INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC SYSTEMS

THOMAS BARTSCH^{*} Mathematisches Institut Universität Giessen Arndtstr. 2 35392 Giessen Germany DJAIRO G. DE FIGUEIREDO IMECC UNICAMP Caixa Postal 6065 13081-970 Campinas SP Brazil

1 Introduction

In this paper we study elliptic systems of the form

$$\begin{cases}
-\Delta u = H_v(x, u, v) & \text{in } \Omega \\
-\Delta v = H_u(x, u, v) & \text{in } \Omega
\end{cases}$$
(1.1)

where $\Omega \subset \mathbb{R}^N$, $N \geq 3$, is a smooth bounded domain and $H: \overline{\Omega} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a C^1 -function. We shall also consider the case when $\Omega = \mathbb{R}^N$, and in this case the system takes the form

$$\begin{cases} -\Delta u + u = H_v(x, u, v) & \text{in } \mathbb{R}^N \\ -\Delta v + v = H_u(x, u, v) & \text{in } \mathbb{R}^N \end{cases}$$
(1.2)

In the bounded case, we look for solutions of (1.1) subject to Dirichlet boundary conditions u = v = 0 on $\partial\Omega$. In the case when $\Omega = \mathbb{R}^N$ we assume that some symmetry with respect to x holds; for instance, that the *x*-dependence of *H* is radial, or that *H* is invariant with respect to certain subgroups of O(N) acting on \mathbb{R}^N . We shall obtain both radial and non-radial solutions in the radial symmetric case, thus observing a symmetry breaking effect.

In order to illustrate the kind of results obtained here, let us state two theorems. We first consider the case when Ω is bounded. In such a case, the following set of hypotheses is assumed. First, the regularity of the Hamiltonian:

(H₁) $H: \overline{\Omega} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is C^1 and $H \ge 0$.

Next we assume conditions related to the growth of the right side of (1.1).

^{*}Research supported by GMD-CNPq. T.B. thanks the members of the Department of Mathematics at UNICAMP for their invitation and hospitality.

(H₂) There exist constants p, q > 1 and $c_1 > 0$ with

$$1 > \frac{1}{p} + \frac{1}{q} > 1 - \frac{2}{N} \tag{1.3}$$

such that

$$|H_u(x, u, v)| \le c_1(|u|^{p-1} + |v|^{(p-1)q/p} + 1)$$
(1.4)

 and

$$|H_v(x, u, v)| \le c_1(|v|^{q-1} + |u|^{(q-1)p/q} + 1)$$
(1.5)

for all $(x, u, v) \in \overline{\Omega} \times \mathbb{R} \times \mathbb{R}$.

The next condition is a "non-quadraticity" condition at infinity introduced by Costa-Magalhães [5]. It is related to the so-called Ambrosetti-Rabinowitz condition and it is devised to get some sort of Palais-Smale condition for the functionals involved.

(H₃) There exist $1 < \alpha < p$ and $1 < \beta < q$ with

$$\frac{1}{\alpha} + \frac{1}{\beta} = 1, \tag{1.6}$$

and such that

$$\frac{1}{\alpha}H_u(x, u, v)u + \frac{1}{\beta}H_v(x, u, v)v - H(x, u, v) \ge a(|u|^{\mu} + |v|^{\nu} - 1)$$
(1.7)

for all $(x, u, v) \in \overline{\Omega} \times \mathbb{R} \times \mathbb{R}$. Here a, μ, ν are positive constants satisfying

$$\mu > \frac{pN}{2} \max\left\{\frac{1}{2} - \frac{1}{p}, \ 1 - \frac{1}{p} - \frac{1}{q}\right\}$$
$$\nu > \frac{qN}{2} \max\left\{\frac{1}{2} - \frac{1}{q}, \ 1 - \frac{1}{p} - \frac{1}{q}\right\}$$

 and

.

Remark 1.1. Observe that
$$1 - \frac{1}{n} - \frac{1}{a}$$
 is always positive in view of (H₂). It follows from (H₃) that

$$H(x, u, v) \ge c(|u|^{\alpha} + |v|^{\beta} - 1).$$
(1.8)

In fact, (1.8) follows from a condition weaker than (H_3) , namely

$$\frac{1}{\alpha}H_u(x,u,v)u + \frac{1}{\beta}H_v(x,u,v)v \ge H(x,u,v)$$

for all $x \in \overline{\Omega}$ and $|(u, v)| \ge R$; see Felmer [10].

Remark 1.2. Suppose H satisfies the following condition of Ambrosetti-Rabinowitz type: there is R > 0 and $1 < \alpha' < p$ and $1 < \beta' < q$ with $\frac{1}{\alpha'} + \frac{1}{\beta'} < 1$ and such that

$$\frac{1}{\alpha'}H_u(x,u,v)u + \frac{1}{\beta'}H_v(x,u,v)v \ge H(x,u,v)$$

for $x \in \overline{\Omega}$ and $|(u,v)| \geq R$. Then condition (H₃) holds. In this case, it follows that H is superquadratic, in the sense that

$$H(x, u, v) \ge c_1(|u|^{\alpha'} + |v|^{\beta'}) - c_2.$$

The next condition provides the symmetry we assume here.

(H₄)
$$H(x, -u, -v) = H(x, u, v)$$
 for all $(x, u, v) \in \overline{\Omega} \times \mathbb{R} \times \mathbb{R}$

Now we are prepared to state the result in the case of Ω bounded. For that matter we introduce a non-increasing sequence of constants δ_n , $n \in \mathbb{N}$, with $\delta_n \to 0$, which will be defined in Section 3, and which depend only on p, q, α and β .

Theorem 1.1. Suppose that (H_1) - (H_4) hold. Then there is a $k_0 \in \mathbb{N}$ such that, if

$$\liminf_{|(u,v)| \to \infty} \frac{2H(x,u,v)}{|u|^{\alpha} + |v|^{\beta}} > \frac{1}{\delta_K}$$

$$(1.9)$$

holds for $K \ge k_0$, system (1.1), subject to Dirichlet boundary conditions, has $K - k_0 + 1$ pairs of nontrivial solutions.

Moreover, if

$$\lim_{|(u,v)| \to \infty} \frac{H(x, u, v)}{|u|^{\alpha} + |v|^{\beta}} = +\infty,$$

--- /

(in particular, if H is superquadratic) then system (1.1), subject to Dirichlet boundary conditions has infinitely many solutions.

The solutions obtained in Theorem 1.1 are strong solutions in the sense that $u \in W^{2,p/(p-1)}(\Omega) \cap W_0^{1,p/(p-1)}(\Omega)$ and $v \in W^{2,q/(q-1)}(\Omega) \cap W_0^{1,q/(q-1)}(\Omega)$. The existence of at least one solution for the system (1.1), without symmetry assumptions, has been considered before. See the survey paper [6] for a list of references.

