INFINITELY MANY SOLUTIONS OF NONLINEAR
ELLIPTIC SYSTEMS

THOMAS BARTSCH* DJjAiRO G. DE FIGUEIREDO
Mathematisches Institut IMECC
Universitat Giessen UNICAMP
Arndtstr. 2 Caixa Postal 6065
35392 Giessen 13081-970 Campinas SP
Germany Brazil

1 Introduction
In this paper we study elliptic systems of the form

—Au = Hy(z,u,v) in
(1.1)
—Av = H,(z,u,v) in

where Q C RY, N > 3, is a smooth bounded domain and H: Q x R x R = R is a C''-function. We
shall also consider the case when @ = RY, and in this case the system takes the form

~Au+u = Hy(z,u,v) in RV
(1.2)
-Av+v = H,(r,u,v) in RV

In the bounded case, we look for solutions of (1.1) subject to Dirichlet boundary conditions
uw =wv =0 on J0. In the case when Q = RV we assume that some symmetry with respect to x
holds; for instance, that the z-dependence of H is radial, or that H is invariant with respect to
certain subgroups of O(N) acting on RY. We shall obtain both radial and non-radial solutions in
the radial symmetric case, thus observing a symmetry breaking effect.

In order to illustrate the kind of results obtained here, let us state two theorems. We first
consider the case when  is bounded. In such a case, the following set of hypotheses is assumed.
First, the regularity of the Hamiltonian:

(H)) H: QxR xR — Ris C' and H > 0.

Next we assume conditions related to the growth of the right side of (1.1).
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(H2) There exist constants p,q > 1 and ¢; > 0 with

1 1 2
1>-+->1— — 1.3
>p+q> i (1.3)
such that
|Hy(z,u,0)| < er(JuP~" + o P~H9/P 4 1) (1.4)
and
|Hy (z,u,0)] < ey (Jo]7F + Ju) @72/ 4 1) (1.5)

for all (z,u,v) € 2 x R x R.
The next condition is a “non-quadraticity” condition at infinity introduced by Costa-Magalhaes
[5]. It is related to the so-called Ambrosetti-Rabinowitz condition and it is devised to get some

sort of Palais-Smale condition for the functionals involved.

(H3) There exist 1 < a <pand 1< f < g with

and such that

1 1
—H,(z,u,v)u+ EHU(m,u,v)v — H(z,u,v) > a(|ul" +|v|” = 1) (1.7)

e

for all (z,u,v) € 2 x R x R. Here a, u, v are positive constants satisfying

N 1 1 1 1
oo {11001
2 2 p P q

and

Remark 1.1. Observe that 1 — % - % is always positive in view of (He). It follows from (Hg) that
H(z,u,0) > e(|ul® + o)’ = 1). (18)
In fact, (1.8) follows from a condition weaker than (Hs), namely

1 1
—H,(z,u,v)u+ EHv(m,u,v)v > H(z,u,v)
et

for all = € Q and |(u,v)| > R; see Felmer [10].



Remark 1.2. Suppose H satisfies the following condition of Ambrosetti-Rabinowitz type: there is
R>0andl<a' <p and1<ﬂ’<qwith$+%<1 and such that

1

o

1
H,(z,u,v)u+ FHv(x,u,v)v > H(x,u,v)
for x € Q and |(u,v)| > R. Then condition (H3) holds. In this case, it follows that H is su-
perquadratic, in the sense that

H(w,u,0) > ci(|ul* +[v]") - e

The next condition provides the symmetry we assume here.
(Hy) H(x,—u,—v) = H(x,u,v) for all (z,u,v) € A x R x R

Now we are prepared to state the result in the case of {2 bounded. For that matter we introduce
a non-increasing sequence of constants d,,, n € N, with §,, — 0, which will be defined in Section 3,
and which depend only on p, ¢, a and .

Theorem 1.1. Suppose that (Hy)-(Hy) hold. Then there is a ko € N such that, if

2H 1
liminf @0 1 (1.9)
[(wv)[=oo Jul* + vl = Ok
holds for K > ko, system (1.1), subject to Dirichlet boundary conditions, has K — ko + 1 pairs of
nontrivial solutions.
Moreover, if
. H(z,u,v)
lim e = To%
(u,0)| =00 |u|® + |v]
(in particular, if H is superquadratic) then system (1.1), subject to Dirichlet boundary conditions
has infinitely many solutions.

