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ABsTRACT. In this paper, we establish a one-one correspondence between invari-
ant f—structures on non-symmetric complex flag manifolds and skew-symmetric
matrices valued in {—1, 0, 1} and study the geometry of invariant f—structures
and f—holomorphic curves on flag manifolds. In particular, we construct equi-
harmonic tori on full complex flag manifolds which are not f—holomorphic with
respect to any horizontal f—structure and characterize some important horizon-
tal f-structures such as almost complex and primitive horizontal f—structures.

§0. INTRODUCTION

Complex flag manifolds are the most typical and important reductive ho-
mogeneous spaces. They include symmetric (height = 1) and non-symmetric
(height> 2) cases. Many beautiful results in harmonic surfaces on the symmet-
ric flag manifolds (i.e. Grassmannians, in particular, projective spaces) have
been obtained in the recent years. In this case since the difference of partial
energies is a smooth homotopy invariant[Li], the holomorphicity of maps im-
plies their harmonicity. It follows that the fundamental aspect of harmonic
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surfaces on Grassmannians is to construct non-holomorphic harmonic maps.
For instance, start from holomorphic maps, Eells-Wood manufactured non-
holomorphic harmonic maps[EW]. They called them (complex) isotropic maps.

However, in the non-symmetric case, a complex flag manifold has many
left-invariant metrics. Furthermore the relative metric induced by restricting
the Killing form is not well behaved from the point of view of complex ge-
ometry. Hence the equi-harmonic surfaces on non-symmetric flag manifolds
play a central role, where equi-harmonicity means harmonicity with respect
to all left-invariant metrics. Black’s theorem tells us, if map ¢ : M — F =
F(ry, -+ ,rp; N) from a Riemann surface to the complex flag manifold with
height n — 1 is f—holomorphic with respect to some horizontal f-structure on
F', then ¢ is equi-harmonic; and for an equi-weakly conformal surface the con-
verse is still true.

A natural question is: is there an equi-harmonic surface which is not f—holo
-morphic with respect to any horizontal f—structure on F'7

In this article, we will give a positive answer for this question. In fact, a
stronger result will be obtained. We will manufacture equi-harmonic tori on
full complex flag manifolds which are not f—holomorphic with respect to any
invariant f—structure on full flag manifolds.

Our main approach is to study the geometry of invariant f—structures and
f—holomorphic curves on non-symmetric flag manifolds by encoding invariant
f—structures into e—matrices and some ideas of Uhlenbeck as in [Uh] for ex-
ample. The f—structures on a Riemannian manifold, introduced by Yano in
1963, extend almost complex (resp. contact) structures on a even (resp.odd)-
dimensional manifold, and they are applied widely in study of geometry of
harmonic maps[Bul,Lo,R]. A nice way to understand invariant almost complex
structures on a flag manifold is tournament. Using technique of tournoment
and Birkhoff-Grothendieck decomposition theorem, Burstall-Salamon obtained
their factorisation theorem with strictly decreasing length[BS]. In fact, there is
a 1:1 correspondence between invariant almost complex structures on a com-
plex flag manifold with height n — 1 and n-tournaments. Inspired by [BS], in
this paper we establish one-one correspondence between invariant f—structures
and skew-symmetric matrices valued in {—1, 0, 1}. We call these matrices e-
matrices. Using the theory of e-matrices, we characterize some of the main
horizontal f—structures, i.e. almost complex structure and the f—structures
associate to primitive maps.

