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NATURAL NORMS ON SYMMETRIC TENSOR PRODUCTS OF
NORMED SPACES

KLAUS FLORET

Abstract. The basics of the theory of symmetric tensor products of normed
spaces and some applications are presented.

0. Introduction

0.1. Though known for quite a while to algebraists (at least since Chevalley’s mono-
graph [C] in 1956), it was only in 1980 that R. Ryan in his doctoral thesis [R] intro-
duced symmetric tensor products for the study of polynomials on Banach spaces;
before Gupta [Gu] had discovered in 1968 that the space of nuclear n-homogeneous
polynomials on a Banach space E is a natural predual (via trace duality) of the
space of continuous n-homogeneous polynomials on E′ (if E′ has the approxima-
tion property). Unfortunately, Ryan’s thesis was not published and I have the
impression that many researchers do not feel attracted by symmetric tensor prod-
ucts and prefer to use other methods. I think, however, that a consequent (but
not exclusive!) use of tensor products will give good and new insights into the
theory – exactly as Grothendieck did it successfully in his “résumé” ([Gro], see also
[DF]) for the theory of linear operators. Moreover, there are already various “met-
ric” results and so it seems to be adequate to develop a “metric theory” of n-th
symmetric tensor products in the spirit of Grothendieck. Therefore the purpose of
this paper is two-fold: presenting a thorough introduction of the algebraic basics
of symmetric tensor products and the two extreme natural norms (the symmetric
projective norm πs and symmetric injective norm εs) in order to facilitate the use
of symmetric tensor products and to prepare a theory of so-called s-tensor norms
the beginning of which will appear in [F2].

0.2. This paper starts with a study of the algebraic aspects, the norms πs and εs,
continues with the duality between εs and πs and applications to the polarization
constants and finishes with extensions of polynomials to the bidual. Though many
of the results are explicitly or implicitly known, the thorough construction of the
theory gives various simplified proofs and also new information – not only for the
theory of symmetric tensor products but also for the study of polynomials.

0.3. If E1, . . . , En and F are vector spaces over K = R or K = C the space of
n-linear mappings ϕ : E1 × · · · × En −→ F is denoted by L(E1, . . . , En; F ). If
all E1 = · · · = En = E Nachbin’s notation L(nE; F ) := L(E, . . . , E︸ ︷︷ ︸

n

; F ) will be
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used; nE should be read as n-times E. The subspace Ls(nE; F ) ⊂ L(nE; F ) is
the space of those ϕ which are symmetric, i.e. ϕ(x1, . . . , xn) = ϕ(xη(1), . . . , xη(n))
for all permutations η ∈ Sn (the group of permutations of {1, . . . , n}). If the
Ej and F are normed spaces the subspaces of continuous n-linear maps will be
denoted by L(E1, . . . , En; F ), L(nE; F ) and Ls(nE; F ) respectively; E′ := L(E; K).
The closed unit ball of E is BE . If G ⊂ E is a subspace IEG : G ↪→ E and
QE
G : E −→ E/G denote the natural injection and quotient mapping. E ∼= F

means topologically isomorphic, E
1= F isometrically isomorphic, E

1
↪→ F denotes

an (iso-)metric injection and T : E
1� F a metric surjection (i.e. T

◦
BE =

◦
BF ). The

set Cn
K

is := {−1, 1} if K = R and n is even and := {1} otherwise.
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I also thank C. Boyd and R. Ryan for allowing me to reproduce some arguments
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1. The algebraic theory of symmetric tensor products

1.1. If n ∈ N and E1, . . . , En are K-vectors spaces, then an n-fold tensor product
(H0, ψ0) (where H0 is a K-vector space and ψ0 ∈ L(E1, . . . , En; H0)) is defined
by the following universal property: for every K-vector space F and every ϕ ∈
L(E1, . . . , En; F ) there is a unique T ∈ L(H0; F ) with ϕ = T ◦ ψ0. The pair
(H0, ψ0) is unique up to isomorphisms and exists. The following notation will be
used: ⊗(E1, . . . , En), ⊗nj=1Ej , E1 ⊗ · · · ⊗En,

