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Introdution

In this series of letures we survey and disuss results on the existene of solu-

tions for the system

��u = g(x; u; v); ��v = f(x; u; v) in 
; (0.1)

subjet to Dirihlet boundary onditions on �
. 
 is a bounded domain in

IR

N

; N � 3. Due to the use of some results on the regularity of solutions of

ellipti problems we shall at some points assume impliitely some regularity

on �
. We do not disuss the ase N = 2, where the imbedding theorems

of Trudinger-Moser allow the treatment of nonlinearities whih have a growth

faster than the polynomial growth required by the Sobolev imbeddings.

Clearly we do not present in full the proofs of all the results disussed. The

methodology used here is the following. We state the results, omment the key

points in the proofs, explaining the tehniques used, ompare the results and

hint questions that an be objet of further study. With these purposes in mind,

we do not state the more general results available in the literature. For that

matter, some results are valid for more general seond order operators instead

of the Laplaian. Also other boundary onditions an be onsidered. A areful

guide to the literature is presented all along these letures.

We say that system( 0.1) is variational if either one of the following ondi-

tions holds:

(I) There is a real-valued di�erentiable funtion F (x; u; v) for (x; u; v) 2


� IR� IR suh that

�F

�u

= g and

�F

�v

= f . In this ase, the system is said to

be gradient.

(II) There is a real-valued di�erentiable funtion H(x; u; v) for (x; u; v) 2


� IR� IR suh that

�H

�u

= f and

�H

�v

= g. In this ase, the system is said to

be Hamiltonean.
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The terminology variational omes from the fat that in both ases, the

above system is the Euler-Lagrange equations of a funtional naturally assoi-

ated to the system. Indeed, if we work with funtions u and v in H

1

0

(
), the

funtional assoiated to the gradient system is

�(u; v) =

1

2

Z




(jruj

2

+ jrvj

2

)�

Z




F (x; u; v): (0.2)

while the one assoiated to a Hamiltonean system is

�(u; v) =

Z




ru:rv �

Z




H(x; u; v); (0.3)

provided F andH have the appropriate growth in order to get their integrability.

We shall ome bak to this question later.

Therefore, these two types of systems an be treated using Critial Point

Theory. However, if the system is not variational we make reourse to topolog-

ial methods.

We emphasize that we will be mostly interested in superlinear systems. For

instane if f and g have growth with respet to u and v faster than linear.

For Hamiltonean systems we will have a notion of superlinearity whih takes

into aount that we have a oupled system. It is expeted that superlinear

systems, as the ase of superlinear equations, are muh harder to study, no

matter whih method one uses. Variationally, we are onfronted with questions

of ompatness of the funtional, as well as with an intrinated geometry, in

most ases. Topologially, the question of a priori bounds omes as a diÆult

problem. We plan to address all these questions.

In Leture 1, we disuss a lass of non-variational systems, showing how to

prove the existene of positive solutions. We start there the disussion of a

priori bounds, whih is taken in detail in Leture 2, using the Blow-up Method.

This disussion leads naturally to questions whih are answered by Theorems of

Liouville type. And suh theorems are the objet of Leture 3. In Leture 4 we

disuss gradient systems and in Leture 5 we onsider Hamiltonean systems.

1 Leture 1: Existene of Positive Solutions for

a Nonvariational System

In this leture we disuss the existene of positive solutions for system (0.1).

Sine there is no variational struture we shall use topologial methods through

general propositions onerning nonlinear mappings whih take a one in a Ba-

nah spae into itself. There is a large literature on this subjet, f. the papers

by Amann [1℄, Benjamin [3℄, Nussbaum [43℄, the books of Krasnosels'kii [35℄,

Deimling [20℄, and the survey artile [19℄, where many further referenes an be

found.

We reall the following result, Theorem 3.1 of [19℄.
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Theorem 1.1 Let C be a one in a Banah spae X and T : C ! C a ompat

mapping suh that T (0) = 0. Assume that there are real numbers 0 < r < R

and t > 0 suh that

(i) x 6= tTx for 0 � t � 1 and x 2 C; jjxjj = r, and

(ii) There exists a ompat mapping H : B

R

� [0;1)! C (where B

�

= fx 2

C : jjxjj < �g) suh that

(a) H(x; 0) = Tx for jjxjj = R,

(b) H(x; t) 6= x for jjxjj = R and t � 0

() H(x; t) = x has no solution x 2 B

R

for t � t

0

Then

i



(T;B

r

) = 1; i



(T;B

R

) = 0; i



(T; U) = �1;

where U = fx 2 C : r < jjxjj < Rg, and i



denotes the Leray-Shauder index.

As a onsequene T has a �xed point in U .

Let us assume the following onditions on the nonlinearity:

(A1) f; g : 
� IR

+

� IR

+

! IR

+

are loally lipshtzian.

(A2) f(x; u; v) = o(juj+ jvj); g(x; u; v) = o(juj + jvj) uniformly in x and for

juj+ jvj ! 0.

We apply Theorem 1.1 in the following ontext. Consider the spae

X = fU =

�

u

v

�

: u; v 2 C

0

(
); u = v = 0 on �
g

endowed with the norm jjU jj = jjujj

L

1

+jjvjj

L

1

, whih makes it a Banah spae.

Let S : X ! X be the solution operator de�ned by S

�

'

 

�

=

�

u

v

�

; where u

and v are the solution of

��u = '; ��v =  in 


u = v = 0 on �
:

It is well known that S is a linear ompat operator. Let

C = fU =

�

u

v

�

2 X : u(x) � 0; v(x) � 0; x 2 
g:

It follows from the Maximum Priniple that S(C) � C. Using (A1) we see

that the mapping de�ned next takes C into C:

T

�

u

v

�

= S

�

g(x; u; v)

f(x; u; v)

�

:

It follows also that T is ompat and T (0) = 0, where (A1) and (A2) are

used again.
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In order to show that (i) holds, assume by ontradition that for all r > 0

there is a t 2 [0; 1℄ suh that U = tTU , whih an be written as

��u = tg(x; u; v); ��v = tf(x; u; v): (1.1)

Take " < �

1

=2 where �

1

is the �rst eigenvalue of (��; H

1

0

(
)). Using (A2),

we see that there is r

0

> 0 suh that for all 0 < r � r

0

one has jf(x; u; v)j �

"(juj + jvj) and a similar estimate for g. Multiplying the equations by '

1

,

integrating by parts and using these estimates we get �

1

R

u'

1

� t"(

R

u'

1

+

R

v'

1

) and a similar one orresponding to the seond equation. Using these

inequalities we onlude that �

1

� 2", whih is a ontradition.

In order to verify (ii) of Theorem 1.1 we introdue

H

��

u

v

�

; t

�

= S

�

g(x; u+ t; v + t)

f(x; u+ t; v + t)

�

:

Clearly (a) holds and () follows readily from some sort of \superlinearity".

Any of the onditions below gives ():

(A3i) There are real numbers � > �

1

and C > 0 suh that f(x; u; v) � �v�C,

uniformly in x 2 
; u 2 IR

+

.

(A3ii) There are real numbers � > �

1

and C > 0 suh that g(x; u; v) �

�u� C, uniformly in x 2 
; v 2 IR

+

(A3iii) There are positive real numbers �

1

; �

2

and C suh that �

1

�

2

> �

2

1

and

f(x; u; v) � �

1

u� C; uniformly in x 2 
; v 2 IR

+

and

g(x; u; v) � �

2

v � C; uniformly in x 2 
; u 2 IR

+

:

Finally, ondition (b) is an a priori bound for the parametrized system

�

��u = g(x; u+ t; v + t); ��v = f(x; u+ t; v + t)

u = v = 0 on �


(1.2)

In summary we have the following result.

Theorem 1.2 Assume (A1), (A2) and one of the onditions (A3). Suppose

that there exists a onstant C > 0 suh that

jjujj

L

1

; jjvjj

L

1

� C

for all eventual solutions of (1.1). Then system (0.1) has a non-negative non

trivial solution (u; v).