The invariant f—structure related to primitive surfaces on a non-symietric
complex flag manifold F' is naturally induced from the k(> 3)—symmetric



structure of F'. The importance of primative surfaces are not only their equi-
harmonicity but also their covering property for each conformal harmonic sur-
face on a symmetric complex flag manifold. For instance, “Eells-Wood” sur-
faces[N2| covering all complex isotropic harmonic surfaces are primitive sur-
faces (ref. corollary 4.4 and (5.1)). Bolton, Pedit and Woodward studied non-
isotropic harmonic surfaces with orthogonal harmonic sequences in CP". They
established a one-one correspondence between these surfaces (called them su-
perconformal ones) and 7—primitive surfaces on a full complex flag manifold.
And the latter are closely related to affine Toda fields [BPW]. Burstall consid-
ered all finite isotropy order conformal harmonic surfaces in CP". He showed
that these surfaces can be covered by the primitive surfaces on flag bundle over
CP™ [Bu2](which can be identified to surfaces on not-necessarily-full flag man-
ifolds[M]). Recently, this covering property has been extended to surfaces on
Grassmannian by Udagawa|Ud].

In this paper, we characterize the invariant f—structures associated to per-

imative surfaces on non-symmetric flag manifolds F(1, ---, 1, N —n + 1; N).
n—1

More precisely, we show that these f—structures have exactly maximal rank

among all the horizontal ones.

The horizontality of the standard complex structure J; and the associate
parabolic almost complex structure J, have been discussed in [MN], they proved
that .J; is never horizontal, and J5 is not horizontal if the complex flag manifold
has height> 3. We will prove that a horizontal f—structure on a non-symmetric
complex manifold is almost complex if and only if it is the standard parabolic
almost complex structure .J; on 2—height flag manifold.

Acknowledgements: The first auther wishes to thank IMECC-UNICAMP for
their hospitality. The second author wants to express his sincere gratitute to
Professor Karen Uhlenbeck for her imense support throughout these years.

§1. f-STRUCTURES ON COMPLEX FLAG MANIFOLDS

Consider the complex flag manifold

UN)
F oo s N) =
(ry e ) U(ry) x - x Ul(ry)
where 1 +---4+1, = N. F(ry, ---, rp; N) is a completely reductive homoge-

neous space with reductive splitting

w(N) = [u(ry) + -+ u(rn)] ® [@icjmij] (1.1)



where
mi; = {A = (Akl) - U(N)|, Akl =0if (k,l) 7é (Z,]) and (j, Z)}

A € gl(r, x ;3 C) is the isotropy representation. It will be necessary to
consider the complexified version of (1.1). We have

mi; = {A = (Au) € gl(N; C)| Ay = 0 if (k, 1) # (i, ) and (4,0)}
:Eij @Eﬁ

and
E;j :={A = (An) € gl(N, C)| Ay = 0if (k,1) # (4,5)} (1.2)

is U(ry) x --- x U(ry) invariant and irreducible. For arbitrary A = (Ay;) € E;;
we have

A= (Ay) +V-1(47)

where N
( % (k7l):(i7j)
1 _ At ..
Aw =93 =5 (k1) =(j.9)
. 0 otherwise
and

4 Aij _ ..
2y/—1 (kal) - (27.7)
A==\ o (k1) =(.i)

L 0 otherwise

so it’s easy to see that

and vice versa, we get,

[@icjmi;]© = Big; Eij (1.3)



Definition 1.1[Bl]. An f-structure on
F=F(ry, - ,rn; N)
is a section F of End(TF(ry,--- ,rn; N)) such that F3 + F = 0.

An U(N) invariant f-structure on F(ry, ---, rp; N) may be identified with
an H equivariant endomorphism,F, of @;<; such that F> + F = 0 where H =
U(ry) x -+ x U(ry). Using Schur’s Lemma, all the U(N)-invariant f-structures
may be constructed as following: Put

e = (€ij)
a n x n skew-symmetric matrix with values in the set {1, 0, —1}. Define
V=1 eigenspace of F = @¢,;=1E;; (1.4)

—+v—1 eigenspace of F = @gijzlﬁij = B¢,;;=—1F3j
0 eigenspace of F = @,,—oL;;

Determining the eigenspaces in this way defines an H equivariant endomorphism
F of ®;x;E;;, which is seen to be the C-linear extension of an H equivariant
endomorphism of &;<;m;; since @, ;=1F;; and B, ;= 1F;; are conjugate and

[Be;;=1Ei5] N [@e,;=—1L45] = {0}

Definition 1.2[Bul]. The complex dimension of /—1 eigenspace of F is the
rank of F.

