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Abstract

This paper provides sufficient conditions for global asymptotic stability of autonomous
dynamical systems on euclidean spaces. For dimension greater than two, the tech-
nique combines a version of the argument used by Olech on the bidimensional case and
Lyapunov method. A Palais-Smale type condition is used to study the behaviour of
unbounded orbits. Global stability for the bidimensional problem is established under
hypotheses which do not imply the Markus-Yamabe condition.

AMS(MOS) subject classification: 58C99, 58E05.

1 Introduction

In this article we study the global asymptotic stability of the autonomous system
(AS) u(t) = X (u(t)).

where X : IR™ — IR™ is a vector field of class C! satisfying X (0) = 0. We also suppose
the origin is a local asymptotic attractor for system (AS).

In our first result, we assume that m > 3 and write IR™ = IR*™ = IR? x IR" and
X = (F,G) : IR”*™ — IR?>™. To establish the global asymptotic stability of system (AS)
on this case, we suppose that Markus-Yamabe condition holds on the plane IR* = IR% x {0}.
We also assume the existence of a Lyapunov function on IR?>™" \ IR? satisfying a Palais-
Smale type condition with respect to the vector field X. The technique used combines a
version of Olech’s argument for the planar problem with the well known Lyapunov method.

We recall that a vector field X : IR™ — IR™ satisfies the Markus-Yamabe condition
[denoted (MY)] if the eigenvalues of X'(u) have negative real part for every u € IR™. By X,
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we denote the space of vector fields of class C! from IR™ on itself which have the origin as
a local attractor for the associated system. The following condition is our basic assumption

(H0) IR™ = IR*'" = IR?> x IR", X = (F,G) : IR>*™ — IR*™™ and there exist C' maps
L:IR? - IR?, H : IR*™ — IR? satisfying

(i) L satisfies (MY) condition on IR?.

(ii) F(z,y) = L(z) + H(z,y), for every (z,y) € IR**",

(iii) X (z,0) = (L(x),0), for every = € IR?.

As observed above, our results are also based on the existence of a Lyapunov function
for system (AS). More specifically, we suppose

(H1) There exists a function V € C'(IR*™,[0,00)) satisfying

(i) limyjg| o0 inf{V (z,y) [ [ly|| = 0} > 0, for every d > 0,

(ii) < VV(z,y), X (z,y) >< 0, for every (z,y) € IR*™ \ IR?,

It is worthwhile to mention that condition (H1) does not imply that the origin is a global
attractor for (AS) since we may have V(z,0) = 0 for every x € IR? (See the applications
in section 4). Moreover, we emphasize that our Lyapunov conditions do not imply that
the solutions of the system are bounded at all. The following conditions allow us to use a
variant of Olech’s argument [9] for the planar case. Considering X € X', L given by (H0),
and the Lyapunov Function V, given by (H1), we assume

(H2) There exist ¢, M, R > 0 and p € (0,00] such that, for every ||z|| > R, |ly|| < p, we
have

() | < L(s)", H(z,y) > | < MV(5,y),

(i) < VV(2,9), X (2.3) >< —cV(2,),
and

(H3) There exists 6 € [0,1) such that

|H (z,y)] <4
|| o0, llyll—0 || L(z)||

In (H2), L+ represents the vector field orthogonal to L, obtained by a counterclockwise
rotation. The folowing definition introduces the notion of Palais-Smale condition [1, 11]
with respect to a given vector field X,

Definition 1.1 Given a vector field X € C(IR™,IR™), we say that the V € C*(IR™, IR)
satisfies the Palais-Smale condition with respect to X at level ¢ € IR [denoted (PS)(x ] if
every sequence (ug) C IR™ such that V(ug) — ¢ and < VV (ug), X (ug) >— 0, as k — 00,

possesses a bounded subsequence.

Note that V € C'(IR™, IR) satisfies (PS). condition for ¢ € IR, if it satisfes (PS)(vv,e)-
Now, we are able to state our first result,



Theorem A Suppose X € X satisfies (H0)-(H3), with V satisfying (PS)(x,.) condition for
every ¢ > 0. Assume further the semi-completivity condition of the solutions of (AS) (i.e.
they are defined on [0,00)). Then, the origin is a global attractor for system (AS).

The proof of Theorem A is obtained by the verification of two basic steps: First, we use
conditions (HO)-(H1) and the fact that V satisfies (P.S)(x ), for ¢ > 0,to verify that orbits
of (AS) which do not converge to the origin must approach asymptotically the plane IR?.
Then, we apply a variant of Olech’s argument [9] to conclude that the origin is a global
attractor for (AS). Concerning the semi-completivity condition assumed above, we observe
that in [2] is implied by some geometric hyphoteses which could be useful in our context.

We note that, by Gutierrez [6] (See also [4, 5]) and (HO), L(z) = X (x,0) : IR?> — IR* is
an injective vector field. Consequently, by [9], the origin is a global attractor for the orbits
on the plane IR%.

In the second part of this article, we present a result of global asymptotic stability
for system (AS) on IR* when (MY') condition does not hold. Setting S(_ . (f) = {u €
IR™| —c¢ < f(u) < ¢}, for f: IR™ — IR and ¢ > 0, and denoting by X;, i = 1,2, the
i-coordinate of X : IR? — IR?, we suppose

(H4) Trace(X'(u)) < 0, for every u € IR?,
(H5) There exists ¢ > 0 such that

det(X'(u)) £0, ¥V u € S_0(X1),

(H6) VX, (u) # 0, for every u € IR%.

Recalling that f € C'(IR™, IR) satisfies (PS) condition when it satisfies (PS), for every
c € IR, we may state

Theorem B Suppose X : IR? — IR? belongs to X and satisfies (H{)-(HG6), with X, satis-
fying (PS). Then, the origin is a global attractor for system (AS).

If we assume the following version of condition (HO),

(H0) IR™ = IR**™ = IR?> x IR", X = (F,@) : IR*™™ — IR**™ and there exist C' maps
L:IR* — IR?, H : IR*'" — IR? satisfying (HO0)-(ii), (HO)-(iii) and
(iv) L satisfies (H4)-(H6) with Ly satisfying (PS) condition,

Theorem B and the argument employed in the proof of Theorem A (See Proposition 2.22
and Remark 2.23) provide

Theorem C Suppose X € X satisfies (H0), (H1)-(H3) with V satisfying (PS)(x,c) condi-
tion for every ¢ > 0. Assume further the semi-completivity condition of the the solutions of
(AS). Then, the origin is a global attractor for system (AS).