As a corollary of Theorem 1.1 we obtain solutions to two nonlinear eigenvalue problems. We consider first

$$\begin{cases} -\Delta u = \delta u + \lambda |v|^{\beta - 2} v + H_v(x, u, v), \\ -\Delta v = \mu |u|^{\alpha - 2} u + \delta v + H_u(x, u, v) \end{cases}$$
(1.10)

in a bounded domain $\Omega \subset \mathbb{R}^N$ subject to Dirichlet boundary conditions u = v = 0 on $\partial \Omega$. The constants α, β are those from (H_3) .

Corollary 1.1. If H satisfies (H₁)-(H₄), then for each $k \in \mathbb{N}$, there exists $\Lambda_k > 0$, such that (1.10) has k pairs of non-trivial solutions provided λ , $\mu > \Lambda_k$.

Next we consider the eigenvalue problem

$$\begin{cases} -\Delta u = \lambda H_v(x, u, v) \\ -\Delta v = \lambda H_u(x, u, v) \end{cases}$$
(1.11)

in a bounded domain $\Omega \subset \mathbb{R}^N$ subject to Dirichlet boundary conditions u = v = 0 on $\partial \Omega$.

Corollary 1.2. Suppose that H satisfies (H_1) - (H_4) , and

$$\liminf_{|(u,v)|\to\infty}\frac{H(x,u,v)}{|u|^{\alpha}+|v|^{\beta}}>0.$$

Then for each $k \in \mathbb{N}$, there exists $\Lambda_k > 0$, such that (1.11) has k pairs of non-trivial solutions provided $\lambda > \Lambda_k$.

Let us now state a result for the case when system (1.2) is considered in the whole of \mathbb{R}^N . We need a distinct, but similar, set of hypotheses.

- $({\rm H}_1') \ H: \mathbb{R}^N \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \text{ is } C^1, \ H \geq 0, \ H(x,u,v) > 0 \ \text{for } |(u,v)| > 0 \ \text{and} \ H \text{ is radial in the variable } x.$
- (\mathbf{H}_2') There exist positive constants p, q, a, b and c_1 with

$$p, q > 2, \quad \frac{1}{p} + \frac{1}{q} > 1 - \frac{2}{N}, \quad 1 < a < p - 1, \quad 1 < b < q - 1,$$
 (1.12)

such that

$$|H_u(x, u, v)| \le c_1(|u|^{p-1} + |v|^{(p-1)q/p} + |u|^a)$$
(1.13)

 and

$$|H_v(x, u, v)| \le c_1(|v|^{q-1} + |u|^{(q-1)p/q} + |v|^b)$$
(1.14)

for all $(x, u, v) \in \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}$.

(H'₃) There exist $1 < \alpha < p$ and $1 < \beta < q$ with $\alpha^{-1} + \beta^{-1} < 1$ and such that

$$\frac{1}{\alpha}H_u(x,u,v)u + \frac{1}{\beta}H_v(x,u,v)v \ge H(x,u,v)$$

for all $(x, u, v) \in \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}$.

 (H'_4) There are positive constants c and r such that

 $H(x,u,v) \geq c(|u|^p+|v|^q) \quad \text{for } x \in \mathbb{R}^N \text{ and } |(u,v)| \leq r.$

 $(\mathbf{H}_5') \ H(x,u,v) = H(x,-u,-v) \text{ for all } (x,u,v) \in \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}.$

Remark 1.3. It follows from (H'_3) that there are positive constants c and R such that

$$H(x, u, v) \ge c(|u|^p + |v|^q) \quad for \ |(u, v)| \ge R.$$
(1.15)

Then (1.14) and assumption (H'_4) imply that

$$H(x, u, v) \ge c(|u|^p + |v|^q) \quad for \ all \ (x, u, v) \in \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}.$$
(1.16)

Theorem 1.2. Assume that the Hamiltonian H satisfies the hypotheses $(H'_1)-(H'_5)$. Then system (1.2) has infinitely many radial solutions.

The solutions obtained in Theorem 1.2 are strong solutions in the sense that they satisfy $u \in W_{loc}^{2,p/(p-1)}(\mathbb{R}^N)$ and $v \in W_{loc}^{2,q/(q-1)}(\mathbb{R}^N)$. They also satisfy $u \in H^s(\mathbb{R}^N) \subset L^{\gamma}(\mathbb{R}^N)$ and $v \in H^t(\mathbb{R}^N) \subset L^{\delta}(\mathbb{R}^N)$ for some s, t > 0 with s + t = 2 and $2 < \gamma, 2N/(N-2s), 2 < \delta < 2N/(N-2t)$. The existence of at least one solution has been obtained before for special cases of system (1.2) in [9] and recently in [14].

The next result exhibits the breaking of symmetry in certain dimensions. The result extends to the type of systems we have here a result that Bartsch-Willem [3] proved in the scalar case.

Theorem 1.3. Suppose that (H'_1) - (H'_5) holds. If N = 4 or $N \ge 6$ then system (1.2) has infinitely many non-radial solutions.

2 Some Abstract Critical Point Theory

We consider a Hilbert space E and a functional $\Phi \in C^1(E, \mathbb{R})$. Given a sequence $\mathcal{F} = (X_n)$ of finite dimensional subspaces $X_n \subset X_{n+1}$, with $\bigcup X_n = E$, we say that Φ satisfies $(PS)_c^{\mathcal{F}}$, at level $c \in \mathbb{R}$, if every sequence $z_j, j \in \mathbb{N}$, with $z_j \in X_{n_j}, n_j \to \infty$, such that

$$\Phi(z_j) \to c \quad \text{and} \quad (1 + ||z_j||) (\Phi|_{X_{n_j}})'(z_j) \to 0$$
 (2.1)

has a subsequence which converges to a critical point of Φ . In the case when $X_n = E$ for all $n \in \mathbb{N}$ this form of the Palais-Smale condition is due to Cerami [4]. It is closely related to the standard Palais-Smale condition and to the $(PS)^*$ condition of [1] and [11]. It also yields a deformation lemma. In the present form $(PS)_c^{\mathcal{F}}$ was introduced in Bartsch-Clapp [2].

Remark 2.1. If Φ has the form

$$\Phi(z) = \frac{1}{2} \langle Lz, z \rangle - \Psi(z)$$

with $L: E \to E$ a linear Fredholm operator of index zero and $\nabla \Psi: E \to E$ completely continuous, then a bounded $(PS)_c^{\mathcal{F}}$ sequence (z_j) has a convergent subsequence. By a $(PS)_c^{\mathcal{F}}$ sequence we mean a sequence as in (2.1). Let us prove the above statement. First select a subsequence, denoted again by (z_j) such that $z_j \to z$, weakly in E. Then $\nabla \Psi(z_j) \to \nabla \Psi(z)$, strongly in E. Let $P_n: E \to X_n$ denote the orthogonal projection onto X_n . We have that the sequence

$$P_{n_j} \nabla \Phi(z_j) = P_{n_j} L z_j + P_{n_j} \nabla \Psi(z_j)$$

converges to zero in view of (2.1). So

$$P_{n_i}Lz_j \to -\nabla \Psi(z) = Lz.$$

Hence $Lz_j \to Lz$. And as a consequence, $z_j \to z$, because ker L is finite dimensional.