Remark 1.1 Using this sort of ideas a similar result was previously proved for

the salar ase in [28℄. The ase of system was studied in [46℄, where a linear

part more general than the one here was onsidered. Leture 2 is devoted to get

a priori bounds for suh systems via the blow-up method. Let us next illustrate

other two methods for obtaining a priori bounds, whih apply to some speial

ases: (i) via Hardy-Sobolev, (ii) via Moving Planes.
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So, let us now assume the following growth onditions on f and g

(A4) There exist q � 1 and �

0

� 0 suh that

jf(x; u; v)j � C(juj

q

+ jvj

q�

0

+ 1)

uniformly in x 2 
.

(A5) There exist p � 1 and � � 0 suh that

jg(x; u; v)j � C(jvj

p

+ juj

p�

+ 1)

uniformly in x 2 
.

Theorem 1.3 Let N � 4. Assume onditions (A1), (A3iii), (A4) and (A5)

with p; q; � and �

0

satisfying

1

p+ 1

+

N � 1

N + 1

1

q + 1

>

N � 1

N + 1

(1.3)

1

p+ 1

N � 1

N + 1

+

1

q + 1

>

N � 1

N + 1

(1.4)

and

� =

L

max(L;K)

; �

0

=

K

max(L;K)

where

K =

p

p+ 1

�

2

N

> 0 and L =

q

q + 1

�

2

N

> 0:

Let (u; v) be a positive solution of (0.1). Then there exists a onstant C > 0

suh that jjujj

L

1

� C and jjvjj

L

1

� C.

Remark 1.2 The above result is Theorem 2.1 in [15℄. How about N = 3?. The

method of proof is the use of Hardy type of inequalities in interpolated forms with

Sobolev imbedding inequalities. For instane, one has the following result whih

was proved by Br�ezis-Turner [10℄ in the ase q = 2 and used to get a priori

bounds in the salar ase. The more general ase is due to Kavian [34℄. A

disussion of Hardy's inequalities an be seen in [15℄.

Theorem 1.4 Let u 2W

1;q

0

(
); q < N . Then for any � 2 [0; 1℄ one has

�

�

�

�

�

�

�

�

u

'

�

�

�

�

�

�

�

�

�

L

r

� C jjrujj

L

q

(1.5)

where

1

r

=

1

q

�

1� �

N

:
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The �rst step in the proof of Theorem 1.3 is to use (A3iii) and prove that

there is a onstant  > 0 suh that

Z

u'

1

�  and

Z

v'

1

�  for all eventual

positive solutions of (0.1). This implies that u and v are uniformly bounded in

L

1

lo

. So the whole problem is to ontrol them near boundary. This is preisely

the role of (1.5). Observe that if p = q then (1.3)-(1.4) redues to p < (N +

1)=(N � 1) whih is exponent in the work in [10℄ for the salar ase. As in the

salar ase, p and q restrited by (1.3)-(1.4) is not the best growth admissible.

See the next theorem.

Theorem 1.5 Assume (A1) and (A3iii) for a funtion f whih depends only on

u and a g whih depends only on v. Assume that there are numbers �; � 2℄0;1[

and 1 � p; q <1 suh that

lim

u!1

f(u)

u

q

= �; lim

v!1

g(v)

v

p

= � (1.6)

and

1

p+ 1

+

1

q + 1

> 1�

2

N

; N � 3: (1.7)

Then there is a onstant C > 0 suh that jjujj

L

1

� C and jjvjj

L

1

� C for all

positive solutions of (0.1).

Remark 1.3 This is Theorem 2.1 in [12℄. Condition (1.7) says that p; q are

below the ritial hyperbola, see more on that in Leture 3. The idea in the proof

of Theorem 1.5 is, one you have that u; v are bounded in L

1

lo

, to proeed to

estimate them near the boundary. For that matter, one proeeds as in [28℄ and

use the Method of Moving Planes. For this method see, for instane, [9℄.

2 Leture 2: A Priori Bounds for Positive Solu-

tions of a Non-Variational System

In order to appreiate the symmetry of our hypotheses, we shall use in this

leture the notation u

1

and u

2

for the unknown funtions in system (0.1), in

plae of u and v. In f and g we separate the leading part and onsider a system

of the form

�

��u

1

= a(x)u

�

11

1

+ b(x)u

�

12

2

+ h

1

(x; u

1

; u

2

)

��u

2

= (x)u

�

21

1

+ d(x)u

�

22

2

+ h

2

(x; u

1

; u

2

)

(2.1)

subjet to Dirihlet boundary onditions on �
, where 
 is some smooth bounded

domain in IR

N

. We assume at the outset the hypotheses below. Further on-

ditions will ome later. In this leture we disuss positive solutions of system

(2.1). And in fat this is already reeted in the way we wrote the system;

observe that the exponents �

ij

are not neessarily integers.

(A1) a; b; ; d : 
! [0;1) are ontinuous funtions.

(A2) �

ij

� 0 i; j = 1; 2
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(A3) There exist positive onstants 

1

and 

2

suh that

jh

1

(x; u

1

; u

2

)j � 

1

(1 + ju

1

j

�

11

+ ju

2

j

�

12

)

jh

2

(x; u

1

; u

2

)j � 

2

(1 + ju

1

j

�

21

+ ju

2

j

�

22

)

where

0 � �

ij

< �

ij

i; j = 1; 2

We remark that one an onsider more general ellipti operators in system

(2.1) in plae of the Laplaian, as well as non-homogeneous boundary onditions.

We mention the work of Souto [46℄ [47℄, Montenegro [40℄, [41℄, [42℄, Birindelli-

Mitidieri [8℄. In [40℄ systems withm > 2 equations are studied, and in Cl�ement-

Man�asevih-Mitidieri [17℄ systems involving p-Laplaians are onsidered.

The blow-up method to obtain a priori bounds.

This method was �rst used by Gidas-Spruk [30℄ in the ontext of a single

equation. Later appliations to systems an be seen in [46℄, [17℄, [8℄, and

the most general results in [40℄, whose approah we follow next. This method

explores distint homogeneities of the several terms in the equations.

Our aim is to prove that under further onditions whih will be introdued

soon, the non- negative solutions of system (2.1) are bounded in L

1

, i.e., there

is a onstant C > 0 suh that jju

1

jj

L

1

� C and jju

2

jj

L

1

� C. In this setion

we are onsidering lassial solutions, i.e., u

i

2 C

2

(
)\C

0

(
). We also assume

that 
 satis�es the exterior one ondition.

Suppose, by ontradition, that there is no suh a priori bound. That is,

there is a sequene of positive solutions (u

1;n

; u

2;n

) suh that

max(jju

1;n

jj

L

1

; jju

2;n

jj

L

1

)!1:

Let �

1

and �

2

be two positive real numbers to be hosen later. We may assume

without loss of generality that jju

1;n

jj

L

1

! +1 and

jju

1;n

jj

1

�

1

L

1

� jju

2;n

jj

1

�

2

L

1

:

Let x

n

2 
 be the point where u

1;n

(x) assumes its maximum. Let �

n

> 0 be

suh that �

�

1

n

jju

1;n

jj

L

1

= 1. Clearly �

n

! 0 as n ! 1. Let 


n

= fy 2 IR

N

:

�

n

y + x

n

2 
g and de�ne the new unknowns v

i;n

: 


n

! IR by

v

i;n

(y) = �

�

i

n

u

i;n

(�

n

y + x

n

):

We observe that v

1;n

(0) = 1 and that 0 � v

i;n

(y) � 1 for all y 2 


n

and

i = 1; 2.

Due to ompatness of 
 we may assume that x

n

! x

0

2 
. So there are

two ases to onsider, x

0

2 
 and x

0

2 �
.

