INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC SYSTEMS

Thomas Bartsch*
Mathematisches Institut
Universität Giessen
Arndtstr. 2
35392 Giessen
Germany

Djairo G. de Figueiredo
IMECC
UNICAMP
Caixa Postal 6065
13081-970 Campinas SP
Brazil

1 Introduction

In this paper we study elliptic systems of the form

$$
\begin{cases}-\Delta u=H_{v}(x, u, v) & \text { in } \Omega \tag{1.1}\\ -\Delta v=H_{u}(x, u, v) & \text { in } \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}, N \geq 3$, is a smooth bounded domain and $H: \bar{\Omega} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a C^{1}-function. We shall also consider the case when $\Omega=\mathbb{R}^{N}$, and in this case the system takes the form

$$
\begin{cases}-\Delta u+u=H_{v}(x, u, v) & \text { in } \mathbb{R}^{N} \tag{1.2}\\ -\Delta v+v=H_{u}(x, u, v) & \text { in } \mathbb{R}^{N}\end{cases}
$$

In the bounded case, we look for solutions of (1.1) subject to Dirichlet boundary conditions $u=v=0$ on $\partial \Omega$. In the case when $\Omega=\mathbb{R}^{N}$ we assume that some symmetry with respect to x holds; for instance, that the x-dependence of H is radial, or that H is invariant with respect to certain subgroups of $O(N)$ acting on R^{N}. We shall obtain both radial and non-radial solutions in the radial symmetric case, thus observing a symmetry breaking effect.

In order to illustrate the kind of results obtained here, let us state two theorems. We first consider the case when Ω is bounded. In such a case, the following set of hypotheses is assumed. First, the regularity of the Hamiltonian:
$\left(\mathrm{H}_{1}\right) H: \bar{\Omega} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is C^{1} and $H \geq 0$.
Next we assume conditions related to the growth of the right side of (1.1).

[^0]$\left(\mathrm{H}_{2}\right)$ There exist constants $p, q>1$ and $c_{1}>0$ with
\[

$$
\begin{equation*}
1>\frac{1}{p}+\frac{1}{q}>1-\frac{2}{N} \tag{1.3}
\end{equation*}
$$

\]

such that

$$
\begin{equation*}
\left|H_{u}(x, u, v)\right| \leq c_{1}\left(|u|^{p-1}+|v|^{(p-1) q / p}+1\right) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|H_{v}(x, u, v)\right| \leq c_{1}\left(|v|^{q-1}+|u|^{(q-1) p / q}+1\right) \tag{1.5}
\end{equation*}
$$

for all $(x, u, v) \in \bar{\Omega} \times \mathbb{R} \times \mathbb{R}$.
The next condition is a "non-quadraticity" condition at infinity introduced by Costa-Magalhães [5]. It is related to the so-called Ambrosetti-Rabinowitz condition and it is devised to get some sort of Palais-Smale condition for the functionals involved.
$\left(\mathrm{H}_{3}\right)$ There exist $1<\alpha<p$ and $1<\beta<q$ with

$$
\begin{equation*}
\frac{1}{\alpha}+\frac{1}{\beta}=1, \tag{1.6}
\end{equation*}
$$

and such that

$$
\begin{equation*}
\frac{1}{\alpha} H_{u}(x, u, v) u+\frac{1}{\beta} H_{v}(x, u, v) v-H(x, u, v) \geq a\left(|u|^{\mu}+|v|^{\nu}-1\right) \tag{1.7}
\end{equation*}
$$

for all $(x, u, v) \in \bar{\Omega} \times \mathbb{R} \times \mathbb{R}$. Here a, μ, ν are positive constants satisfying

$$
\mu>\frac{p N}{2} \max \left\{\frac{1}{2}-\frac{1}{p}, 1-\frac{1}{p}-\frac{1}{q}\right\}
$$

and

$$
\nu>\frac{q N}{2} \max \left\{\frac{1}{2}-\frac{1}{q}, 1-\frac{1}{p}-\frac{1}{q}\right\}
$$

Remark 1.1. Observe that $1-\frac{1}{p}-\frac{1}{q}$ is always positive in view of $\left(\mathrm{H}_{2}\right)$. It follows from $\left(\mathrm{H}_{3}\right)$ that

$$
\begin{equation*}
H(x, u, v) \geq c\left(|u|^{\alpha}+|v|^{\beta}-1\right) \tag{1.8}
\end{equation*}
$$

In fact, (1.8) follows from a condition weaker than $\left(\mathrm{H}_{3}\right)$, namely

$$
\frac{1}{\alpha} H_{u}(x, u, v) u+\frac{1}{\beta} H_{v}(x, u, v) v \geq H(x, u, v)
$$

for all $x \in \bar{\Omega}$ and $|(u, v)| \geq R$; see Felmer $[10]$.

Remark 1.2. Suppose H satisfies the following condition of Ambrosetti-Rabinowitz type: there is $R>0$ and $1<\alpha^{\prime}<p$ and $1<\beta^{\prime}<q$ with $\frac{1}{\alpha^{\prime}}+\frac{1}{\beta^{\prime}}<1$ and such that

$$
\frac{1}{\alpha^{\prime}} H_{u}(x, u, v) u+\frac{1}{\beta^{\prime}} H_{v}(x, u, v) v \geq H(x, u, v)
$$

for $x \in \bar{\Omega}$ and $|(u, v)| \geq R$. Then condition $\left(\mathrm{H}_{3}\right)$ holds. In this case, it follows that H is superquadratic, in the sense that

$$
H(x, u, v) \geq c_{1}\left(|u|^{\alpha^{\prime}}+|v|^{\beta^{\prime}}\right)-c_{2} .
$$

The next condition provides the symmetry we assume here.
$\left(\mathrm{H}_{4}\right) \quad H(x,-u,-v)=H(x, u, v)$ for all $(x, u, v) \in \bar{\Omega} \times \mathbb{R} \times \mathbb{R}$.
Now we are prepared to state the result in the case of Ω bounded. For that matter we introduce a non-increasing sequence of constants $\delta_{n}, n \in \mathbb{N}$, with $\delta_{n} \rightarrow 0$, which will be defined in Section 3, and which depend only on p, q, α and β.

Theorem 1.1. Suppose that $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ hold. Then there is a $k_{0} \in \mathbb{N}$ such that, if

$$
\begin{equation*}
\liminf _{|(u, v)| \rightarrow \infty} \frac{2 H(x, u, v)}{|u|^{\alpha}+|v|^{\beta}}>\frac{1}{\delta_{K}} \tag{1.9}
\end{equation*}
$$

holds for $K \geq k_{0}$, system (1.1), subject to Dirichlet boundary conditions, has $K-k_{0}+1$ pairs of nontrivial solutions.
Moreover, if

$$
\lim _{|(u, v)| \rightarrow \infty} \frac{H(x, u, v)}{|u|^{\alpha}+|v|^{\beta}}=+\infty
$$

(in particular, if H is superquadratic) then system (1.1), subject to Dirichlet boundary conditions has infinitely many solutions.

The solutions obtained in Theorem 1.1 are strong solutions in the sense that $u \in W^{2, p /(p-1)}(\Omega) \cap$ $W_{0}^{1, p /(p-1)}(\Omega)$ and $v \in W^{2, q /(q-1)}(\Omega) \cap W_{0}^{1, q /(q-1)}(\Omega)$. The existence of at least one solution for the system (1.1), without symmetry assumptions, has been considered before. See the survey paper [6] for a list of references.

As a corollary of Theorem 1.1 we obtain solutions to two nonlinear eigenvalue problems. We consider first

$$
\left\{\begin{align*}
-\Delta u & =\delta u+\lambda|v|^{\beta-2} v+H_{v}(x, u, v) \tag{1.10}\\
-\Delta v & =\mu|u|^{\alpha-2} u+\delta v+H_{u}(x, u, v)
\end{align*}\right.
$$

in a bounded domain $\Omega \subset \mathbb{R}^{N}$ subject to Dirichlet boundary conditions $u=v=0$ on $\partial \Omega$. The constants α, β are those from $\left(H_{3}\right)$.

Corollary 1.1. If H satisfies $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$, then for each $k \in \mathbb{N}$, there exists $\Lambda_{k}>0$, such that (1.10) has k pairs of non-trivial solutions provided $\lambda, \mu>\Lambda_{k}$.