Now suppose that E splits as a direct sum $E = E^+ \oplus E^-$. Let $E_1^{\pm} \subset E_2^{\pm} \subset \ldots$ be a strictly increasing sequence of finite dimensional subspaces of E^{\pm} such that $\overline{\bigcup_{n=1}^{\infty} E_n^{\pm}} = E^{\pm}$. Setting $E_n = E_n^+ \oplus E_n^-$ we can formulate the hypotheses on Φ which are needed for our first abstract theorem.

- $(\Phi_1) \ \Phi \in C^1(E, \mathbb{R})$ and satisfies $(PS)_c^{\mathcal{F}}$ for $\mathcal{F} = (E_n)_{n \in \mathbb{N}}$ and c > 0.
- (Φ_2) For some $k \ge 2$ and some r > 0 one has

$$b_k := \inf \{ \Phi(z) : z \in E^+, z \perp E_{k-1}, ||z|| = r \} > 0.$$
(2.2)

(Φ_3) There exists an isomorphism $T: E \to E$ with $T(E_n) = E_n$, for all $n \in \mathbb{N}$, and there exist $K \ge k$ and R > 0 such that

for
$$z = z^+ + z^- \in E_K^+ \oplus E^-$$
 with $\max\{||z^+||, ||z^-||\} = R$

one has

$$||Tz|| > r$$
 and $\Phi(Tz) \le 0$,

where k and r are the constants introduced in (Φ_2) .

- $(\Phi_4) \ d_K := \sup\{\Phi \circ T(z^+ + z^-) : z^+ \in E_K^+, z^- \in E^-, \|z^+\|, \|z^-\| \le R\} < \infty.$
- (Φ_5) Φ is even, i.e. $\Phi(-z) = \Phi(z)$.

A stronger condition that implies (Φ_4) and holds in our application is:

 (Φ_6) Φ maps bounded sets to bounded sets.

Theorem 2.1. Assume $(\Phi_1) - (\Phi_5)$. Then, for every $b < b_k$, Φ has at least K - k + 1 pairs $\pm z_i$ of critical points with critical values in $[b, d_K]$.

Proof: We need to recall the equivariant limit category defined in [2], specialized to our situation. We set $G = \mathbb{Z}/2$ which acts on E via the antipodal map. Given invariant subsets $Z \subset Y \subset X$ of E, we define the $G-\operatorname{cat}_X(Y,Z)$ to be the least integer m such that there exists a covering $Y \subset U_0 \cup \ldots \cup U_m$ of Y with invariant open subsets U_0, \ldots, U_m of X with the properties:

- (i) $Z \subset U_0$ and there exists a continuous family $h^t : U_0 \to X$, $0 \le t \le 1$, of odd maps satisfying $h^0(z) = z$ and $h^1(z) \in Z$ for every $z \in U_0$, and $h^t(z) = z$ for every $z \in Z$ and every $t \in [0, 1]$.
- (ii) For i = 1, ..., m there exists a continuous family $h_i^t : U_i \to X, 0 \le t \le 1$, of odd maps satisfying $h_i^0(z) = z$ for every $z \in U_i$ and such that $h_i^1(U_i) = \{\pm z_i\}$, for some $z_i \in X \setminus \{0\}$.

Now we define the equivariant limit category for G-invariant sets $Z \subset Y \subset E$ by

$$G-\operatorname{cat}_E^{\mathcal{F}}(Y,Z):=\limsup_{n\to\infty}\,G-\operatorname{cat}_{E_n}(Y\cap E_n,Z\cap E_n)$$

Given d > b > 0 Theorem 2.8 of [2] says that Φ has at least $G - \operatorname{cat}_E^{\mathcal{F}}(\Phi^d, \Phi^b)$ pairs of critical points with critical values in [b, d]. Therefore it suffices to prove that $G - \operatorname{cat}_E^{\mathcal{F}}(\Phi^{d_K}, \Phi^b) \ge K - k + 1$ for $0 < b < b_k$. This follows from the next lemma.

Lemma 2.1. Fix $0 \le b < b_k$ and $n \ge K$. Then

$$\gamma := G - \operatorname{cat}_{E_n} (\Phi^{d_K} \cap E_n, \Phi^b \cap E_n) \ge K - k + 1.$$

Proof: For simplicity we set $d := d_K$, and $B := B_R E_K^+ \times B_R E_n^-$ with R > 0 from (Φ_3) . We also write $S_r E_n$ for the sphere of radius r in E_n . Let

$$\Phi_n^d := \Phi^d \cap E_n \subset U_0 \cup \ldots \cup U_{\gamma}$$

be a covering as in the definition of $G-\operatorname{cat}_{E_n}(\Phi_n^d, \Phi_n^b)$. There are odd mappings $h^1: U_0 \to \Phi_n^b$ and $\underline{h_i^1}: U_i \to \{\pm z_i\}$. Making U_0 smaller if necessary we may assume that h^1 extends continuously to $\overline{U_0}$. Then we can extend h^1 to an odd mapping $h^1: E_n \to E_n$ by using Tietze's extension theorem. Now we set

$$\mathcal{O} := \{ z \in B : \|h^1(Tz)\| < r \}.$$

For $z \in \partial B$ we have ||Tz|| > r and $\Phi(Tz) \leq 0$ by (Φ_3) . Thus $Tz \in \Phi_n^0 \subset \Phi_n^b$ and $\underline{h}^1(Tz) = Tz$, and hence $||h^1(Tz)|| = ||Tz|| > r$. This implies that \mathcal{O} is an open subset of B with $\overline{\mathcal{O}} \subset \operatorname{int} B$. Clearly \mathcal{O} is an invariant neighborhood of 0 in $E_K^+ \oplus E_n^-$. For $z \in T^{-1}(U_0)$ we have that $h^1(Tz) \in \Phi_n^b \subset E_n \setminus S_r(E_{k-1}^\perp \cap E_n^+)$, in virtue of (Φ_2) . For

 $z \in \partial \mathcal{O}$, we have that $||h^1(Tz)|| = r$. This implies that

$$h^1(\partial \mathcal{O} \cap T^{-1}(U_0)) \subset S_r E_n \setminus S_r(E_{k-1}^{\perp} \cap E_n^+).$$

The latter space has the sphere $S_r(E_{k-1} \oplus E_n^-)$ as a strong deformation retract. In particular, there exists an odd mapping

$$S_r E_n \setminus S_r (E_{k-1}^{\perp} \cap E_n^+) \longrightarrow S_r (E_{k-1} \oplus E_n^-).$$

Observe that $S_r(E_{k-1} \oplus E_n) \cong S^{k+n-2}$. Putting these mappings together we obtain an odd mapping

$$g_0: \partial \mathcal{O} \cap T^{-1}(U_0) \longrightarrow S^{k+n-2} \subset \mathbb{R}^{k+n-1}.$$

