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Abstra
t. In this paper, we establish a one-one 
orresponden
e between invari-

ant f�stru
tures on non-symmetri
 
omplex 
ag manifolds and skew-symmetri


matri
es valued in f�1; 0; 1g and study the geometry of invariant f�stru
tures

and f�holomorphi
 
urves on 
ag manifolds. In parti
ular, we 
onstru
t equi-

harmoni
 tori on full 
omplex 
ag manifolds whi
h are not f�holomorphi
 with

respe
t to any horizontal f�stru
ture and 
hara
terize some important horizon-

tal f -stru
tures su
h as almost 
omplex and primitive horizontal f�stru
tures.

x0. Introdu
tion

Complex 
ag manifolds are the most typi
al and important redu
tive ho-

mogeneous spa
es. They in
lude symmetri
 (height= 1) and non-symmetri


(height� 2) 
ases. Many beautiful results in harmoni
 surfa
es on the symmet-

ri
 
ag manifolds (i.e. Grassmannians, in parti
ular, proje
tive spa
es) have

been obtained in the re
ent years. In this 
ase sin
e the di�eren
e of partial

energies is a smooth homotopy invariant[Li℄, the holomorphi
ity of maps im-

plies their harmoni
ity. It follows that the fundamental aspe
t of harmoni
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surfa
es on Grassmannians is to 
onstru
t non-holomorphi
 harmoni
 maps.

For instan
e, start from holomorphi
 maps, Eells-Wood manufa
tured non-

holomorphi
 harmoni
 maps[EW℄. They 
alled them (
omplex) isotropi
 maps.

However, in the non-symmetri
 
ase, a 
omplex 
ag manifold has many

left-invariant metri
s. Furthermore the relative metri
 indu
ed by restri
ting

the Killing form is not well behaved from the point of view of 
omplex ge-

ometry. Hen
e the equi-harmoni
 surfa
es on non-symmetri
 
ag manifolds

play a 
entral role, where equi-harmoni
ity means harmoni
ity with respe
t

to all left-invariant metri
s. Bla
k's theorem tells us, if map � : M ! F =

F (r

1

; � � � ; r

n

;N) from a Riemann surfa
e to the 
omplex 
ag manifold with

height n� 1 is f�holomorphi
 with respe
t to some horizontal f -stru
ture on

F , then � is equi-harmoni
; and for an equi-weakly 
onformal surfa
e the 
on-

verse is still true.

A natural question is: is there an equi-harmoni
 surfa
e whi
h is not f�holo

-morphi
 with respe
t to any horizontal f�stru
ture on F?

In this arti
le, we will give a positive answer for this question. In fa
t, a

stronger result will be obtained. We will manufa
ture equi-harmoni
 tori on

full 
omplex 
ag manifolds whi
h are not f�holomorphi
 with respe
t to any

invariant f�stru
ture on full 
ag manifolds.

Our main approa
h is to study the geometry of invariant f�stru
tures and

f�holomorphi
 
urves on non-symmetri
 
ag manifolds by en
oding invariant

f�stru
tures into ��matri
es and some ideas of Uhlenbe
k as in [Uh℄ for ex-

ample. The f�stru
tures on a Riemannian manifold, introdu
ed by Yano in

1963, extend almost 
omplex (resp. 
onta
t) stru
tures on a even (resp.odd)-

dimensional manifold, and they are applied widely in study of geometry of

harmoni
 maps[Bu1,Lo,R℄. A ni
e way to understand invariant almost 
omplex

stru
tures on a 
ag manifold is tournament. Using te
hnique of tournoment

and Birkho�-Grothendie
k de
omposition theorem, Burstall-Salamon obtained

their fa
torisation theorem with stri
tly de
reasing length[BS℄. In fa
t, there is

a 1 : 1 
orresponden
e between invariant almost 
omplex stru
tures on a 
om-

plex 
ag manifold with height n � 1 and n-tournaments. Inspired by [BS℄, in

this paper we establish one-one 
orresponden
e between invariant f�stru
tures

and skew-symmetri
 matri
es valued in f�1; 0; 1g. We 
all these matri
es �-

matri
es. Using the theory of �-matri
es, we 
hara
terize some of the main

horizontal f�stru
tures, i.e. almost 
omplex stru
ture and the f�stru
tures

asso
iate to primitive maps.

The invariant f�stru
ture related to primitive surfa
es on a non-symmetri



omplex 
ag manifold F is naturally indu
ed from the k(� 3)�symmetri
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stru
ture of F . The importan
e of primative surfa
es are not only their equi-

harmoni
ity but also their 
overing property for ea
h 
onformal harmoni
 sur-

fa
e on a symmetri
 
omplex 
ag manifold. For instan
e, \Eells-Wood" sur-

fa
es[N2℄ 
overing all 
omplex isotropi
 harmoni
 surfa
es are primitive sur-

fa
es (ref. 
orollary 4.4 and (5.1)). Bolton, Pedit and Woodward studied non-

isotropi
 harmoni
 surfa
es with orthogonal harmoni
 sequen
es in C P

n

. They

established a one-one 
orresponden
e between these surfa
es (
alled them su-

per
onformal ones) and ��primitive surfa
es on a full 
omplex 
ag manifold.