Suppose that f-structure F is defined by e¢(F) = (F;;) then
rankF : = dimc[v—1 eigenspace of F]

= dimc OF,;=1 Ejj
== Z dlm(cEw = Z ’I“i’l“j
In particular, if 2rankF = dimF'(ry,--- ,7m,; N), i,e
2 Z rirj:Nz—r%—---—rZ:Zrirj
Fij=1 i#]

it follows that 0 eigenspace = {0}, so F is an almost complex structure. And
vice versa. We have shown that



Theorem 1.3. There is a 1 : 1 correspondence between U(N) invariant f-
structure F on F(rq,--- ,r,; N) and n X n skew-symmetric matrices e(F) =
(Fij) with values in the set {1,0, —1} such that

1
rankF = Z rir; = Z rir; = 5 Z Ty (15)
Fij=1 Fij=—1 Fij#0
and F is almost complex structure if and only if F;; # 0 for any i # j.

Corollary 1.4. There are S(Q)U(N )-invariant f-structures on a complex flag
manifold F(rq,--- ,r,;N), obtained by choosing, for each (i < j), €;.

§2. HORIZONTAL f-STRUCTURES

Among all f-structures on a complex flag manifold, an important class is so-
called horizontal f-structures, because any f-holomorphic map with respect to
a horizontal f-structure is harmonic for all invariant metrics and its harmonicity
is preserved under homogeneous projection.

Definition 2.1. An invariant f-structure F on a complex flag manifold with
the property that [Fy, F_] C h will be called a horizontal f-structure, where

F+ =+v—1 eigenspace

F_ = —+v—1 -eigenspace

h=wu(ry)+ -+ u(ry,)

For an arbitrary A € E;; put

0

A=|A; | =(0,---,0,40,---,0)




0
0
where A; = (0,---,0,4;4,0,---,0) and A* = | A;; |. Similarly for B € Ej,.
0
0
Hence
A, B]= AB — BA
0
0
=| 4, | (0,---,0,B%,0,---,0)
0
0
0
0 .
—| B | (0,---,0,4%0,---,0)
0
0
= A;BF — B A’ (2.1)
It follows that
0 if 4,7, k, 1 aredistinct or 7 #I
[Eij, En] =< Ej if j=k i#1 (2.2)

Ey—E;; if j=k i=I

The following theorem characterize the horizontal f-structures on a complex
flag manifold in terms of e-matrices.



8

Theorem 2.2. Let F be an invariant f-structure on F'. Then F is horizontal
if and only if there is an n-permutation o such that
i) o and 0% have no fixed points;

i) {(i, )| Fig =1} C{(k, (k) [k =1, 2, ---, n}

Proof. An equivalent condition of horizontality is [F, F,] C h*[Bl, p41]. No-
tice that F = /=1 eigenspace of F = @z, —1F;;. So [Fy, Fy] C hE if and
only if Fi; = Fry = 1,(4, j) # (k, 1) implies that ¢ # k, and j # [. It now
follows, from the skew-symmetricity of e(F), that F is horizontal if and only if
there exists an n-order permutation o such that i) and ii) hold.

Proposition 2.3. Let F' = F(ry, ---, rn; N) be a complex flag manifold with
height > 1 and J an almost complex structure on F. Then J is horizontal if
and only if n = 3 and J is non-integrable.

Proof. Sufficient is clear. Suppose that J is horizontal. From theorem 1.2 and
theorem 2.2 one gets that €(.J) is a 3 x 3 matrix. Furthermore up to a sign

Thus J is non-integrable[MN].