We should mention that Theorem A was motivated by a recent counter-example of
Markus-Yamabe conjecture on IR® [3] which possesses a divergent orbit that approaches
asymptotically the plane IR? x {0}. We were also motivated by the observation that a
version of the famous Palais-Smale condition, assumed frequently in critical point theory
(See [1, 11] and references therein), may be combined with the Lyapunov method to study



the behaviour of the orbits of a dynamical system which are not bounded. Finally, we note
that Theorem B was inspired by the observation that Olech’s result for the bidimensional
problem is valid under hypotheses which do not imply (MY) condition.

Based in a former result by Gutierrez and Teixeira [7], we shall state a conjecture
that we believe may have a proof similar to our proof of Theorem A. This conjecture is
concerned with the behaviour of the orbits of system (AS) on a neighborhood of infinity at
the invariant plane IR* x {0}.

We say that a C'!'—vector field L on IR? satisfies (GT) condition if:

(i) L has at least one critical point (say 0),

(ii) Det(L/(u)) > 0 for every u € IR?,

(iii) there is p > 0 such that Trace(L'(u)) < 0 provided that [|ul] > p,

(iv) Jp = [ peTrace(L'(z,y))dzdy # 0.

The vector field L satisfies the (H00) condition if it satisfies the (GT) condition, (HO)-
(ii) and (HO)-(iii). Denoting by Py = (00,0) the point on IR?>™™ representing the oo in
IR? x 0, we consider

Conjecture Assume that X € x satisfies (H00), (H1), (H2), (H3), with V satisfying
(PS)(x,c) condition for every c > 0. Assume further the semi-completivity condition of the
solutions of (AS). Then, Py, is a repellor (resp. attractor) for (AS) provided that Ji < 0
(resp. Jp, > 0).

The article has the following organization: In section 2, we prove Theorem A. There, we
also state a version of this theorem when the origin is a global attractor for the bidimensional
problem associated to L. In section 3, after some preliminary results, we prove Theorem
B. Finally, in section 4, we present applications of Theorems A, B and C.

2 Proof of Theorem A

Arguing by contradiction, we suppose that (AS) possesses a solution y(t) = y(t, ug), up =
($07 yO) ¢ IRZJ satisfying
It o)l 5 0, as £ - oo, 2.1)

The proof that such fact is not possible will be achieved by the verification of several
steps. First, we observe that we follow the standard notation for Lyapunov functions, i.e.,

{ V(t) =V (v(1)
V(t) = G (1) =< VV(y(t)), X (v(1)) > .

As our first step, we establish that every solution of system (AS) satisfying (2.1) converges
asymptotically to the plane IR?,

Lemma 2.1 Suppose X € X satisfies (H0), (H1). Assume y(t) = v(.,up) : [0,00) — IR*™™
is a solution of (AS) satisfying (2.1). Then, |y(t)|] — oo, as t — 0.



Proof: Arguing by contradiction, we suppose that the lemma is false. By [6], we must
have y(t) € IR*™™ \ IR?, for every t € [0, 00). Furthermore, we find 0 < R; < Ry < oo and
sequences 0 < t; < 81 < ... <t < 8 < ...such that t, — ¢t € IRU {00}, as k — o0, and,
for every k € IN,

17 (te)[| = Ra,
v (se)ll = Ra, (2.2)
Ry < |lvy(@®)|| < Ry, for every t € [tk, sk].

Taking M) = max{|| X (z,y)| | R1 < ||(z,y)|| < Rz}, by (AS), we have

Ry — Ry < [|v(sk) = (k)| < Mi(sk —tk), V k€ IN. (2.3)
This implies that £ = co. Using that V is a Lyapunov function, we get

V() =V(y(t) <V(0) < oo, Vite]0,o00).

Furthermore, since the origin is a local attractor for (AS) and a global attractor for orbits
on IR?; by condition (H1), and the compactness of (Bg,(0) \ Bg,(0)), we find d > 0 such
that, for every k € IN,

V(t) >d>0,Vte [tkask]-
Thus, invoking (H1) one more time, we find 6 > 0, independent of k € IN, such that

V(t) <-0>0,Vte [tkask]-

This implies, via (2.3), that V(sg) — —oo, as k — oo, contradicting the continuity of
V(z,y) and (2.2). The lemma is proved. O

Lemma 2.2 Suppose X € X satisfies (H0) and (H1) with V satisfying (PS)(x ) for every
¢ > 0. Assume y(t,up) = (z(t),y(t)) : [0,00) — IR*T™ is a solution of (AS) satisying (2.1).
Then, ||z(t)|| = oo and ||y(t)|]| — 0, as t — oo.

Proof: By Lemma 2.1, it suffices to verify that ||y(¢)|| — 0, as ¢ — oco. First, we claim that
there exists a sequence t; — 00, as k — oo, such that

V(ty) — 0, as k — o0.

Effectively, if we assume otherwise, we find 7' > 0 and K > 0 such that V(t) < —K, for
every t > T'. But this implies V() — —oo, as t — oo, contradicting (H1). The claim is
proved.

Now, we invoke Lemma 2.1, (H1) and we use that V' satisfies (PS)x ), for every ¢ > 0,
to conclude that V (t;) — 0, as k — oo. Observing that 0 < V(s) < V(¢), for every s > t,
we obtain that V(¢) — 0, as ¢ — oco. Consequently, by (H1), ||ly(¢)|| — 0, as ¢ — oco. The
lemma is proved. a

Given a continuous curve 3 : [0,1] — IR?, we denote by 1(3) = I(3([0,1]) its length.
The following basic result will be used to estimate the length of a closed curve which winds
around the origin,



Lemma 2.3 Suppose 3 : [0,1] — IR? is a closed continuous curve. Assume (3 satisfies
(B1) The origin belongs to a bounded component of IR\ (([0,1]),
(B2) There exist ty € [0,1] and d > 0 such that

1B8(to) [l = d > 0.
Then, I(B) > 2d.