And the latter are 
losely related to aÆne Toda �elds [BPW℄. Burstall 
onsid-

ered all �nite isotropy order 
onformal harmoni
 surfa
es in C P

n

. He showed

that these surfa
es 
an be 
overed by the primitive surfa
es on 
ag bundle over

C P

n

[Bu2℄(whi
h 
an be identi�ed to surfa
es on not-ne
essarily-full 
ag man-

ifolds[M℄). Re
ently, this 
overing property has been extended to surfa
es on

Grassmannian by Udagawa[Ud℄.

In this paper, we 
hara
terize the invariant f�stru
tures asso
iated to per-

imative surfa
es on non-symmetri
 
ag manifolds F (1; � � � ; 1

| {z }

n�1

; N � n + 1; N).

More pre
isely, we show that these f�stru
tures have exa
tly maximal rank

among all the horizontal ones.

The horizontality of the standard 
omplex stru
ture J

1

and the asso
iate

paraboli
 almost 
omplex stru
ture J

2

have been dis
ussed in [MN℄, they proved

that J

1

is never horizontal, and J

2

is not horizontal if the 
omplex 
ag manifold

has height� 3. We will prove that a horizontal f�stru
ture on a non-symmetri



omplex manifold is almost 
omplex if and only if it is the standard paraboli


almost 
omplex stru
ture J

2

on 2�height 
ag manifold.

A
knowledgements: The �rst auther wishes to thank IMECC-UNICAMP for

their hospitality. The se
ond author wants to express his sin
ere gratitute to

Professor Karen Uhlenbe
k for her imense support throughout these years.

x1. f-stru
tures on 
omplex flag manifolds

Consider the 
omplex 
ag manifold

F (r

1

; � � � ; r

n

; N) =

U(N)

U(r

1

)� � � � � U(r

n

)

where r

1

+ � � �+ r

n

= N . F (r

1

; � � � ; r

n

; N) is a 
ompletely redu
tive homoge-

neous spa
e with redu
tive splitting

u(N) = [u(r

1

) + � � �+ u(r

n

)℄� [�

i<j

m

ij

℄ (1.1)
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where

m

ij

= fA = (A

kl

) 2 u(N)j; A

kl

= 0 if (k; l) 6= (i; j) and (j; i)g

A

kl

2 gl(r

k

� r

l

; C) is the isotropy representation. It will be ne
essary to


onsider the 
omplexi�ed version of (1.1). We have

m

C

ij

= fA = (A

kl

) 2 gl(N ; C )jA

kl

= 0 if (k; l) 6= (i; j) and (j; i)g

= E

ij

� E

ji

and

E

ij

:= fA = (A

kl

) 2 gl(N; C )jA

kl

= 0 if (k; l) 6= (i; j)g (1.2)

is U(r

1

)� � � � � U(r

n

) invariant and irredu
ible. For arbitrary A = (A

kl

) 2 E

ij

we have

A = (A

1

kl

) +

p

�1(A

2

kl

)

where

A

1

kl

=

8

>

<

>

:

A

ij

2

(k; l) = (i; j)

�

�

A

t

ij

2

(k; l) = (j; i)

0 otherwise

and

A

2

kl

==

8

>

>

<

>

>

:

A

ij

2

p

�1

(k; l) = (i; j)

�

�

A

t

ij

2

p

�1

(k; l) = (j; i)

0 otherwise

so it's easy to see that

�

A = (A

1

kl

)�

p

�1(A

2

kl

) 2 E

ji

and vi
e versa, we get

E

ij

= E

ji

[�

i<j

m

ij

℄

C

= �

i 6=j

E

ij

(1.3)
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De�nition 1.1[Bl℄. An f -stru
ture on

F = F (r

1

; � � � ; r

n

; N)

is a se
tion F of End(TF (r

1

; � � � ; r

n

; N)) su
h that F

3

+ F = 0.

An U(N) invariant f -stru
ture on F (r

1

; � � � ; r

n

; N) may be identi�ed with

an H equivariant endomorphism,F , of �

i<j

su
h that F

3

+ F = 0 where H =

U(r

1

)� � � � � U(r

n

). Using S
hur's Lemma, all the U(N)-invariant f -stru
tures

may be 
onstru
ted as following: Put

� = (�

ij

)

a n� n skew-symmetri
 matrix with values in the set f1; 0; �1g. De�ne

p

�1 eigenspa
e of F = �

�

ij

=1

E

ij

(1.4)

�

p

�1 eigenspa
e of F = �

�

ij

=1

E

ij

= �

�

ij

=�1

E

ij

0 eigenspa
e of F = �

�

ij

=0

E

ij

Determining the eigenspa
es in this way de�nes anH equivariant endomorphism

F of �

i 6=j

E

ij

, whi
h is seen to be the C-linear extension of an H equivariant

endomorphism of �

i<j

m

ij

sin
e �

�

ij

=1

E

ij

and �

�

ij

=�1

E

ij

are 
onjugate and

[�

�

ij

=1

E

ij

℄ \ [�

�

ij

=�1

E

ij

℄ = f0g

.

De�nition 1.2[Bu1℄. The 
omplex dimension of

p

�1 eigenspa
e of F is the

rank of F .