Next we consider the eigenvalue problem

$$
\left\{\begin{array}{l}
-\Delta u=\lambda H_{v}(x, u, v) \tag{1.11}\\
-\Delta v=\lambda H_{u}(x, u, v)
\end{array}\right.
$$

in a bounded domain $\Omega \subset \mathbb{R}^{N}$ subject to Dirichlet boundary conditions $u=v=0$ on $\partial \Omega$.
Corollary 1.2. Suppose that H satisfies $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$, and

$$
\liminf _{|(u, v)| \rightarrow \infty} \frac{H(x, u, v)}{|u|^{\alpha}+|v|^{\beta}}>0
$$

Then for each $k \in \mathbb{N}$, there exists $\Lambda_{k}>0$, such that (1.11) has k pairs of non-trivial solutions provided $\lambda>\Lambda_{k}$.

Let us now state a result for the case when system (1.2) is considered in the whole of \mathbb{R}^{N}. We need a distinct, but similar, set of hypotheses.
$\left(\mathrm{H}_{1}^{\prime}\right) H: \mathbb{R}^{N} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is $C^{1}, H \geq 0, H(x, u, v)>0$ for $|(u, v)|>0$ and H is radial in the variable x.
$\left(\mathrm{H}_{2}^{\prime}\right)$ There exist positive constants p, q, a, b and c_{1} with

$$
\begin{equation*}
p, q>2, \quad \frac{1}{p}+\frac{1}{q}>1-\frac{2}{N}, \quad 1<a<p-1, \quad 1<b<q-1 \tag{1.12}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left|H_{u}(x, u, v)\right| \leq c_{1}\left(|u|^{p-1}+|v|^{(p-1) q / p}+|u|^{a}\right) \tag{1.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|H_{v}(x, u, v)\right| \leq c_{1}\left(|v|^{q-1}+|u|^{(q-1) p / q}+|v|^{b}\right) \tag{1.14}
\end{equation*}
$$

for all $(x, u, v) \in \mathbb{R}^{N} \times \mathbb{R} \times \mathbb{R}$.
$\left(\mathrm{H}_{3}^{\prime}\right)$ There exist $1<\alpha<p$ and $1<\beta<q$ with $\alpha^{-1}+\beta^{-1}<1$ and such that

$$
\frac{1}{\alpha} H_{u}(x, u, v) u+\frac{1}{\beta} H_{v}(x, u, v) v \geq H(x, u, v)
$$

for all $(x, u, v) \in \mathbb{R}^{N} \times \mathbb{R} \times \mathbb{R}$.
$\left(\mathrm{H}_{4}^{\prime}\right)$ There are positive constants c and r such that

$$
H(x, u, v) \geq c\left(|u|^{p}+|v|^{q}\right) \quad \text { for } x \in \mathbb{R}^{N} \text { and }|(u, v)| \leq r
$$

$\left(\mathrm{H}_{5}^{\prime}\right) H(x, u, v)=H(x,-u,-v)$ for all $(x, u, v) \in \mathbb{R}^{N} \times \mathbb{R} \times \mathbb{R}$.

Remark 1.3. It follows from $\left(\mathrm{H}_{3}^{\prime}\right)$ that there are positive constants c and R such that

$$
\begin{equation*}
H(x, u, v) \geq c\left(|u|^{p}+|v|^{q}\right) \quad \text { for }|(u, v)| \geq R \tag{1.15}
\end{equation*}
$$

Then (1.14) and assumption $\left(\mathrm{H}_{4}^{\prime}\right)$ imply that

$$
\begin{equation*}
H(x, u, v) \geq c\left(|u|^{p}+|v|^{q}\right) \quad \text { for all }(x, u, v) \in \mathbb{R}^{N} \times \mathbb{R} \times \mathbb{R} \tag{1.16}
\end{equation*}
$$

Theorem 1.2. Assume that the Hamiltonian H satisfies the hypotheses $\left(\mathrm{H}_{1}^{\prime}\right)-\left(\mathrm{H}_{5}^{\prime}\right)$. Then system (1.2) has infinitely many radial solutions.

The solutions obtained in Theorem 1.2 are strong solutions in the sense that they satisfy $u \in W_{l o c}^{2, p /(p-1)}\left(\mathbb{R}^{N}\right)$ and $v \in W_{l o c}^{2, q /(q-1)}\left(\mathbb{R}^{N}\right)$. They also satisfy $u \in H^{s}\left(\mathbb{R}^{N}\right) \subset L^{\gamma}\left(\mathbb{R}^{N}\right)$ and $v \in$ $H^{t}\left(\mathbb{R}^{N}\right) \subset L^{\delta}\left(\mathbb{R}^{N}\right)$ for some $s, t>0$ with $s+t=2$ and $2<\gamma, 2 N /(N-2 s), 2<\delta<2 N /(N-2 t)$. The existence of at least one solution has been obtained before for special cases of system (1.2) in [9] and recently in [14].

The next result exhibits the breaking of symmetry in certain dimensions. The result extends to the type of systems we have here a result that Bartsch-Willem [3] proved in the scalar case.

Theorem 1.3. Suppose that $\left(\mathrm{H}_{1}^{\prime}\right)-\left(\mathrm{H}_{5}^{\prime}\right)$ holds. If $N=4$ or $N \geq 6$ then system (1.2) has infinitely many non-radial solutions.

2 Some Abstract Critical Point Theory

We consider a Hilbert space E and a functional $\Phi \in C^{1}(E, \mathbb{R})$. Given a sequence $\mathcal{F}=\left(X_{n}\right)$ of finite dimensional subspaces $X_{n} \subset X_{n+1}$, with $\overline{\bigcup X_{n}}=E$, we say that Φ satisfies $(P S)_{c}^{\mathcal{F}}$, at level $c \in \mathbb{R}$, if every sequence $z_{j}, j \in \mathbb{N}$, with $z_{j} \in X_{n_{j}}, n_{j} \rightarrow \infty$, such that

$$
\begin{equation*}
\Phi\left(z_{j}\right) \rightarrow c \quad \text { and } \quad\left(1+\left\|z_{j}\right\|\right)\left(\left.\Phi\right|_{X_{n_{j}}}\right)^{\prime}\left(z_{j}\right) \rightarrow 0 \tag{2.1}
\end{equation*}
$$

has a subsequence which converges to a critical point of Φ. In the case when $X_{n}=E$ for all $n \in \mathbb{N}$ this form of the Palais-Smale condition is due to Cerami [4]. It is closely related to the standard Palais-Smale condition and to the $(P S)^{*}$ condition of [1] and [11]. It also yields a deformation lemma. In the present form $(P S)_{c}^{\mathcal{F}}$ was introduced in Bartsch-Clapp [2].

Remark 2.1. If Φ has the form

$$
\Phi(z)=\frac{1}{2}\langle L z, z\rangle-\Psi(z)
$$

with $L: E \rightarrow E$ a linear Fredholm operator of index zero and $\nabla \Psi: E \rightarrow E$ completely continuous, then a bounded $(P S)_{c}^{\mathcal{F}}$ sequence $\left(z_{j}\right)$ has a convergent subsequence. By a $(P S)_{c}^{\mathcal{F}}$ sequence we mean a sequence as in (2.1). Let us prove the above statement. First select a subsequence, denoted again by $\left(z_{j}\right)$ such that $z_{j} \rightharpoonup z$, weakly in E. Then $\nabla \Psi\left(z_{j}\right) \rightarrow \nabla \Psi(z)$, strongly in E. Let $P_{n}: E \rightarrow X_{n}$ denote the orthogonal projection onto X_{n}. We have that the sequence

$$
P_{n_{j}} \nabla \Phi\left(z_{j}\right)=P_{n_{j}} L z_{j}+P_{n_{j}} \nabla \Psi\left(z_{j}\right)
$$

converges to zero in view of (2.1). So

$$
P_{n_{j}} L z_{j} \rightarrow-\nabla \Psi(z)=L z .
$$

Hence $L z_{j} \rightarrow L z$. And as a consequence, $z_{j} \rightarrow z$, because $\operatorname{ker} L$ is finite dimensional.
Now suppose that E splits as a direct sum $E=E^{+} \oplus E^{-}$. Let $E_{1}^{ \pm} \subset E_{2}^{ \pm} \subset \ldots$ be a strictly increasing sequence of finite dimensional subspaces of $E^{ \pm}$such that $\bigcup_{n=1}^{\infty} E_{n}^{ \pm}=E^{ \pm}$. Setting $E_{n}=E_{n}^{+} \oplus E_{n}^{-}$we can formulate the hypotheses on Φ which are needed for our first abstract theorem.
$\left(\Phi_{1}\right) \Phi \in C^{1}(E, \mathbb{R})$ and satisfies $(P S)_{c}^{\mathcal{F}}$ for $\mathcal{F}=\left(E_{n}\right)_{n \in \mathbb{N}}$ and $c>0$.
$\left(\Phi_{2}\right)$ For some $k \geq 2$ and some $r>0$ one has

$$
\begin{equation*}
b_{k}:=\inf \left\{\Phi(z): z \in E^{+}, z \perp E_{k-1},\|z\|=r\right\}>0 . \tag{2.2}
\end{equation*}
$$