The solutions obtained in Theorem 1.1 are strong solutions in the sense that u € W2#/(?=1(Q)N

Wol’p/(p_l)(Q) and v € W24/=D)(Q) N WS’Q/(q_l)(Q). The existence of at least one solution for
the system (1.1), without symmetry assumptions, has been considered before. See the survey paper
[6] for a list of references.
As a corollary of Theorem 1.1 we obtain solutions to two nonlinear eigenvalue problems. We
consider first
—~Au = du+ M|’ 2v+ Hy(z,u,v),
(1.10)
—-Av = plul*"2u+ dv + Hy(2,u,v)

in a bounded domain Q C RY subject to Dirichlet boundary conditions v = v = 0 on 8. The
constants a, # are those from (Hs).

Corollary 1.1. If H satisfies (Hy)-(Hy), then for each k € N, there exists Ay, > 0, such that (1.10)
has k pairs of non-trivial solutions provided X\, pn > Ag.



Next we consider the eigenvalue problem

—Au = MH,(z,u,v)
(1.11)
—Av = AHy(x,u,v)

in a bounded domain  C RY subject to Dirichlet boundary conditions v = v = 0 on 0.

Corollary 1.2. Suppose that H satisfies (Hy)-(Hy), and

hmint ZEHY) g
|(u0) |00 [u]® + [v]?

Then for each k € N, there exists A, > 0, such that (1.11) has k pairs of non-trivial solutions
provided \ > Ayg.

Let us now state a result for the case when system (1.2) is considered in the whole of RV .
We need a distinct, but similar, set of hypotheses.

(H) H: RN xRxR — Ris C', H >0, H(z,u,v) > 0 for |(u,v)] > 0 and H is radial in the
variable z.

(HY) There exist positive constants p, ¢, a,b and ¢; with

1 1 2
p,g>2, —+=->1—-—, 1l<a<p—-1 1<b<qg-1, (1.12)
P q N
such that
|Hy (2, u,0)| < e (Ju]P~ + o] P7D9P 4 |u|®) (1.13)
and
|Hy (2, u,0)] < e (Jo]7 " + Jul P74 o) (1.14)

for all (z,u,v) € RY xR x R.
(H;) There exist 1 < a <pand 1< < q¢with a ! + 37! < 1 and such that

1 1
—Hy(z,u,v)u + EHv(;v,u,U)v > H(x,u,v)
a

for all (z,u,v) € RY xR x R.
(H) There are positive constants ¢ and 7 such that

H(z,u,v) > c(|ulP +|v|?) for z € RN and |(u,v)| < 7.

(HY) H(z,u,v) = H(x,—u,—v) for all (z,u,v) € RN xR x R.

Remark 1.3. It follows from (H}) that there are positive constants ¢ and R such that
H(z,u,v) > c(Jul’ +|v|?) for |(u,v)] > R. (1.15)
Then (1.14) and assumption (H}) imply that
H(z,u,v) > c(|ul? +|v|?)  for all (z,u,v) € RN x R x R. (1.16)



Theorem 1.2. Assume that the Hamiltonian H satisfies the hypotheses (H})-(HE). Then system
(1.2) has infinitely many radial solutions.

The solutions obtained in Theorem 1.2 are strong solutions in the sense that they satisfy
u € Wi)’cp/(p_l)(]RN) and v € Wli’g/(q_l)(]RN). They also satisfy v € H*(RY) C L7(RY) and v €
HY(RYN) c L°(RY) for some s,t > 0 with s+t =2 and 2 < 7,2N/(N —2s), 2 < § < 2N/(N —2t).
The existence of at least one solution has been obtained before for special cases of system (1.2) in
[9] and recently in [14].

The next result exhibits the breaking of symmetry in certain dimensions. The result extends
to the type of systems we have here a result that Bartsch-Willem [3] proved in the scalar case.

Theorem 1.3. Suppose that (H})-(Hf) holds. If N =4 or N > 6 then system (1.2) has infinitely
many non-radial solutions.