Suppose that f -stru
ture F is de�ned by �(F) = (F

ij

) then

rankF : = dim

C

[

p

�1 eigenspa
e of F ℄

= dim

C

�

F

ij

=1

E

ij

=

X

F

ij

=1

dim

C

E

ij

=

X

F

ij

=1

r

i

r

j

In parti
ular, if 2rankF = dimF (r

1

; � � � ; r

n

; N), i,e

2

X

F

ij

=1

r

i

r

j

= N

2

� r

2

1

� � � � � r

2

n

=

X

i 6=j

r

i

r

j

it follows that 0 eigenspa
e = f0g, so F is an almost 
omplex stru
ture. And

vi
e versa. We have shown that
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Theorem 1.3. There is a 1 : 1 
orresponden
e between U(N) invariant f -

stru
ture F on F (r

1

; � � � ; r

n

; N) and n � n skew-symmetri
 matri
es �(F) =

(F

ij

) with values in the set f1; 0;�1g su
h that

rankF =

X

F

ij

=1

r

i

r

j

=

X

F

ij

=�1

r

i

r

j

=

1

2

X

F

ij

6=0

r

i

r

j

(1.5)

and F is almost 
omplex stru
ture if and only if F

ij

6= 0 for any i 6= j.

Corollary 1.4. There are 3

(

n

2

)

U(N)-invariant f -stru
tures on a 
omplex 
ag

manifold F (r

1

; � � � ; r

n

;N), obtained by 
hoosing, for ea
h (i < j), �

ij

.

x2. Horizontal f-stru
tures

Among all f -stru
tures on a 
omplex 
ag manifold, an important 
lass is so-


alled horizontal f -stru
tures, be
ause any f -holomorphi
 map with respe
t to

a horizontal f -stru
ture is harmoni
 for all invariant metri
s and its harmoni
ity

is preserved under homogeneous proje
tion.

De�nition 2.1. An invariant f -stru
ture F on a 
omplex 
ag manifold with

the property that [F

+

; F

�

℄ � h will be 
alled a horizontal f -stru
ture, where

F

+

= +

p

�1 eigenspa
e

F

�

= �

p

�1 eigenspa
e

h = u(r

1

) + � � �+ u(r

n

)

For an arbitrary A 2 E

ij

put

A =

0

B

B

B

B

B

B

B

B

B

�

0

.

.

.

0

A

j

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

A

= (0; � � � ; 0; A

i

; 0; � � � ; 0)
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where A

j

= (0; � � � ; 0; A

ij

; 0; � � � ; 0) and A

i

=

0

B

B

B

B

B

B

B

B

B

�

0

.

.

.

0

A

ij

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

A

. Similarly for B 2 E

kl

.

Hen
e

[A; B℄ = AB � BA

=

0

B

B

B

B

B

B

B

B

B

�

0

.

.

.

0

A

j

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

A

(0; � � � ; 0; B

k

; 0; � � � ; 0)

�

0

B

B

B

B

B

B

B

B

B

�

0

.

.

.

0

B

l

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

A

(0; � � � ; 0; A

i

; 0; � � � ; 0)

=

0

�

A

j

B

k

1

A

�

0

�

B

l

A

i

1

A

(2.1)

It follows that

[E

ij

; E

kl

℄ =

8

>

<

>

:

0 if i; j; k; l are distin
t or j 6= l

E

il

if j = k; i 6= l

E

ii

�E

jj

if j = k; i = l

(2.2)

The following theorem 
hara
terize the horizontal f -stru
tures on a 
omplex


ag manifold in terms of �-matri
es.
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Theorem 2.2. Let F be an invariant f -stru
ture on F . Then F is horizontal

if and only if there is an n-permutation � su
h that

i) � and �

2

have no �xed points;

ii) f(i; j)jF

ij

= 1g � f(k; �(k))jk = 1; 2; � � � ; ng

Proof. An equivalent 
ondition of horizontality is [F

+

;

�

F

+

℄ � h

C

[Bl, p41℄. No-

ti
e that F

+

=

p

�1 eigenspa
e of F = �

F

ij

=1

E

ij

. So [F

+

;

�

F

+

℄ � h

C

if and

only if F

ij

= F

kl

= 1; (i; j) 6= (k; l) implies that i 6= k, and j 6= l. It now

follows, from the skew-symmetri
ity of �(F), that F is horizontal if and only if

there exists an n-order permutation � su
h that i) and ii) hold.

Proposition 2.3. Let F = F (r

1

; � � � ; r

n

; N) be a 
omplex 
ag manifold with

height > 1 and J an almost 
omplex stru
ture on F . Then J is horizontal if

and only if n = 3 and J is non-integrable.

Proof. SuÆ
ient is 
lear. Suppose that J is horizontal. From theorem 1.2 and

theorem 2.2 one gets that �(J) is a 3� 3 matrix. Furthermore up to a sign

�(J) =

0

�

0 1 �1

�1 0 1

1 �1 0

1

A

Thus J is non-integrable[MN℄.

x3. n-symmetri
 spa
es and their indu
ed f-stru
tures

Let (E

1

; � � � ; E

n

) denote the legs of F (r

1

; � � � ; r

n

; N) at the identity 
oset.

It is easy to see that

u(N)

C

�

=

Hom(C

N

; C

N

)

�

=

C

N


 C

N

�

=

(

�

E

1

� � � � �

�

E

n

)
 (E

1

� � � � �E

n

)

�

=

�

j;k

(

�

E

j


E

k

)

�

=

�

j;k

Hom(E

j

; E

k

)

Set

E

j+mn

= E

j

for m 2 Z (3.1)

De�ne Q 2 Hom(C

N

; C

N

) by

Q = �

j

on E

j

for j 2 Z
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where � = exp(2�

p

�1=n). Clearly Q is unitary and 
onjugation by Q gives a

periodi
 automorphism of U(N) with order n. Thus F (r

1

; � � � ; r

n

; N) be
omes

an n-symmetri
 spa
e as in [K℄.