The mappings $h_i^1: U_i \to \{\pm z_i\}$ yield odd maps

$$g_i: \partial \mathcal{O} \cap T^{-1}(U_i) \longrightarrow S^0 = \{\pm 1\}.$$

By (Φ_4) we have that $T(B) \subset \Phi_n^d$. Therefore $T^{-1}(U_0), \ldots, T^{-1}(U_\gamma)$ cover B. Setting $V_i :=$ $\partial \mathcal{O} \cap T^{-1}(U_i)$, we obtain an open invariant covering of $\partial \mathcal{O}$. Choose then a partition of the unity $\pi_i: \partial \mathcal{O} \to [0,1], i = 0, \dots, \gamma$, subordinated to the covering V_0, \dots, V_γ of $\partial \mathcal{O}$. Since the V_i 's are invariant we may assume that the π_i 's are even. Now we define the mapping

$$g: \partial \mathcal{O} \longrightarrow \mathbb{R}^{k+n-1} \times \mathbb{R}^{\gamma}, \quad g(z):=(\pi_0(z)g_0(z), \dots, \pi_{\gamma}(z)g_{\gamma}(z)).$$

First, observe that g is well defined. Namely, if $\pi_i(z) \neq 0$, then $z \in V_i$ and so $g_i(z)$ is defined. Obviously, g is odd, since the g_i are odd and the π_i are even. Also, g is continuous. In addition $g(z) \neq 0$ for every $z \in \partial \mathcal{O}$ because there exists $i \in \{0, \ldots, \gamma\}$, with $\pi_i(z) \neq 0$, and hence $z \in V_i$ and $|g_i(z)| = 1$. Thus we have a continuous odd mapping $g : \partial \mathcal{O} \to \mathbb{R}^{k+n-1+\gamma} \setminus \{0\}$, where \mathcal{O} is an invariant bounded open neighborhood of 0 in $E_K^+ \oplus E_n^-$. Now Borsuk's theorem implies that $k + n - 1 + \gamma \ge \dim E_K^+ \oplus E_n^- = K + n$. This shows that $\gamma \ge K - k + 1$ as required.

As an immediate corollary of Theorem 2.1, we obtain the Fountain Theorem, which we state below. First we introduce the following set of conditions.

 (Φ'_2) There exists a sequence $r_k > 0, k \in \mathbb{N}$, such that $b_k \to +\infty$ as $k \to \infty$. (Here b_k is defined as in (Φ_2) with r_k instead of r_{\cdot})

(Φ'_3) There exists a sequence of isomorphisms $T_k : E \to E, k \in \mathbb{N}$, with $T_k(E_n) = E_n$ for all k and n, and there exists a sequence $R_k > 0, k \in \mathbb{N}$, such that, for $z = z^+ + z^- \in E_k^+ \oplus E^-$ with $\max\{||z^+||, ||z^-||\} = R_k$, one has

$$||T_k z|| > r_k \quad \text{and} \quad \Phi(T_k z) < 0$$

where r_k is given in (Φ'_2) .

 $(\Phi'_4) \ d_k := \sup \{ \Phi(T_k(z^+ + z^-)) : z^+ \in E_k^+, z^- \in E^-, ||z^+||, ||z^-|| \le R_k \} < \infty.$

Theorem 2.2. (Fountain Theorem) Suppose that (Φ_1) , $(\Phi'_2) - (\Phi'_4)$, (Φ_5) hold. Then Φ has an unbounded sequence of critical values.

Hypothesis (Φ'_2) will be checked in the applications later on using the contents of the next remark.

Remark 2.2. Let *E* be a Hilbert space and $E_1 \subset E_2 \subset \ldots$ be finite dimensional subspaces such that $\overline{\bigcup_{n=1}^{\infty} E_n} = E$. Let $\Phi \in C^1(E, \mathbb{R})$ be of the form $\Phi = P - \Psi$ such that

$$P(z) \ge \alpha ||z||^p$$
 for all $z \in E$

and

$$|\Psi(z)| \leq \beta (1 + ||z||_X^q)$$
 for all $z \in E$

Here X is a Banach space such that $E \subset X$ compactly, and q > p, α , β are positive constants. First we prove that

$$\mu_k := \sup\{ \|z\|_X : z \in E, z \perp E_{k-1}, \|z\| = 1 \} \to 0 \quad as \ k \to \infty.$$

Indeed, suppose by contradiction that this is not the case. So, there is $\varepsilon > 0$ and a sequence (z_j) in E with $z_j \perp E_{k_j-1}$, $||z_j|| = 1$, $||z_j||_X \ge \varepsilon$ and $k_j \to \infty$ as $j \to \infty$. This implies that $z_j \rightharpoonup 0$, weakly in E hence $z_j \to 0$, strongly in X, which contradicting $||z_j||_X \ge \varepsilon$.

Next we prove that there are $r_k > 0, k \in \mathbb{N}$, so that

$$b_k := \inf \{ \Phi(z) : z \in E, z \perp E_{k-1}, ||z|| = r_k \} \to \infty.$$

Indeed, for $z \in E$, $z \perp E_{k-1}$, we have

$$\Phi(z) = P(z) - \Psi(z)$$

$$\geq \alpha ||z||^p - \beta (1 + ||z||_X^q)$$

$$\geq \alpha ||z||^p - \beta - \beta \mu_k^q ||z||^q.$$
(2.3)

Taking $||z|| = r_k$ with $r_k := (p\alpha/q\beta\mu_k^q)^{1/(q-p)}$, we obtain

$$\Phi(z) \ge c\mu_k^{p^2/(p-q)} \to +\infty,$$

where c depends only on p, q, α, β .

Although the Fountain Theorem is an immediate consequence of Theorem 2.1, we choose to give a direct proof of it which does not employ the equivariant limit category, since this is a result with many applications.

Proof of the Fountain Theorem: By (Φ'_2) it suffices to show that Φ has a critical value in $[b_k, d_k]$, for every k with $b_k > 0$. Fix such a k and suppose that $[b_k, d_k]$ contains only regular values. By Proposition 2.6 in [2], for n large, there exists a continuous deformation $h_n^t : \Phi_n^{d_k} \to E_n$, $t \in [0, 1]$, such that h_n^t is odd and $h_n^1(\Phi_n^{d_k}) \subset \Phi_n^{b_k - \varepsilon}$, for some $\varepsilon > 0$. Moreover $h_n^t(z) = z$ if $\Phi(z) \leq 0$. As above we set $B := B_{R_k} E_k^+ \times B_{R_k} E_n^-$, for $n \geq k$. Consider the set

$$\mathcal{O} = \{ z \in B : ||h_1(T_k z)|| < r_k \}.$$

As in the proof of Theorem 2.1 one checks easily that \mathcal{O} is an open invariant neighborhood of 0 in $E_k^+ \oplus E_n^-$, and that $\overline{\mathcal{O}} \subset \operatorname{int} B$. Now we set

$$g := P \circ h_1 \circ T_k : \partial \mathcal{O} \longrightarrow E_{k-1}^+ \oplus E_n^-, \ g(z) := P\left(h_1(T_k z)\right)$$

where $P: E_n \to E_{k-1}^+ \oplus E_n^-$ is the orthogonal projection. Since $\dim(E_k^+ \oplus E_n^-) > \dim(E_{k-1}^+ \oplus E_n^-)$, Borsuk's theorem tells us that g must have a zero. Now $z \in \partial \mathcal{O}$ implies that $\|h_1(Tz)\| = r_k$, and g(z) = 0 implies that $h_1(T_k z) \in E_n^+$, $h_1(T_k z) \perp E_{k-1}^+$. It follows from (Φ'_2) that $\Phi(h_1(T_k z)) \ge b_k$. This contradicts the fact that $T_k z \in \Phi_n^{d_k}$ by (Φ'_3) and $h_1(\Phi_n^{d_k}) \subset \Phi_n^{b_k - \varepsilon}$.