2 Some Abstract Critical Point Theory

We consider a Hilbert space E and a functional ® € C'(E, R). Given a sequence F =(X,,) of finite
dimensional subspaces X,, C X,,+1, with |J X,, = E, we say that ® satisfies (PS)7, at level ¢ € R,
if every sequence z;, j € N, with 2; € X,,;, nj — oo, such that

®(zj) 2 ¢ and (14 |l5l)(2lx,,) () =0 (2.1)

has a subsequence which converges to a critical point of ®. In the case when X,, = E for alln € N
this form of the Palais-Smale condition is due to Cerami [4]. It is closely related to the standard
Palais-Smale condition and to the (PS)* condition of [1] and [11]. It also yields a deformation
lemma. In the present form (PS)7 was introduced in Bartsch-Clapp [2].

Remark 2.1. If ® has the form
1
D(z) = §<LZ’Z> — U(z)

with L : E — E a linear Fredholm operator of index zero and VVU : E — E completely continuous,
then a bounded (PS)? sequence (z;) has a convergent subsequence. By a (PS)? sequence we mean
a sequence as in (2.1). Let us prove the above statement. First select a subsequence, denoted again
by (z;) such that z; — z, weakly in E. Then V¥(z;) - VU(z), strongly in E. Let P, : E — X,
denote the orthogonal projection onto X,,. We have that the sequence

P, ,V®(zj) = Py;Lzj + P,;V¥(2j)
converges to zero in view of (2.1). So
Py, Lzj - —VV¥(z) = Lz.
Hence Lzj — Lz. And as a consequence, zj — z, because ker L is finite dimensional.

Now suppose that E splits as a direct sum E = E* ® E~. Let Eli C EZjE C ... be a strictly

increasing sequence of finite dimensional subspaces of E* such that Uno, Ef = E*. Setting
E, = Ef ® E, we can formulate the hypotheses on ® which are needed for our first abstract
theorem.



(®,) ® € CH(E,R) and satisfies (PS)7 for F = (E,)nen and ¢ > 0.
(®3) For some k > 2 and some r > 0 one has

b :=inf{®(2): 2 € ET,2z L Ej,_1,]|2|| =71} > 0. (2.2)

(®3) There exists an isomorphism T : E — E with T(E,) = E,, for all n € N, and there exist
K > k and R > 0 such that

for z =2" 427 € Ef & E~ with max{||z"[,|]z"||} =R

one has
|Tz|| >r and @(Tz2) <0,

where k and r are the constants introduced in ().
(1) dic = sup{@ o T(=+ +27) : 2+ € B, 2~ € B ||z, |l || < R} < os.

(®5) @ is even, i.e. (—z) = D(z).

A stronger condition that implies (®4) and holds in our application is:

(®6) ® maps bounded sets to bounded sets.

Theorem 2.1. Assume (®1) — (®5). Then, for every b < by, ® has at least K — k + 1 pairs £z;
of critical points with critical values in [b, dk].

Proof: We need to recall the equivariant limit category defined in [2], specialized to our situation.
We set G = Z/2 which acts on E via the antipodal map. Given invariant subsets Z C Y C X
of E, we define the G—catx (Y, Z) to be the least integer m such that there exists a covering
Y CUyU...UU,, of Y with invariant open subsets Uy, ...,U,, of X with the properties:

(i) Z C Uy and there exists a continuous family ht : Uy — X, 0 <t < 1, of odd maps satisfying
h°(z) = z and h'(z) € Z for every z € Uy, and h'(z) = z for every z € Z and every ¢t € [0, 1].

(ii) For i = 1,...,m there exists a continuous family h! : U; — X, 0 < t < 1, of odd maps
satisfying h{(z) = z for every z € U; and such that h}(U;) = {%z;}, for some z; € X \ {0}.

Now we define the equivariant limit category for G-invariant sets Z C Y C E by

G—catL (Y, Z) :=limsup G—catp, (Y NE,, ZNE,).

n—oo

Given d > b > 0 Theorem 2.8 of [2] says that ® has at least G—cat% (®?, ®) pairs of critical
points with critical values in [b, d]. Therefore it suffices to prove that G—cat% (®9x , ®%) > K —k+1
for 0 < b < bg. This follows from the next lemma.

Lemma 2.1. Fiz 0 < b< by andn > K. Then

v:= G—catp, (2" NE,,®" NE,) >K —k+ 1.