§3. n-SYMMETRIC SPACES AND THEIR INDUCED f—STRUCTURES

Let (Ey, ---, E,) denote the legs of F(rq, ---, ry; N) at the identity coset.
It is easy to see that

u(N)© = Hom(CV, CV)
~CcV o N
~E 0 0FE,)®(EL® - ®E,)

= @jk(E; © Bg) = ©j xHom(Ej, Ey)

Set
Ejtmn =E; for meZ (3.1)

Define Q € Hom(CY, CV) by

Q=¢ on E; for jeZ
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where ¢ = exp(2my/—1/n). Clearly @ is unitary and conjugation by Q gives a
periodic automorphism of U(N) with order n. Thus F(rq, - -+, r,; IN) becomes
an n-syminetric space as in [K].
This automorphism induces one on u(N)® as following: 7 : Hom(CV, CV) —
Hom(CVN, CN)
T(§) =QofoQ™"

Then we have

Proposition 3.1. The (¥-eigenspace of T, denoted by g, is
®jerHom(Ej, Ejyk)

where T ={1,2, ---, n}.
Proof. For any ¢ € Hom(Ej, Ejy,), V € Ej we have

T(OIQV) = Qog(V)
= (V)
= CRe(CTV) = ¢Re(QV)

It follows that 7(¢) = (*¢, so € € gp. Conversely, for any ¢ € gp C g% =
Hom(CY, CV), we may write

§=&+86+ - +&

where ¢; € ®;erHom(E;, E;4 ;). Together with £ € gi, we get that

¢he =r(¢)
:T(Egj)
=X7(¢) = Bj_1 ¢
This implies that { = & € @jerHom(E;, Ejiy).
Corollary 3.2. g, Ng_j = {0} if and only if k # %, 0

Proof. In fact (see §1)
HOHl(Ei, EJ) = Eij (32)

Now our conclusion can be obtained from (3.1) (3.2) and proposition 3.1 imme-
diately.
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Corollary 3.3. When k # 5, 0, gy determines an unique invariant horizontal
f-structure Fy, on F(rq, ---, rn; N) such that g, = /—1—eigenspace of Fy,.

Proof. From (3.2) each Hom(F;, E;) is Adg invariant. Combine with proposi-
tion 3.1 we get that each gj is Ady invariant. Since gj, is (¥— eigenspace of T
one has

g =9-j (3.3)

Furthermore because 7 is the derivative of the automorphism of order n,

(96> 95] C Givj (3.4)

Assume that k # 0, 5. Define

gr = the eigenspace associated to /—1

g_r. = the eigenspace associated to —y/—1

DjeT\{k,n—k,n}gj = the eigenspace associated to 0

From (3.3) and proposition 3.1 we obtain an invariant f-structure Fj on
F(ry, -+, rn; N) (see §1). Using (3.3) and (3.4) we see that

l9K> k] =[9K> 9—k]
—go = LieH

which implies that Fj is horizontal.

64. e-MATRICES AND f-HOLOMORPHIC CURVES

Let M be a Riemannian surface with local complex coordinate z and
¢ M — F(ry,---,mn; N)

a map into a flag manifold with its moving flag {F;} (see [BS]). Set

0
A;j:ﬂ'jO&Oﬂ'i (4.1)

where m; denotes the orthogonal projection onto E;. When ¢ # j, A;j is called
the second fundamental form of ¢.

Remark. The notation of the second fundamental forms is the same as in [BW].
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Definition 4.1. A map ¢ : M — F(ry,---,ry; N) is said to be subordinate
to an e-matrix (e;;) if Aj; = 0 whenever €;; # 1,i # j. We recall that ¢;; €
{-1, 0, 1} for any 1, j.

Proposition 4.2. A map ¢ : M — F(ry,--- ,r,; N) is f-holomorphic relative
to an invariant f-structure F on F' if and only if it is subordinate to e(F).