$\left(\Phi_{3}\right)$ There exists an isomorphism $T: E \rightarrow E$ with $T\left(E_{n}\right)=E_{n}$, for all $n \in \mathbb{N}$, and there exist $K \geq k$ and $R>0$ such that

$$
\text { for } z=z^{+}+z^{-} \in E_{K}^{+} \oplus E^{-} \text {with } \max \left\{\left\|z^{+}\right\|,\left\|z^{-}\right\|\right\}=R
$$

one has

$$
\|T z\|>r \quad \text { and } \quad \Phi(T z) \leq 0
$$

where k and r are the constants introduced in $\left(\Phi_{2}\right)$.
$\left(\Phi_{4}\right) d_{K}:=\sup \left\{\Phi \circ T\left(z^{+}+z^{-}\right): z^{+} \in E_{K}^{+}, z^{-} \in E^{-},\left\|z^{+}\right\|,\left\|z^{-}\right\| \leq R\right\}<\infty$.
$\left(\Phi_{5}\right) \Phi$ is even, i.e. $\Phi(-z)=\Phi(z)$.

A stronger condition that implies $\left(\Phi_{4}\right)$ and holds in our application is:
$\left(\Phi_{6}\right) \Phi$ maps bounded sets to bounded sets.

Theorem 2.1. Assume $\left(\Phi_{1}\right)-\left(\Phi_{5}\right)$. Then, for every $b<b_{k}, \Phi$ has at least $K-k+1$ pairs $\pm z_{i}$ of critical points with critical values in $\left[b, d_{K}\right]$.

Proof: We need to recall the equivariant limit category defined in [2], specialized to our situation. We set $G=\mathbb{Z} / 2$ which acts on E via the antipodal map. Given invariant subsets $Z \subset Y \subset X$ of E, we define the $G-\operatorname{cat}_{X}(Y, Z)$ to be the least integer m such that there exists a covering $Y \subset U_{0} \cup \ldots \cup U_{m}$ of Y with invariant open subsets U_{0}, \ldots, U_{m} of X with the properties:
(i) $Z \subset U_{0}$ and there exists a continuous family $h^{t}: U_{0} \rightarrow X, 0 \leq t \leq 1$, of odd maps satisfying $h^{0}(z)=z$ and $h^{1}(z) \in Z$ for every $z \in U_{0}$, and $h^{t}(z)=z$ for every $z \in Z$ and every $t \in[0,1]$.
(ii) For $i=1, \ldots, m$ there exists a continuous family $h_{i}^{t}: U_{i} \rightarrow X, 0 \leq t \leq 1$, of odd maps satisfying $h_{i}^{0}(z)=z$ for every $z \in U_{i}$ and such that $h_{i}^{1}\left(U_{i}\right)=\left\{ \pm z_{i}\right\}$, for some $z_{i} \in X \backslash\{0\}$.

Now we define the equivariant limit category for G-invariant sets $Z \subset Y \subset E$ by

$$
G-\operatorname{cat}_{E}^{\mathcal{F}}(Y, Z):=\limsup _{n \rightarrow \infty} G-\operatorname{cat}_{E_{n}}\left(Y \cap E_{n}, Z \cap E_{n}\right)
$$

Given $d>b>0$ Theorem 2.8 of [2] says that Φ has at least $G-\operatorname{cat}_{E}^{\mathcal{F}}\left(\Phi^{d}, \Phi^{b}\right)$ pairs of critical points with critical values in $[b, d]$. Therefore it suffices to prove that $G-\operatorname{cat}_{E}^{\mathcal{F}}\left(\Phi^{d_{K}}, \Phi^{b}\right) \geq K-k+1$ for $0<b<b_{k}$. This follows from the next lemma.

Lemma 2.1. Fix $0 \leq b<b_{k}$ and $n \geq K$. Then

$$
\gamma:=G-\operatorname{cat}_{E_{n}}\left(\Phi^{d_{K}} \cap E_{n}, \Phi^{b} \cap E_{n}\right) \geq K-k+1
$$

Proof: For simplicity we set $d:=d_{K}$, and $B:=B_{R} E_{K}^{+} \times B_{R} E_{n}^{-}$with $R>0$ from $\left(\Phi_{3}\right)$. We also write $S_{r} E_{n}$ for the sphere of radius r in E_{n}. Let

$$
\Phi_{n}^{d}:=\Phi^{d} \cap E_{n} \subset U_{0} \cup \ldots \cup U_{\gamma}
$$

be a covering as in the definition of $G-\operatorname{cat}_{E_{n}}\left(\Phi_{n}^{d}, \Phi_{n}^{b}\right)$. There are odd mappings $h^{1}: U_{0} \rightarrow \Phi_{n}^{b}$ and $h_{i}^{1}: U_{i} \rightarrow\left\{ \pm z_{i}\right\}$. Making U_{0} smaller if necessary we may assume that h^{1} extends continuously to $\overline{U_{0}}$. Then we can extend h^{1} to an odd mapping $h^{1}: E_{n} \rightarrow E_{n}$ by using Tietze's extension theorem. Now we set

$$
\mathcal{O}:=\left\{z \in B:\left\|h^{1}(T z)\right\|<r\right\}
$$

For $z \in \partial B$ we have $\|T z\|>r$ and $\Phi(T z) \leq 0$ by $\left(\Phi_{3}\right)$. Thus $T z \in \Phi_{n}^{0} \subset \Phi_{n}^{b}$ and $h^{1}(T z)=T z$, and hence $\left\|h^{1}(T z)\right\|=\|T z\|>r$. This implies that \mathcal{O} is an open subset of B with $\overline{\mathcal{O}} \subset$ int B. Clearly \mathcal{O} is an invariant neighborhood of 0 in $E_{K}^{+} \oplus E_{n}^{-}$.

For $z \in T^{-1}\left(U_{0}\right)$ we have that $h^{1}(T z) \in \Phi_{n}^{b} \subset E_{n} \backslash S_{r}\left(E_{k-1}^{\perp} \cap E_{n}^{+}\right)$, in virtue of (Φ_{2}). For $z \in \partial \mathcal{O}$, we have that $\left\|h^{1}(T z)\right\|=r$. This implies that

$$
h^{1}\left(\partial \mathcal{O} \cap T^{-1}\left(U_{0}\right)\right) \subset S_{r} E_{n} \backslash S_{r}\left(E_{k-1}^{\perp} \cap E_{n}^{+}\right)
$$

The latter space has the sphere $S_{r}\left(E_{k-1} \oplus E_{n}^{-}\right)$as a strong deformation retract. In particular, there exists an odd mapping

$$
S_{r} E_{n} \backslash S_{r}\left(E_{k-1}^{\perp} \cap E_{n}^{+}\right) \longrightarrow S_{r}\left(E_{k-1} \oplus E_{n}^{-}\right)
$$

Observe that $S_{r}\left(E_{k-1} \oplus E_{n}^{-}\right) \cong S^{k+n-2}$. Putting these mappings together we obtain an odd mapping

$$
g_{0}: \partial \mathcal{O} \cap T^{-1}\left(U_{0}\right) \longrightarrow S^{k+n-2} \subset \mathbb{R}^{k+n-1}
$$

The mappings $h_{i}^{1}: U_{i} \rightarrow\left\{ \pm z_{i}\right\}$ yield odd maps

$$
g_{i}: \partial \mathcal{O} \cap T^{-1}\left(U_{i}\right) \longrightarrow S^{0}=\{ \pm 1\}
$$