This automorphism indu
es one on u(N)

C

as following: � : Hom(C

N

; C

N

)!

Hom(C

N

; C

N

)

�(�) = Q Æ � ÆQ

�1

Then we have

Proposition 3.1. The �

k

-eigenspa
e of � , denoted by g

k

, is

�

j2T

Hom(E

j

; E

j+k

)

where T = f1; 2; � � � ; ng.

Proof. For any � 2 Hom(E

j

; E

j+k

); V 2 E

j

we have

[�(�)℄(QV ) = Q Æ �(V )

= �

j+k

�(V )

= �

k

�(�

j

V ) = �

k

�(QV )

It follows that �(�) = �

k

�, so � 2 g

k

. Conversely, for any � 2 g

k

� g

C

:=

Hom(C

N

; C

N

), we may write

� = �

1

+ �

2

+ � � �+ �

n

where �

j

2 �

i2T

Hom(E

i

; E

i+j

). Together with � 2 g

k

we get that

�

k

� =�(�)

=�(��

j

)

=��(�

j

) = �

n

j=1

�

j

�

j

This implies that � = �

k

2 �

j2T

Hom(E

j

; E

j+k

).

Corollary 3.2. g

k

\ g

�k

= f0g if and only if k 6=

n

2

; 0

Proof. In fa
t (see x1)

Hom(E

i

; E

j

)

�

=

E

ij

(3.2)

Now our 
on
lusion 
an be obtained from (3.1) (3.2) and proposition 3.1 imme-

diately.
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Corollary 3.3. When k 6=

n

2

; 0, g

k

determines an unique invariant horizontal

f -stru
ture F

k

on F (r

1

; � � � ; r

n

; N) su
h that g

k

=

p

�1�eigenspa
e of F

k

.

Proof. From (3.2) ea
h Hom(E

i

; E

j

) is Ad

H

invariant. Combine with proposi-

tion 3.1 we get that ea
h g

k

is Ad

H

invariant. Sin
e g

k

is �

k

� eigenspa
e of �

one has

�g

j

= g

�j

(3.3)

Furthermore be
ause � is the derivative of the automorphism of order n,

[g

i

; g

j

℄ � g

i+j

(3.4)

Assume that k 6= 0;

n

2

. De�ne

g

k

= the eigenspa
e asso
iated to

p

�1

g

�k

= the eigenspa
e asso
iated to �

p

�1

�

j2Tnfk;n�k;ng

g

j

= the eigenspa
e asso
iated to 0

From (3.3) and proposition 3.1 we obtain an invariant f -stru
ture F

k

on

F (r

1

; � � � ; r

n

; N) (see x1). Using (3.3) and (3.4) we see that

[g

k

; �g

k

℄ =[g

k

; g

�k

℄

=g

0

= LieH

whi
h implies that F

k

is horizontal.

x4. �-matri
es and f-holomorphi
 
urves

Let M be a Riemannian surfa
e with lo
al 
omplex 
oordinate z and

� :M ! F (r

1

; � � � ; r

n

;N)

a map into a 
ag manifold with its moving 
ag fE

i

g (see [BS℄). Set

A

0

ij

= �

j

Æ

�

�z

Æ �

i

(4.1)

where �

i

denotes the orthogonal proje
tion onto E

i

. When i 6= j, A

0

ij

is 
alled

the se
ond fundamental form of �.

Remark. The notation of the se
ond fundamental forms is the same as in [BW℄.
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De�nition 4.1. A map � : M ! F (r

1

; � � � ; r

n

;N) is said to be subordinate

to an �-matrix (�

ij

) if A

0

ij

= 0 whenever �

ij

6= 1; i 6= j. We re
all that �

ij

2

f�1; 0; 1g for any i; j.

Proposition 4.2. A map � :M ! F (r

1

; � � � ; r

n

;N) is f -holomorphi
 relative

to an invariant f -stru
ture F on F if and only if it is subordinate to �(F).

Proof. A map � : M ! F (r

1

; � � � ; r

n

;N) is f -holomorphi
 if and only if d�

interwines the f -stru
tures, i,e,

d� Æ J = F Æ d� (4.2)

where J is the standard 
omplex stru
ture on Riemann surfa
e. It is easy to see

that (4.2) holds if and only if d�(

�

�z

) 2

p

�1�eigenspa
e of F [R,p.90℄. Noti
e

that the Maurer-Cartan form gives the familiar isomorphism

�

�1

TF (r

1

; � � � ; r

n

;N)

C

=�

i 6=j

�

E

i

E

j

=�

i 6=j

Hom(E

i

; E

j

)

Furthermore under this isomorphism the 
omponent of d�(

�

�z

) in Hom(E

i

; E

j

)

is A

0

ij

[BS℄[U℄. By the 
onjugation it is 
lear to see that the subspa
e E

ij

(see

x1) 
orresponds to

�

E

i

E

j

= Hom(E

i

; E

j

), whi
h 
ombine with (1.4) we have

p

�1 eigenspa
e of F = �

F

ij

=1

Hom(E

i

; E

j

)

It follows that � is f� holomorphi
 related to F if and only if F

ij

6= 1; i 6= j

implies that A

0

ij

= 0

Combine with Bla
k's result[Bl℄[Bu2℄, we have

Corollary 4.3. Suppose that � :M

2

! F (r

1

; � � � ; r

n

;N) is subordinate to an

horizontal ��matrix (i.e. it is asso
iated to a horizontal f -stru
ture). Then

� = (�

1

; � � � ; �

n

) is an equi-harmoni
 map and ea
h �

j

: M

2

! G

r

j

;N

is

harmoni
 for j = 1; 2; � � � ; n.