Proof. A map ¢ : M — F(ry,---,ry; N) is f-holomorphic if and only if d¢
interwines the f-structures, i,e,

dpoJ =Fodg (4.2)

where J is the standard complex structure on Riemann surface. It is easy to see
that (4.2) holds if and only if d¢(Z) € v/—1—eigenspace of F[R,p.90]. Notice
that the Maurer-Cartan form gives the familiar isomorphism

d)_lTF(’I’l, TR N)C - EBi;éj E,E]
- @i;éj HOIIl(Ei, Ej)

Furthermore under this isomorphism the component of d¢(2) in Hom(E;, E;)
is A;;[BS][U]. By the conjugation it is clear to see that the subspace E;; (see
§1) corresponds to E;E; = Hom(FE;, E;), which combine with (1.4) we have

V=1 eigenspace of F = @z, _1Hom(E;, £j)

It follows that ¢ is f— holomorphic related to F if and only if F;; # 1,1 # j
implies that A;; =0

Combine with Black’s result[Bl|[Bu2], we have

Corollary 4.3. Suppose that ¢ : M? — F(ry,--- ,rn; N) is subordinate to an
horizontal e—matrix (i.e. it is associated to a horizontal f-structure). Then
¢ = (¢1,--+,bn) Is an equi-harmonic map and each ¢; : M? — G, N is
harmonic for j =1, 2,--- ,n.

Corollary 4.4[N2]. The Eells-Wood maps: ® : M? — F(n) are equi-harmo-
nic.

Proof. Let ¢ : M? — CP" ! be a full isotropic harmonic map. Then its
diagram is [BW]:

b0 b1 Pn_1
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Hence ® = (¢o, ¢p1, -+, ¢n_1) : M? — F(n) is subordinate to horizontal e—
matrix

0 1 0 0

-1 0 1 0 0

O -1 0 1 0 0

0 0 1

0 0 -1 0
where

¢07 ¢17 Ty ¢n—1

is the harmonic sequence of ¢[W]. It follows that ® is equiharmonic from corol-
lary 4.3.

§5. ALGEBRAIC CHARACTERIZATION OF HORIZONTAL
f-STRUCTURES ASSOCIATED TO PRIMITIVE MAPS

Using the (- eigenspace decomposition (see §3) and conjugation we have
the decomposition of trivial bundle over a complex flag manifold g := u(N)® x
F(ri, -+ ,ry; N) ie.

99,999,999, ,

where 9, has its fibre Adyg; at « = bH. Because each g; is Adg invariant, so
is Adbgj.

On the other hand, differentiations of the orbit maps on complex flag man-
ifold induce a bundle homomorphism «. Its kernel is exactly equal to 9o Re-
stricting « on g DDy, | we have a bundle isomorphism. Its inverse map
is the so called Maurer-Cartan form 3 on F(ry,---,r,; N). [ is a natural
extension of the (left) Maurer-Cartan form on U(N).

Definition 5.1. Let vy : M — F(ry, ---, rp; N) be a map of a Riemann surface
to a complex manifold. 1 is primative if ¢*3(1:0) takes values in g | Where B(1:0)
denotes the (1, 0)-component of the Maurer-Cartan form on F(ry, -+, rn; N).

Remark 5.2. By the definition 5.1, the primative map 1 means that w*(%) €
v/—1— eigenspace of the horizonal f-structure associated to 9, where 2 is a local
complex coordinate on M. Hence v is an f-holomorphic map. In particular, in
the case n = 3, a primitive map is just a holomorphic map with respect to the
unique (up to a sign) non-integrable almost complex structure (ref. prop. 2.3).
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Now we are in the position of characterizing the horizontal f-structures as-
sociate to primitive maps in terms of their ranks. We restrict ourselves to
F1,---,1,N—n+1;N).