By $\left(\Phi_{4}\right)$ we have that $T(B) \subset \Phi_{n}^{d}$. Therefore $T^{-1}\left(U_{0}\right), \ldots, T^{-1}\left(U_{\gamma}\right)$ cover B. Setting $V_{i}:=$ $\partial \mathcal{O} \cap T^{-1}\left(U_{i}\right)$, we obtain an open invariant covering of $\partial \mathcal{O}$. Choose then a partition of the unity $\pi_{i}: \partial \mathcal{O} \rightarrow[0,1], i=0, \ldots, \gamma$, subordinated to the covering $V_{0}, \ldots, V_{\gamma}$ of $\partial \mathcal{O}$. Since the V_{i} 's are invariant we may assume that the π_{i} 's are even. Now we define the mapping

$$
g: \partial \mathcal{O} \longrightarrow \mathbb{R}^{k+n-1} \times \mathbb{R}^{\gamma}, \quad g(z):=\left(\pi_{0}(z) g_{0}(z), \ldots, \pi_{\gamma}(z) g_{\gamma}(z)\right)
$$

First, observe that g is well defined. Namely, if $\pi_{i}(z) \neq 0$, then $z \in V_{i}$ and so $g_{i}(z)$ is defined. Obviously, g is odd, since the g_{i} are odd and the π_{i} are even. Also, g is continuous. In addition $g(z) \neq 0$ for every $z \in \partial \mathcal{O}$ because there exists $i \in\{0, \ldots, \gamma\}$, with $\pi_{i}(z) \neq 0$, and hence $z \in V_{i}$ and $\left|g_{i}(z)\right|=1$. Thus we have a continuous odd mapping $g: \partial \mathcal{O} \rightarrow \mathbb{R}^{k+n-1+\gamma} \backslash\{0\}$, where \mathcal{O} is an invariant bounded open neighborhood of 0 in $E_{K}^{+} \oplus E_{n}^{-}$. Now Borsuk's theorem implies that $k+n-1+\gamma \geq \operatorname{dim} E_{K}^{+} \oplus E_{n}^{-}=K+n$. This shows that $\gamma \geq K-k+1$ as required.

As an immediate corollary of Theorem 2.1, we obtain the Fountain Theorem, which we state below. First we introduce the following set of conditions.
$\left(\Phi_{2}^{\prime}\right)$ There exists a sequence $r_{k}>0, k \in \mathbb{N}$, such that $b_{k} \rightarrow+\infty$ as $k \rightarrow \infty$. (Here b_{k} is defined as in $\left(\Phi_{2}\right)$ with r_{k} instead of r.)
$\left(\Phi_{3}^{\prime}\right)$ There exists a sequence of isomorphisms $T_{k}: E \rightarrow E, k \in \mathbb{N}$, with $T_{k}\left(E_{n}\right)=E_{n}$ for all k and n, and there exists a sequence $R_{k}>0, k \in \mathbb{N}$, such that, for $z=z^{+}+z^{-} \in E_{k}^{+} \oplus E^{-}$with $\max \left\{\left\|z^{+}\right\|,\left\|z^{-}\right\|\right\}=R_{k}$, one has

$$
\left\|T_{k} z\right\|>r_{k} \quad \text { and } \quad \Phi\left(T_{k} z\right)<0
$$

where r_{k} is given in $\left(\Phi_{2}^{\prime}\right)$.
$\left(\Phi_{4}^{\prime}\right) d_{k}:=\sup \left\{\Phi\left(T_{k}\left(z^{+}+z^{-}\right)\right): z^{+} \in E_{k}^{+}, z^{-} \in E^{-},\left\|z^{+}\right\|,\left\|z^{-}\right\| \leq R_{k}\right\}<\infty$.
Theorem 2.2. (Fountain Theorem) Suppose that $\left(\Phi_{1}\right)$, $\left(\Phi_{2}^{\prime}\right)-\left(\Phi_{4}^{\prime}\right),\left(\Phi_{5}\right)$ hold. Then Φ has an unbounded sequence of critical values.

Hypothesis $\left(\Phi_{2}^{\prime}\right)$ will be checked in the applications later on using the contents of the next remark.

Remark 2.2. Let E be a Hilbert space and $E_{1} \subset E_{2} \subset \ldots$ be finite dimensional subspaces such that $\overline{\bigcup_{n=1}^{\infty} E_{n}}=E$. Let $\Phi \in C^{1}(E, \mathbb{R})$ be of the form $\Phi=P-\Psi$ such that

$$
P(z) \geq \alpha\|z\|^{p} \quad \text { for all } z \in E
$$

and

$$
|\Psi(z)| \leq \beta\left(1+\|z\|_{X}^{q}\right) \quad \text { for all } z \in E
$$

Here X is a Banach space such that $E \subset X$ compactly, and $q>p, \alpha, \beta$ are positive constants.
First we prove that

$$
\mu_{k}:=\sup \left\{\|z\|_{X}: z \in E, z \perp E_{k-1},\|z\|=1\right\} \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

Indeed, suppose by contradiction that this is not the case. So, there is $\varepsilon>0$ and a sequence $\left(z_{j}\right)$ in E with $z_{j} \perp E_{k_{j}-1},\left\|z_{j}\right\|=1,\left\|z_{j}\right\|_{X} \geq \varepsilon$ and $k_{j} \rightarrow \infty$ as $j \rightarrow \infty$. This implies that $z_{j} \rightharpoonup 0$, weakly in E hence $z_{j} \rightarrow 0$, strongly in X, which contradicting $\left\|z_{j}\right\|_{X} \geq \varepsilon$.

Next we prove that there are $r_{k}>0, k \in \mathbb{N}$, so that

$$
b_{k}:=\inf \left\{\Phi(z): z \in E, z \perp E_{k-1},\|z\|=r_{k}\right\} \rightarrow \infty
$$

Indeed, for $z \in E, z \perp E_{k-1}$, we have

$$
\begin{align*}
\Phi(z) & =P(z)-\Psi(z) \\
& \geq \alpha\|z\|^{p}-\beta\left(1+\|z\|_{X}^{q}\right) \tag{2.3}\\
& \geq \alpha\|z\|^{p}-\beta-\beta \mu_{k}^{q}\|z\|^{q} .
\end{align*}
$$

Taking $\|z\|=r_{k}$ with $r_{k}:=\left(p \alpha / q \beta \mu_{k}^{q}\right)^{1 /(q-p)}$, we obtain

$$
\Phi(z) \geq c \mu_{k}^{p^{2} /(p-q)} \rightarrow+\infty
$$

where c depends only on p, q, α, β.

Although the Fountain Theorem is an immediate consequence of Theorem 2.1, we choose to give a direct proof of it which does not employ the equivariant limit category, since this is a result with many applications.

Proof of the Fountain Theorem: By $\left(\Phi_{2}^{\prime}\right)$ it suffices to show that Φ has a critical value in $\left[b_{k}, d_{k}\right]$, for every k with $b_{k}>0$. Fix such a k and suppose that $\left[b_{k}, d_{k}\right]$ contains only regular values. By Proposition 2.6 in [2], for n large, there exists a continuous deformation $h_{n}^{t}: \Phi_{n}^{d_{k}} \rightarrow E_{n}$, $t \in[0,1]$, such that h_{n}^{t} is odd and $h_{n}^{1}\left(\Phi_{n}^{d_{k}}\right) \subset \Phi_{n}^{b_{k}-\varepsilon}$, for some $\varepsilon>0$. Moreover $h_{n}^{t}(z)=z$ if $\Phi(z) \leq 0$. As above we set $B:=B_{R_{k}} E_{k}^{+} \times B_{R_{k}} E_{n}^{-}$, for $n \geq k$. Consider the set

$$
\mathcal{O}=\left\{z \in B:\left\|h_{1}\left(T_{k} z\right)\right\|<r_{k}\right\} .
$$

As in the proof of Theorem 2.1 one checks easily that \mathcal{O} is an open invariant neighborhood of 0 in $E_{k}^{+} \oplus E_{n}^{-}$, and that $\overline{\mathcal{O}} \subset \operatorname{int} B$. Now we set

$$
g:=P \circ h_{1} \circ T_{k}: \partial \mathcal{O} \longrightarrow E_{k-1}^{+} \oplus E_{n}^{-}, g(z):=P\left(h_{1}\left(T_{k} z\right)\right)
$$

where $P: E_{n} \rightarrow E_{k-1}^{+} \oplus E_{n}^{-}$is the orthogonal projection. Since $\operatorname{dim}\left(E_{k}^{+} \oplus E_{n}^{-}\right)>\operatorname{dim}\left(E_{k-1}^{+} \oplus E_{n}^{-}\right)$, Borsuk's theorem tells us that g must have a zero. Now $z \in \partial \mathcal{O}$ implies that $\left\|h_{1}(T z)\right\|=r_{k}$, and $g(z)=0$ implies that $h_{1}\left(T_{k} z\right) \in E_{n}^{+}, h_{1}\left(T_{k} z\right) \perp E_{k-1}^{+}$. It follows from $\left(\Phi_{2}^{\prime}\right)$ that $\Phi\left(h_{1}\left(T_{k} z\right)\right) \geq b_{k}$. This contradicts the fact that $T_{k} z \in \Phi_{n}^{d_{k}}$ by $\left(\Phi_{3}^{\prime}\right)$ and $h_{1}\left(\Phi_{n}^{d_{k}}\right) \subset \Phi_{n}^{b_{k}-\varepsilon}$.