Corollary 4.4[N2℄. The Eells-Wood maps: � : M

2

! F (n) are equi-harmo-

ni
.

Proof. Let � : M

2

! CP

n�1

be a full isotropi
 harmoni
 map. Then its

diagram is [BW℄:

�

�

0

�! �

�

1

�! � � � �! �

�

n�1

�! 0
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Hen
e � = (�

0

; �

1

; � � � ; �

n�1

) : M

2

! F (n) is subordinate to horizontal ��

matrix

0

B

B

B

B

B

B

�

0 1 0 � � � 0

�1 0 1 0 � � � 0

0 �1 0 1 0 � � � 0

.

.

.

.

.

.

.

.

.

0 � � � 0 1

0 � � � 0 �1 0

1

C

C

C

C

C

C

A

where

�

0

; �

1

; � � � ; �

n�1

is the harmoni
 sequen
e of �[W℄. It follows that � is equiharmoni
 from 
orol-

lary 4.3.

x5. Algebrai
 
hara
terization of horizontal

f-stru
tures asso
iated to primitive maps

Using the �

k

- eigenspa
e de
omposition (see x3) and 
onjugation we have

the de
omposition of trivial bundle over a 
omplex 
ag manifold g := u(N)

C

�

F (r

1

; � � � ; r

n

; N) i.e.

g = g

0

� g

1

� � � � � g

n�1

where g

j

has its �bre Ad

b

g

j

at x = bH. Be
ause ea
h g

j

is Ad

H

invariant, so

is Ad

b

g

j

.

On the other hand, di�erentiations of the orbit maps on 
omplex 
ag man-

ifold indu
e a bundle homomorphism �. Its kernel is exa
tly equal to g

0

. Re-

stri
ting � on g

1

� � � � � g

n�1

we have a bundle isomorphism. Its inverse map

is the so 
alled Maurer-Cartan form � on F (r

1

; � � � ; r

n

; N). � is a natural

extension of the (left) Maurer-Cartan form on U(N).

De�nition 5.1. Let  :M ! F (r

1

; � � � ; r

n

; N) be a map of a Riemann surfa
e

to a 
omplex manifold.  is primative if  

�

�

(1; 0)

takes values in g

1

where �

(1; 0)

denotes the (1; 0)-
omponent of the Maurer-Cartan form on F (r

1

; � � � ; r

n

; N).

Remark 5.2. By the de�nition 5.1, the primative map  means that  

�

(

�

�z

) 2

p

�1� eigenspa
e of the horizonal f -stru
ture asso
iated to g

1

where z is a lo
al


omplex 
oordinate on M . Hen
e  is an f -holomorphi
 map. In parti
ular, in

the 
ase n = 3, a primitive map is just a holomorphi
 map with respe
t to the

unique (up to a sign) non-integrable almost 
omplex stru
ture (ref. prop. 2.3).
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Now we are in the position of 
hara
terizing the horizontal f -stru
tures as-

so
iate to primitive maps in terms of their ranks. We restri
t ourselves to

F (1; � � � ; 1

| {z }

n�1

; N � n+ 1;N).

Theorem 5.3. The maximal rank of all horizontal invariant f -stru
tures on

F (1; � � � ; 1; N �n+1;N) is 2N �n. Furthermore, if F is a horizontal invariant

f -stru
ture su
h that

rankF = 2N � n

Then F is the one asso
iated to �� eigenspa
e g

1

up to a permutation of order

in the row index of F .

Proof. From (1.5) and theorem 2.2 a horizontal f -stru
ture F atta
hes maximal

rank if and only if its �-matrix satis�es that

f(i; j)jF

ij

= 1g = f(j; �(j))jj 2 Tg

where � is a permutation and T = f1; � � � ; ng. Combine with (1.5) it is easy to

see that

max rankF = 2N � n

for all invariant horizontal f�stru
tures on F (1; � � � ; 1; N � n+ 1;N). On the

other hand, the horizontal f�stru
ture asso
iated to g

1

satis�es that

f(i; j)jF

ij

= 1g = f(1; 2); (2; 3); � � � ; (n� 1; n); (n; 1)g (5.1)

Hen
e ea
h invariant horizontal f -stru
ture with maximal rank is identiti
al to

the one asso
iated to g

1

up to a permutation of order in the row index of F .

x6. Closed surfa
es on full 
omplex flag manifolds

From this se
tion, we restri
t ourselves to full 
omplex 
ag manifolds i.e.

F (n) := F (1; � � � ; 1

| {z }

n

;n)

Let

~

� :M ! U(n) be the lift map of � :M ! F (n), i.e.