Proof: Without loss of generality, we may suppose that t5 = 0. By (f1), there exist
t € (0,1) and X > 0 such that 8(t) = —AB(0). Consequently, by (52), [(8) = I(B([0,¢]) +
[(B([t,1]) > 2d. The lemma is proved. O

Corollary 2.4 Let 8 : [0,1] — IR?\ {0} be a closed simple curve of class C' by parts
satisfying (B2). Suppose T : IR?> — IR? is a vector field of class C' satisfying

(T1) T(0) =0 and T(x) # 0, for every x € IR?\ {0}.
(Tp) < T(B(t), (B (t))*t >>0(<0), for every t € [0,1] such that B'(t) is defined.
Then, I(B) > 2d.

Remark 2.5 As observed in the introduction, Gutierrez [6] has proved that L, L* : IR* —
IR? is injective if it satisfies (MY') condition. Hence, under this condition and L(0) = 0,
(T1) holds.

Proof: Consider the autonomous system associated to T,

() = T(x(t)).

Using (T1), (T), B([0,1]) C IR?\ {0}, and the fact that 3 is a closed simple curve, we
conclude that the origin must belong to the bounded component of IR? \ 5([0,1]). Hence,
by (#2) and Lemma 2.3, [(3) > 2d. The Corollary is proved. O

In the following step, we apply a version of Olech’s argument [9], making use of Green’s
Theorem in IR?, to obtain a contradiction. For that, we fix y(t) = (z(t),y(t)) = v(t,uo),
ug = (0, 10) & IR? such that -y satisfies (2.1)

Considering R,p > 0 given by (H2) and taking R > 0 larger and p > 0 smaller if
necessary, we invoke the injectivity of L, (H0) and (H3) to find d > 0 and 0 < § < 1 such
that

IL@) > d>0, V] >R -
1H (z, )| < SIL()ll, ¥ llzll = R, [lyll < p.
Now, we use Lemma 2.2 to find 7" > 0 such that
la(t)]| 2 3R, V=T, 05
ly®ll <p, VE=T. '

The following lemma provides an estimate for the flow of L across the projection on
IR? of the orbit ([T, )),



Lemma 2.6 There ezists T1 > T, T given by (2.5), such that

/:' < L(a(s)), £ (2(s), y(s)) > |ds < %R.

Proof: By (HO0), (H2)(i) and (2.5), for every S > T', we get
/°° | < L(x(s)), F(2(s), y(s)) > | ds < b/oo V(s) ds.
S S

On the other hand, by (H2)(ii) and (2.5), we have V (s) < V(S)e=%=9) for every s > § > T.
Hence,

/ V(s)ds < bV(S)/ e =9 ds bV(S).
S S c

Since V(S) — 0, as S — oo, we obtain the desired estimate by taking 77 = S > 0 sufficiently
large. The lemma is proved. g

Considering z7, = (2(71),0) € IR?, we take (¢, z7,), the solution of (AS) with v(0) =
z1,. Since X = (F,G) satisfies (HO0), we have that y(t,z7,) € IR?, for every ¢t € IR, and
v(t, zr,) — 0, as t — oo.

Remark 2.7 Using that system (AS) is autonomous, it is not difficult to show that we
may suppose Ty =T =0 and

z((0,00)) Ny((0,00),2z0) = 0. (2.6)
Now, we study the behaviour of the curve z : [0, 00) — IR.
Lemma 2.8 The application z : [0,00) — IR? is locally injective.

Proof: Arguing by contradiction, we suppose there exist sg € [0, 00) and sequences (&), (sx) C
[0, 00) such that

tr < sp, VE€EIN,
z(ty) = z(sg), Vk € IN, (2.7)
tr — So, Sk — Sp, as k — oo.
Since y(s,ug) = (z(s),y(s)) solves (AS), we have
z(sk) = z(te) + :k (L(x(s)) + H(x(s),y(s))) ds.
Taking the inner product with L(z(sg)) and considering (2.7), we get
2ol < (w126 = L) |+ 1G9}

Hence, by (2.4) and (2.5), we obtain



0<(1-0)d< oax [1L(z(s)) — L(z(s0))l

However, this last relation contradicts (2.7) and the continuity of L(z(s)). The Lemma is
proved. a

Given 7 € IR, we consider n(t, 7) = n(t,y(r, xo)), the solution in IR? of the system

1 i(t) = L (x(t))
(49) { 2(0) = (7, 0) € IR
Denoting by (w™(7),w" (7)) the maximum interval of definition for the solution of
(AS)*L, we set

O ={(s,t,7) € IR®|s € IR,7 € IR,t € (w™ (7),w" (7))},
and we define ® : O — IR? by ®(s,t,7) = z(s) — n(t,), for (s,t,7) € O. Considering
L = (Lq,Ls) and H = (Hy, Hs), when ®(s,t,7) = 0, we get
Ly(x(s)) + Hi(x(s),y(s)) La(z(s)) + Hz(x(s),y(s))
Dy ®(s,t,7) =
os2(5:87) ~Loa(s)) L (2(s))
Hence, By (2.4), (2.5), whenever ®(s,t,7) =0 and s > 0, we obtain

det[Ds 1@ (s, t, 7)] 2 || L(x () [[([[L(z(s)) | = [1H (2(s),y(s))]]) > O.
The following proposition is a direct consequence of the above inequality and the Implicit

Function Theorem.

Proposition 2.9 Given (sg, g, 70) € O such that ®(sg,to,70) = 0 and sy > 0, we may find
a neighborhood U,y of 19 and unique functions of class C*, ¢1(7), p2(7) : Uy — IR such
that (¢1(70), $2(70)) = (s0,t0) and

D((¢1(7), #2(7), 7)) =0, V 7 € Up,. (2.8)
Furthermore, if s € ¢1(Ur,), t € ¢2(Uy,) and 7 € U, satisfy ®(s,t,7) = 0, then (s,t) =
(¢1(7), P2(7)).

Corollary 2.10 Applying Proposition 2.9 to (so,to,70) = (0,0,0), we may suppose that
¢1 : Up — IR is an increasing function.

Proof: Derivating (2.8) with respect to 7 at 790 = 0, and taking the inner product with
L(zg), we get

(IZ(z0)|I*— < H(zo,y0), L(zo) >)¢1(0) = || L(zo)]|*-

Hence, by (2.4) and (2.5), we have that ¢ (0) > 0 and, consequently, we may assume that
¢1 : Uy — IR is an increasing function with ¢¢(7) > 0, for every 7 € Uy, 7 > 0. The
corollary is proved. a



Remark 2.11 By (2.6), Corollary 2.10, and the fact that y(t,z¢) is not periodic, we have
d2(7T) # 0, for every 7 € Uy, 7 > 0. Since the proof on the other case uses a similar
argument, without loss of generality, we suppose that ¢o(7) > 0, for every T € Uy, 7 > 0.