Proof: For simplicity we set d := dg, and B := BRE?; x BrE, with R > 0 from (®3). We also
write S, E, for the sphere of radius r in E,,. Let

! :=@®'NE, ClUyU...UU,

be a covering as in the definition of G—catp, (®%, ®>). There are odd mappings h' : Uy — ®° and
h} : U; — {+£z;}. Making Uy smaller if necessary we may assume that h' extends continuously to
Up. Then we can extend h' to an odd mapping h' : E,, — E,, by using Tietze’s extension theorem.
Now we set

O:={z€ B || (T2)| < r}.
For z € OB we have ||T'z|| > r and ®(7'z) < 0 by (®3). Thus Tz € ®° C ® and h'(Tz) = Tz, and
hence ||h'(T'2)|| = ||Tz|| > r. This implies that O is an open subset of B with O C int B. Clearly
O is an invariant neighborhood of 0 in Eff ® E,, .
For z € T~1(Up) we have that h'(Tz) € ®° C E,\S,(Ei- , N E}), in virtue of (®2). For
z € 00, we have that ||h*(T'z)|| = r. This implies that

W (00NT HUy)) C Sy By \ Sy (Ej_y N E).

The latter space has the sphere S, (Ek,l e E,; ) as a strong deformation retract. In particular,
there exists an odd mapping

S E,\ Sr (B NE}) — S, (Ep1 @ E).

bserve that S, (E’Cfl ©® E;) > Gkin=2 Putting these mappings together we obtain an odd
mapping
go : 00 1 _1(1]0) — Sk+n—2 C ]RkH-n—l'

The mappings h! : U; — {£2;} yield odd maps
gi : 00NT HU;) — S% = {£1}.

By (®4) we have that T'(B) C ®%. Therefore T!(Uy),...,T 1 (U,) cover B. Setting V; :=
00 NT~1(U;), we obtain an open invariant covering of 0. Choose then a partition of the unity
m 1 00 — [0,1], 7 = 0,...,7, subordinated to the covering Vp,...,V, of 0O. Since the V;’s are
invariant we may assume that the 7;’s are even. Now we define the mapping

g:00 — RML xRV g(2) := (m0(2)g0(2), - . -, 7y (2)g+(2)).

First, observe that g is well defined. Namely, if 7;(z) # 0, then z € V; and so g;(z) is defined.
Obviously, ¢ is odd, since the g; are odd and the m; are even. Also, g is continuous. In addition
g(z) # 0 for every z € 0O because there exists ¢ € {0,...,7}, with m;(2) # 0, and hence z € V;
and |g;(2)| = 1. Thus we have a continuous odd mapping g : 00 — RFT"=1+7\ {0}, where O is
an invariant bounded open neighborhood of 0 in Eft & E;, . Now Borsuk’s theorem implies that
k+n—1+v>dimE} ® E; = K + n. This shows that 7 > K — k + 1 as required. O

As an immediate corollary of Theorem 2.1, we obtain the Fountain Theorem, which we state
below. First we introduce the following set of conditions.

(®}) There exists a sequence ry > 0, k € N, such that b, — +o00 as k — oo. (Here by, is defined as
in (®3) with ry instead of r.)



(®%) There exists a sequence of isomorphisms Ty, : E — E, k € N, with T} (E,,) = E,, for all k and
n, and there exists a sequence Ry, > 0, k € N, such that, for z =27 +2" € E,j @ E— with
max{||z*]|,]|z7||} = Ry, one has

Tzl > rr and @(Tkz) <0
where 7, is given in (®}).
(@) dy :=sup{®(Lx(z" +27)) 12" € Ef,2z7 € E7,||2F||,|27|| < Rk} < .
Theorem 2.2. (Fountain Theorem) Suppose that (®1), (®,) — (®}), (P5) hold. Then ® has an
unbounded sequence of critical values.
Hypothesis (®4) will be checked in the applications later on using the contents of the next
remark.