3 The Variational Setting

3.1 The spaces in the case of a bounded domain in \mathbb{R}^n . Let φ_n , $n \in \mathbb{N}$, be an orthonormal basis of $L^2(\Omega)$ made up of eigenfunctions of the eigenvalue problem

$$-\Delta u = \lambda u$$
 in Ω , $u = 0$ on $\partial \Omega$.

Let λ_n be the corresponding eigenvalues. For all real numbers s > 0 we define, for $u = \sum_{j=1}^{\infty} a_j \varphi_j$, $v = \sum_{j=1}^{\infty} b_j \varphi_j$:

$$H^{s}(\Omega) := \left\{ u \in L^{2}(\Omega) : \sum_{j=1}^{\infty} \lambda_{j}^{s} |a_{j}|^{2} < \infty \right\}.$$

This is a Hilbert space with respect to the inner product $\langle u, v \rangle_s := \sum_{j=1}^{\infty} \lambda_j^s a_j b_j$. Clearly, the operator

$$A^{s}: H^{s}(\Omega) \longrightarrow L^{2}(\Omega), \quad u \longmapsto \sum_{j=1}^{\infty} \lambda_{j}^{s/2} a_{j} \varphi_{j}$$

is an isometric isomorphism. It is easy to see that

$$\int_{\Omega} A^{s} u \phi = \int_{\Omega} u A^{s} \varphi \quad \text{ for all } u, \phi \in H^{s}(\Omega)$$

which is used to prove the regularity of weak solutions. One has also the Sobolev imbeddings

$$H^s(\Omega) \subset L^p(\Omega)$$

continuously if $1 \le p \le \frac{2N}{N-2s}$ and compactly if $1 \le p < \frac{2N}{N-2s}$.

3.2 The spaces in the case $\Omega = \mathbb{R}^n$. In this case, the space $H^s(\mathbb{R}^n)$ is defined by

$$H^{s}(\mathbb{R}^{N}) := \left\{ u \in L^{2}(\mathbb{R}^{N}) : \int_{\mathbb{R}^{N}} (1 + |\xi|^{s})^{2} \cdot |\hat{u}(\xi)|^{2} d\xi < \infty \right\}$$

where \hat{u} denotes the Fourier transform of u. This is a Hilbert space with respect to

$$\langle u, v \rangle := \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} (1 + |\xi|^s)^2 \cdot \widehat{u}(\xi) \cdot \widehat{v}(\xi) \, d\xi$$

The operator

$$A^s: H^s(\mathbb{R}^n) \longrightarrow L^2(\mathbb{R}^n), \quad u \longmapsto ((1+|\xi|^s)\widehat{u})^{\vee}$$

(where ω^{\vee} denotes the inverse Fourier transform of ω) is usually written as $A^s = (1 + |D|^s)$. It is readily seen that it is an isometric isomorphism. It is also easy to see that

$$\int_{\mathbb{R}^n} A^s u \, \phi = \int_{\mathbb{R}^n} u \, A^s \phi \qquad \text{for all } u, \phi \in H^s(\mathbb{R}^N).$$

We observe that $A^2 = u - \Delta u$ since

$$A^{2}u = \left((1 + |\xi|^{2})\widehat{u} \right)^{\vee} \quad \text{for } u \in H^{2}(\mathbb{R}^{N})$$

This explains the form of the system (1.2) in the case of $\Omega = \mathbb{R}^n$.

If G is a subgroup of O(N), then we set

$$L^2_G(\mathbb{R}^n) := \{ u \in L^2(\mathbb{R}^n) : u(gx) = u(x) \text{ for } g \in G, \text{ and } x \in \mathbb{R}^n a.e. \}$$

and $H_G^s := H^s \cap L_G^2$. Clearly we have that

$$A^s(H^s_G(\mathbb{R}^n)) = L^2_G(\mathbb{R}^n)$$

In the case of \mathbb{R}^n there is a loss of the compact imbeddings. However, depending on the group G acting on \mathbb{R}^n , we can still recover them. We mention the following result due to P.-L. Lions [12]:

Proposition 3.1. If

$$G = O(N_1) \times \dots \times O(N_k)$$

with $N_i \geq 2$ and $\sum_{i=1}^k N_i = N$, then the imbedding

$$H^s_G(\mathbb{R}^n) \subset L^{\gamma}(\mathbb{R}^n) \quad \text{for } 2 < \gamma < \frac{2N}{N-2s}$$

is compact.

The case when G = O(N) was first proved by Strauss [15].

3.3 The "quadratic" forms and the functionals. In the sequel we write E^s to denote both $H^s(\Omega)$ in the case of a bounded domain Ω , and $H^s(\mathbb{R}^N)$. Let us consider the Cartesian product $E := E^s \times E^t$ with $s, t \ge 0$, which is also a Hilbert space endowed with the inner product

$$\langle z,\eta\rangle := \langle u,\phi\rangle_s + \langle v,\psi\rangle_t, \text{ for } z = (u,v), \eta = (\phi,\psi) \in E.$$

We consider the bilinear form

$$B: E \times E \longrightarrow \mathbb{R}, \quad B[z, \eta] := \int (A^s u A^t \psi + A^s \phi A^t v),$$

where \int denotes the integral in both cases, over Ω or over \mathbb{R}^n . Associated to B, we have the quadratic form

$$Q(z):=\frac{1}{2}B[z,z]=\int A^s u\,A^t v$$

It is easy to see (cf. [7]) that the bounded self-adjoint operator $L: E \to E$ defined by $\langle Lz, \eta \rangle := B[z, \eta]$ has exactly two eigenvalues +1 and -1, and that the corresponding eigenspaces E^+ and E^- are given by

$$E^+ = \{(u, A^{-t}A^s u) : u \in E^s\}$$
 and $E^- = \{(u, -A^{-t}A^s u) : u \in E^s\}$

where we are using the notation $A^{-t} = (A^t)^{-1}$.