Now, we let M > 0 and 7 > 0 be such that

2R < |ly(r,z0)]| < M, ¥ 7 €[0,7] 29)
(7, zo) || = 2R. '
By Lemma 2.2, there exists s > 0 such that
|z(s)|| > M + 2R, V s > 3. (2.10)
Taking M; > 0 such that
IL(x(s)) + H(z(s),y(s)]) < My, VO <5 <5, o)
||L(7(Ta$0))|| SMI? VOST§7_—7 '

we set,

{ T = min{ﬁ, T}

51 = min{ﬁ,E}.
;From (2.11), (AS) and (AS)*, we obtain

[(z([0,51])) < R,
{ [(y([0,71], %0)) < R. (2.12)

Lemma 2.12 z :[0,5;] — IR? is injective.

Proof: Arguing by contradiction, we suppose that there exist 0 < s] < s5 < §; such that
x(s%) = x(s3). First, we claim that we may assume that z : [s%, s3] — IR? is a closed simple
curve. Effectively, considering

sy = sup{s > s} |z : [s], 52] = IR? is injective},

by Lemma 2.8, we have that s7 < sy < s5. Using the definition of sy and Lemma 2.8
one more time, we find 0 < € < s3 — s7, to € [s1,52 — €] and sequences (tx) C [s1, 52 — €],
(7)) C [s2,52 + €] such that z : [sy — €, 52 — €] — IR? is injective, z(t;) = z(7g), for every
k € IN, and t; — to, Tk — S2, as k — 0o. Hence, x(ty) = z(s2). Moreover, it is not difficult
to verify that x : [to, so] — IR? is a closed simple curve. The claim is proved.

;From (2.5), z[s}, s3] — IR? satisfies (82), with d = 3R, and z([s}, s3]) C IR?\ {0}. By
(2.4), (2.5) and (HO), L+ is transversal to x([s}, s5]). Hence, L satisfies (7). Since L*
satisfies (77), we may invoke Corollary 2.4 to conclude that I(z([s],s3])) > 6R. But, this
contradicts (2.12). The lemma is proved. O

Now, we consider A; C [0,71), the set formed by the points 7 € [0,71) such that there
exist t € [0,w™ (7)) and s € [0, 8;) satisfying



7’](t, T) = I(s),
{ I(n([0,%]), ) < R. (2.13)

Note that A; # () because 0 € A;. Moreover,
Lemma 2.13 Given 7 € Ay, there exists a unique t € [0,w™ (7)) satisfying (2.13).

Proof: Arguing by contradiction, we suppose that there exists 7 € A1 and 0 <t <ty <
wT () satisfying (2.13). Let 0 < s1, 52 < §; be such that

(ty,7) = (s1),
{ n(ta, ) = x(s2). (2.14)

We claim that s; # s9. Assuming otherwise, we have that the curve 7(t, 7) is periodic with
respect to the variable t. Moreover, by (2.5), (2.13) and (2.14), n(., ) : [t1,t1] — IR*\ {0}
and satisfies (f2) with d > 3R. Since L is transversal to n([t1, 2], 7) and satisfies (71),
Corollary 2.4 implies that [(n([t1,t2]) > 6R. But, this contradicts (2.13). The claim is
proved. Without loss of generality, we suppose that 0 < s; < sy < §;. Using that Lt is
transversal to the curve z([0,00)) and taking t2 > ¢; smaller if necessary, we may assume

n(r,7) & z([s1, 82]), ¥V r € (t1,t2). (2.15)

By the argument used in the above claim, we have that n([t1, 2], 7) is a simple curve. Using

this fact, (2.5), (2.13), (2.15) and Lemma 2.12, we conclude that I' = n([t1, t2], 7)Uz([s1, s2])

is a closed simple curve satisfying T' C IR? \ {0}. The transversality of L with respect to

z([s1, 82]) (via (2.4)-(2.5)) and (AS)* imply that L' satisfies condition (T%) with respect

to I'. Since L satisfies (T7), by (2.5) and Corollary 2.4, we have that [(I') > 6R. On the

other hand, by (2.12) and (2.13), {(I') < 2R. The lemma is proved. O
As a direct consequence of Lemmas 2.12 and 2.13, we have

Corollary 2.14 Given T € Ay, there exists a unique s € [0, $1) satisfying (2.13).

Based on Lemma 2.13 and Corollary 2.14, we may define 77 : A} — [0,00), S : 4] —
[0,81) by T1 (1) =t, Si(T) = s, where t, s are given by (2.13). Considering [0, 7;) with the
topology induced by the real line, we obtain

Lemma 2.15 A; is an open subset of [0,71).

Proof: By Remark 2.11, ¢3(7) > 0 for every 7 € Uy, 7 > 0. Hence, by Proposition 2.9,
there exists € > 0 such that [0,€) C A;. Consequently, 7 = 0 is an interior point of A;.
Now, given 7 € A; \ {0}, we invoke (2.6) and the the fact that v(7,z¢) is not periodic to
conclude that T7(7) > 0. We claim that S1(7) > 0. Indeed, if we suppose otherwise, then
(T (7),7) = z(0) = zp. Taking ¢t* € [0,71(7)) and 7* € (0, 7] such that

n(t*vT) :7(7—*7I0)7
n(r,7) € v([0,7],20), V r € (t*,T1(7)),

10



we consider I' = ([0, 7*], z9) Un((t*,T1(7)), 7) and argue as in earlier results to derive that
[(T') > 6R. However, this contradicts (2.12) and (2.13). The claim is proved.

Now, we apply Proposition 2.9 at the point (7,71(7),Si(7)) and we use Ti(7) €
(0,w™ (7)), S1(r) € (0,5;) and (2.13) to conclude that there exists an open neighborhood
U, of 7 such that U, C A;. The lemma, is proved. O

Taking V; = [0,71) C [0,71), the component of A; which contains the origin, we have

Lemma 2.16 71,5 : [0,71) — IR are continuous functions satisfying T1(0) = 0, S1(0) =
0, and
(p1) T1(7) >0, 0 < Si(T) < 1, for every T € (0,11).