——

n—1

Theorem 5.3. The maximal rank of all horizontal invariant f-structures on
F(,---,1,N—n+1;N) is 2N —n. Furthermore, if F is a horizontal invariant
f-structure such that

rankF = 2N —n

Then F is the one associated to (— eigenspace g, up to a permutation of order
in the row index of F.

Proof. From (1.5) and theorem 2.2 a horizontal f-structure F attaches maximal
rank if and only if its e-matrix satisfies that

{( DIFy; =13 =10, 0(h)ls € T}

where o is a permutation and 7= {1,--- ,n}. Combine with (1.5) it is easy to
see that
max rankF = 2N —n

for all invariant horizontal f—structures on F(1,---,1, N —n+ 1; N). On the
other hand, the horizontal f—structure associated to g L satisfies that

{(i7 .7)|}_w = 1} = {(17 2)7 (27 3)7 B (n -1, n)7 (n7 1)} (5'1)

Hence each invariant horizontal f-structure with maximal rank is identitical to
the one associated to g, up to a permutation of order in the row index of F.

§6. CLOSED SURFACES ON FULL COMPLEX FLAG MANIFOLDS

From this section, we restrict ourselves to full complex flag manifolds i.e.

Let ¢ : M — U(n) be the lift map of ¢ : M — F(n), i.e.

p=mog



14

where 7 : U(n) — F(n) is the natural projection. Let ey, ---,e, be standard
basis in C", i.e.
0

0
We denote m; the matrix of the orthogonal projection onto E; with respect to
e1, - ,en (ref. §4). Then

iy M — gl(n, C)

satisfies that -
Ali(er, - yen) = (€1, ,en)AY (6.1)

where AY := Wi%. For V e I' (¢*TF(n)), we set

q=¢"pV)

where ¢*3 : ¢* F(n) — M xu(n) is the pull-back of Maurer-Cartan form. Define
the variation of ¢ by

di(a) = (eap(—ta)9) (6.2)
Denote associate objects by m;(t), AY(t) etc. Then we have

Lemma 6.1.

1), emoms (6) = [y, (63
2). ol ) = [, d] + [y, 51 (6.4
).+ lemo A (1) = [AY, g) — mi oL (6.5)

Proof. 1). From (6.1) we have

T = ¢E;p"
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where (from now to the end) E; will denote the matrix which has 1 in the
(j,j)-position and zero elsewhere. Together with (6.2) one gets

m;i(t) = e et

Hence

0
%h:oﬂj(t) = —qm; + miq = [ﬂ-jvq]

2). It is obvious.
3). Using 1) and 2) we have

ANV IO P ANEND LA

ot
(0 or, 0 (0
= <at|t=°7”(t)> 9. iy, (at“:‘)”’(t))

om; 0
= [mi, =2 + mio—[mj, q]

0z 0z
on; on; dq
~ m 52 (152l + e 51)
ij dq
= [Az]7 q] - ﬂ-iaﬂ'j
where notice that m;7; = 0 whenever i # j.
The inner product on gl(n, C) is defined by
< A, B >:=tr(AB") VA, B € gl(n, C) (6.6)
It is easy to check that
<A, B>=<B,A> (6.7)
<A, [B,C]>=<[B*, A],C > (6.8)
In patricular we have
<A B>+<B,A>=2Re< A, B> (6.9)

Furthermore, the inner products are preserved under correspondence (6.1). Let

ds% = Z AijWizWi (6.10)
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be a left-invariant metric on F'(n), where
v = ()

ij

is the Maurer-Cartan form on U(n) and

>0 if i#£y
)\ij:)\ji{:() TR (6.11)

Let (M, g) be a closed Riemann surface. Then with respect to ds%, the energy

of ¢; is defined by
B = [ T A0, (6.12)

where

=v—-1ldzNdz
From (6.5)(6.9) and (6.12) we have
d 9 i
Gl = [ 3T x ol AT O
ij 9 ij
= 2Re/ Z)\ij < AY, %hzoAzﬂ (t) > vy