(i)First ase, x

0

2 
. Then given R > 0 there is an n

0

2 IN suh that




n

� B

R

(0). Sine

�

y

v

i;n

= �

�

i

n

�

y

u

i;n

(�

n

y + x

n

) = �

�

i

+2

n

�

x

u

i;n

(�

n

y + x

n

);
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we see that

��v

1;n

= �

�

1

+2

n

fa(�)u

�

11

1;n

(�) + b(�)u

�

12

2;n

(�) + h

1

(�; u

1;n

(�); u

2;n

(�))g;

where the � stands for �

n

y + x

n

, and a similar equation for v

2;n

. In this way,

we obtain the following system for v

i;n

:

8

>

>

>

>

<

>

>

>

>

:

��v

1;n

= �

�

1

+2��

1

�

11

n

a(�)v

�

11

1;n

+ �

�

1

+2��

2

�

12

n

b(�)v

�

12

2;n

+

�

�

1

+2

n

h

1

(�; �

��

1

n

v

1;n

; �

��

2

n

v

2;n

)

��v

2;n

= �

�

2

+2��

1

�

21

n

(�)v

�

21

1;n

+ �

�

2

+2��

2

�

22

n

d(�)v

�

22

2;n

+

�

�

2

+2

n

h

2

(�; �

��

1

n

v

1;n

; �

��

2

n

v

2;n

)

(2.2)

Now we �x R > 0 suh that B

2R

= B

2R

(0) � 


n

, for all n suÆiently large.

Clearly the sequenes (v

1;n

) and (v

2;n

) are uniformly bounded in L

1

(B

2R

),

namely by 1. Viewing bounds in C

1;�

we use L

p

-regularity ( [32℄ Theorem 9.11)

to get

jjv

i;n

jj

W

2;p

(B

R

)

� C(jjv

i;n

jj

L

p

(B

2R

)

+ jj(RHS)

i

jj

L

p

(B

2R

)

);

where (RHS)

i

stands for the right side of equation i = 1; 2 in system (2.2).

Sine we an take p > N , we onlude that (v

in

) is uniformly bounded in

C

1;�

0

(B

R

). Passing to a subsequene we may assume that v

i;n

! v

i

in C

1;�

(B

R

)

for 0 < � < �

0

< 1 and using L

p

-regularity again we may also assume that this

onvergene is in W

2;p

(B

R

). Now the idea is to pass to the limit in system

(2.2). So we should �rst know what happens with the oeÆients of the leading

terms. Clearly we want that all exponents of �

n

should be � 0. If one of them

is positive, then the orresponding term disappears at the limit. If one of them

is equal to zero, then the orresponding term has a de�nite limit, whih we shall

see soon. At this point, we introdue two lasses of systems: (i) weakly oupled

and (ii) strongly oupled.

De�nition 1. System (2.1) is weakly oupled if there are positive numbers

�

1

; �

2

suh that

�

1

+ 2� �

1

�

11

= 0 ; �

1

+ 2� �

2

�

12

> 0 (2.3)

�

2

+ 2� �

1

�

21

> 0 ; �

2

+ 2� �

2

�

22

= 0

De�nition 2. System (2.1) is strongly oupled if there are positive numbers

�

1

; �

2

suh that

�

1

+ 2� �

1

�

11

> 0 ; �

1

+ 2� �

2

�

12

= 0 (2.4)

�

2

+ 2� �

1

�

21

= 0 ; �

2

+ 2� �

2

�

22

> 0

Remark 2.1 It follows that system (2.1) is weakly oupled if �

11

> 1; �

22

> 1

and

�

12

<

�

22

� 1

�

11

� 1

�

11

and �

21

<

�

11

� 1

�

22

� 1

�

22

; (2.5)

and, in this ase, we hoose

�

1

=

2

�

11

� 1

and �

2

=

2

�

22

� 1

: (2.6)
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Remark 2.2 System (2.1) is strongly oupled if �

12

�

21

> 1 and

�

11

<

�

21

+ 1

�

12

+ 1

�

12

and �

22

<

�

12

+ 1

�

21

+ 1

�

21

; (2.7)

and, in this ase, we hoose

�

1

=

2(�

12

+ 1)

�

12

�

21

� 1

and �

2

=

2(�

21

+ 1)

�

12

�

21

� 1

: (2.8)

Weakly Coupled Systems.

Let us now analyse what happens with the lower order terms, �rstly in the

ase of a weakly oupled system. Using (A3) we an estimate

j�

�

1

+2

n

h

1

(�; �

��

1

n

v

1;n

; �

��

2

n

v

2;n

)j � C�

�

1

+2

n

(1 + j�

��

1

n

v

1;n

j

�

11

+ j�

��

2

n

v

2;n

j

�

12

):

and use (2.3) to see that

�

1

+ 2� �

1

�

11

> 0 and �

1

+ 2� �

2

�

12

> 0

and then onlude that

lim

n!1

�

�

1

+2

n

h

1

(�; �

��

1

n

v

1;n

; �

��

2

n

v

2;n

) = 0:

A similar onlusion we have for the term h

2

is the seond equation. Thus,

in the limit we have

�

��v

1

(y) = a(x

0

)v

�

11

1

(y)

��v

2

(y) = d(x

0

)v

�

22

2

(y)

(2.9)

for all y 2 B

R

(0). By a standard diagonal proess we have that (2.9) holds for

all y 2 IR

N

. Assuming that a(x

0

) and d(x

0

) are positive, it follows by saling

that there are funtions w

1

and w

2

of lass C

2

de�ned in the whole of IR

N

with

w

1

� 0, w

1

6� 0,w

2

� 0 satisfying

��w

1

= w

�

11

1

��w

2

= w

�

22

2

; in IR

N

:

In this way we ome to a ontradition if 0 < �

11

; �

22

< (N + 2)=(N � 2),

in view of Theorem 3.1.

(ii) Seond Case: x

0

2 �
.

It still remains to disuss the ase when x

0

2 �
. In this ase, we an

hange the independent variables in suh a way that the boundary �
 in the

neighborhood of x

0

is a piee of the hyperplane x

N

= 0, and x

0

= 0. The e�et

of this is that the Laplaean is replaed by a general seond order strongly el-

lipti operator. However this auses no problem, sine in the limit we ome to

an ellipti operator with onstant oeÆients and then an orthogonal transfor-

mation takes it to the Laplaean. As we have remarked before, we ould have

been working with a general seond order ellipti operator instead of �. Let

9



d

n

= dist(x

n

; �
) and as before 


n

= fy 2 IR

N

: �

n

y + x

n

2 
g. Given R > 0,

there is n

0

2 IN suh that for n � n

0




n

� B

2R

(0) \ fy 2 IR

N

: y

N

� �

d

n

�

n

g:

If d

n

=�

n

! +1, we have that, �xed R > 0; B

2R

(0) � 


n

, and we are as in

the ase x

0

2 
. Otherwise, we laim that there is a C > 0 suh that d

n

=�

n

� C

for all n. Indeed, we may assume that d

n

=�

n

< M for some positive onstant

M . So, given R > 0, for n suÆiently large the point (0

0

;�

d

n

�

n

) belongs to

B

R

(0)\fy : y

N

> �Mg. Now let

b




n

= 


n

\B

R

(0)\fy : y

N

> �Mg. By results

of De Giorgi-Nash type ( [32℄, Corollary 9.29, p.252) applied to the equations

of system (2.2) we onlude that there is a onstant C > 0, independent of n,

suh that jjv

i;n

jj

C

�

(

b




n

)

� C. Hene we get

�

�

�

�

v

1;n

(0)� v

1;n

�

0

0

;�

d

n

�

n

�

�

�

�

�

� C

�

d

n

�

n

�

�

and sine v

1;n

(0) = 1 and v

1;n

(0

0

;

d

n

�

n

) = 0 we have the laim proved. So, we

may assume that d

n

=�

n

! s > 0. Arguing as in the �rst ase we onlude that

��v

1

= a(x

0

)v

�

11

1

��v

2

= d(x

0

)v

�

22

2

in fy : y

N

> �sg

v

1

= v

2

= 0 on fy : y

N

= �sg

and by saling, one obtains a pair of non-negative funtions w

1

and w

2

with

w

1

6� 0 suh that

��w

1

= w

�

11

1

; ��w

2

= w

�

22

2

in fy : y

N

> �sg

So a ontradition arrives if we have the same assumptions that were made

in the ase that x

0

2 
. Cf. Theorem 3.2.