(p2) There exists M > 0 such that
|T1(7')| <M< 00, Vr1e [0,7’1).
3) S1(7) : [0, 7) = IR is an increasing function.
(p3) , g

Proof: By definition, 77(0) = 0 and S;(0) = 0. Furthermore, the argument used in the
proof of Lemma 2.15 shows that 71, S : [0,71) — IR are continuous and satisfy (p1). Now,
from (2.9) and (2.13), we get

R< |nt,7)| < M+R, ¥Vtel0,Ti(r)], T €[0,7). (2.16)

Therefore, by [6] and (AS)*, we find § > 0 such that ||5(¢,7)|| > 6 > 0, for every t €
[0,T(7)]. Consequently, invoking (2.13) one more time, we obtain

R >1(n([0, Ty(7)],7) = 6T1(7).

Hence, (p2) holds. Finally, we shall verify (ps3): By Proposition 2.9, Corollary 2.10 and
Lemma 2.12, S1(7) = ¢1(7) for every 7 € Up. Thus, invoking Corollary 2.10 one more time,
we have $(0) > 0. Consequently, S; is locally injective and increasing on a neighborhood of
7 = 0. Hence, to prove (p3) it suffices to verify that S is locally injective on (0, 71). Arguing
by contradiction, we suppose there exist 7 € (0,71) and sequences (7}), (77) C (0, 71) such
that

T]é—>7'0, ask — o0, 1 =1,2.
e #7, VkeIN, (2.17)
0 < Si(rd) = Si(r}), ¥V k € IN.

By the transversality of L+ and ((0,00), ), there exists ¢ > 0 such that if t € (—e, ),
T € (10 — €,70 + €) and n(t,7) € ¥((10 — €,70 + €),x0), then t = 0. By (2.17), (7, z0) =
n(Ty(r}) — Ti(r?), ), for every k € IN. Using the continuity of Ty : [0,71) — IR and the
first relation in (2.17), we obtain that 7']3 = T,% for k sufficiently large. But, this contradicts

72 # 71, for every k € IN. The lemma is proved. O
We now consider a sequence 0 < 73 < ... < 7 < ... < 11 < 71 satisfying 7, —
T, as k — oo. We also consider 0 < S1(71) < ... < S1(7%) < ... < & and 0 <
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Ti(71),...,T1(7),... < oo the associated sequences. By (p3), S1(7x)  s1 < §1. Fur-
thermore, invoking (p2), we may suppose without loss of generality that

Tl(’f'k) — 11, as k — oo. (218)

As a direct consequence of (2.13), we have

n(ti, ) = z(s1),
{ Ln([0,t1],m1) < R. (2.19)

The following result shows that we have a strict inequality on the second relation of
(2.19)

Lemma 2.17 Considering t, given by (2.18), we have

1(77([07751]771) < R.

Proof: First, we claim that the curve

L7 = ([0, 7], z0) Un((0, Ty (7)], 7) U z((0, 51(7)))

is a simple closed curve for every 7 € (0,71). Effectively, invoking Corollary 2.4 and using
the argument employed earlier, we obtain that ([0, 7], zo) and n([0,71(7)],7) are simple
curves. Lemma 2.12 implies that z([0,S1(7)]) is also a simple curve. By Lemma 2.13 and
(2.6), we have 7([0, Ty (7)],7) Nz([0,S1(7))) = 0 and ((0, 7], z0) Nz((0,S1(7)]) = 0, respec-
tively. Hence, to prove the claim, it suffices to verify that n((0, 7% (7)],7) Nv([0, 7], zo) = 0.
Assuming otherwise, we note that by (2.6) and n(T1(7),7) € z([0,381)), we must have
t € (0,71(7)) and 19 € [0, 7] such that n(t,7) = v(70,z0). But, on this case Si(7) = S1(70).
Thus, by (p3), we must have 7 = 75. Consequently, (., 7) is periodic. Since L satisfies (77)
and is transversal to 7([0,t], 7), by (2.9) and Corollary 2.4, we must have {(n([0,t], 7)) > 4R.
However, this contradicts (2.13) and ¢ < T7(7). The claim is proved.

Taking I'; = 'z, and B ;, the bounded component of IR? \T'1k, by Green’s Theorem
and (HO), we have

/ < L,y > do = // (divL(z,y)) dzdy < 0,
Iy By

where 77; is the normal exterior to B j and do is the arclength. Setting Fik = ([0, 7], zo],
F%,k = ﬁ([OaTl (%k)]J%k) and Fik = 13([0, S1 (7:]6])7 by (H0)7 we get

/ < L,i; > do =0,
"
Furthermore, 71 (n(r, 7x) = L(n(r,7) /|| L(n(r, 7¢)||, for every r € (0,71(7%)). Using (AS),
(AS)*, and taking k — oo, we obtain

/0 (e )P dt - /0 " < L(a(), FH (2(3),y(s)) > ds <0, (2.20)
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Hence, by (2.4), (2.16) and Lemma 2.6, we have

di(n([0, 1], 7)) < ‘%R

This proves the lemma. a

As a direct consequence of (2.5), (2.9), (2.10), (2.19), Proposition 2.9 and Lemmas 2.15
and 2.17, we have that either 7, = 77 or s; = §1, and 71 < 7, s1 < §. Consequently,

R
> —. 2.21
T+ 81 2 oM, ( )

For next step, we follow the same argument. Set

To = min{m + %, T}
S = min{s; + %, 5}.

By (2.11), (AS) and (AS)*, we also have

l(z([s1,32])) < R,
1(y([r1, T2], 20)) < R.

Moreover,
Lemma 2.18 1 : [s1, 82] — IR? is injective.

We also consider Ay C [71,72), formed by the points 7 € [r1,72) such that there exist
t € [0,wt (7)) and s € [sy, 82) satisfying

ﬁ(t, T) = LE(S),
{ 1(n([0,t]),7) < R. (2.22)

By (2.19) and Lemma 2.17, 71 € Ay. Furthermore, we may show that for every 7 € Ay
there exist unique ¢t € [0,w™(7) and s € [s1,§2) satisfying (2.22). As before, we define
Ty @ [11,72) = [0,00) and Sy : [11,72) — [s1,82) to be such values. The following result
holds

Lemma 2.19 Ay is an open subset of [11,72).