Remark 2.2. Let E be a Hilbert space and Ey C Ey C ... be finite dimensional subspaces such
that |J,. | E, = E. Let ® € C*(E,R) be of the form ® = P — ¥ such that

P(z) > alz||P forallz€e E

and
|@(2)| <BA+2I%) forallz€ E

Here X is a Banach space such that E C X compactly, and q > p, «, B are positive constants.
First we prove that

up =sup{||zllx 1z € E,z L E_1,]||z|| =1} = 0 as k — .
Indeed, suppose by contradiction that this is not the case. So, there is € > 0 and a sequence (z;) in
E with z; L Ey,_1, ||zl = 1, ||zjllx > € and kj = oo as j — co. This implies that z; — 0, weakly
in E hence zj — 0, strongly in X, which contradicting ||z;||x > €.
Next we prove that there are vy, > 0, k € N, so that
by, :=inf{®(z) : 2z € E,z L Ej_1,||2|| =1} — o0.

Indeed, for z € E, z L Ej_1, we have

®(z) = P(z)—¥(2)
> allzllP = B(L+||2]1%) (2:3)
> allz||P - B — Buillz]|?

Taking ||z|| = r with ry, == (pa/qBul)*/(4=P) we obtain
D(z) > e, [P 5 tox,

where ¢ depends only on p,q,a, .



Although the Fountain Theorem is an immediate consequence of Theorem 2.1, we choose to
give a direct proof of it which does not employ the equivariant limit category, since this is a result
with many applications.

Proof of the Fountain Theorem: By (®)) it suffices to show that ® has a critical value in
[br,di], for every k with by > 0. Fix such a k and suppose that [by,ds] contains only regular
values. By Proposition 2.6 in [2], for n large, there exists a continuous deformation h, : ®&% — E,,,
t € [0,1], such that Al is odd and hl(®%) C ®~< for some ¢ > 0. Moreover hl(z) = z if
®(z) < 0. As above we set B := Bg, E; x By, E, , for n > k. Consider the set

O={zeB: [|h(Tk2)| < re}-

As in the proof of Theorem 2.1 one checks easily that O is an open invariant neighborhood of 0 in
E! @ E,;, and that O C int B. Now we set

g:=PohioTy:00 — Ef | @ E,, g(z) := P(h(T}2))

where P : E, — E! | ®E, is the orthogonal projection. Since dim(E;} @ E,,) > dim(E{_,  E,,),
Borsuk’s theorem tells us that g must have a zero. Now z € 00O implies that ||h1(T2)|| = 1k, and
g(z) = 0 implies that hi(T}z) € E}, hi(Txz) L Ef |. It follows from (@) that ®(hi(Ty2)) > by.
This contradicts the fact that Tyz € ®%* by (®4) and hy (®Lr) C Box—=. O

3 The Variational Setting

3.1 The spaces in the case of a bounded domain in R”. Let ¢, n € N, be an orthonormal
basis of L2(f2) made up of eigenfunctions of the eigenvalue problem

—Au=Au in Q, u=0 on ON.
Let A\, be the corresponding eigenvalues. For all real numbers s > 0 we define, for u = Zjoil ajpj, v =
Z;il bjpj:
H(Q) = {u € L2(Q) : 32, Alay? < oo}.
This is a Hilbert space with respect to the inner product (u,v)s := Z;’il Ajajb;. Clearly, the

operator
o0

A®HA(Q) — LA(Q), u+— Z)\;ﬂaj(pj
j=1

is an isometric isomorphism. It is easy to see that

/Asugb:/uAs(p for all u,¢ € H*(Q2)
Q Q
which is used to prove the regularity of weak solutions. One has also the Sobolev imbeddings

H*(Q) C LP(Q)

2N
N—2s

2N
N—2s"

continuously if 1 <p < and compactly if 1 <p <



3.2 The spaces in the case 2 = R". In this case, the space H*(R") is defined by
H(RY) = {u € LARY) : fon (14 [€]°)* - [G(&)[PdE < oo}

where @ denotes the Fourier transform of w. This is a Hilbert space with respect to

! )2 a(e)
() 1= e [ (I ) - o) e
The operator
A H(RY) — L*(RY), ww— ((L+[E)D)",

(where w" denotes the inverse Fourier transform of w) is usually written as A% = (1 + |D|*). It is
readily seen that it is an isometric isomorphism. It is also easy to see that

Alugp = uA’p for all u, ¢ € H*(RY).
R™ R"

We observe that A2 = v — Aw since
Ay = ((1+€H)a)  forue HX(RY).

