

) +

�g

�x

2

(x

1

; x

2

)

�

:

Consequently, from (â) and (Y1), we �nd �

1

> 0 suh that X

�

satis�es (H4) for

j�j < �

1

. Now, we use (b), (Y1) and (Y2) to obtain �

2

; 

2

> 0 suh that, for every

j�j < �

2

,

det(X

0

�

((x

1

; x

2

)) > 0; 8 (x

1

; x

2

) 2 IR

2

; jx

1

j < 

2

: (4.2)

Observing that (X

�

)

1

(x

1

; x

2

) = �x

1

+�f(x

1

; x

2

), for (x

1

; x

2

) 2 IR

2

, we �nd 0 < �

0

<

minf�

1

; �

2

g and  > 0 suh that, for every j�j < �

0

, we have

jx

1

j < 

2

; 8 (x

1

; x

2

) 2 S

(�;)

((X

�

)

1

): (4.3)

Using (4.2) and (4.3), we onlude that X

�

satis�es (H5) for every j�j < �

0

. We also

note that X

�

2 X sine X

�

(0) = 0. Furthermore, by taking �

0

smaller if neessary,

we obtain that (X

�

)

1

satis�es (PS) and (H6). That onludes the veri�ation that

the origin is a global attrator for the above system when j�j < �

0

.

5. Consider the system

8

>

>

>

<

>

>

>

:

_x

1

(t) = �x

1

+ x

2

x

3

+ x

4

;

_x

2

(t) =

1

2

(1� e

�x

2

1

+ sinx

1

) artan x

2

+ x

1

x

3

+ x

3

;

_x

3

(t) = �x

3

(t) + x

4

sinx

1

;

_x

4

(t) = �x

4

(t):

Then, the origin is a global attrator. First of all, we observe that the assoiated

vetor �eld satis�es (

^

H0) with L : IR

2

! IR

2

and H : IR

4

! IR

2

given by

L(x) = (�x

1

;

1

2

(1� e

�x

2

1

+ sinx

1

) artan x

2

); 8x = (x

1

; x

2

) 2 IR

2

; (4.4)

and

H(u) = (x

1

x

3

+ x

4

; x

1

x

3

+ x

4

); 8u = (x

1

; x

2

; x

3

; x

4

) 2 IR

4

: (4.5)

Taking V : IR

4

! IR

2

de�ned by

V (u) =

1

2

x

2

3

+

1

2

x

2

4

; 8u = (x

1

; x

2

; x

3

; x

4

) 2 IR

4

;

we obtain that V satis�es (H1) and

< rV (u);X(u) >� �V (u); 8 u 2 IR

4

: (4.6)

This implies that V satis�es (PS)

(X;)

for every  > 0. Now, given a solution (t) =

(x

1

(t); x

2

(t); x

3

(t); x

4

(t)) of the system and a > 0, we use the two �rst equations of

the system and (4.6) to �nd t

0

> 0 and A > 0 suh that
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d

dt

(x

2

1

(t) + x

2

2

(t)) � a(x

2

1

(t) + x

2

2

(t)) +A; 8 t � t

0

Consequently, there exist B;C > 0 suh that

x

2

1

(t) + x

2

2

(t) � Be

at

+ C; 8 t � 0: (4.7)

On the other hand, using the de�nition of L and H, we obtain D;E > 0 suh that,

for every t � 0,

j < L

?

((t));H((t)) > j � D(jx

3

j+ jx

4

j) +E(jx

1

(t)j

2

+ jx

1

(t)j

2

)jx

3

(t)j:

Invoking (4.6)-(4.7), we onlude that Lemma 2.6 holds. Hene, by Theorem C and

Remark 2.23, to show that the origin is a global attrator for the system, it suÆes

to verify that ondition (H3) is satis�ed. By Lemma 3.4, L satis�es (H8) sine it

satis�es (H5)-(H6) and L

1

satis�es (PS). Applying (4.4), (4.5) and (H8), we get

lim sup

kxk!1;kyk!0

kH(u)k

kL(x)k

� jx

3

j+

kyk

d

= 0:

Here, we have onsidered u = (x; y), x = (x

1

; x

2

) and y = (x

3

; x

4

). This onludes

the veri�ation that the origin is a global attrator for the system.
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