Proof: Applying Proposition 2.9 at the point (s1,%;,71), we find a neighborhood U, of
and functions ¢1, ¢o : U,, — IR? satisfying ¢, (11) = s1, ¢2(71) = t; and (2.8) . Furthermore,
by construction, we have ¢1(7;) = S1(7k), ¢2(7x) = T1(7%), for k sufficiently large. Arguing
as in the proof of Lemma 2.12, we may suppose, without loss of generality, that ¢; : U, —
IR? is injective. Since S : [0,71) — [0,3;1) is an increasing function, we also have that
¢1 : Uy, — IR is increasing and, consequently, ¢1(7) > s; for every 7 € U, 7 > 7,. This
fact, Lemma 2.17, t; > 0, s; < $2 and the continuity of ¢;, ¢ = 1,2, imply that 7 is an
interior point of Ay on [y, 72). Now, given 7 € Ay \ {71}, we argue as in the proof of Lemma
2.15 to conclude that To(7) > 0, S3(7) > s1. Then, we use Proposition 2.9 and (2.22) to
obtain an open neighborhood U, of 7 such that U, C As. The lemma is proved. O

Taking V, = [11,72) C [r1,72), the component of Ay which contains 71, we get
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Lemma 2.20 73,5, : [0,72) — IR are continuous functions satisfying To(11) = t1, So(11) =
s1, and

(p1) To(7) >0, s1 < S2(1) < §2, for every T € (11,72).
(p2) There exists M > 0 such that

|To(1)] < M < o0, ¥ 7 € [11,T2).
p3) So : [11,72) — IR is an increasing function.
(P3) S2:[m1,72) = IR i ' ing functi

Proof: The proofs of (p1) and (p2) are similar to the proofs of (p;) and (p2), respectively.
For that reason, we omit them. For the proof of (p3), we first claim that Sy is injective
and increasing on a neighborhood of 7. Effectively, considering ¢;, ¢ = 1,2, and U,, given
in the proof of Lemma 2.19, we have that Sa2(7) = ¢o(7), for 7 € U, 7 > 71. The claim
follows because ¢9 is an increasing function on U, . Finally, we note that condition (ps3)
follows by verifying, as in the proof of (p3), that Sy is locally injective on (71, 72). The
lemma is proved. O

Now, we consider a sequence 71 < 7| < ... < T < ... < 19 < Ty satisfying 7, — 79,
as k — oo. We also have the associated sequences (S2(7x)) C [s1,82), (T2(7x)) C IR.
Without loss of generality, we may suppose that Sa(7%) 7 so < 89, To(7Tk) — to, as k — 00.
Moreover,

n(te, 2) = x(s2),
{ L(n([0,t2], 72) < R. (2.23)

Lemma 2.21 Considering ty given by (2.23), we have
1(77([07 t2]7 7-2) < R.

Proof: Arguing as in the proof of Lemma 2.17, we obtain that

L7 = ([, 7], 20) Un((0, To(7)], 7) Uz((0, S2(7))) Un((0, 1), 71)

is a simple closed curve for every 7 € (71,72). Then, we take Iy, = I';, and By, the
bounded component of IR\ I'y ;.. By Green’s Theorem and (HO0), we get

/ < L,7iy > do = // (divL(z,y)) dzdy < 0,
F2,]c B2,k

where i3 is the normal exterior to By ;, and do is the arclength. Setting F%,k = v([11, Tk, o),
F%,k = n([0, T2(Tx], Tk), F%,k = z([0, S2(7%]), and F%,k = n([0, 1], 1), by (HO), we have

/ < L,7t9 > do = 0.
I

1
2,k
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Furthermore, 7io(n(r, 7)) = L(n(r, 7))/ |1 L(n(r, 7 ))||, for every r € (0, 7x), and 7ig(n(r, 71)) =
—L(n(r,m))/||L(n(r,1))||, for every r € (0,71). Hence, using (AS), (AS)*, (2.20), and tak-
ing k — o0, we obtain

to 52
| )P d~ [ < L) FH (o), 9(9) > ds <0 (224)
0 0
The lemma is a direct consequence of (2.4), (2.16), (2.24) and Lemma 2.6. O

By (2.5), (2.9), (2.10), (2.23), Proposition 2.9 and Lemmas 2.19 and 2.21, we have that
either 79 = 79 or s9 = 83 and 75 < 7, s9 < §. Consequently, by (2.21),

T S T S — —.
2 2271 1 2M1 = M1

Arguing in a similar way, we obtain sequences ((t, sk, 7;)) C IR>, such that t; € (0, 00),
sk € (Sg—1,5), Tk € (Tg—1,7), for every k € IN, and

kR
> —— k € IN.
Tk—l—sk_le,V €

But, this contradicts 7 + § < oo and concludes the proof of Theorem A. a
Condition (HO0)-(i) has been used only to establish that IR is on the domain of attraction
of the origin and to show that the first equation in (2.4) holds. Thus if, we suppose

(H0) IR™ = IR*™ = IR? x IR", X(F,G) : IR*™ — IR*™™ and there exist C'! maps
L:IR* — IR?, H : IR*'" — IR? satisfying (HO0)-(ii), (HO)-(iii) and
(iv) The origin is a global attractor for the system associated to L,
(v) liminfy, o [[L(z)]| > 0,
we obtain
Proposition 2.22 Suppose X € X satisfies (H0), (H1)-(H3) with V satisfying (PS)(x,e)

condition for every ¢ > 0. Assume further that the solutions of (AS) are defined on [0, 00).
Then, the origin is a global attractor for system (AS).

Remark 2.23 It is worthwhile to mention that condition (H2) has been used only to prove
Lemma 2.6. Thus, any other condition that provides that lemma implies the global asymp-
totic stability of system (AS).

3 Proof of Theorems B and C

In this section we prove Theorems B and C. First, we need to state some preliminary results.
The following result is due to Olech. For a question of completeness, we present its proof.

Lemma 3.1 Suppose X : IR?> — IR? belongs to X and satisfies (H4) and
(H7) X (u) # 0, for every u € IR\ {0},
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(H8) There exist p,a > 0 such that

IX(w)]| > @, ¥V u € IR?, |lul > p.

Then, the origin is a global attractor for system (AS).