This explains the form of the system (1.2) in the case of = R™.
If G is a subgroup of O(N), then we set

LE(R™) := {u € L*(R") : u(gr) = u(z) for g € G, and z € R" a.e.}
and HE, := H* N L%, Clearly we have that
A (Hg(R")) = LE(R™)

In the case of R” there is a loss of the compact imbeddings. However, depending on the group
G acting on R, we can still recover them. We mention the following result due to P.-L. Lions [12]:

Proposition 3.1. If
G =0(Ny) x ... x O(Ny,)

with N; > 2 and Zle N; = N, then the imbedding

2N

HE(R™) C L"(R™") for 2
G(R") C L7(R*) for 2<y < —pr

15 compact.

The case when G = O(N) was first proved by Strauss [15].

3.3 The “quadratic” forms and the functionals. In the sequel we write £° to denote both
H*(Q) in the case of a bounded domain 2, and H*(RY). Let us consider the Cartesian product
E := E° x E* with s,t > 0, which is also a Hilbert space endowed with the inner product

<Z:77> = <u7¢>s+<vaw>t7 for Z:(U:U)aﬁz(ﬁﬁﬂ/’) €L

10



We consider the bilinear form
B:ExE—R, Blz,n = /(AsuAtl/l+As¢Atv),

where [ denotes the integral in both cases, over  or over R". Associated to B, we have the
quadratic form

Q(z) := %B[z,z] = /AsuAtv.

It is easy to see (cf. [7]) that the bounded self-adjoint operator L : E — E defined by (Lz,n) :=
Blz,n] has exactly two eigenvalues +1 and —1, and that the corresponding eigenspaces ET and
E~ are given by

ET ={(u,A'A%u): u € E*} and E~ = {(u,—A'A%u): u € E*}

where we are using the notation A~* = (A")~*.
Now consider the Hamiltonian H : 2 x Rx R — R from Section 1. We consider the functional

D(2) :=Q(z) — /H(m,u,v) dz (3.1)
where z = (u,v). By (Hz) or (H)), there exist s,t > 0, with s +¢ = 2 and

1 1 ] 1 1 t

s - 2 s oL 2

’ > 5 n and p > 5 n (3.2)

This implies that we have continuous imbeddings E* C LP and E! C LY. We fix s and t with
this property so that ® is well defined in E by (Hs) or (H}). Moreover, (Hz) or (H}) imply that
® € C*(E,R) with

(®'(2),n) = Blz,n] — / (Hu(a:,u,v)¢ + Hv(a:,u,v)w) dx

for z,n € E. From this one deduces that a critical point z = (u,v) of ® corresponds to a weak
solution of (1.1) or (1.2). Namely

/Asu Aty = /Hv(a:,u,v)w for all v € E*
and
/AsqﬁAtv = /Hu(m,u,v)qﬁ for all ¢ € E®.
As shown in [7] for the case of Q2 bounded these solutions are strong in the sense that
ue WP/ P=D @) n Wy PPV (Q) and v e W/ (@) n w4 (q),

and they satisfy (1.1). In the case of R" we conclude that u € W2/ P~ (RN ) and v € W27 71 (RV),
and that they satisfy (1.2).
In order to apply Theorem 2.1 in the next sections, let us introduce the following notations.
Let (ej)jen be an orthonormal basis of E*. Clearly the f; := A~'A%e;, j € N, constitute an
orthonormal basis of Ef. We set
Ef :=span{e; :j=1,..,n} and E! :=span{f;:j=1,..,n}.

The following result can be readily seen.

11



Lemma 3.1. With the above notations, we have
=U* ,Ef, E=E*®oE, E,:=Ef®E, =ExE!
O

Next we check that the functional ® defined in (3.1) satisfies the condition (®4) in both cases,
Q bounded or RY.

Lemma 3.2. Assume (H;)—(Hz) or (H})-(HS). Then there exists a sequence of positive real num-
bers ri,, k > 1, such that

by :=inf{®(z) : z€ BT, 2 L By, ||2]| = 1} = +o0.

Proof: We use Remark 2.2 applied to the Hilbert space ET with P(z) := Q(z), and

:/H(x,u,v)

where z = (u,v). We know that Q(z) = ||z||? for z € E*, and from (H,) we obtain
‘/H(w,u,v) </|u|p /|v|q + 1>
C(ll=llx +1)
where X = LP(Q) x L9(?) and r = max{p, ¢} > 2. Also, assuming (H}) we obtain:

[awun| < o fupe [l [ foe)

C'l=ll%
for some r > 2. O

IN

N

IN

A

4 The case () bounded.

In this section we prove Theorem 1.1. With the notation from Section 3, we want to apply Theorem
2.1 to the functional

. FE->R (2 /Hmuv (4.1)

where z = (u,v) € E = E* x Et. First we show that ® satisfies a Palais-Smale condition.