� = � Æ

~

�
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where � : U(n) ! F (n) is the natural proje
tion. Let e

1

; � � � ; e

n

be standard

basis in C

n

, i.e.

e

j

=

0

B

B

B

B

B

B

B

B

B

�

0

.

.

.

0

1

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

A

We denote �

j

the matrix of the orthogonal proje
tion onto E

j

with respe
t to

e

1

; � � � ; e

n

(ref. x4). Then

�

j

:M ! gl(n; C)

satis�es that

A

0

ji

(e

1

; � � � ; e

n

) = (e

1

; � � � ; e

n

)A

ij

z

(6.1)

where A

ij

z

:= �

i

��

j

�z

. For V 2 � (�

�

TF (n)), we set

q = �

�

�(V )

where �

�

� : �

�

F (n)!M�u(n) is the pull-ba
k of Maurer-Cartan form. De�ne

the variation of � by

�

t

(x) := �

�

exp(�tq)

~

�

�

(6.2)

Denote asso
iate obje
ts by �

j

(t); A

ij

z

(t) et
. Then we have

Lemma 6.1.

1):

�

�t

j

t=0

�

j

(t) = [�

j

; q℄ (6.3)

2):

�

�z

[�

j

; q℄ = [

��

j

�z

; q℄ + [�

j

;

�q

�z

℄ (6.4)

3):

�

�t

j

t=0

A

ij

z

(t) = [A

ij

z

; q℄� �

i

�q

�z

�

j

(6.5)

Proof. 1). From (6.1) we have

�

j

=

~

�E

j

~

�

�
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where (from now to the end) E

j

will denote the matrix whi
h has 1 in the

(j,j)-position and zero elsewhere. Together with (6.2) one gets

�

j

(t) = e

�tq

�

j

e

tq

Hen
e

�

�t

j

t=0

�

j

(t) = �q�

j

+ �

j

q = [�

j

; q℄

2). It is obvious.

3). Using 1) and 2) we have

�

�t

j

t=0

A

ij

z

(t) =

�

�t

j

t=0

[�

i

(t)

��

j

(t)

�z

℄

=

�

�

�t

j

t=0

�

i

(t)

�

��

j

�z

+ �

i

�

�z

�

�

�t

j

t=0

�

j

(t)

�

= [�

i

; q℄

��

j

�z

+ �

i

�

�z

[�

j

; q℄

= [�

i

; q℄

��

j

�z

+ �

i

�

[

��

j

�z

; q℄ + [�

j

;

�q

�z

℄

�

= [A

ij

z

; q℄� �

i

�q

�z

�

j

where noti
e that �

i

�

j

= 0 whenever i 6= j.

The inner produ
t on gl(n; C) is de�ned by

< A; B >:= tr(AB

�

) 8A;B 2 gl(n; C) (6.6)

It is easy to 
he
k that

< A; B >= < B; A > (6.7)

< A; [B; C℄ >=< [B

�

; A℄; C > (6.8)

In patri
ular we have

< A; B > + < B; A >= 2Re < A; B > (6.9)

Furthermore, the inner produ
ts are preserved under 
orresponden
e (6.1). Let

ds

2

�

:=

X

�

ij

!

i

�

j

!

�

ij

(6.10)
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be a left-invariant metri
 on F (n), where

! = (!

i

�

j

)

is the Maurer-Cartan form on U(n) and

�

ij

= �

ji

�

> 0 if i 6= j

= 0 if i = j

(6.11)

Let (M; g) be a 
losed Riemann surfa
e. Then with respe
t to ds

2

�

, the energy

of �

t

is de�ned by

E(�

t

) :=

Z

M

X

�

ij

jA

ij

z

(t)j

2

v

g

(6.12)

where

v

g

=

p

�1dz ^ d�z

From (6.5)(6.9) and (6.12) we have

d

dt

j

t=0

E(�

t

) =

Z

M

X

�

ij

�

�t

j

t=0

jA

ij

z

(t)j

2

v

g

= 2Re

Z

M

X

�

ij

< A

ij

z

;

�

�t

j

t=0

A

ij

z

(t) > v

g

= 2Re

Z

M

X

�

ij

< A

ij

z

; [A

ij

z

; q℄� �

i

�q

�z

�

j

> v

g

(6.13)

so we get

1

2

d

dt

j

t=0

E(�

t

) = I + II (6.14)

where

I = Re

Z

M

X

�

ij

< A

ij

z

; [A

ij

z

; q℄ > v

g

(6.15)

II = �Re

Z

M

X

�

ij

< A

ij

z

; �

i

�q

�z

�

j

> v

g

(6.16)
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Lemma 6.2.

1):Re < [A

ji

�z

; A

ij

z

℄; q >= 0 (6.17)

2): < A

ij

z

; �

i

B�

j

>=< A

ij

z

; B >; 8B 2 gl(n; C) (6.18)

where A

ji

�z

:= �

j

Æ

��

i

��z

.