⊗nE := ⊗(E, . . . , E) and ⊗(x1, . . . , xn) := x1 ⊗ · · · ⊗ xn ,

as well as ⊗nx := x ⊗ · · · ⊗ x. To distinguish from the symmetric tensor product
(which will be defined and constructed in a moment) it is reasonable to call ⊗nE
the full n-fold tensor product of E. The isomorphism

L(E1, . . . , En; F ) = L(⊗nj=1Ej ; F )

will be denoted by ϕ� ϕL. Clearly, ⊗1E = E.

1.2. The symmetric tensor product will linearize only symmetric n-linear mappings.

Definition. Let E,H be K-vector spaces and ψ0 ∈ Ls(nE; H). The pair (H,ψ0)
is called an n-th symmetric tensor product of E if for every K-vector space F and
every ϕ ∈ Ls(nE; F ) there is a unique T ∈ L(H ; F ) with ϕ = T ◦ ψ0.

The algebraists call (H,ψ) also an n-th symmetric (tensor) power of E. If it
is clear which n ∈ N is used, the adjective “n-th” will be omitted. The universal
property immediately implies the following affirmations for fixed n:

(1) If (H0, ψ0) is a symmetric tensor product of E, then spanψ0(En) = H0 and,
for all F and T1, T2 ∈ L(H0; F ), one has: T1 = T2 if and only if T1 ◦ ψ0 =
T2 ◦ ψ0.

(2) If (Hj , ψj) are two symmetric tensor products of E, then there exists a unique
isomorphism (onto) S ∈ L(H1; H2) with ψ2 = S ◦ ψ1 and ψ1 = S−1 ◦ ψ2.
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(3) Let (H0, ψ0) be a symmetric tensor product of E and S ∈ L(H0; H1) and
T ∈ L(F ; E) isomorphisms. Then (H1, S ◦ ψ0 ◦ (T, . . . , T )) is a symmetric
tensor product of F .

The statement (2) gives the same kind of uniqueness as for the full tensor prod-
uct. Once one has existence, it is therefore reasonable to speak about the (n-th)
symmetric tensor product of E.

1.3. To prove the existence, the following operation will be helpful: if η ∈ Sn, then
the n-linear map En −→ ⊗nE defined by

(x1, . . . , xn)� xη−1(1) ⊗ · · · ⊗ xη−1(n)

has a linearization ⊗nE −→ ⊗nE which will be denoted by z � zη. It is easy to
see that (zη)σ = zσ ◦ η. The use of η−1 in the definition instead of η is sometimes
practical (see also [Gre]). For x1, . . . , xn ∈ E define

x1 ∨ . . . ∨ xn :=
1
n!

∑
η∈Sn

xη−1(1) ⊗ · · · ⊗ xη−1(n) ∈ ⊗nE

and for z ∈ ⊗nE
σnE(z) :=

1
n!

∑
η∈Sn

zη ∈ ⊗nE

which clearly is the linearization ⊗nE −→ ⊗nE of the n-linear (even symmetric)
map ∨ : En −→ ⊗nE. We shall show that (im σnE ,∨) is an n-th symmetric tensor
product of E. Note that σnE(⊗nx) = ⊗nx.

1.4. Before doing this, let us state the

Polarization formula. Let E be a K-vector space, (Ω, P ) a probability space,
ε1, . . . , εn : Ω −→ K functions in L2(P ) which are stochastically independent,
centered (i.e.

∫
Ω εk dP = 0) and normalized (i.e.

∫
Ω |εk|2dP = 1). Then, for every

x0, x1, . . . , xn ∈ E

x1 ∨ · · · ∨ xn =
1
n!