3 The Variational Setting

3.1 The spaces in the case of a bounded domain in \mathbb{R}^{n}. Let $\varphi_{n}, n \in \mathbb{N}$, be an orthonormal basis of $L^{2}(\Omega)$ made up of eigenfunctions of the eigenvalue problem

$$
-\Delta u=\lambda u \quad \text { in } \Omega, \quad u=0 \quad \text { on } \quad \partial \Omega
$$

Let λ_{n} be the corresponding eigenvalues. For all real numbers $s>0$ we define, for $u=\sum_{j=1}^{\infty} a_{j} \varphi_{j}, v=$ $\sum_{j=1}^{\infty} b_{j} \varphi_{j}$:

$$
H^{s}(\Omega):=\left\{u \in L^{2}(\Omega): \sum_{j=1}^{\infty} \lambda_{j}^{s}\left|a_{j}\right|^{2}<\infty\right\}
$$

This is a Hilbert space with respect to the inner product $\langle u, v\rangle_{s}:=\sum_{j=1}^{\infty} \lambda_{j}^{s} a_{j} b_{j}$. Clearly, the operator

$$
A^{s}: H^{s}(\Omega) \longrightarrow L^{2}(\Omega), \quad u \longmapsto \sum_{j=1}^{\infty} \lambda_{j}^{s / 2} a_{j} \varphi_{j}
$$

is an isometric isomorphism. It is easy to see that

$$
\int_{\Omega} A^{s} u \phi=\int_{\Omega} u A^{s} \varphi \quad \text { for all } u, \phi \in H^{s}(\Omega)
$$

which is used to prove the regularity of weak solutions. One has also the Sobolev imbeddings

$$
H^{s}(\Omega) \subset L^{p}(\Omega)
$$

continuously if $1 \leq p \leq \frac{2 N}{N-2 s}$ and compactly if $1 \leq p<\frac{2 N}{N-2 s}$.
3.2 The spaces in the case $\Omega=\mathbb{R}^{n}$. In this case, the space $H^{s}\left(\mathbb{R}^{n}\right)$ is defined by

$$
H^{s}\left(\mathbb{R}^{N}\right):=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}}\left(1+|\xi|^{s}\right)^{2} \cdot|\widehat{u}(\xi)|^{2} d \xi<\infty\right\}
$$

where \widehat{u} denotes the Fourier transform of u. This is a Hilbert space with respect to

$$
\langle u, v\rangle:=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}}\left(1+|\xi|^{s}\right)^{2} \cdot \widehat{u}(\xi) \cdot \widehat{v}(\xi) d \xi
$$

The operator

$$
A^{s}: H^{s}\left(\mathbb{R}^{n}\right) \longrightarrow L^{2}\left(\mathbb{R}^{n}\right), \quad u \longmapsto\left(\left(1+|\xi|^{s}\right) \widehat{u}\right)^{\vee},
$$

(where ω^{\vee} denotes the inverse Fourier transform of ω) is usually written as $A^{s}=\left(1+|D|^{s}\right)$. It is readily seen that it is an isometric isomorphism. It is also easy to see that

$$
\int_{\mathbb{R}^{n}} A^{s} u \phi=\int_{\mathbb{R}^{n}} u A^{s} \phi \quad \text { for all } u, \phi \in H^{s}\left(\mathbb{R}^{N}\right)
$$

We observe that $A^{2}=u-\Delta u$ since

$$
A^{2} u=\left(\left(1+|\xi|^{2}\right) \widehat{u}\right)^{\vee} \quad \text { for } u \in H^{2}\left(\mathbb{R}^{N}\right)
$$

This explains the form of the system (1.2) in the case of $\Omega=\mathbb{R}^{n}$.
If G is a subgroup of $O(N)$, then we set

$$
L_{G}^{2}\left(\mathbb{R}^{n}\right):=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right): u(g x)=u(x) \text { for } g \in G, \text { and } x \in \mathbb{R}^{n} \text { a.e. }\right\}
$$

and $H_{G}^{s}:=H^{s} \cap L_{G}^{2}$. Clearly we have that

$$
A^{s}\left(H_{G}^{s}\left(\mathbb{R}^{n}\right)\right)=L_{G}^{2}\left(\mathbb{R}^{n}\right)
$$

In the case of \mathbb{R}^{n} there is a loss of the compact imbeddings. However, depending on the group G acting on \mathbb{R}^{n}, we can still recover them. We mention the following result due to P.-L. Lions [12]:

Proposition 3.1. If

$$
G=O\left(N_{1}\right) \times \ldots \times O\left(N_{k}\right)
$$

with $N_{i} \geq 2$ and $\sum_{i=1}^{k} N_{i}=N$, then the imbedding

$$
H_{G}^{s}\left(\mathbb{R}^{n}\right) \subset L^{\gamma}\left(\mathbb{R}^{n}\right) \text { for } 2<\gamma<\frac{2 N}{N-2 s}
$$

is compact.

The case when $G=O(N)$ was first proved by Strauss [15].
3.3 The "quadratic" forms and the functionals. In the sequel we write E^{s} to denote both $H^{s}(\Omega)$ in the case of a bounded domain Ω, and $H^{s}\left(\mathbb{R}^{N}\right)$. Let us consider the Cartesian product $E:=E^{s} \times E^{t}$ with $s, t \geq 0$, which is also a Hilbert space endowed with the inner product

$$
\langle z, \eta\rangle:=\langle u, \phi\rangle_{s}+\langle v, \psi\rangle_{t}, \quad \text { for } z=(u, v), \eta=(\phi, \psi) \in E .
$$

We consider the bilinear form

$$
B: E \times E \longrightarrow \mathbb{R}, \quad B[z, \eta]:=\int\left(A^{s} u A^{t} \psi+A^{s} \phi A^{t} v\right)
$$

where \int denotes the integral in both cases, over Ω or over \mathbb{R}^{n}. Associated to B, we have the quadratic form

$$
Q(z):=\frac{1}{2} B[z, z]=\int A^{s} u A^{t} v .
$$

It is easy to see (cf. [7]) that the bounded self-adjoint operator $L: E \rightarrow E$ defined by $\langle L z, \eta\rangle:=$ $B[z, \eta]$ has exactly two eigenvalues +1 and -1 , and that the corresponding eigenspaces E^{+}and E^{-}are given by

$$
E^{+}=\left\{\left(u, A^{-t} A^{s} u\right): u \in E^{s}\right\} \quad \text { and } \quad E^{-}=\left\{\left(u,-A^{-t} A^{s} u\right): u \in E^{s}\right\}
$$

where we are using the notation $A^{-t}=\left(A^{t}\right)^{-1}$.
Now consider the Hamiltonian $H: \bar{\Omega} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ from Section 1. We consider the functional

$$
\begin{equation*}
\Phi(z):=Q(z)-\int H(x, u, v) d x \tag{3.1}
\end{equation*}
$$

where $z=(u, v)$. By $\left(\mathrm{H}_{2}\right)$ or $\left(\mathrm{H}_{2}^{\prime}\right)$, there exist $s, t>0$, with $s+t=2$ and

$$
\begin{equation*}
\frac{1}{p}>\frac{1}{2}-\frac{s}{n} \quad \text { and } \quad \frac{1}{q}>\frac{1}{2}-\frac{t}{n} \tag{3.2}
\end{equation*}
$$