Proof. 1).It is easy to see that

(A

ji

�z

)

�

= A

ij

z

(6.19)

so we have

[A

ji

�z

; A

ij

z

℄

�

= [A

ji

�z

; A

ij

z

℄ (6.20)

By using (6.6),(6.9) and (6.20) one gets

2Re < [A

ji

�z

; A

ij

z

℄; q > =< [A

ji

�z

; A

ij

z

℄; q > + < q; [A

ji

�z

; A

ij

z

℄ >

= tr([A

ji

�z

; A

ij

z

℄q

�

) + tr(q[A

ji

�z

; A

ij

z

℄

�

)

= �tr([A

ji

�z

; A

ij

z

℄q) + tr(q[A

ji

�z

; A

ij

z

℄) = 0

2). Noti
e that �

i

�

j

= 0; i 6= j and �

2

i

= �

i

we have

< A

ij

z

; �

i

B�

j

> = tr(A

ij

z

�

�

j

B

�

�

�

i

)

= tr(�

i

��

j

�z

�

j

B

�

�

i

)

= tr(�

i

��

j

�z

�

j

B

�

)

= �tr(

��

i

�z

�

j

B

�

)

= tr(�

i

��

j

�z

B

�

) =< A

ij

z

; B >

It is 
lear to see that, from (6.8)(6.15)(6.17) and (6.19)

I = �2Re

Z

M

X

�

ij

< [A

ji

�z

; A

ij

z

℄; q > v

g

= 0
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For II, we use (6.18) and the Stokes' theorem and yield

II = �Re

Z

M

X

�

ij

< A

ij

z

;

�q

�z

> v

g

= Re

Z

M

X

�

ij

<

�A

ij

z

��z

; q > v

g

�Re

Z

M

X

�

ij

�

��z

< A

z

; q > v

g

= Re

Z

M

<

�A

�

z

��z

; q > v

g

(6.21)

where

A

z

=

X

i;j

�

ij

A

ij

z

(6.22)

and

�A

z

��z

:M ! u(n) (6.23)

(easily 
he
ked!). We have

Proposition 6.3. � : (M; g ! (F (n); dS

2

�

) is harmoni
 if and only if

�A

�

z

��z

= 0

if and only if

�A

�

x

�x

+

�A

�

y

�y

= 0 (6.24)

where

A

�

x

:=

X

�

ij

�

i

��

j

�x

; A

�

y

=

X

�

ij

�

i

��

j

�y

(6.25)

Proof. In fa
t

4

�A

z

��z

=

X

i;j

�

ij

�

�

�x

+

p

�1

�

�y

�

(A

ij

x

�

p

�1A

ij

y

)

=

�A

x

�x

+

�A

y

�y

+ (�)

where

1

p

�1

(�) =

X

i;j

�

ij

 

�A

ij

x

�y

�

�A

ij

y

�x

!

=

X

i;j

�

ij

�

�

�y

(�

i

��

j

�x

)�

�

�x

(�

i

��

j

�y

)

�

= 0

be
ause �

ij

= �

ji

.
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x7 Non�f�holomorphi
 equi-harmoni
 tori

Suppose � : R

2

! F (n) is de�ned by

� = � Æ

~

� (7.1)

where

~

�(x; y) = e

Ax+By

(7.2)

and A;B 2 u(N); [A;B℄ = 0. Then

~

�(x; y) = e

By

e

Ax

(7.3)

�

~

�

�x

=

~

�A (7.4)

�

~

�

�

�x

=

 

�

~

�

�x

!

�

= �A

~

�

�

(7.5)

Combine with the proof of lemma 6.1, we have

��

i

�x

=

�

�x

(

~

�E

i

~

�

�

) =

~

�[A; E

i

℄

~

�

�

(7.6)

So

A

ji

x

= �

j

��

i

�x

=

~

�E

j

[A; E

i

℄

~

�

�

=

~

�E

j

AE

i

~

�

�

(7.7)

Similarly we have

A

ji

y

=

~

�E

j

BE

i

~

�

�

(7.8)

Hen
e the se
ond fundamental forms of � satisfy that

A

ji

z

=

~

�E

j

�E

i

~

�

�

(7.9)

where

� =

1

2

(A�

p

�1B)

Now let F be a invariant f -stru
ture with asso
iated �-matrix (F

ij

) . Then

we have
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Proposition 7.1. � is f�holomorphi
 with respe
t to F if and only if b

ij

=

p

�1a

ij

whenever F

ij

6= 1; i 6= j.

Proof. Put

A = (a

ij

) B = (b

ij

) � = (x

ij

)

Then � is f� holomorphi
 with respe
t to F

Prop:4:2

() i 6= j; F

ij

6= 1 =) A

0

ij

= 0

(6:1)

() i 6= j; F

ij

6= 1 =) A

ji

z

= 0

(7:7)

() i 6= j; F

ij

6= 1 =) E

j

�E

i

= 0

() i 6= j; F

ij

6= 1 =) x

ji

= 0

() i 6= j; F

ij

6= 1 =) a

ji

=

p

�1b

ji

() i 6= j; F

ij

6= 1 =) b

ij

=

p

�1a

ij

In fa
t, we have stronger 
onditions as following:

Proposition 7.2. The equivalent 
ondition of � to be f�holomorphi
 with

respe
t to f -stru
ture F is

1) a

ij

= b

ij

= 0 if F

ij

= 0; i 6= j

2) b

ij

= �

p

�1a

ij

if F

ij

= 1

3) b

ij

=

p

�1a

ij

if F

ij

= �1

Proof. From proposition 7.1 it is enough to show the ne
essite. If F

ij

= 0 and

i 6= j, then proposition 7.1 implies that

b

ij

=

p

�1a

ij

; b

ji

=

p

�1a

ji

it follows that a

ij

= b

ij

= 0 sin
e A;B 2 u(n). If F

ij

= 1 then F

ji

= �1, so we

get

b

ji

=

p

�1a

ji

Take 
onjugation we have

b

ij

= �

p

�1a

ij
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Now we are in the position to invastigate the harmoni
ity of � (de�ned in