Now consider the Hamiltonian $H: \overline{\Omega} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ from Section 1. We consider the functional

$$\Phi(z) := Q(z) - \int H(x, u, v) \, dx \tag{3.1}$$

where z = (u, v). By (H₂) or (H'₂), there exist s, t > 0, with s + t = 2 and

$$\frac{1}{p} > \frac{1}{2} - \frac{s}{n}$$
 and $\frac{1}{q} > \frac{1}{2} - \frac{t}{n}$. (3.2)

This implies that we have continuous imbeddings $E^s \subset L^p$ and $E^t \subset L^q$. We fix s and t with this property so that Φ is well defined in E by (H₂) or (H'₂). Moreover, (H₂) or (H'₂) imply that $\Phi \in C^1(E, \mathbb{R})$ with

$$\langle \Phi'(z), \eta \rangle = B[z, \eta] - \int \left(H_u(x, u, v)\phi + H_v(x, u, v)\psi \right) dx$$

for $z, \eta \in E$. From this one deduces that a critical point z = (u, v) of Φ corresponds to a weak solution of (1.1) or (1.2). Namely

$$\int A^s u A^t \psi = \int H_v(x, u, v) \psi \quad \text{ for all } \psi \in E^t$$

and

$$\int A^s \phi A^t v = \int H_u(x, u, v) \phi \quad \text{for all } \phi \in E^s$$

As shown in [7] for the case of Ω bounded these solutions are strong in the sense that

$$u \in W^{2,p/(p-1)}(\Omega) \cap W_0^{1,p/(p-1)}(\Omega) \text{ and } v \in W^{2,q/(q-1)}(\Omega) \cap W_0^{1,q/(q-1)}(\Omega),$$

and they satisfy (1.1). In the case of \mathbb{R}^n we conclude that $u \in W^{2,p/(p-1)}_{loc}(\mathbb{R}^N)$ and $v \in W^{2,q/(q-1)}_{loc}(\mathbb{R}^N)$, and that they satisfy (1.2).

In order to apply Theorem 2.1 in the next sections, let us introduce the following notations. Let $(e_j)_{j\in\mathbb{N}}$ be an orthonormal basis of E^s . Clearly the $f_j := A^{-t}A^s e_j, j \in \mathbb{N}$, constitute an orthonormal basis of E^t . We set

$$E_n^s := \operatorname{span}\{e_j : j = 1, ..., n\}$$
 and $E_n^t := \operatorname{span}\{f_j : j = 1, ..., n\}.$

The following result can be readily seen.

Lemma 3.1. With the above notations, we have

$$E^{\pm} = \overline{\bigcup_{n=1}^{\infty} E_n^{\pm}}, \quad E = E^+ \oplus E^-, \quad E_n := E_n^+ \oplus E_n^- = E_n^s \times E_n^t$$

Next we check that the functional Φ defined in (3.1) satisfies the condition (Φ'_2) in both cases, Ω bounded or \mathbb{R}^N .

Lemma 3.2. Assume $(H_1)-(H_2)$ or $(H'_1)-(H'_2)$. Then there exists a sequence of positive real numbers r_k , $k \ge 1$, such that

$$b_k := \inf \{ \Phi(z) : z \in E^+, z \perp E_{k-1}^+, ||z|| = r_k \} \to +\infty.$$

Proof: We use Remark 2.2 applied to the Hilbert space E^+ with P(z) := Q(z), and

$$\Psi(z) := \int H(x, u, v)$$

where z = (u, v). We know that $Q(z) = \frac{1}{2} ||z||^2$ for $z \in E^+$, and from (H₂) we obtain

$$\begin{aligned} \left| \int H(x,u,v) \right| &\leq C \left(\int |u|^p + \int |v|^q + 1 \right) \\ &\leq C' \left(||z||_X^r + 1 \right) \end{aligned}$$

where $X = L^{p}(\Omega) \times L^{q}(\Omega)$ and $r = \max\{p, q\} > 2$. Also, assuming (H'_{2}) we obtain:

$$\left| \int H(x, u, v) \right| \leq C \left(\int |u|^p + \int |v|^q + \int |u|^{a+1} + \int |v|^{b+1} \right) \\ \leq C' \|z\|_X^r$$

for some r > 2.

4 The case Ω bounded.

In this section we prove Theorem 1.1. With the notation from Section 3, we want to apply Theorem 2.1 to the functional

$$\Phi: E \to \mathbb{R}, \ \Phi(z) = Q(z) - \int H(x, u, v) \, dx \tag{4.1}$$

where $z = (u, v) \in E = E^s \times E^t$. First we show that Φ satisfies a Palais-Smale condition.

Lemma 4.1. Assume (H₁), (H₂) and (H₃). Then Φ as defined in (4.1) satisfies $(PS)_c^{\mathcal{F}}$ for every $c \in \mathbb{R}$ and $\mathcal{F} = (E_n)_{n \in \mathbb{N}}$.

Proof: In view of Remark 2.1, it suffices to prove that a $(PS)_c^{\mathcal{F}}$ sequence is bounded in E. This follows as in Section 3 of [8], up to the point where we are to get some bounds for $||u_n||_{E^s}$ and $||v_n||_{E^t}$. At this point we then use the fact that $\int A^s u_n A^t \psi = 0$, for all $\psi \in (E_n^t)^{\perp}$.

Next we check the other assumptions of Theorem 2.1. It has already been proved that Φ satisfies condition (Φ'_2) . In particular, condition (Φ_2) is satisfied.

For each $\lambda > 0$, let us define the isomorphism $T_{\lambda} : E \to E$ by

$$T_{\lambda}(u,v) = (\lambda^{\beta-1}u, \lambda^{\alpha-1}v)$$

Clearly $T_{\lambda}E_n = E_n$ for all $\in \mathbb{N}$. Observe however that $E_n^+ \cap T_{\lambda}E_n^+ = \{0\}$ and $E_n^- \cap T_{\lambda}E_n^- = \{0\}$ if $\alpha \neq \beta$.

For each $k \in \mathbb{N}$ consider the finite dimensional subspace E_k^s . Since all norms are equivalent in finite dimensional spaces, we have positive constants σ_k , σ'_k , τ_k and τ'_k such that

$$\|u\|_{L^2} \ge \sigma_k \|u\|_{E^s} \quad \text{and} \quad \|u\|_{E^s} \ge \sigma'_k \|u\|_{L^\beta} \quad \text{for all } u \in E^s_k$$

and

$$||v||_{L^2} \ge \tau_k ||v||_{E^t}$$
 and $||v||_{E^t} \ge \tau'_k ||v||_{L^{\alpha}}$ for all $v \in E^t_k$

These constants are going to compose the constants δ_k announced in the introduction.