This implies that we have continuous imbeddings $E^{s} \subset L^{p}$ and $E^{t} \subset L^{q}$. We fix s and t with this property so that Φ is well defined in E by $\left(\mathrm{H}_{2}\right)$ or $\left(\mathrm{H}_{2}^{\prime}\right)$. Moreover, $\left(\mathrm{H}_{2}\right)$ or $\left(\mathrm{H}_{2}^{\prime}\right)$ imply that $\Phi \in C^{1}(E, \mathbb{R})$ with

$$
\left\langle\Phi^{\prime}(z), \eta\right\rangle=B[z, \eta]-\int\left(H_{u}(x, u, v) \phi+H_{v}(x, u, v) \psi\right) d x
$$

for $z, \eta \in E$. From this one deduces that a critical point $z=(u, v)$ of Φ corresponds to a weak solution of (1.1) or (1.2). Namely

$$
\int A^{s} u A^{t} \psi=\int H_{v}(x, u, v) \psi \quad \text { for all } \psi \in E^{t}
$$

and

$$
\int A^{s} \phi A^{t} v=\int H_{u}(x, u, v) \phi \quad \text { for all } \phi \in E^{s}
$$

As shown in [7] for the case of Ω bounded these solutions are strong in the sense that

$$
u \in W^{2, p /(p-1)}(\Omega) \cap W_{0}^{1, p /(p-1)}(\Omega) \text { and } v \in W^{2, q /(q-1)}(\Omega) \cap W_{0}^{1, q /(q-1)}(\Omega)
$$

and they satisfy (1.1). In the case of \mathbb{R}^{n} we conclude that $u \in W_{l o c}^{2, p /(p-1)}\left(\mathbb{R}^{N}\right)$ and $v \in W_{l o c}^{2, q /(q-1)}\left(\mathbb{R}^{N}\right)$, and that they satisfy (1.2).

In order to apply Theorem 2.1 in the next sections, let us introduce the following notations. Let $\left(e_{j}\right)_{j \in \mathbb{N}}$ be an orthonormal basis of E^{s}. Clearly the $f_{j}:=A^{-t} A^{s} e_{j}, j \in \mathbb{N}$, constitute an orthonormal basis of E^{t}. We set

$$
E_{n}^{s}:=\operatorname{span}\left\{e_{j}: j=1, \ldots, n\right\} \quad \text { and } \quad E_{n}^{t}:=\operatorname{span}\left\{f_{j}: j=1, \ldots, n\right\}
$$

The following result can be readily seen.

Lemma 3.1. With the above notations, we have

$$
E^{ \pm}=\overline{\bigcup_{n=1}^{\infty} E_{n}^{ \pm}}, \quad E=E^{+} \oplus E^{-}, \quad E_{n}:=E_{n}^{+} \oplus E_{n}^{-}=E_{n}^{s} \times E_{n}^{t}
$$

Next we check that the functional Φ defined in (3.1) satisfies the condition $\left(\Phi_{2}^{\prime}\right)$ in both cases, Ω bounded or \mathbb{R}^{N}.

Lemma 3.2. Assume $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{2}\right)$ or $\left(\mathrm{H}_{1}^{\prime}\right)-\left(\mathrm{H}_{2}^{\prime}\right)$. Then there exists a sequence of positive real numbers $r_{k}, k \geq 1$, such that

$$
b_{k}:=\inf \left\{\Phi(z): z \in E^{+}, z \perp E_{k-1}^{+},\|z\|=r_{k}\right\} \rightarrow+\infty .
$$

Proof: We use Remark 2.2 applied to the Hilbert space E^{+}with $P(z):=Q(z)$, and

$$
\Psi(z):=\int H(x, u, v)
$$

where $z=(u, v)$. We know that $Q(z)=\frac{1}{2}\|z\|^{2}$ for $z \in E^{+}$, and from $\left(\mathrm{H}_{2}\right)$ we obtain

$$
\begin{aligned}
\left|\int H(x, u, v)\right| & \leq C\left(\int|u|^{p}+\int|v|^{q}+1\right) \\
& \leq C^{\prime}\left(\|z\|_{X}^{r}+1\right)
\end{aligned}
$$

where $X=L^{p}(\Omega) \times L^{q}(\Omega)$ and $r=\max \{p, q\}>2$. Also, assuming $\left(\mathrm{H}_{2}^{\prime}\right)$ we obtain:

$$
\begin{aligned}
\left|\int H(x, u, v)\right| & \leq C\left(\int|u|^{p}+\int|v|^{q}+\int|u|^{a+1}+\int|v|^{b+1}\right) \\
& \leq C^{\prime}\|z\|_{X}^{r}
\end{aligned}
$$

for some $r>2$.

4 The case Ω bounded.

In this section we prove Theorem 1.1. With the notation from Section 3, we want to apply Theorem 2.1 to the functional

$$
\begin{equation*}
\Phi: E \rightarrow \mathbb{R}, \quad \Phi(z)=Q(z)-\int H(x, u, v) d x \tag{4.1}
\end{equation*}
$$

where $z=(u, v) \in E=E^{s} \times E^{t}$. First we show that Φ satisfies a Palais-Smale condition.
Lemma 4.1. Assume $\left(\mathrm{H}_{1}\right)$, $\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{3}\right)$. Then Φ as defined in (4.1) satisfies $(P S)_{c}^{\mathcal{F}}$ for every $c \in \mathbb{R}$ and $\mathcal{F}=\left(E_{n}\right)_{n \in \mathbb{N}}$.
Proof: In view of Remark 2.1, it suffices to prove that a $(P S)_{c}^{\mathcal{F}}$ sequence is bounded in E. This follows as in Section 3 of [8], up to the point where we are to get some bounds for $\left\|u_{n}\right\|_{E^{s}}$ and $\left\|v_{n}\right\|_{E^{t}}$. At this point we then use the fact that $\int A^{s} u_{n} A^{t} \psi=0$, for all $\psi \in\left(E_{n}^{t}\right)^{\perp}$.

Next we check the other assumptions of Theorem 2.1. It has already been proved that Φ satisfies condition $\left(\Phi_{2}^{\prime}\right)$. In particular, condition $\left(\Phi_{2}\right)$ is satisfied.

For each $\lambda>0$, let us define the isomorphism $T_{\lambda}: E \rightarrow E$ by

$$
T_{\lambda}(u, v)=\left(\lambda^{\beta-1} u, \lambda^{\alpha-1} v\right)
$$

Clearly $T_{\lambda} E_{n}=E_{n}$ for all $\in \mathbb{N}$. Observe however that $E_{n}^{+} \cap T_{\lambda} E_{n}^{+}=\{0\}$ and $E_{n}^{-} \cap T_{\lambda} E_{n}^{-}=\{0\}$ if $\alpha \neq \beta$.

For each $k \in \mathbb{N}$ consider the finite dimensional subspace E_{k}^{s}. Since all norms are equivalent in finite dimensional spaces, we have positive constants $\sigma_{k}, \sigma_{k}^{\prime}, \tau_{k}$ and τ_{k}^{\prime} such that

$$
\|u\|_{L^{2}} \geq \sigma_{k}\|u\|_{E^{s}} \quad \text { and } \quad\|u\|_{E^{s}} \geq \sigma_{k}^{\prime}\|u\|_{L^{\beta}} \quad \text { for all } u \in E_{k}^{s}
$$

and

$$
\|v\|_{L^{2}} \geq \tau_{k}\|v\|_{E^{t}} \quad \text { and } \quad\|v\|_{E^{t}} \geq \tau_{k}^{\prime}\|v\|_{L^{\alpha}} \quad \text { for all } v \in E_{k}^{t}
$$

These constants are going to compose the constants δ_{k} announced in the introduction.
Lemma 4.2. Assume that there are constants c_{2} and c_{3}, such that

$$
\begin{equation*}
H(x, u, v) \geq \frac{1}{2} c_{2}\left(|u|^{\alpha}+|v|^{\beta}\right)-c_{3} \tag{4.2}
\end{equation*}
$$

for all $(x, u, v) \in \bar{\Omega} \times \mathbb{R} \times \mathbb{R}$. Then, for each $\lambda>0$ and each $k \in \mathbb{N}$, one has

$$
\Phi\left(T_{\lambda} z\right) \leq \lambda^{\alpha+\beta}\left(1-c_{2} \delta_{k}\right)+c_{3}|\Omega|
$$

for all $z=z^{+}+z^{-} \in E_{k}^{+} \oplus E^{-}$, with $\lambda:=\left\|z^{+}\right\|$, where

$$
\delta_{k}:=\min \left\{\left(\frac{\sigma_{k}^{2} \sigma_{k}^{\prime}}{2}\right)^{\alpha},\left(\frac{\tau_{k}^{2} \tau_{k}^{\prime}}{2}\right)^{\beta}\right\}
$$