In summary, we have proved the following result.

Theorem 2.1 Let (2.1) be a weakly oupled system satisfying onditions (A1),

(A2), (A3) and suh that a(x); d(x) � 

0

> 0 for x 2 
. Assume also that

0 < �

11

; �

22

< (N + 2)=(N � 2). Then there is a onstant C > 0 suh that

jju

1

jj

L

1

; jju

2

jj

L

1

� C

for all positive solutions u

1

; u

2

2 C

2

(
) \ C

0

(
) of system (2.1).

Strongly Coupled System. As in the ase of a weakly oupled system, we

see that the terms of (2.2) involving h

i

go to 0 as n!1. The remaining part of

the argument is similar to this previous ase. So the ontradition assumption

of nonexistene of a priori bounds leads to: (i) the existene of a nontrivial

non-negative C

2

solution (!

1

; !

2

) of the system

��!

1

= !

�

12

2

; ��!

2

= !

�

21

1

in IR

N

(2.10)
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or (ii) the existene of a nontrivial non-negative C

2

solution (!

1

; !

2

) of

��!

1

= !

�

12

2

; ��!

2

= !

�

21

1

in (IR

N

)

+

(2.11)

with

!

1

(x

0

; 0) = !

2

(x

0

; 0) = 0

So a ontradition omes if we set onditions on the exponents suh that

(2.10) and (2.11) have only the trivial solution !

1

= !

2

� 0. In summary,

we have proved the following result, where we use the notation IR

N

+

= fy =

(y

0

; y

N

) 2 IR

N

: y

N

> 0g.

Theorem 2.2 Let (2.1) be a strongly oupled system satisfying (A1), (A2) and

(A3), and suh that b(x); (x) � 

0

> 0 for x 2 
. Assume that the following

onditions hold:

(L1) The exponents �

12

and �

21

are suh that the only non- negative

solution of

��!

1

= !

�

12

2

; ��!

2

= !

�

21

1

in IR

N

is w

1

= !

2

� 0.

(L2) The only non-negative solution of

��!

1

= !

�

12

2

; ��!

2

= !

�

21

1

in IR

N

+

with !

1

(x

0

; 0) = !

2

(x

0

; 0) = 0 is !

1

= !

2

� 0. Then there is a onstant C > 0

suh that

jju

1

jj

L

1

; jju

2

jj

L

1

� C

for all non-negative solutions (u

1

; u

2

) of system (2.1).

Remark 2.3 Whih onditions should be imposed on the exponents �

12

and

�

21

in suh a way that (L1) and (L2) holds? In the next leture we address this

question and state some suÆient onditions that insure the validity of (L1) and

(L2).

3 Leture 3: Theorems of Liouville Type

The lassial Liouville Theorem from Funtion Theory says that every bounded

entire funtion is onstant. In terms of a di�erential equation one has: if

(�=�z)f(z) = 0 and jf(z)j � C for all z 2 C then f(z) =onst. Hene

results with a similar ontents are nowadays alled Liouville theorems. For

instane, a superharmoni funtion de�ned in the whole plane IR

2

, whih is

bounded below, is onstant. Also, all results disussed in this setion have this

nature. For ompleteness, we survey also results on a single equation, namely

��u = u

p

(3.1)

11



Remark 3.1 If the equation is onsidered in IR

2

, then a non-negative solution

of (3.1) is neessarily null. So the interesting ase is IR

N

; N � 3, whih we

disuss next.

Theorem 3.1 Let u be a non-negative C

2

funtion de�ned in the whole of IR

N

,

suh that (3.1) holds in IR

N

. If 0 < p < (N + 2)=(N � 2), then u � 0.

Remark 3.2 This result was proved by Gidas-Spruk [31℄ in the ase 1 < p <

(N+2)=(N�2). A simpler proof using the method of moving parallel planes was

given by Chen-Li [16℄, and it is valid in the whole range of p. A very elementary

proof valid for p 2 (0;

N

N � 2

) was given by Souto [47℄. In fat, his proof is valid

for the ase of u being a non-negative supersolution, i.e.

��u � u

p

in IR

N

; (3.2)

with p in the same restrited range.

Theorem 3.2 Let u 2 C

2

(IR

N

+

) \ C

0

(IR

N

+

) be a non- negative funtion suh

that

�

��u = u

p

in IR

N

+

u(x

0

; 0) = 0

(3.3)

If p � (N + 2)=(N � 2) then u � 0.

Remark 3.3 This is Theorem 1.3 of [30℄, plus Remark 2 on page 895 of the

same paper. It is remarkable that in the ase of the half-spae the exponent

(N + 2)=(N � 2) is not the right one for theorems of Liouville type. Indeed,

Daner [18℄ has proved the following result.

Theorem 3.3 Let u 2 C

2

(IR

N

+

)\C

0

(IR

N

+

) be a non- negative bounded solution

of (3.3). If 1 < p < (N + 1)=(N � 3) for N � 4 and 1 < p for N = 3, then

u � 0.

Remark 3.4 If p = (N + 2)=(N � 2); N � 3, then (3.1) has a two-parameter

family of bounded positive solutions:

U

";x

0

(x) =

"

"

p

N(N � 2)

"

2

+ jx� x

0

j

2

#

N�2

2

;

whih are alled instantons.

Next we state some results on supersolutions still in the salar ase.

Theorem 3.4 Let u 2 C

2

(IR

N

) be a non-negative supersolution of (3.2). If

1 � p �

N

N � 2

, then u � 0.

12



Remark 3.5 This result is proved in Gidas [29℄ for 1 < p � N=(N � 2). The

ase p = 1 is inluded in Souto [47℄. The proof in [47℄ an be slightly hanged

to give a simple proof of the next result for p 2 [1;

N

N � 2

℄.

Theorem 3.5 Let u 2 C

2

(IR

N

+

) \ C

0

(IR

N

+

) be a non-negative supersolution of

(3.3). If 1 � p �

N

N � 2

then u � 0.

Liouvile for systems.

Now we ome to systems of the form

��u = v

p

; ��v = u

q

: (3.4)

Here the dividing line between existene and non-existene of positive solu-

tions (u; v) de�ned in the whole of IR

N

should be the so-alled ritial hyperbola

introdued independently in the work of Cl�ement-deFigueiredo - Mitidieri [12℄

and Peletier-van der Vorst [45℄. Suh hyperbola is de�ned by

1

p+ 1

+

1

q + 1

= 1�

2

N

; p; q > 0 (3.5)

In analogy with the salar ase one may onjeture that (3.4) has no bounded

positive solutions de�ned in the whole of R

N

if

1

p+ 1

+

1

q + 1

> 1�

2

N

; p; q > 0: (3.6)

This onjeture has not been setlled in full so far. Why suh a onjeture?

In answering, let us have some history. The ritial hyperbola appeared in the

study of existene of positive solutions for superlinear ellipti systems of the

form

��u = g(v); ��v = f(u) (3.7)

subjet to Dirihlet boundary onditions in a bounded domain 
 of IR

N

. If

g(v) � v

p

and f(u) � u

q

as u; v ! 1, then system (3.7) is said to be sub-

ritial if p; q satisfy (3.6). For suh systems [in analogy with sub-ritial salar

equations, ��u = f(u); f(u) � u

p

and 1 < p < (N + 2)=(N � 2)℄ one an

establish a priori bounds of positive solutions, prove a Palais-Smale ondition

and put through an existene theory by a topologial or a variational method.