(7.1) and (7.2)) with double periods. From (7.4)(7.5) and (7.7) it is easy to see

that

�A

ij

x

�x

=

�

�x

�

~

�E

i

AE

j

~

�

�

�

=

~

�[A; E

i

AE

j

℄

~

�

�

(7.10)

Similarly we have

�A

ij

y

�y

=

~

�[B; E

i

BE

j

℄

~

�

�

(7.11)

Substitute (7.10) and (7.11) into (6.22), we have

Proposition 7.3. Suppose that � : R

2

! F (n) de�ned in (7.1) and (7.2) has

double periods. Then � is harmoni
 with respe
t to ds

2

�

if and only if

[A;

X

�

ij

E

i

AE

j

℄ + [B;

X

�

ij

E

i

BE

j

℄ = 0 (7.12)

Now we 
onstru
t two 
lasses of non�f�holomorphi
 equi-harmoni
 tori into

full 
omplex 
ag manifolds.

Theorem 7.4. Let �

1

; � � � ; �

k

; �

1

; � � � ; �

k

2 Qnf0g (where Q denotes the set

of rational numbers) and

X =

�

0 1

1 0

�

A

j

=

�

�

j

X 0

0 �

j

X

�

(7.13)

B

j

=

�

�

j

X 0

0 �

j

X

�

j = 1; � � � ; k �

n

4

(7.14)

A =

p

�1

0

B

B

B

B

B

B

B

�

A

1

.

.

.

A

k

0

.

.

.

0

1

C

C

C

C

C

C

C

A

(7.15)

B =

p

�1

0

B

B

B

B

B

B

B

�

B

1

.

.

.

B

k

0

.

.

.

0

1

C

C

C

C

C

C

C

A

(7.16)
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Then

1):�(x; y) = �(e

Ax+By

) has double periods;

2):� : T

2

! F (n) is equi-harmoni
;

3):� is not f�holomorphi
 with respe
t to any invariant f�stru
ture on

F (n).

Proof.

1). For l 2 f1; 2; � � � g

A

l

= (

p

�1)

l

0

B

B

B

B

B

B

B

B

B

B

B

�

�

l

1

X

l

�

l

1

X

l

.

.

.

�

l

k

X

l

�

l

k

X

l

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

C

C

A

where

X

l

=

�

X if l = odd

I

2

if l = even

and

I

2

=

�

1 0

0 1

�
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So

e

Ax

= I + Ax+

A

2

x

2

2!

+ � � �

=

0

B

B

B

B

B

B

B

B

B

B

B

�


os�

1

xI

2


os �

1

xI

2

.

.

.


os�

k

xI

2


os �

k

xI

2

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

C

C

A

+

p

�1

0

B

B

B

B

B

B

B

B

B

B

B

�

sin�

1

xX

sin �

1

xX

.

.

.

sin�

k

xX

sin �

k

xX

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

C

C

A

Combine with [A; B℄ = 0, there exists a � 2 Znf0g, su
h that

�(x+ 2�n�; y + 2�m�) = �(x; y)

Hen
e we have

� : T

2

=

R

2

2��(Z� Z)

! F (n)

2). For any left-invariant ds

2

�

on F (n), from (7.13) (7.14) and (7.15) we get

P

�

ij

E

i

AE

j

=

p

�1

0

B

B

B

B

B

B

B

B

B

B

B

�

�

1

�

12

X

�

1

�

34

X

.

.

.

�

k

�

4k�3

X

�

k

�

4k�2

X

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

C

C

A
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so

A �

P

�

ij

E

i

AE

j

= �

0

B

B

B

B

B

B

B

B

B

B

B

�

�

2

1

�

12

X

2

�

2

1

�

34

X

2

.

.

.

�

2

k

�

4k�3

X

2

�

2

k

�

4k�2

X

2

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

C

C

A

= (

P

�

ij

E

i

AE

j

) �A

It follows that

[A;

X

�

ij

E

i

AE

j

℄ = 0 (7.17)

Similarly we have

[B;

X

�

ij

E

i

BE

j

℄ = 0 (7.18)

Subutitute (7.17) and (7.18) into (7.12), we see that � is equi-harmoni
.

3). Suppose that � is f�holomorphi
 with respe
t to the invariant f�stru-


ture F . And (F

ij

) is the �-matrix of F . From proposition 7.2 one of following

is true:

i):

p

�1�

1

=

p

�1�

1

= 0

ii):

p

�1�

1

= �

1

iii):

p

�1�

1

= ��

1

However this is impossible be
ause �

1

; �

1

2 Qnf0g.

Similarly, we 
an show

Theorem 7.5. Let �

1

; � � � ; �

k

2 Qnf0g; 2k � n

X =

�

0 1

1 0

�

and

A =

p

�1

0

B

B

B

B

B

B

B

B

B

�

�

1

X

�

2

X

.

.

.

�

k

X

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

A
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Then � : T

2

! F (n) de�ned by

(x; y)! �(e

A(x+y)

)

is an equi-harmoni
 map but not f�holomorphi
 with respe
t to any invariant

f�stru
ture on F (n).
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