Proof: For $z=z^{+}+z^{-} \in E_{k}^{+} \oplus E^{-}$we write $z^{-}=z_{1}^{-}+z_{2}^{-}$where $z_{1}^{-} \in E_{k}^{-}, z_{2}^{-} \perp E_{k}^{-}$. We also write $\bar{z}:=z^{+}+z_{1}^{-}$and $z=(u, v), z^{ \pm}=\left(u^{ \pm}, v^{ \pm}\right), \ldots$ Using (4.2) we have

$$
\begin{equation*}
\int_{\Omega} H\left(x, T_{\lambda} z\right) \geq \frac{1}{2} c_{2}\left(\lambda^{(\beta-1) \alpha}\|u\|_{L^{\alpha}}^{\alpha}+\lambda^{(\alpha-1) \beta}\|v\|_{L^{\beta}}^{\beta}\right)-c_{3}|\Omega| . \tag{4.3}
\end{equation*}
$$

Since α and β are conjugate exponents and $u_{2}^{-} \perp \bar{u}$ in L^{2}, we obtain

$$
\begin{align*}
\|u\|_{L^{\alpha}} & \geq\left|\langle u, \bar{u}\rangle_{L^{2}}\right| \cdot\|\bar{u}\|_{L^{\beta}}^{-1} \\
& =\|\bar{u}\|_{L^{2}}^{2}\|\bar{u}\|_{L^{\beta}}^{-1} \\
& \geq \sigma_{k}^{2} \sigma_{k}^{\prime}\|\bar{u}\|_{E^{s}} \\
& =: \widetilde{\sigma}_{k}\|\bar{u}\|_{E^{s}} . \tag{4.4}
\end{align*}
$$

Similarly

$$
\begin{equation*}
\|v\|_{L^{\beta}} \geq \tau_{k}^{2} \tau_{k}^{\prime}\|\bar{v}\|_{E^{t}}=: \widetilde{\tau}_{k}\|\bar{v}\|_{E^{t}} . \tag{4.5}
\end{equation*}
$$

Next observe that $\bar{u}=u^{+}+u_{1}^{-}$and $\bar{v}=A^{-t} A^{s}\left(u^{+}-u_{1}^{-}\right)$. So

$$
\begin{equation*}
\|\bar{u}\|_{E^{s}}=\left\|u^{+}+u_{1}^{-}\right\|_{E^{s}} \quad \text { and } \quad\|\bar{v}\|_{E^{t}}=\left\|u^{+}-u_{1}^{-}\right\|_{E^{s}} . \tag{4.6}
\end{equation*}
$$

Using (4.3)-(4.6) we obtain the following estimate on the Hamiltonian:

$$
\begin{aligned}
& \int_{\Omega} H\left(x, T_{\lambda} z\right) \\
& \quad \geq \frac{1}{2} c_{2}\left(\lambda^{(\beta-1) \alpha} \widetilde{\sigma}_{K}^{\alpha}\left\|u^{+}+u_{1}^{-}\right\|_{E^{s}}^{\alpha}+\lambda^{(\alpha-1) \beta} \widetilde{\tau}_{K}^{\beta}\left\|u^{+}-u_{1}^{-}\right\|_{E^{s}}^{\beta}\right)-c_{3}|\Omega|
\end{aligned}
$$

Since $\left\|u^{+}\right\|_{E^{s}}=\left\|z^{+}\right\| / 2=\lambda / 2$, we have that either $\left\|u^{+}+u_{1}^{-}\right\|_{E^{s}} \geq \lambda / 2$ or $\left\|u^{+}-u_{1}^{-}\right\|_{E^{s}} \geq \lambda / 2$. In either case

$$
\begin{equation*}
\int_{\Omega} H\left(x, T_{\lambda} z\right) \geq \frac{1}{2} c_{2} \delta_{k} \lambda^{\alpha+\beta}-c_{3}|\Omega| \tag{4.7}
\end{equation*}
$$

On the other hand we have that

$$
Q\left(T_{\lambda} z\right)=\lambda^{\alpha+\beta-2} Q(z)=\frac{1}{2} \lambda^{\alpha+\beta-2}\left(\left\|z^{+}\right\|^{2}-\left\|z^{-}\right\|^{2}\right)
$$

and so for $\left\|z^{+}\right\|=\lambda$ we obtain

$$
\begin{equation*}
Q\left(T_{\lambda} z\right) \leq \frac{1}{2} \lambda^{\alpha+\beta} \tag{4.8}
\end{equation*}
$$

Thus it follows from (4.7) and (4.8) that

$$
\begin{equation*}
\Phi\left(T_{\lambda} z\right) \leq \frac{1}{2}\left(1-c_{2} \delta_{k}\right) \lambda^{\alpha+\beta}+c_{3}|\Omega| \quad \text { for all } \lambda=\left\|z^{+}\right\| \leq\left\|z^{-}\right\| \tag{4.9}
\end{equation*}
$$

An immediate consequence of Lemma 4.2 is the next result which establishes $\left(\Phi_{3}\right)$.
Lemma 4.3. Suppose that (4.2) holds and there is $K \in \mathbb{N}$ such that

$$
\begin{equation*}
1-c_{2} \delta_{K}<0 \tag{4.10}
\end{equation*}
$$

Then, fixing $r>0$ there is a $\lambda_{0}>0$ such that, for all $\lambda \geq \lambda_{0}$ one has, for $z=z^{+}+z^{-} \in E_{K}^{+} \oplus E^{-}$:

$$
\Phi\left(T_{\lambda} z\right)<0 \quad \text { if }\left\|z^{+}\right\|=\lambda, \quad \text { and } \quad\left\|T_{\lambda} z\right\|>r \quad \text { if } \max \left\{\left\|z^{+}\right\|,\left\|z^{-}\right\|\right\}=\lambda
$$

Proof of Theorem 1.1: As mentioned before we apply Theorem 2.1. First we observe that Lemma 4.1 gives condition $\left(\Phi_{1}\right)$. Lemma 3.2 implies that there exists a $k_{0} \in \mathbb{N}$ such that $b_{k_{0}}>0$, which then gives $\left(\Phi_{2}\right)$ and $\left(\Phi_{2}^{\prime}\right)$. Now suppose that (1.9) holds for some $K \geq k_{0}$. Then we can apply Lemmas 4.2 and 4.3 and conclude that $\left(\Phi_{3}\right)$ holds. $\left(\Phi_{4}\right)$ is implied by the fact that Φ maps bounded sets of E into bounded sets of \mathbb{R}. Finally, condition $\left(\Phi_{5}\right)$ is a consequence of $\left(\mathrm{H}_{4}\right)$.

5 The case $\Omega=\mathbb{R}^{n}$

With the notations introduced in Section 3 the weak solutions of (1.2) are the critical points of the functional

$$
\begin{equation*}
\Phi(z)=\int_{\mathbb{R}^{N}} A^{s} u A^{t} v-\int_{\mathbb{R}^{N}} H(x, u, v) \tag{5.1}
\end{equation*}
$$

acting in $E=E^{s} \times E^{t}:=H^{s}\left(\mathbb{R}^{N}\right) \times H^{t}\left(\mathbb{R}^{N}\right)$, where s and t satisfy (3.2). We shall consider the functional Φ restricted to certain subspaces of E where we have compact imbeddings due to symmetry properties. Let us start with the group $G=O(N)$ acting in \mathbb{R}^{n}, and let us look for critical points of Φ in the subspace X of E given by $X=H_{O(N)}^{s}\left(\mathbb{R}^{n}\right) \times H_{O(N)}^{t}\left(\mathbb{R}^{n}\right)$. All subspaces introduced in Section 3 are now restricted to spherically symmetric functions. Observe that

$$
X:=\operatorname{Fix}(G)=\{(u, v) \in E: g u=u, g v=v, \text { for all } g \in O(N)\}
$$

where $g u$ means $(g u)(x)=u(g x)$, for all $x \in \mathbb{R}^{n}$. We see also that Φ is invariant with respect to G, i.e. $\Phi(g u, g v)=\Phi(u, v)$. Hence, it follows from the Palais Principle of Symmetric Criticality, see [13] or [16], that the critical points of Φ restricted to X are critical points of Φ considered in the whole space E.