∫
Ω

ε1(w) · · · εn(w) ⊗n
[
x0 +

n∑
k=1

εk(w)xk

]
P (dw) .

It is clear that the Bochner-integral exists in the finite dimensional subspace
⊗n[span {x0, . . . , xn}] of ⊗nE.

Proof. The proof is straightforward: if µk is the distribution measure on K of εk,
then using t0 := 1∫

Ω

· · ·P (dw) =

=
n∑

k1,... ,kn=0

∫
K

· · ·
∫

K

t1 · · · tn · tk1 · · · tknµ1(dt1) · · ·µn(dtn)xk1⊗ · · · ⊗ xkn =

=
∑
η∈Sn

xη−1(1) ⊗ · · · ⊗ xη−1(n) = n! x1 ∨ · · · ∨ xn

since the iterated integral is 1 if {k1, . . . , kn} = {1, . . . , n} and 0 otherwise.
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Many special situations are of interest:

(a) P the countable product measure on Ω := K
N of the normalized Gauß-measure

on K and εk being the k-th projection;

(b) the Rademacher functions: Ω := {−1, +1}N with P the product measure of
1
2 (δ−1 + δ+1) and εk := rk the k-th projection;

(c) more general – the n-Rademacher functions which were first used by Aron and
Globevnik [AG] for the study of polynomials: Substitute {−1, 1} by the n-th unit
roots λk := exp

(
2πik
n

)
, hence Ω is the set {λ0, . . . , λn−1}N and εk := snk is the k-th

projection. These n-Rademacher functions are often useful in the complex theory
of n-linear mappings and polynomials since they are n-orthonormal, i.e.∫

Ω

snk1 · · · snkn
dP =

{
1 if k1 = · · · = kn

0 otherwise
.

(P being the product measure of 1
n (δλ1 + · · · + δλn)), hence

m∑
k=1

xk(1) ⊗ · · · ⊗ xk(n) =
∫
Ω

[
m∑
k=1

snk (t)xk(1)

]
⊗ · · · ⊗

[
m∑
k=1

snk (t)xk(n)

]
P (dt) ,

and satisfy a Khintchine inequality (see [ALRT], [FM] and [MeT]).

1.5. Using the Rademacher functions one obtains the classical polarization formula

x1 ∨ · · · ∨ xn =
1

n!2n
∑

δ1,... ,δn∈{−1,1}
δ1 . . . δn ⊗n

[
x0 +

n∑
k=1

δkxk

]
and in particular the

Corollary.
σnE(⊗nE) = span {x1 ∨ · · · ∨ xn | xj ∈ E} = span {⊗nx | x ∈ E} =

=

{
m∑
j=1

αj ⊗nxj
∣∣∣∣ m ∈ N, xj ∈ E, αj ∈ Cn

K

}
where Cn

K
:= {−1, 1} if K = R and n is even and Cn

K
:= {1} otherwise.

Now everything is prepared for the

Theorem. (im σnE ,∨) is an n-th symmetric tensor product of E.

The embedding im σnE −→ ⊗nE will be denoted, if necessary, by ιnE .

Proof. The unique factorization of every ϕ ∈ Ls(nE; F ) through a linear T ∈
L(imσnE ; F ) has to be verified. Clearly T := ϕL ◦ ιnE satisfies

T ◦ ∨ (x1, . . . , xn) = T (x1 ∨ · · · ∨ xn) = ϕL

(
1
n!

∑
η

(x1 ⊗ · · · ⊗ xn)η
)

=

=
1
n!