Proof: Using (H4) and Green’s Theorem, we obtain that (AS) does not have a periodic
solution. Denoting by w(u) the w-limit set of u, from (H4), (H7), (H8) and the argument
employed in the proof of Theorem A (See also [9]), we conclude that Ay, = {u € IR? | w(u) =
0} is an open set. Since the origin is a local attractor for system (AS), we also have that
Ay = {u € IR* |w(u) = {0}} is an open set. Furthermore, AgN Ay = () and Ay # (). Hence,
to prove Lemma 3.1, it suffices to verify that IR?> = Ay U An.

Arguing by contradiction, we suppose that there exist u,v € IR? such that v € w(u) \
{0}. Since w(v) C w(u) and the intersection of w(u) with a transversal section to X
possesses at most a point, we have that w(v) cannot have a regular point of X since,
otherwise, y(t,v) would be a periodic solution of (AS). Consequently, by (H7), w(v) = {0}
or w(v) = 0. As Ay and A are open sets, by definition of w-limite set, we obtain that
w(u) = {0} or w(u) = 0, respectively. However, this contradicts v € w(u)\{0}. The lemma
is proved. O

Before stating our next lemma, we need to recall a result proved in [12]: Let E be a
real Banach space. Given f € C'(E, IR) and ¢ € IR, we denote by S.(f) and K, the sets
{u€e E|f(u) =c}and {u € E|f(u) =c¢, f'(u) =0}. We say that ¢ is an admissible level
of f if either ¢ is a regular value of f, or the components of K. possesses only a point and
c is an isolated critical value of f.

Theorem 3.2 (The Level Surface Theorem) Suppose f € CY(E, IR) satisfies (PS). As-
sume ¢ € IR is an admissible level of f and that v and v are two distinct points of Sc(f).
Then, either

(i) w and v are in the same component of S.(f),

or
(i) f has a critical value d # c.

Remark 3.3 Theorem 3.2 is true under a generalized version of (PS) condition as proved
in [12]. This implies that Theorem B also holds when Ly satisfies such conditiom.

Lemma 3.4 Suppose X € C'(IR?, IR?) satisfies X (0) = 0 and (H5)-(H6), with X, satis-
fying (PS). Then, X satisfies (H7)-(HS).

Proof: By X(0) = 0 and (H5), we have that det(X'(0)) # 0. Thus, invoking the Inverse
Function Theorem, we obtain two open balls centered at the origin, B(0, p;) C IR?,i = 1,2,
such that X : B(0,p;) — IR? is injective and B(0,p3) C X (B(0,p1)). Thus, to prove
Lemma 3.4, it suffices to show that (H8) holds with p = p; and @ = min{pg, c}, with ¢
given by (H5).

Arguing by contradiction, we suppose that there exists u € IR? such that | X (u)|| < «
and ||ul| > p1. By our choice of o, we have that u € S_.(X1) and X (u) € B(0, p2). Now,
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let v € B(0, p1) be such that X (v) = X (u). Since X satisfies (PS), by (H6) and Theorem
3.2, there exists 7 : [0,1] — IR? such that v(0) = v, (1) = u, and

X1(v(#)) = c1 = Xa(u), V £ €[0,1]. (3.1)

);
Considering h : [0,1] — IR? defined by h(t) = X3(y(t)), for t € [0, 1], we have that h(0) =
h(1l) = X2(u). Furthermore, from o < ¢, (H6), (3.1) and the Implicit Function Theorem,
we find ty € (0,1) such that h'(tg) =< Xa(v(t0)),7' (to) >= 0, < X1(v(t0)),v' (to) >= 0,
and 7' (to) # 0. This implies that det(X'(y(¢9))) = 0. However, this contradicts (H5) since
Y(to) € S(—c,e)(X1). The proof of Lemma 3.4 is concluded. O

Theorem B is a direct consequence of Lemmas 3.1 and 3.4. For the proof of Theorem
C, we first note that (H0)-(v) is verified since, by Lemma 3.4, it satisfies (H8). This fact,
Theorem B and Proposition 2.22 imply that the origin is a global attractor for system (AS).

4 Applications
In this section we present applications of the results proved in sections 2 and 3.

1. Consider Xy = (F,G)) : IR™ — IR™, X\ € IR, a vector field of class C' satisfying
(Hy) with G\(z,y) = —Ay + AM (z,y), where A : IR" — IR" is a positive selfadjoint
operator. As before, we are considering IR™ = IR**" = IR* x IR" and F(z,0) = L.
Suppose X satisfies

(F1) There exist p, A, B > 0 and a function ¢ € C(IR IR) such that

IL(2)|| < Alla]P + B, V @ € IR?,
< F(z,y),2 >< Allz|*¢(llyl)) + B, ¥ (z,y € IR™,

(F2) For p > 0, given by (F1), there exist R, p,C > 0 such that, for every ||z| > R,
lyll < p, we have

Cllyl”
1 (z, y)|| < ,
[P

(G1) there exists D > 0 such that

|M(u)]| < D, ¥ u€ R™

Then, there exists Ag > 0 such that the system

{ i(t) = L(z(t)) + H(z,y),
y(t) = —Ay + AM(z,y)

has the origin as a global attractor for every A € IR, |A\| < Ag. Effectively, Consider
V : IR™ — IR™ defined by
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1
V($7y) = 5 < Ayay >, v ($7y) € IR™.

Since A is positive definite, V' satisfies (H1)-(i). By (G1), there exist ¢, A\g > 0 such
that, for every |A| < Ao,

< VV(u), X (u) >< —cV(u), Y u e IR™.

This shows that (H1)-(ii) and (H2)-(ii) also hold. Furthermore, (H2)-(i) is consequence
of (F1), (F2) and the definition of V' and (H3) is obtained by invoking (F2). Finally,
we note that the solutions of the system is defined for every ¢t > 0, by our choice of
V', Ao and the second equation on (F1). Theorem A implies that the above system
has the origin as the global attractor.