This sort of work initiated in [12℄ and [45℄ has been ontinued. We shall

survey all this in Setion 5. Reall the ritial salar ase, where the problem:

��u = juj

2

�

�2

u in 
; u = 0 on �
; 
 a starshaped bounded domain in

IR

N

; N � 3, has no solution u 6= 0 ; here 2

�

= 2N=(N � 2)℄. In analogy, in

the ase of sytems, the ritial hyperbola appears in the statement: if 
 is a

bounded starshaped domain in IR

N

; N � 3, the Dirihlet problem for the system

below has no non-trivial solution:

��u = jvj

p�1

v; ��v = juj

q�1

u

13



if, p; q satisfy (3.5). This follows from an identity of Pohozaev-type, see Mitidieri

[36℄; also Pui-Serrin [44℄ for general forms of Pohozaev-type identities.

Next we desribe several Liouville-type theorem for systems.

Theorem 3.6 Let p; q > 0 satisfying (3.6). Then system (3.4) has no non-

trivial radial positive solutions of lass C

2

(IR

N

).

Remark 3.6 This result settles the onjeture in the lass of radial funtions.

It was proved in [36℄ for p; q > 1, and for p; q in the full range by Serrin-

Zou [48℄. The proof explores the fat that eventual positive radial solutions of

(3.4) have a de�nite deay at 1; this follows from an interesting observation

(f. Lemma 3.1 in [36℄): If u 2 C

2

(R

N

) is a positive radial superharmoni

funtion, then

ru

0

(r) + (N � 2)u(r) � 0; for all r > 0:

Theorem 3.6 is sharp as far as the ritial hyperbola is onerned. Indeed,

there is the following existene result of Serrin-Zou [50℄.

Theorem 3.7 Suppose that p; q > 0 and that

1

p+ 1

+

1

q + 1

� 1�

2

N

(3.8)

Then there exist in�nitely many values � = (�

1

; �

2

) 2 IR

+

� IR

+

suh that

system (3.4) admits a positive radial solution (u; v) with entral values u(0) =

�

1

; v(0) = �

2

. Moreover u; v ! 0 as jxj ! 1, so that the solution is in fat a

ground state for (3.4).

Let us now mention some results on the nonexistene of positive solutions

of (3.4), without the assumption of being radial.

Theorem 3.8 Let u; v 2 C

2

(IR

N

) be non-negative solutions of

��u � v

p

; ��v � u

q

in IR

N

; (3.9)

where p; q > 0 and

1

p+ 1

+

1

q + 1

�

N � 2

N � 1

: (3.10)

Then u = v � 0.

This result is due to Souto [46℄, [47℄. The idea of his proof is to redue the

problem to a question onerning a salar equation. Suppose, by ontradition,

that u and v are positive solutions of (3.9) in IR

N

. Introdue a funtion ! = uv.

So

�! � 2rurv � u

q+1

� v

p+1

: (3.11)
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Using the inequality

a � b �

1

4

ja+ bj

2

a; b 2 IR

N

we get that

2rurv �

1

2

!

�1

jr!j

2

:

On the other hand, hoose r > 0 suh that

1

r

=

1

p+ 1

+

1

q + 1

. Then by Young's

inequality

!

r

= u

r

v

r

�

r

q + 1

u

q+1

+

r

p+ 1

v

p+1

� u

q+1

+ u

p+1

:

So

�! �

1

2

!

�1

jr!j

2

� !

r

: (3.12)

Replaing ! by f

2

in (3.12) one obtains

��f �

1

2

f

2r�1

in IR

N

;

with f > 0 in IR

N

. Using Theorem 3.4, we see that this is a ontradition, sine

2r � 1 � N=(N � 2).

Theorem 3.9 Suppose that p; q > 1 and

1

p+ 1

+

1

q + 1

� 1�

2

N � 2

max

�

1

p+ 1

;

1

q + 1

�

: (3.13)

Then system (3.9) has no nontrivial solution of lass C

2

(IR

N

).

The above result is Corollary 2.1 in [37℄, let us omment the proof in [37℄,

whih uses spherial means; see the de�nition in ( [22℄p.302): let v 2 C(IR

N

),

then the spherial mean of v at x of radius � is

M(v;x; �) =

1

meas[�B

�

(x)℄

Z

�B

�

(x)

v(y)d�(y):

Changing oordinates we see that

M(v;x; �) =

1

!

N

Z

j�j=1

v(x+ ��)d! (3.14)

where !

N

denotes the surfae area of the unit sphere of IR

N

and � ranges over

this unit sphere. Then, one has Darboux formula

�

�

2

��

2

+

N � 1

�

�

��

�

M(v;x; �) = �

x

M(v;x; �): (3.15)
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Now let us use these ideas for the funtions u and v in system (3.9):

�

x

M(u;x; �) =

1

!

N

Z

j�j=1

�

x

u(x+ ��)d! � �

1

!

N

Z

j�j=1

[v(x+ ��)℄

p

d!

and using Jensen's inequality we obtain

�

x

M(u;x; �) � �[M(v;x; �)℄

p

: (3.16)

Denoting

M(u(x);x; �) = u

#

(�) ; M(v(x);x; �) = v

#

(�)

and using (3.15) and (3.16) we obtain

��

�

u

#

� (v

#

)

�

��

�

v

#

� (u

#

)

q

(3.17)

where �

�

=

�

�

2

��

2

+

N � 1

�

�

��

�

.

To proeed we need the following result, whih follows readily from (3.14),

and the seond part is proved using the divergene theorem.

Theorem 3.10 If v 2 C

2

(IR

N

), then M(v;x; �) is also C

2

(IR

N

) in the variable

x and C

2

([0;1)) in the variable �. Moreover,

�

d

d�

v

#

�

(0) = 0; and

�

d

d�

v

#

�

(�) � 0

. So v

#

(�) is non-inreasing.

We reall Lemma 3.1 in [36℄:

Lemma 3.1 If u 2 C

2

(IR

N

) is a positive radial superharmoni funtion, then

ru

0

(r) + (N � 2)u(r) � 0 for r > 0: (3.18)

It follows readily from this lemma that u(r) � Cr

2�N

for large r > 0: Now

the question redues to the following one-dimensional result:

Theorem 3.11 Let u(�); v(�) be two C

2

funtions de�ned and non-inreasing

in [0;1), suh that u

0

(0) = v

0

(0) = 0 and

��

�

u � v

p

; ��

�

v � u

q

: (3.19)

Suppose that p; q > 1 and that (3.13) holds. Then u = v � 0.
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So to omplete the proof of Theorem 3.9 it remains to prove Theorem 3.11,

whih we do next. The �rst equation in (3.19) an be written as

�[�

N�1

u

0

(�)℄

0

� �

N�1

[v(�)℄

p

Integrating from 0 to r and observing that v is non-inreasing we get

�u

0

(r) �

1

N

v(r)

p

and using (3.18) we obtain

v(r)

p

�

N(N � 2)

r

u(r): (3.20)

Similarly, working with the seond equation in (3.19) we get

u(r)

q

�

N(N � 2)

r

v(r) (3.21)

It follows from (3.20) and (3.21) that

u(r) � [N(N � 2)℄

1+p

pq�1

r

�

2(1+p)

pq�1

(3.22)

and

v(r) � [N(N � 2)℄

1+q

pq�1

r

�

2(1+q)

pq�1

(3.23)

Using Lemma 3.1, we onlude that the assumption of u and v positive is im-

possible if

N � 2 <

2(1 + q)

pq � 1

or N � 2 <

2(1 + �)

pq � 1

whih is exatly (3.13).

Theorem 3.12 A) If p > 0 and q > 0 are suh that p; q � (N + 2)=(N � 2),

but not both equal to (N + 2)=(N � 2), then the only non-negative solution of

(3.4) is u = v = 0.