Lemma 4.2. Assume that there are constants c_2 and c_3 , such that

$$H(x, u, v) \ge \frac{1}{2}c_2(|u|^{\alpha} + |v|^{\beta}) - c_3$$
(4.2)

for all $(x, u, v) \in \overline{\Omega} \times \mathbb{R} \times \mathbb{R}$. Then, for each $\lambda > 0$ and each $k \in \mathbb{N}$, one has

$$\Phi(T_{\lambda}z) \le \lambda^{\alpha+\beta}(1-c_2\delta_k) + c_3|\Omega|$$

for all $z = z^+ + z^- \in E_k^+ \oplus E^-$, with $\lambda := ||z^+||$, where

$$\delta_k := \min\left\{ \left(\frac{\sigma_k^2 \, \sigma_k'}{2}\right)^{\alpha}, \ \left(\frac{\tau_k^2 \, \tau_k'}{2}\right)^{\beta} \right\}$$

Proof: For $z = z^+ + z^- \in E_k^+ \oplus E^-$ we write $z^- = z_1^- + z_2^-$ where $z_1^- \in E_k^-$, $z_2^- \perp E_k^-$. We also write $\overline{z} := z^+ + z_1^-$ and $z = (u, v), z^{\pm} = (u^{\pm}, v^{\pm}), \dots$ Using (4.2) we have

$$\int_{\Omega} H(x, T_{\lambda}z) \ge \frac{1}{2} c_2 \left(\lambda^{(\beta-1)\alpha} \|u\|_{L^{\alpha}}^{\alpha} + \lambda^{(\alpha-1)\beta} \|v\|_{L^{\beta}}^{\beta} \right) - c_3 |\Omega|.$$

$$(4.3)$$

Since α and β are conjugate exponents and $u_2^- \perp \overline{u}$ in L^2 , we obtain

$$\begin{aligned} \|u\|_{L^{\alpha}} &\geq |\langle u, \overline{u} \rangle_{L^{2}}| \cdot \|\overline{u}\|_{L^{\beta}}^{-1} \\ &= \|\overline{u}\|_{L^{2}}^{2}\|\overline{u}\|_{L^{\beta}}^{-1} \\ &\geq \sigma_{k}^{2}\sigma_{k}'\|\overline{u}\|_{E^{s}} \\ &=: \widetilde{\sigma}_{k}\|\overline{u}\|_{E^{s}}. \end{aligned}$$

$$(4.4)$$

Similarly

$$\|v\|_{L^{\beta}} \ge \tau_k^2 \tau_k' \|\overline{v}\|_{E^t} =: \widetilde{\tau}_k \|\overline{v}\|_{E^t}.$$

$$(4.5)$$

Next observe that $\overline{u}=u^++u_1^-$ and $\overline{v}=A^{-t}\,A^s(u^+-u_1^-).$ So

$$\|\overline{u}\|_{E^s} = \|u^+ + u_1^-\|_{E^s}$$
 and $\|\overline{v}\|_{E^t} = \|u^+ - u_1^-\|_{E^s}.$ (4.6)

Using (4.3)-(4.6) we obtain the following estimate on the Hamiltonian:

$$\int_{\Omega} H(x, T_{\lambda} z)$$

$$\geq \frac{1}{2} c_2 \left(\lambda^{(\beta-1)\alpha} \widetilde{\sigma}^{\alpha}_K \| u^+ + u^-_1 \|_{E^s}^{\alpha} + \lambda^{(\alpha-1)\beta} \widetilde{\tau}^{\beta}_K \| u^+ - u^-_1 \|_{E^s}^{\beta} \right) - c_3 |\Omega|$$

Since $||u^+||_{E^s} = ||z^+||/2 = \lambda/2$, we have that either $||u^+ + u_1^-||_{E^s} \ge \lambda/2$ or $||u^+ - u_1^-||_{E^s} \ge \lambda/2$. In either case

$$\int_{\Omega} H(x, T_{\lambda} z) \ge \frac{1}{2} c_2 \,\delta_k \,\lambda^{\alpha+\beta} - c_3 |\Omega|. \tag{4.7}$$

On the other hand we have that

$$Q(T_{\lambda}z) = \lambda^{\alpha+\beta-2}Q(z) = \frac{1}{2}\lambda^{\alpha+\beta-2}(||z^{+}||^{2} - ||z^{-}||^{2})$$

and so for $||z^+|| = \lambda$ we obtain

$$Q(T_{\lambda}z) \le \frac{1}{2}\lambda^{\alpha+\beta}.$$
(4.8)

Thus it follows from (4.7) and (4.8) that

$$\Phi(T_{\lambda}z) \le \frac{1}{2}(1 - c_2\delta_k)\lambda^{\alpha+\beta} + c_3|\Omega| \quad \text{for all } \lambda = ||z^+|| \le ||z^-||.$$
(4.9)

An immediate consequence of Lemma 4.2 is the next result which establishes (Φ_3) .

Lemma 4.3. Suppose that (4.2) holds and there is $K \in \mathbb{N}$ such that

$$1 - c_2 \,\delta_K < 0 \tag{4.10}$$

Then, fixing r > 0 there is a $\lambda_0 > 0$ such that, for all $\lambda \ge \lambda_0$ one has, for $z = z^+ + z^- \in E_K^+ \oplus E^-$:

$$\Phi(T_{\lambda}z) < 0$$
 if $||z^+|| = \lambda$, and $||T_{\lambda}z|| > r$ if $\max\{||z^+||, ||z^-||\} = \lambda$.

Proof of Theorem 1.1: As mentioned before we apply Theorem 2.1. First we observe that Lemma 4.1 gives condition (Φ_1) . Lemma 3.2 implies that there exists a $k_0 \in \mathbb{N}$ such that $b_{k_0} > 0$, which then gives (Φ_2) and (Φ'_2) . Now suppose that (1.9) holds for some $K \geq k_0$. Then we can apply Lemmas 4.2 and 4.3 and conclude that (Φ_3) holds. (Φ_4) is implied by the fact that Φ maps bounded sets of E into bounded sets of \mathbb{R} . Finally, condition (Φ_5) is a consequence of (H_4) .

5 The case $\Omega = \mathbb{R}^n$

With the notations introduced in Section 3 the weak solutions of (1.2) are the critical points of the functional

$$\Phi(z) = \int_{\mathbb{R}^N} A^s u A^t v - \int_{\mathbb{R}^N} H(x, u, v)$$
(5.1)

acting in $E = E^s \times E^t := H^s(\mathbb{R}^N) \times H^t(\mathbb{R}^N)$, where s and t satisfy (3.2). We shall consider the functional Φ restricted to certain subspaces of E where we have compact imbeddings due to symmetry properties. Let us start with the group G = O(N) acting in \mathbb{R}^n , and let us look for critical points of Φ in the subspace X of E given by $X = H^s_{O(N)}(\mathbb{R}^n) \times H^t_{O(N)}(\mathbb{R}^n)$. All subspaces introduced in Section 3 are now restricted to spherically symmetric functions. Observe that

$$X := Fix(G) = \{ (u, v) \in E : gu = u, gv = v, \text{ for all } g \in O(N) \}$$

where gu means (gu)(x) = u(gx), for all $x \in \mathbb{R}^n$. We see also that Φ is invariant with respect to G, i.e. $\Phi(gu, gv) = \Phi(u, v)$. Hence, it follows from the Palais Principle of Symmetric Criticality, see [13] or [16], that the critical points of Φ restricted to X are critical points of Φ considered in the whole space E.