= 2Re/ Z)‘” < A9 [AY ) q] — Wi?ﬂ'j > vy
z

(6.13)
so we get
Ld B =T+ 1T (6.14)
2dt t=0 t) — -
where
I= Re/ D Nij < AT AT q] > v, (6.15)

ij dq
Il = —RG/MZ)\,'J' < Azj, 7!','@71']' > Vg (616)



Lemma 6.2.
1).Re < [AL', AY] ¢ >=0

2). < AY, mBr; >=< AY, B >, VB € gl(n, C)
0 or;
where A" :=mj 0 S2.
Proof. 1).It is easy to see that
(AZ))" = AY
so we have
(AL, ATT" = [AL, AY]

By using (6.6),(6.9) and (6.20) one gets

2Re < [AL', AW, g > =< [AL', AY], ¢ > + < q, [A}, AY] >

= tr([AL', AY]q*) + tr(q[AL', A¥]%)

= —tr([A7, A¥]q) + tr(q[AL', AY]) =0

2). Notice that mm; =0, i # j and 72 = 7; we have
< AY, m;Bmj > = tT(Aijﬂ';B*ﬂ';“)
87’["7'

= tT(ﬂ'i—ﬂ']’B*ﬂ'i)

0z

It is clear to see that, from (6.8)(6.15)(6.17) and (6.19)

I= —2Re/ D Nij <AL AY], g > 05=0
M

17

(6.17)

(6.18)

(6.19)

(6.20)
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For II, we use (6.18) and the Stokes’ theorem and yield

:—Re/ ZA,J<AW % > v,
Z
0
/Z)\w< O 4> Re/ SN < A > v,
M

0AA
= —= 21
Re/M< 8Z,q>vg (6.21)
where -
A =) A AY (6.22)
and IA.
M 6.23
2 M u(n) (623
(easily checked!). We have
Proposition 6.3. ¢: (M, g — (F(n), dS%) i =0
if and only if
OAL 814;X
< =0 6.24
ox + oy ( )
where 5 5
AL ) A _ )
AY = A o Ay = > i 5 (6.25)

Proof. In fact
8Az

ZA,J ( +vV-1— ) (AY — V=1AY)

an DA,
= Ty T

where

1 DAY 8A;j
1/—_1(*)__2&”( oy o )
B - 0 871'] 0 871'] B
_ZZJ_:)\” [8 (s 8:3) 89:( " Oy )] =0

because A;; = Aj;.



§7 NON—f—HOLOMORPHIC EQUI-HARMONIC TORI
Suppose ¢ : RZ — F(n) is defined by

p=mog

where
P, y) = eoTBY

and A, B € u(N), [A,B]=0. Then
(w,y) = ePvet”

¢ -
oz = 4

o (08\ -
ox _(%> = —4¢

Combine with the proof of lemma 6.1, we have

871’,'

d 7%
= £(¢Ei¢ )

So
87Ti

Al =7 =
T J T

OE;[A, E;|¢* = $E;AE;*

Similarly we have
Al = QE;BE;¢"

Hence the second fundamental forms of ¢ satisfy that
A’ = QB XE;"

where

x= (A~ V-IB)

19

(7.1)

(7.2)

Now let F be a invariant f-structure with associated e-matrix (F;;) . Then

we have
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Proposition 7.1. ¢ is f—holomorphic with respect to F if and only if b;; =
vV —1la;; whenever F;; # 1,1 # j.