B) If � = � = (N + 2)=(N � 2), then u and v are radially symmetri with

respet to some point of IR

N

.

This theorem is due to deFigueiredo-Felmer [24℄. The proof uses the method

of Moving Planes. A good basi referene of this method is [9℄. The idea in

the proof of the above theorem is to use Kelvin's transform in the solutions u; v

of (3.4), whih a priori have no known (or presribed) behavior at in�nite. By

means of Kelvin u and v are transformed in new unknowns ! and z, whih now

have a de�nite deay at 1. Consequently the method of moving planes an

start.
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Theorem 3.13 Let p > 0 and q > 0 satisfying (3.6) then there are no positive

solutions of (3.4) satisfying

u(x) = o(jxj

�

N

q+1

); v(x) = o(jxj

�

N

p+1

); as jxj ! 1: (3.24)

The above result is due to Serrin-Zou [48℄, where the next result is also

proved.

Theorem 3.14 Let N = 3, and p; q > 0 satisfying (3.6). Then there are no

positive solutions of (3.4) for whih either u or v has at most algebrai growth

at in�nity.

Remark 3.7 Observe that Theorem 3.13 extends Theorem 3.6, sine radial pos-

itive solutions have a deay at in�nity given in (3.22) and (3.23). Observe

that (3.6) implies that

2(1 + p)

pq � 1

>

N

q + 1

and

2(1 + q)

pq � 1

>

N

p+ 1

:

The proof of Theorem 3.13 is based on an interesting L

2

estimate of the

gradient of a superharmoni funtion, namely,

Lemma 3.2 Let ! 2 C

2

(IR

N

) be positive, superharmoni (i.e. ��! � 0 in

IR

N

) and

!(x) = o(jxj

�

) as jxj ! 1: (3.25)

Then

Z

B

2R

nB

R

jr!j

2

= o(R

N�2�2

) as R!1; (3.26)

where B

R

is the ball of radius R in IR

N

entered at the origin.

Another basi ingredient in the proof of Theorem 3.13 is an identity of

Poho�zaev-type, a speial ase of a general identity [44℄, namely,

Lemma 3.3 Let (u; v) be a positive solution of (3.4) and let a

1

and a

2

be

onstants suh that a

1

+ a

2

= N � 2. Then

R

B

�

n�

N

p+1

� a

1

�

v

p+1

+

�

N

q+1

� a

2

�

u

q+1

o

=

R

�B

n

v

p+1

p+1

+

u

q+1

q+1

o

+

R

�B

�

2

�u

�r

�v

�r

�ru � rv

�

+

R

�B

�

a

1

�u

�r

v + a

2

u

�v

�r

�

: (3.27)

Proof of Theorem 3.13. using these two lemmas. Choose a

1

and a

2

in

suh a way that

N

p+ 1

� a

1

=

N

q + 1

� a

2

= Æ; a

1

+ a

2

= N � 2:

18



Next, dividing (3.27) by � and integrating with respet to � between some R

and 2R and estimating we get

Æ ln 2

Z

B

R

(u

q+1

+ v

p+1

) �

Z

B

2R

nB

R

�

u

q+1

q + 1

+

v

p+1

p+ 1

�

Z

B

2R

nB

R

jru:rvj+R

�1

Z

B

2R

nB

R

(vjruj+ ujrvj): (3.28)

Now using the hypothesis (3.24), we see that the �rst integral in the right

side of (3.28) is o(1). Next one uses Lemma 3.2 with ! = u,  =

N

q + 1

and

! = v;  =

N

p+ 1

. With that we an estimate the seond and third integrals

using Cauhy -Shwarz and get that they are o(R

N�2�

N

p+1

�

N

q+1

) whih is o(1).

This ontradits (3.28) as R!1.

Theorem 3.15 Let p; q > 1 satisfying

N � 1

2

(pq � 1) � max(p+ 1; q + 1): (3.29)

Then the system of inequalities

��u � v

p

; ��v � u

q

in IR

N

+

(3.30)

has no non-negative nontrivial solution.

Remark 3.8 This result is due to Birindelli-Mitidieri [8℄, where, instead of

a half- spae, more general ones are onsidered. Observe that (3.29) an be

written as

1

p+ 1

+

1

q + 1

� 1�

2

N � 1

max

�

1

p+ 1

;

1

q + 1

�

and ompare it with (3.13) in Theorem 3.9.

Final remarks on Liouville Theorem For Systems.

(i) The onjeture on the validity of a Liouville theorem in the whole of IR

N

for all p and q below the ritial hyperbola seems to be unsetlled at this moment.

In dimension N = 3 and for bounded funtions, the onjeture has been proved

in [48℄, see Theorem 3.14 above.

(ii) Liouville theorems for systems of inequalities in the whole of IR

N

are

Theorems 3.8 and 3.9. Is inequality in (3.13) sharp? Observe that if p = q,

(3.13) yields p � N=(N � 2), whih is the value obtained in Theorem 3.4.

(iii) Observe that a Liouville theorem for a system of inequalities in IR

N

+

is

given by Theorem 3.15. Compare with the following result of [46℄

Theorem 3.16 Let u; v 2 C

2

(IR

N

+

) \ C

0

(IR

N

+

) be non-negative solutions of

(3.30) with u = v = 0 on �R

N

+

. If 1 � p; q �

N + 2

N � 2

then u = v � 0.
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(iv) It is an open question to know if Theorem 3.16 an be improved. That

is, if there is some analogue to Daner result, Theorem 3.3.

(v) Liouville-type theorems for systems of p-Laplaians have been studied

reently by Mitidieri-Pohozaev [38℄.

(vi) Liouville theorems for equations with a weight have been onsidered in

Berestyki, Capuzzo Doletta- Nirenberg [5℄.

4 Leture 4: Gradient Systems

The theory of gradient systems is sort of similar to that of salar equations. We

shall disuss it in the more general ontext of p-Laplaians,

�

p

u = div(jruj

p�2

ru); p > 1

We onsider the system of equations

��

p

u = F

u

(x; u; v) ; ��

q

v = F

v

(x; u; v) (4.1)

subjet to Dirihlet boundary ondition. The idea is to look for the solutions of

(4.1) as ritial points of the funtional

�(u; v) =

1

p

Z




jruj

p

+

1

q

Z




jrvj

q

�

Z




F (x; u; v); (4.2)

whose Euler-Lagrange equations are the weak form of equations (4.1). The

funtional (4.2) is to be de�ned in the Cartesian produt E = W

1;p

0

(
) �

W

1;q

0

(
) . For that matter, due to Sobolev imbeddings, we require

(F1) F : 
� IR� IR! IR is C

1

and

jF (x; u; v)j � C(1 + juj

p

�

+ jvj

q

�

)

where p

�

=

Np

N�p

, whih omes from the ontinuous imbedding W

1;p

0

(
) �

L

p

�

(
). Similarly for q

�

. Here we are assuming that 1 < p; q < N . This means

that, in the ase of the Laplaian, we are with N � 3. Condition (F1) implies

that � is well de�ned in E. However, in order to have it in the C

1

lass, we

have to require stronger assumptions. Namely, F has to be C

1

and the following

bounds on the partial derivatives are assumed

(F2) jF

u

(x; u; v)j � C(1 + juj

p

�

�1

+ jvj

q

�

(p

�

�1)

p

�

)

jF

v

(x; u; v)j � C(1 + jvj

q

�

�1

+ juj

p

�

(q

�

�1)

q

�

):

Next we disuss a work of Boardo-deFigueiredo [6℄, whih uni�es part of

some previous work by Boardo-Flekinger-de Th�elin [7℄ and de Th�elin-V�elin

[54℄. Let us be more preise about the growth of F at 1: let 0 < r � p

�

and

0 < s � q

�

, and assume

(F3) jF (x; u; v)j � C(1 + juj

r

+ jvj

s

):

We disuss three non-ritial ases:

(I) r < p and s < q, ("sublinear-like"),
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(II) r > p, s > q, and r < p

�

, s < q

�

, ("superlinear-like"),

(III) r = p and s = q, ("resonant type").