In order to prove Theorem 2.1, we have to check that $\Phi|_X$ satisfies the assumptions of the Fountain Theorem.

For each $\lambda > 0$, let us define the isomorphism $T_{\lambda} : E \to E$, by

$$T_{\lambda}(u,v) = (\lambda^{\mu} u, \lambda^{\nu} v),$$

where $\mu = \frac{m-p}{p}$ and $\nu = \frac{m-q}{q}$, and $m > \max(p,q)$. Clearly $T_{\lambda}E_n = E_n$.

Lemma 5.1. Assume conditions (H'_1) - (H'_4) . Then, there is a sequence $\lambda_k > 0$, $k \in \mathbb{N}$, such that (Φ'_3) holds with $T_k := T_{\lambda_k}$ and $R_k := \lambda_k$.

Proof: Let us use the notation introduced in the proof of Lemma 4.2. It follows from (1.16) that for any $\lambda > 0$ we have

$$\int_{\mathbb{R}^N} H(x, T_{\lambda} z) \ge c \left(\lambda^{\mu p} \int_{\mathbb{R}^N} |u|^p + \lambda^{\nu q} \int_{\mathbb{R}^N} |v|^q \right).$$
(5.2)

Using Hölder's inequality, we obtain

$$\|u\|_{L^p} \|\overline{u}\|_{L^{p'}} \ge |\langle u, \overline{u} \rangle_{L^2}| = \|\overline{u}\|_{L^2}^2 \quad \text{where } \frac{1}{p} + \frac{1}{p'} = 1,$$

Next, from the finite dimensionality of E_k^s we have that there is a positive constant γ_k such that

$$||u||_{L^p} \ge \gamma_k ||\overline{u}||_{E^s} \quad \text{for } u \in E_k^s.$$

Similarly there is $\tilde{\gamma} > 0$ with

$$||v||_{L^q} \ge \widetilde{\gamma}_k ||\overline{v}||_{E^t} \quad \text{for } v \in E_k^t$$

Thus it follows from (5.2) that

$$\int_{\mathbb{R}^N} H(x, T_{\lambda} z) \ge c \left(\lambda^{\mu p} \gamma_k^p ||\overline{u}||_{E^s}^p + \lambda^{\nu q} \widetilde{\gamma}_k^q ||\overline{v}||_{E^t}^q \right).$$

As in the proof of Lemma 4.2 we obtain

$$\int_{\mathbb{R}^N} H(x, T_{\lambda} z) \ge c \cdot \min\left\{\frac{1}{2^p} \lambda^{\mu p} \gamma_k^p \lambda^p, \ \frac{1}{2^q} \lambda^{\nu q} \widetilde{\gamma}_k^q \lambda^q\right\} \ge \sigma_k \lambda^n$$

provided $||z^+|| = \lambda$.

On the other hand,

$$Q(T_{\lambda}z) = \lambda^{\mu+\nu} (\|z^+\|^2 - \|z^-\|^2) \le \lambda^{\mu+\nu+2}$$

for $||z^+|| = \lambda$. Consequently we have

$$\Phi(T_{\lambda}z) \leq \lambda^{\mu+\nu+2} - \sigma_k \lambda^m.$$

Since $m > \mu + \nu + 2$, it follows that there is a $\lambda_0(k) > 0$ such that $\Phi(T_{\lambda_k} z) < 0$ if $\lambda_k > \lambda_0(k)$. Also

 $||T_{\lambda}z|| \ge \lambda^{\min\{\mu,\nu\}} ||z||^2,$

which implies that

$$||T_{\lambda_k}z|| \ge \lambda_k^{\min\{\mu,\nu\}+2} \quad \text{for } \max\{||z^+||, ||z^-||\} = \lambda_k$$

Therefore, we can choose λ_k such that

$$\Phi(T_{\lambda_k} z) < 0 \quad \text{and} \quad ||T_{\lambda_k} z|| \ge r_k$$

for any given r_k .

Proof of Theorem 1.2: First we observe that hypotheses (H'_1) and (H'_2) imply that Φ is C^1 in E. And using (H'_3) we prove easily that a $(PS)_c^{\mathcal{F}}$ sequence is bounded in X. So it follows from Remark 2.1 and Proposition 3.1 that $\Phi|_X$ satisfies the $(PS)_c^{\mathcal{F}}$ condition. Hence (Φ_1) holds. Condition (Φ'_2) has already been checked in Lemma 3.2. Condition (Φ'_3) is proved in Lemma 5.1. Condition (Φ'_4) is trivially verified, and finally (Φ_5) is a consequence of (H_5) . So we apply the Fountain Theorem and conclude.

We omit the **Proof of Theorem 1.3** since it parallels a similar result of Bartsch-Willem [3] for the scalar case. The result in our case follows from an application of the Fountain Theorem, using Proposition 3.1.

References

- A. Bahri and H. Berestycki, Existence of forced oscillations for some nonlinear differential equations, Comm. Pure Appl. Math. 37 (1984), 403-442.
- [2] T. Bartsch and M. Clapp, Critical point theory for indefinite functionals with symmetries, J. Fctl. Anal. 138 (1996), 107-136.
- [3] T. Bartsch and M. Willem, Infinitely many nonradial solutions of a Euclidean scalar field equation, J. Fctl. Anal. 117 (1993), 447-460.
- [4] G. Cerami, Un criterio di esistenza per i punti critici su varietà illimitate, Rec. Ist. Lomb. Sci. Lett. 112 (1978), 332-336.
- [5] D.G. Costa and C.A. Magalhães, A unified approach to a class of strongly indefinite functionals, J. Diff. Eq. 122 (1996), 521-547.

- [6] D.G. de Figueiredo, Semilinear elliptic systems, Proceedings of the Second School on Nonlinear Functional Analysis and Applications to Differential Equations, ICTP Trieste 1997, World Scientific Publishing Company (to appear).
- [7] D.G. de Figueiredo and P. Felmer, On superquadratic elliptic systems, Trans. AMS 343 (1994), 99-116.
- [8] D.G. de Figueiredo and C.A. Magalhães, On nonquadratic Hamiltonian elliptic systems, Advances in Diff. Eq. 1 (1996), 881-898.
- [9] D.G. de Figueiredo and J. Yang, Decay, Symmetry and existence of solutions of semilinear elliptic systems, to appear in Nonlinear Analysis, TMA.
- [10] P. Felmer, Periodic solutions of "superquadratic" Hamiltonian systems, J. Diff. Eq. 102 (1993), 188-207.
- [11] S. Li and J.Q. Liu, Some existence theorems on multiple critical points and their applications, Kexue Tongbao 17 (1984) [in chinese].
- [12] P.-L. Lions, Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal. 49 (1982) 315-334.
- [13] R.S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69(1979), 19-30.
- [14] B. Sirakov, On the existence of solutions of elliptic systems in \mathbb{R}^N , Preprint.
- [15] W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. (1977), 149-162.
- [16] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24, Birkhäuser 1996.