Proof. Put
A=(ay;) B=(by) x= ()
Then ¢ is f— holomorphic with respect to F

PR LG, Futl = AL =0

CY 24 Fy#l = A=
S 2j, Fyj#1 = BEjxE =0
=i#£j, Fij#Fl = z;=0
i#tg FyFl = aj= \/__lbji
= i#j, Fiyy#£1 = bjj=+v—1la;
In fact, we have stronger conditions as following;:

Proposition 7.2. The equivalent condition of ¢ to be f—holomorphic with
respect to f-structure F is

1) aij:bij:Oif}}j:O, 275]

2) b,‘j = —\/—_laij Iff” =1

3) bij == \/—_laij 110.7:” =-1
Proof. From proposition 7.1 it is enough to show the necessite. If F;; = 0 and
© # j, then proposition 7.1 implies that

b,’j =V —1a,~j, bji =V —1aji
it follows that a;; = b;; = 0 since A, B € u(n). If F;; =1 then F;; = —1, so we

get
bji =V —laj,-

Take conjugation we have

b,’j = —V —1a,~j
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Now we are in the position to invastigate the harmonicity of ¢ (defined in
(7.1) and (7.2)) with double periods. From (7.4)(7.5) and (7.7) it is easy to see

that

DA D - N .
== <q5E,~AEj¢> ) = $A, B AE;]) (7.10)
Similarly we have N
DA ]
L B, BB (7.11)

Substitute (7.10) and (7.11) into (6.22), we have
Proposition 7.3. Suppose that ¢ : R? — F(n) defined in (7.1) and (7.2) has
double periods. Then ¢ is harmonic with respect to ds% if and only if
[A, D N EAE] +[B, Y AjE:BE;] =0 (7.12)
Now we construct two classes of non— f—holomorphic equi-harmonic tori into
full complex flag manifolds.

Theorem 7.4. Let ay,---,ap, (1, -, 0k € Q\{0} (where Q denotes the set
of rational numbers) and

(0 1 (X 0
(00 (%) 713
- ﬂjX 0 . n
Bj_< 0 ;X j=1 k< g (7.14)
Ay
A=+-1 A 0 (7.15)
0
B
B =1 By . (7.16)




22

Then

1).¢(z, y) = m(eA*TBY) has double periods;

2).¢: T? — F(n) is equi-harmonic;

3).¢ is not f—holomorphic with respect to any invariant f—structure on
Proof.

1). Forl e {1,2,---}

ol X
I vl
LX

where

X! {X it [ =odd

I, if [=even

and

10
w=(o 1)



So
2,2
e =T+ Az + T
cosa1xls
cos frzly
sinayxX

sin f1z X

cos apxlsy

cos Brxls

sin o X

sin Bpx X

Combine with [A, B] = 0, there exists a v € Z\{0}, such that

¢(x + 2mnv, y + 2mrmy) = ¢(z, y)

Hence we have

2

23

1 = —— S F
¢ mzezn) LW
2). For any left-invariant ds% on F(n), from (7.13) (7.14) and (7.15) we get
Z )\,JEZAEJ
a1 A12X

B1Az34 X

apAgp—3X

BrAak—2X
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SO
Oé%/\ng
B3 X2
_ i Aa—3X?
BEN g2 X2
0
0
= (D N EAE;) - A
It follows that
[A, ) "N EiAE;] =0 (7.17)
Similarly we have
[B, Y AijE;BE;] =0 (7.18)

Subutitute (7.17) and (7.18) into (7.12), we see that ¢ is equi-harmonic.

3). Suppose that ¢ is f—holomorphic with respect to the invariant f—stru-
cture F. And (F;;) is the e-matrix of F. From proposition 7.2 one of following
is true:

i)/ —1lag =+/—181 =0

'L'l;)\/—_lﬂl = (X1

ZZZ)\/—_lﬁl = —Q

However this is impossible because «q, £ € Q\{0}.
Similarly, we can show

Theorem 7.5. Let ay,---,ax € Q\{0}, 2k <n
0 1
(1)
and
O!lX
O!zX

A:\/—l O!kX
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Then ¢ : T? — F(n) defined by

(w, y) = m(AHY)

is an equi-harmonic map but not f—holomorphic with respect to any invariant
f—structure on F(n).

[BI]
[Bul]
[Bu2]

[BP]
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