In order to prove Theorem 2.1, we have to check that $\left.\Phi\right|_{X}$ satisfies the assumptions of the Fountain Theorem.

For each $\lambda>0$, let us define the isomorphism $T_{\lambda}: E \rightarrow E$, by

$$
T_{\lambda}(u, v)=\left(\lambda^{\mu} u, \lambda^{\nu} v\right)
$$

where $\mu=\frac{m-p}{p}$ and $\nu=\frac{m-q}{q}$, and $m>\max (p, q)$. Clearly $T_{\lambda} E_{n}=E_{n}$.
Lemma 5.1. Assume conditions $\left(\mathrm{H}_{1}^{\prime}\right)-\left(\mathrm{H}_{4}^{\prime}\right)$. Then, there is a sequence $\lambda_{k}>0, k \in \mathbb{N}$, such that $\left(\Phi_{3}^{\prime}\right)$ holds with $T_{k}:=T_{\lambda_{k}}$ and $R_{k}:=\lambda_{k}$.

Proof: Let us use the notation introduced in the proof of Lemma 4.2. It follows from (1.16) that for any $\lambda>0$ we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} H\left(x, T_{\lambda} z\right) \geq c\left(\lambda^{\mu p} \int_{\mathbb{R}^{N}}|u|^{p}+\lambda^{\nu q} \int_{\mathbb{R}^{N}}|v|^{q}\right) \tag{5.2}
\end{equation*}
$$

Using Hölder's inequality, we obtain

$$
\|u\|_{L^{p}}\|\bar{u}\|_{L^{p^{\prime}}} \geq\left|\langle u, \bar{u}\rangle_{L^{2}}\right|=\|\bar{u}\|_{L^{2}}^{2} \quad \text { where } \frac{1}{p}+\frac{1}{p^{\prime}}=1
$$

Next, from the finite dimensionality of E_{k}^{s} we have that there is a positive constant γ_{k} such that

$$
\|u\|_{L^{p}} \geq \gamma_{k}\|\bar{u}\|_{E^{s}} \quad \text { for } u \in E_{k}^{s} .
$$

Similarly there is $\widetilde{\gamma}>0$ with

$$
\|v\|_{L^{q}} \geq \widetilde{\gamma}_{k}\|\bar{v}\|_{E^{t}} \quad \text { for } v \in E_{k}^{t}
$$

Thus it follows from (5.2) that

$$
\int_{\mathbb{R}^{N}} H\left(x, T_{\lambda} z\right) \geq c\left(\lambda^{\mu p} \gamma_{k}^{p}\|\bar{u}\|_{E^{s}}^{p}+\lambda^{\nu q} \widetilde{\gamma}_{k}^{q}\|\bar{v}\|_{E^{t}}^{q}\right)
$$

As in the proof of Lemma 4.2 we obtain

$$
\int_{\mathbb{R}^{N}} H\left(x, T_{\lambda} z\right) \geq c \cdot \min \left\{\frac{1}{2^{p}} \lambda^{\mu p} \gamma_{k}^{p} \lambda^{p}, \frac{1}{2^{q}} \lambda^{\nu q} \widetilde{\gamma}_{k}^{q} \lambda^{q}\right\} \geq \sigma_{k} \lambda^{m}
$$

provided $\left\|z^{+}\right\|=\lambda$.

On the other hand,

$$
Q\left(T_{\lambda} z\right)=\lambda^{\mu+\nu}\left(\left\|z^{+}\right\|^{2}-\left\|z^{-}\right\|^{2}\right) \leq \lambda^{\mu+\nu+2}
$$

for $\left\|z^{+}\right\|=\lambda$. Consequently we have

$$
\Phi\left(T_{\lambda} z\right) \leq \lambda^{\mu+\nu+2}-\sigma_{k} \lambda^{m}
$$

Since $m>\mu+\nu+2$, it follows that there is a $\lambda_{0}(k)>0$ such that $\Phi\left(T_{\lambda_{k}} z\right)<0$ if $\lambda_{k}>\lambda_{0}(k)$. Also

$$
\left\|T_{\lambda} z\right\| \geq \lambda^{\min \{\mu, \nu\}}\|z\|^{2}
$$

which implies that

$$
\left\|T_{\lambda_{k}} z\right\| \geq \lambda_{k}^{\min \{\mu, \nu\}+2} \quad \text { for } \max \left\{\left\|z^{+}\right\|,\left\|z^{-}\right\|\right\}=\lambda_{k}
$$

Therefore, we can choose λ_{k} such that

$$
\Phi\left(T_{\lambda_{k}} z\right)<0 \quad \text { and } \quad\left\|T_{\lambda_{k}} z\right\| \geq r_{k}
$$

for any given r_{k}.
Proof of Theorem 1.2: First we observe that hypotheses $\left(\mathrm{H}_{1}^{\prime}\right)$ and $\left(\mathrm{H}_{2}^{\prime}\right)$ imply that Φ is C^{1} in E. And using $\left(\mathrm{H}_{3}^{\prime}\right)$ we prove easily that a $(P S)_{c}^{\mathcal{F}}$ sequence is bounded in X. So it follows from Remark 2.1 and Proposition 3.1 that $\left.\Phi\right|_{X}$ satisfies the $(P S)_{c}^{\mathcal{F}}$ condition. Hence $\left(\Phi_{1}\right)$ holds. Condition $\left(\Phi_{2}^{\prime}\right)$ has already been checked in Lemma 3.2. Condition $\left(\Phi_{3}^{\prime}\right)$ is proved in Lemma 5.1. Condition $\left(\Phi_{4}^{\prime}\right)$ is trivially verified, and finally $\left(\Phi_{5}\right)$ is a consequence of $\left(\mathrm{H}_{5}\right)$. So we apply the Fountain Theorem and conclude.

We omit the Proof of Theorem 1.3 since it parallels a similar result of Bartsch-Willem [3] for the scalar case. The result in our case follows from an application of the Fountain Theorem, using Proposition 3.1.

References

[1] A. Bahri and H. Berestycki, Existence of forced oscillations for some nonlinear differential equations, Comm. Pure Appl. Math. 37 (1984), 403-442.
[2] T. Bartsch and M. Clapp, Critical point theory for indefinite functionals with symmetries, J. Fctl. Anal. 138 (1996), 107-136.
[3] T. Bartsch and M. Willem, Infinitely many nonradial solutions of a Euclidean scalar field equation, J. Fctl. Anal. 117 (1993), 447-460.
[4] G. Cerami, Un criterio di esistenza per i punti critici su varietà illimitate, Rec. Ist. Lomb. Sci. Lett. 112 (1978), 332-336.
[5] D.G. Costa and C.A. Magalhães, A unified approach to a class of strongly indefinite functionals, J. Diff. Eq. 122 (1996), 521-547.
[6] D.G. de Figueiredo, Semilinear elliptic systems, Proceedings of the Second School on Nonlinear Functional Analysis and Applications to Differential Equations, ICTP Trieste 1997, World Scientific Publishing Company (to appear).
[7] D.G. de Figueiredo and P. Felmer, On superquadratic elliptic systems, Trans. AMS 343 (1994), 99-116.
[8] D.G. de Figueiredo and C.A. Magalhães, On nonquadratic Hamiltonian elliptic systems, Advances in Diff. Eq. 1 (1996), 881-898.
[9] D.G. de Figueiredo and J. Yang, Decay, Symmetry and existence of solutions of semilinear elliptic systems, to appear in Nonlinear Analysis, TMA.
[10] P. Felmer, Periodic solutions of "superquadratic" Hamiltonian systems, J. Diff. Eq. 102 (1993), 188-207.
[11] S. Li and J.Q. Liu, Some existence theorems on multiple critical points and their applications, Kexue Tongbao 17 (1984) [in chinese].
[12] P.-L. Lions, Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal. 49 (1982) 315-334.
[13] R.S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69(1979), 19-30.
[14] B. Sirakov, On the existence of solutions of elliptic systems in \mathbb{R}^{N}, Preprint.
[15] W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. (1977), 149-162.
[16] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24, Birkhäuser 1996.

[^0]: *Research supported by GMD-CNPq. T.B. thanks the members of the Department of Mathematics at UNICAMP for their invitation and hospitality.