Lemma 4.1. Assume (H;), (Hs) and (H3). Then ® as defined in (4.1) satisfies (PS) for every
c€ R and F = (E,)nen.

Proof: In view of Remark 2.1, it suffices to prove that a (PS)? sequence is bounded in E. This
follows as in Section 3 of [8], up to the point where we are to get some bounds for ||uy||g: and
||vnl|pe. At this point we then use the fact that [ A%u, A% =0, for all ¢ € (EL)™ . O

Next we check the other assumptions of Theorem 2.1. It has already been proved that ®
satisfies condition (®/). In particular, condition (®2) is satisfied.

12



For each A > 0, let us define the isomorphism T : E — E by

T (u,v) = AV~ tu, A2 1o).

Clearly T\E,, = E,, for all € N. Observe however that E;f NT\E;F = {0} and E, NT\E,, = {0} if

a # fB.

For each k € N consider the finite dimensional subspace Ej}. Since all norms are equivalent in

finite dimensional spaces, we have positive constants oy, o}, 7 and 7, such that

s > opllullps  for all u € E}

lullz2 = okllullps and  lu|

and
lvllzz > mk||v]|ge and  ||v]|ge > T¢l|v]|Le for all v € E,tc

These constants are going to compose the constants d; announced in the introduction.

Lemma 4.2. Assume that there are constants co and c3, such that
1 o 3
Hr,u,0) > geallul® + olf) -
for all (z,u,v) € 2 x R x R. Then, for each A > 0 and each k € N, one has
B(Thz) < XHP(1 = eu61) + 30|

forall z =zt + 27 € E}f ® E~, with A\ := ||z7F]|, where

0'20'I a T2TI B
5 := mi (M) : (M)
k mln{ 5 2

(4.2)

Proof: For z =2" +27 € E;f ® E~ we write 2~ = 2] +z, where z; € E, z; L E, . We also

write 7 := 2T + 27 and z = (u,v), 2+ = (u*,vF),... Using (4.2) we have
1
/H(w,T,\z) > e (AT ullga + XD lI) — el
Q

Since a and f are conjugate exponents and u; L % in L?, we obtain

lullee > [, @] - [[Ell s
= aliz-lall
> opoplalle-
=: o|[dl|Es-

Similarly
lollLs > 7 Tilloll e =2 Tl0ll e

Next observe that @ = u™ + u] and v = A~ A*(u™ — u] ). So

geand [7llpe = [lu’ —u|

B = Jut 4y

[l B

13
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Using (4.3)-(4.6) we obtain the following estimate on the Hamiltonian:

/Q H(z,Ty2)

1 ~ _ —1)8~ _
> 2o (NODG G+ up g + At — 1) - sl
Since |[ut||gs = ||z7]|/2 = A\/2, we have that either ||ut + ul||p: > A\/2 or ||[ut —u] ||g: > /2.
In either case )
/QH(.’L‘,T,\Z) > ¢ S AP — ¢3)Q. (4.7)
On the other hand we have that
_ 1 _ _
Q(Txz) = X*772Q(z) = A2 (I = 127 11%)
and so for ||zT|| = A we obtain
1
Q(Trz) < 5)\‘”5. (4.8)
Thus it follows from (4.7) and (4.8) that
1
®(Thz) < 5(1 — 0 AP 4 e3|Q] forall A = ||lzF] < |27 )] (4.9)
O

An immediate consequence of Lemma 4.2 is the next result which establishes (®3).