Theorem 4.1 (The oerive ase). Assume (F2) and (F3) with r and s as in

(I). Then � ahieves a global minimum at (u

0

; v

0

) 2 E, whih is then a weak

solution of (4.1).

Remark 4.1 This is an imediate onsequene of the theorem on the minimiza-

tion of oerive weakly lower semiontinuous funtionals. Next, if we assume

(F4) F (x; 0; 0) = F

u

(x; 0; 0) = F

v

(x; 0; 0) = 0;8x 2 
,

then u = v = 0 is a solution of (4.1). The next result gives onditions for the

existene of non-trivial solutions.

Theorem 4.2 (The oerive ase, non-trivial solutions). Assume (F2), (F4)

and (F3) with r and s as in (I). Then � ahieves a global minimum at a point

(u

0

; v

0

) 6= (0; 0), provided that there are positive onstants R and � < 1, and a

ontinuous funtion K : 
� IR� IR! IR suh that

(F5) F (x; t

1

p

u; t

1

q

v) � t

�

K(x; u; v),

for x 2 
, juj; jvj � R and small t > 0.

Remark 4.2 As in Theorem 4.1, � ahieves its in�mum. All we have to do is

to show that there is a point (u

1

; v

1

) 2 E where �(u

1

; v

1

) < 0. Let ' be a �rst

eigenfuntion of the p-Laplaian

��

p

' = �

1

(p)j'j

p�2

' in 
; ' = 0 on �
:

The funtion ' an be taken > 0 in 
, and we know that ' 2 C

1;�

(
), see

[21℄, [52℄. So we an use u

1

= t

1

p

' and v

1

= t

1

q

 , where  > 0 is a �rst

eigenfuntion of the q-Laplaian, and t > 0 is small.

Now let us go to the \superlinear ases". Viewing the need of a Palais-Smale

ondition we assume a sort of Ambrosetti-Rabinowitz ondition

(F6) 0 < F (x; u; v) � �

p

uF

u

(x; u; v) + �

q

vF

v

(x; u; v);

for all x 2 
 and juj; jvj � R, where R is some positive number and

1

p

�

< �

p

<

1

p

;

1

q

�

< �

q

<

1

q

Theorem 4.3 Assume (F2), (F4), (F6) and (F3) with r and s as in (II).

Assume also that there are positive onstants C and ", and numbers r > p and

s > q, suh that

(F7) jF (x; u; v)j � C(juj

r

+ jvj

s

),

for juj; jvj � "; x 2 
. Then � has a non- trivial ritial point.

Remark 4.3 The proof goes by an appliation of the Mountain-Pass Theorem

[2℄. Can ondition (F7) be weakened? Condition (F6) is used to prove that �

satis�es (PS).
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The analysis of the resonant ase requires the study of an eigenvalue problem

for a system involving p-Laplaians. Let G : IR

2

! [0;1) be a C

1

even funtion

suh that

(G) G(t

1

p

u; t

1

q

v) = tG(u; v); G(u; v) � k(juj

p

+ jvj

q

).

Examples of suh funtions: G(u; v) = 

1

juj

p

+ 

2

jvj

q

; G(u; v) = juj

�

jvj



with

�

p

+



q

= 1.

Theorem 4.4 Given a 2 L

1

(
), there are a real number �

1

(a) and a pair of

funtions (u

0

; v

0

) 2 E, with u

0

; v

0

> 0 in 
 suh that

�

��

p

u

0

� aG

u

(u

0

; v

0

) = �

1

(a)u

0

ju

0

j

p�2

��

q

v

0

� aG

v

(u

0

; v

0

) = �

1

(a)v

0

jv

0

j

q�2

and

1

p

Z

jruj

p

+

1

q

Z

jrvj

q

�

Z

aG(u; v) � �

1

(a)

�

1

p

Z

juj

p

+

1

q

Z

jvj

q

�

for all (u; v) 2 E, with equality for (u

0

; v

0

).

Remark 4.4 The lemma is proved by a minimization argument. The eigen-

funtion (u

0

; v

0

) is C

1

(
) by the regularity results in [52℄ and their positivity

follows from Vasquez maximum priniple [53℄ for the p-Laplaian.

Theorem 4.5 Assume (F2) and (F3) with r and s as in (III). Suppose that

there is a funtion G satisfying ondition (G) above and suh that

(F8) �

1

(a) > 0, where lim sup

juj;jvj!1

F (x; u; v)

G(u; v)

� a(x) 2 L

1

(
),

and �

1

(a) is the one de�ned in Theorem 4.4. Then � is bounded below and its

in�mum is ahieved.

Theorem 4.6 Assume (F2), (F4) and (F3) with r and s as in (III). Suppose

that there exist positive numbers C;R; � and � suh that

(F9)

1

p

uF

u

+

1

q

vF

v

� F � C(juj

�

+ jvj

�

) for juj; jvj � R.

Assume also that there are positive numbers R and ", and L

1

funtions b(x)

and (x) suh that

(F10) �

1

(b) < 0; F (x; u; v) � b(x)G(u; v); juj; jvj � R

(F11) �

1

() > 0; F (x; u; v) � (x)

~

G(u; v); juj; jvj � "

where G and

~

G are funtions satisfying ondition (G). Then the funtional �

has a non trivial ritial point.

Remark 4.5 The proof here uses the Mountain Pass Theorem. Condition

(F11) at the origin assures that (0; 0) is a loal minimum. (F10) gives the be-

haviour at in�nity, a sort of \superlinearity". Compare (F10) with (F8), whih

is a \sublinearity". (F9) is a type of ondition introdued by Costa-Magalh~aes

[13℄, [14℄. It implies a ompatness ondition of the (PS) type, namely Cerami

22



ondition [11℄, for short (Ce) ondition. We say that � : E ! R satis�es (Ce)

ondition if all (u

n

; v

n

) 2 E suh that

j�(u

n

; v

n

)j � ; (1 + jju

n

jj

W

1;p

+ jjv

n

jj

W

1;p

)�

0

(u

n

; v

n

)! 0;

ontains a onvergent subsequene in the norm of E.

Final remark. It would be interesting to study the ritial ase r = p

�

; s =

q

�

, as well as mixed ases involving, for instane, (i) r < p; s > q, (ii) r = p; s >

q, (iii) r = p

�

; s < q. et. The geometry of the funtional � in eah ase ould

be intrinated and we may eventually need other propositions on ritial points.

5 Leture 5: Hamiltonean Systems

In this leture we disuss the existene of solutions of the Dirihlet problem for

systems of the form

��u = H

v

(x; u; v); ��v = H

u

(x; u; v) (5.1)

where H is a C

1

real-valued funtion de�ned in 
�IR�IR. Here H

u

denotes the

partial derivative

�H

�u

, and 
 is a bounded domain IR

N

, N � 3. We are interested

in superlinear problems, a notion that we will de�ne later and whih takes into

aount the type of oupling established in these Hamiltonean systems. We

have already met Hamiltonean systems in Setion 3, where we studied them in

the whole of IR

N

. The so-alled ritial hyperbola introdued there also plays

an important role here. Indeed, a speial ase of (5.1) is the system

��u = g(u); ��v = f(u) (5.2)

where f and g are as in (1.6). In this ase H(u; v) = F (u) + G(v), where

F (s) =

R

s

0

f(t)dt and G(s) =

R

s

0

g(t)dt. We have already explained how to

treat (5.2) by topologial methods. It is not at all lear how to deal with the

general ase of (5.1) by similar methods. Variational methods instead have

been used with suess. The following assumptions have been found adequate

for obtaining a funtional, whose Euler-Lagrange equation give the weak solution

of (5.1):

(H1) H : 
� IR� IR! IR is a C

1

funtion.