. Consider the system

—~
o~

SN—
8

3
3(t))z3 (1),

8
[N}
—~
~
I
Q
N =
—~
8
—
—~
~
SN—
8
[N}
—~
~
SN—
SN—
+
>
[N}
—~
8
—
—~
~
SN—
8
NN
—~
~
SN—
8

where L = (g1,92) and H = (hy, hy) are of class ql, (L+ H)(0) = 0 and L satisfies
(MY). Taking X (u) = (F(u), G(u) = L(z1,z2) + H(u)xs, for every u = (z1, z2,z3) €
IR?, we suppose

(X1) There exist M, R, p > 0 such that, for every u = (z1, 2, z3) € IR?, we have
[(=g1h2 + g2h1) (u)| < M, V |(z1,22)] > R, |z3] < p.
(X2) There exist A, B > 0 and ¢ € C(IR, IR) such that

< F(u),u >< All(z1, 22)[|6(|3]) + B,

for every u = (x1,z9,73) € IR>. Then, the above system is globally asymptotically
stable. Consider V : IR* — IR defined by V' (u) = |z3|, for every u = (1, z2, 3) € IR>.
Then, V € C'(IR?\ IR?), IR). Furthermore, it is not difficult to verify that X satisfies
(HO) and (H1) and that V' satisfies (PS)(x ) on IR? \ IR?, for every ¢ > 0. By (X1),
X also stisfies (H2) on IR? \ IR?. We also note that condition (X2) implies that the
solutions of the system are defined on [0,00). Since the proof of Theorem A is the
same under these conditions, we obtain that the origin is a global attractor for the
above system as claimed.

A particular case is obtained when X ((z1, z9,z3)) = (z1(x3 — 1), x9(z3 — 1), —z3), for
every (1,2, 23) € IR®. This simple case provides an example where (MY) condition
is not satisfied in IR3.
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3. Consider X : IR? — IR? the vector field of class C' defined by

X(z1,23) = (—z1, h(z1) + azy), V (z1,z2) € IR?. (4.1)
where a € IR and h € C(IR, IR) satisfy
(a) h(s) <1 —a, for every s € IR,
(b) h(0) < —a.

Then, the origin is a global attractor for the associated system. Indeed, since

-1 0

! _
X' (@, 2) = W (z1)ze h(zi)+«

for every (z1,72) € IR?, (a) implies that X satisfies (H4). Furthermore, it is clear
that X satisfies (H6) and (PS). From (b) and the continuity of h, we find ¢ > 0 such
that

det(X'(z1,29)) = —(h(z1) + @), ¥V (z1,22) € IR?, |z1| < c.

Consequently, X satisfies (H6). Furthermore, by (H4), X;(0) = 0 and the above
relation, we get that X € X. Invoking Theorem B, we conclude that the origin is a
global attractor for the associated system.

4. Suppose X : IR? — IR? is a vector field of class C! satisfying (4.1), with o € IR and
h € C'(IR, IR) satisfying (b) and the following stronger version of (a):

(@) There exists & > « such that
h(s) <1-—¢a&, Vs €IR.

Now assume Y = (f,g) : IR?> — IR? is a vector a field of class C'' satisfying Y (0) = 0
and

(Y1) There exists M > 0 such that
1Y ller = sup{[|Y (w)l| + Y (u)]| |u € IR*} < M < o0,

(Y2) There exist My, C; > 0 such that

—($1,$2):L'2 < My < o0.

lim sup 3
Z2

‘x2‘_>oo ‘Il‘gcl

Then, there exists Ag > 0 such that the origin is a global attractor for the system
a(t) = X(u(t)) +AY (u(?)),

for every A € IR, |A| < A¢. Considering X, = X + A\Y, by Theorem B it suffices to
verify that X belongs to X and satisfies (H4)-(H6). First, we note that
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0 0
Trace(X3(z1,72)) = —1 + h(z1) + A <a—i(z1,xz) + 8—52@1,@)) .

Consequently, from (a) and (Y1), we find A; > 0 such that X, satisfies (H4) for
|A| < A1. Now, we use (b), (Y1) and (Y2) to obtain A2, co > 0 such that, for every
|)\| < g,

det(X5((z1,22)) > 0, V (z1,22) € IR?, |z1] < co. (4.2)

Observing that (X))1(z1, z2) = —z1 + Af(z1, x2), for (z1,23) € IR?, we find 0 < Ay <
min{A;, A2} and ¢ > 0 such that, for every |\| < A9, we have

|.’L‘1| < c2, \ (:vl,:vg) S S(,C,c)((X)\)l). (43)

Using (4.2) and (4.3), we conclude that X satisfies (H5) for every |A| < \p. We also
note that X € X since X,(0) = 0. Furthermore, by taking Ay smaller if necessary,
we obtain that (X)), satisfies (PS) and (H6). That concludes the verification that
the origin is a global attractor for the above system when |A| < Ag.

. Consider the system

#1(t) = =21 + 2223 + T4,
io(t) = 1(1— e %1 + sinz;) arctan zs + 7173 + T3,
:3(t)

Then, the origin is a global attractor. First of all, we observe that the associated
vector field satisfies (H0) with L : IR? — IR? and H : IR* — IR? given by

1
L(z) = (-1, 5(1 —e 4 sinz;)arctan o), Vo = (z1,22) € IR?, (4.4)
and
H(u) = (z123 + 24,2173 + 74), Vu = (1,29, 23,24) € IR*. (4.5)

Taking V : IR' — IR? defined by

1 1
Vi(u) = 530% + 51527 Vu = (x1,12,23,124) € IR,

we obtain that V satisfies (H1) and

< VV(u), X (u) >< =V (u), ¥V u € IR (4.6)

This implies that V' satisfies (PS)(x ) for every ¢ > 0. Now, given a solution y(t) =
(x1(t), z2(t), z3(t), z4(t)) of the system and a > 0, we use the two first equations of
the system and (4.6) to find ¢p > 0 and A > 0 such that
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d
dt
Consequently, there exist B,C > 0 such that

(21(8) + 23(t) < a(ei(t) +25(t) + A, V>t

23(t) +23(t) < Be™ +C, YVt >0. (4.7)

On the other hand, using the definition of L and H, we obtain D, E > 0 such that,
for every ¢t > 0,

| < L(4(8), H(v(1) > | < D(Jas| + |wal) + E(jer () + |z1()*) |3 (2)].

Invoking (4.6)-(4.7), we conclude that Lemma 2.6 holds. Hence, by Theorem C and
Remark 2.23, to show that the origin is a global attractor for the system, it suffices
to verify that condition (H3) is satisfied. By Lemma 3.4, L satisfies (H8) since it
satisfies (H5)-(H6) and L, satisfies (PS). Applying (4.4), (4.5) and (H8), we get

1H (w) |

limsup —— <|z3|+

Iyl _
lzl| =00, yll—0 IL(@) |~

d

Here, we have considered u = (x,y), * = (z1,22) and y = (x3,24). This concludes
the verification that the origin is a global attractor for the system.
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