Lemma 4.3. Suppose that (4.2) holds and there is K € N such that
1—c20K <0 (4.10)
Then, fizing r > 0 there is a Mg > 0 such that, for all A > Ao one has, forz =27 +2z~ € E?; GE:
®(Thz) <0 if [|z7||=A, and ||Thz]| >r if max{||z"|,]|]z"]|} = A\

O

Proof of Theorem 1.1: As mentioned before we apply Theorem 2.1. First we observe that Lemma
4.1 gives condition (®1). Lemma 3.2 implies that there exists a kg € N such that by, > 0, which then
gives (@) and (P4). Now suppose that (1.9) holds for some K > kg. Then we can apply Lemmas
4.2 and 4.3 and conclude that (®3) holds. (®4) is implied by the fact that ® maps bounded sets of
E into bounded sets of R. Finally, condition (®5) is a consequence of (Hy). O

5 The case () = R"

With the notations introduced in Section 3 the weak solutions of (1.2) are the critical points of the
functional

D(z) = Asu Aty — H(z,u,v) (5.1)
RN RN
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acting in E = E* x E' := H*(RV) x HY(RV), where s and t satisfy (3.2). We shall consider
the functional @ restricted to certain subspaces of E where we have compact imbeddings due to
symmetry properties. Let us start with the group G = O(N) acting in R", and let us look for
critical points of ® in the subspace X of E given by X = H§, (R™) x H&N) (R™). All subspaces
introduced in Section 3 are now restricted to spherically symmetric functions. Observe that

X =Fix(G) = {(u,v) € E:gu=wu, gv =v, forall ge O(N)}

where gu means (gu)(z) = u(gz), for all z € R”. We see also that ® is invariant with respect to G,
ie. ®(gu,gv) = ®(u,v). Hence, it follows from the Palais Principle of Symmetric Criticality, see
[13] or [16], that the critical points of ® restricted to X are critical points of ® considered in the
whole space E.

In order to prove Theorem 2.1, we have to check that <I>|X satisfies the assumptions of the
Fountain Theorem.

For each A > 0, let us define the isomorphism 7} : E — E, by

T,\(U,’U) = ()‘“ua )‘Vv)a
m—p

where pp = #=£ and v = %, and m > max(p, q). Clearly T\E,, = E,,.

Lemma 5.1. Assume conditions (H})-(H}). Then, there is a sequence A\, > 0, k € N, such that
(®%) holds with Ty, :== T, and Ry, := Ag.

Proof: Let us use the notation introduced in the proof of Lemma 4.2. It follows from (1.16) that
for any A > 0 we have

H(z,Thz) > ¢ <)\””/ |ul? + )\”q/ |v|q> . (5.2)
RN RN RN
Using Hélder’s inequality, we obtain
_ _ 2 1 1
lullze [[@ll Lo > [(u, @) 12| = |[ullz>  where sty b

Next, from the finite dimensionality of E} we have that there is a positive constant 7; such that

lullr > Yl|[@l|gs  for u € Ef.

Similarly there is ¥ > 0 with
lvl|pe > Fk|[o]|ge  for v € EL.
Thus it follows from (5.2) that

H(z,Tyz) > c(\"Pyg][al
RN

B + NFIE)-
As in the proof of Lemma 4.2 we obtain
H(z,T\z) > i 1 AHPAP AP 1 AVIFINT L > g \™
. (z,Thz) > c-min By Y\ 2 Yk 2 Ok

provided |[zT]] = A
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On the other hand,
Q(Trz) = M ([l — [l27 %) < At
for ||z*|] = A. Consequently we have
®(Thz) < NFVTZ g™,
Since m > p+ v + 2, it follows that there is a Ag(k) > 0 such that ®(T), z) < 0if A\, > Ao(k). Also
ITaz]| > Atz )%,
which implies that
Zazll = A2 for max[|z*H]l, 12711} = Ar.
Therefore, we can choose A\, such that
®(T),2) <0 and [|[Tx.z|| > 7k
for any given rg. O

Proof of Theorem 1.2: First we observe that hypotheses (H}) and (Hj}) imply that ® is C! in E.
And using (H}) we prove easily that a (PS)? sequence is bounded in X. So it follows from Remark
2.1 and Proposition 3.1 that <I>|X satisfies the (PS)? condition. Hence (@) holds. Condition (%)
has already been checked in Lemma 3.2. Condition (®4) is proved in Lemma 5.1. Condition (®})
is trivially verified, and finally (®5) is a consequence of (Hjs). So we apply the Fountain Theorem
and conclude. O

We omit the Proof of Theorem 1.3 since it parallels a similar result of Bartsch-Willem [3]
for the scalar case. The result in our case follows from an application of the Fountain Theorem,
using Proposition 3.1. (]
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