(H2) There are parameters p; q > 0 and a positive onstant C suh that

jH(u; v)j � C(juj

p+1

+ jvj

q+1

+ 1); 8(x; u; v):

(H3) There is a positive onstant C, suh that

jH

u

(x; u; v)j � C(juj

p

+ jvj

p(q+1)

p+1

); 8(x; u; v)

jH

v

(x; u; v)j � C(jvj

q

+ juj

q(p+1)

q+1

); 8(x; u; v):

We have observed before that if we want to work with the funtional
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�(u; v) =

Z

rurv �

Z

H(x; u; v); (5.3)

this will naturally lead to the fat that we have to take (u; v) 2 H

1

0

(
)�H

1

0

(
).

On its turn, however, this would imply that p and q should be less or equal

to (N + 2)=(N � 2) in order to have H(x; u(x); v(x)) in L

1

(
). The following

example shows that this is not the best hoie. Indeed, onsider the system

��u = v; ��v = juj

p�1

u (5.4)

subjet to Dirihlet boundary onditions. Suh a system is equivalent to the

single equation

�

2

u = juj

p�1

u (5.5)

subjet to Navier boundary onditions, namely u = �u = 0 on �
. Sine (5.5)

is a fourth order ellipti equation, weak solutions are to be found in W

2;2

(
).

Hene we ould onsider powers p up to (N + 4)=(N � 4), whih is larger than

(N + 2)=(N � 2). This indiates that one should be able to treat ases when,

for instane, the growth of H

u

with respet to u is larger than (N +2)=(N � 2).

As we shall see, this is possible provided the growth of H

v

with respet to v is

smaller than (N +2)=(N � 2). This is the point where the notion of the ritial

hyperbola enters.

System (5.1) is said to be subritial if

1

p+ 1

+

1

q + 1

> 1�

2

N

; (5.6)

and it is said to be superlinear if

1 >

1

p+ 1

+

1

q + 1

: (5.7)

The possibility of using powers larger than (N +2)=(N � 2) alls for the use

of frational Sobolev spaes. They will be de�ned using Fourier expansions on

the eigenfuntions of (��; H

1

0

(
)); it is well-known that the eigenvalue problem

��u = �u in 
; u = 0 on �
; (5.8)

has an inreasing sequene of eigenvalues ('

n

), '

n

2 H

1

0

(
);

R

j'

n

j

2

= 1, with

the properties

(i) �

1

is a positive and simple eigenvalue, and '

1

(x) > 0 for x 2 
.

(ii)�

n

! +1.

(iii)

R

'

i

'

j

=

R

r'

i

r'

j

= 0, for i 6= j.

So ('

n

) is an orthonormal system in L

2

(
) and an orthogonal system in

H

1

0

(
), and it is known that these are omplete systems.

De�nition. For s � 0, we de�ne

E

s

= fu =

X

a

n

'

n

2 L

2

(
) :

1

X

n=1

�

s

n

a

2

n

<1g: (5.9)
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Here a

n

=

R




u'

n

. E

s

is a Hilbert spae with the inner-produt given by

< u; v >

E

s

=

1

X

n=1

�

s

n

a

n

b

n

; where v =

1

X

n=1

b

n

'

n

: (5.10)

Let us de�ne the following maps

A

s

: E

s

�! L

2

u =

P

1

n=1

a

n

'

n

7�! A

s

u =

P

1

n=1

�

s=2

n

a

n

'

n

(5.11)

Clearly A

s

is an isometri isomorphism, that is

Z

A

s

uA

s

v =< u; v >

E

s

: (5.12)

Observe that for s = 1, one has

Z




A

1

uA

1

v =

Z




rurv: (5.13)

The Sobolev imbedding theorem says that

"E

s

� L

p

ontinuously if

1

p

�

1

2

�

s

N

, and ompatly if the previous inequality

is strit".

As observed above (5.11) is not the right quadrati part of the funtional.

What would be right one? Assume that p; q satisfy (5.6) and (5.7). Choose

s; t > 0, suh that s+ t = 2 and

1

p

>

1

2

�

s

N

;

1

q

>

1

2

�

t

N

:

Thus E

s

� L

p

(
); and E

t

� L

q

(
), with ompat immersions.

Let now E = E

s

� E

t

. If z = (u; v) 2 E, then H(x; u; v) 2 L

1

. So the

funtional below

�(z) =

Z




A

s

uA

t

v �

Z




H(x; u; v) (5.14)

is well de�ned for z = (u; v) 2 E and it is of lass C

1

. Its derivative is given by

the following expression

< �

0

(z); � >=

Z




A

s

uA

t

 +A

s

�A

t

v �

Z




H

u

�+H

v

 ;

where � = (�;  ). So the ritial points of the funtional � given by (5.12) are

the weak solutions (u; v) 2 E

s

�E

t

of the system

Z




A

s

�A

t

v =

Z




H

u

�;8� 2 E

s

(5.15)

Z




A

s

uA

t

 =

Z




H

v

 ;8 2 E

t

: (5.16)
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Remark 5.1 The following regularity theorem was proved in [25℄:

"these weak solutions (u; v) are indeed u 2 W

1;

p+1

p

0

(
) \ W

2;

p+1

p

and v 2

W

1;

q+1

q

0

(
) \W

2;

q+1

q

, whih we all strong solutions of (5.1)".

The following result was proved in [25℄:

Theorem 5.1 Assume (H1), (H2) and (H3) with p; q > 0 satisfying (5.6) and

(5.7). In addition, assume

(H4) There exists R > 0 suh that

1

p+ 1

H

u

(x; u; v)u+

1

q + 1

H

v

(x; u; v)v � H(x; u; v) > 0

for all x 2 
 and j(u; v)j � R:

(H5) There exist r > 0 and  > 0 suh that

jH(x; u; v)j � (juj

p+1

+ jvj

q+1

);

for all x 2 
 and j(u; v)j � r.

Then, system (5.1) has a strong solution.

Remarks on the proof of Theorem 5.1. The proof onsists in obtaining

a ritial point of the funtional (5.14). First we observe that � is strongly

inde�nite. In fat, the spae E deomposes into E = E

+

� E

�

, where E

�

are

in�nite dimensional subspaes and the quadrati part

Q(z) =

Z




A

s

uA

t

v; for z = (u; v)

is positive de�nite in E

+

and negative de�nite in E

�

. This fat and (H5) indue

a geometry on the funtional � that alls for the use of a linking theorem of

Beni-Rabinowitz [4℄ in a version due to Felmer [23℄. Conditions (H2), (H3)

and (H4) are used to prove a Palais-Smale ondition.

Remark 5.2 Condition (H5) in the previous theorem exludes ases when H

u

and H

v

have linear terms. Indeed, on one hand the superlinearity ondition

(5.7) is equivalent to pq > 1. And on the other hand, linear terms would imply

that (H5) should hold with p = q = 1, whih then is not possible. Let us now

treat this ase.

Suppose now that H has a quadrati part, namely

1

2

u

2

+

1

2

bv

2

+ auv. In

this ase the system beomes

��u = au+ bv +H

v

; ��v = u+ av +H

u

; (5.17)

where H satis�es the assumption of the previous theorem. This situation has

been studied in speial ases by Hulshof-van der Vorst [33℄and deFigueiredo-

Magalh~aes [26℄. The result we present below is the more general result in this

line and it is due to deFigueiredo-Ramos [27℄.
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Theorem 5.2 Let a; b;  be real onstants. For p; q as in (5.6) and (5.7),

suppose that H satis�es (H1)- (H5). Then system (5.17) admits a nonzero

strong solution.

Remark 5.3 In both [25℄ and [27℄ one allows more general Hamiltoneans H.

In fat, the growth at 1 an be di�erent from the its behavior at zero.
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