∑
η

ϕL ((x1 ⊗ · · · ⊗ xn)η) = ϕ(x1, . . . , xn)

since ϕ is symmetric. If the mappings T1, T2 ∈ L(im σnE ; F ) satisfy T1 ◦ ∨ = T2 ◦ ∨,
then T1(⊗nx) = T2(⊗nx) for all x and hence, by the corollary, T1 = T2.
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Though there are clearly other “realizations” of the n-th symmetric tensor prod-
uct we shall – if not otherwise stated (and if the full tensor product ⊗nE is fixed)
– consider the subspace im σnE ⊂ ⊗nE together with ∨ as the n-th symmetric ten-
sor product: ⊗n,sE := im σnE . It is obvious that ⊗1,sE = ⊗1E = E. Note that
σnE : ⊗nE −→ ⊗n,sE is a projection and σnE ◦ ⊗ = ∨, but clearly ⊗ �= ιnE ◦ ∨ in
general. It is easy to see that if (H0, ψ0) is an n-th symmetric tensor product and
(H1, ψ1) a full n-fold tensor product of E, then

J(ψ0(x1, . . . , xn)) :=
1
n!

∑
η∈Sn

ψ1(xη−1(1), . . . , xη−1(n)) ∈ H1

defines the natural injection J : H0 −→ H1.

1.6. The universal property of the n-th symmetric tensor product gives an isomor-
phism

Ls(nE; F ) =−→ L(⊗n,sE; F ) , ϕ� ϕL,s := ϕL ◦ ιnE ;

its inverse is T � T ◦ ∨. Since σnE is the linearization of ∨ it follows that the
embedding

L(⊗n,sE; F ) = Ls(nE; F ) ↪→ L(nE; F ) = L(⊗nE; F )

is the mapping T � T ◦ σnE . For F = K one obtains

(σnE)∗ : (⊗n,sE)∗ = Ls(nE) ↪→ L(nE) = (⊗nE)∗ .

1.7. If T ∈ L(E; F ), then there is a unique S ∈ L(⊗n,sE;⊗n,sF ) with S(⊗nx) =
⊗nTx for all x ∈ E: just take S := ⊗nT ◦ ιnE and note that im S ⊂ ⊗n,sF ; unique-
ness comes from the fact that the elements ⊗nx span the space ⊗n,sE. Notation:
⊗n,sT : ⊗n,sE −→ ⊗n,sF . It is easy to see that ⊗n,sT (x1∨· · ·∨xn) = Tx1∨· · ·∨Txn
and ker⊗n,sT = σnE(ker⊗nT ).

1.8. It is worthwhile to note, see [C], that dimK(⊗n,sKk) =
(
n+k−1
k−1

)
.

1.9. The elements in ⊗n,sE ⊂ ⊗nE are called symmetric.

Remark.
(1) z ∈ ⊗nE is symmetric if and only if z = zη for all η ∈ Sn.
(2) Let x1, . . . , xn ∈ E\{0}. Then x1 ⊗ · · · ⊗ xn is symmetric if and only if

dim span {x1, . . . , xn} = 1.

Proof. (1) is immediate; for (2) assume that x2 �∈ span {x1} and take x∗
k ∈ E∗ with

〈x∗
k, xk〉 = 1 for all k and 〈x∗

1, x2〉 = 0. For ϕ := x∗
1 ⊗ · · · ⊗ x∗

n ∈ (⊗nE)∗ one gets
the contradiction 1 = 〈ϕ, x1 ⊗ x2 ⊗ · · · ⊗ xn〉 = 〈ϕ, x2 ⊗ x1 ⊗ x3 · · · ⊗ xn〉 = 0 since
x1 ⊗ x2 ⊗ x3 · · · ⊗ xn = x2 ⊗ x1 ⊗ x3 ⊗ · · · ⊗ xn by (1).

1.10. The symmetric tensor product ⊗n,sE is a complemented subspace of the full
one ⊗nE with the projection σnE . Vice versa, take F :=

∏n
i=1 Ei and Ii : Ei −→ F

and Pi : F −→ Ei the natural injections and projections, then

id⊗n
i=1Ei : ⊗ni=1Ei

I1⊗···⊗In−−−−−−→ ⊗nF σn
F−−→ ⊗n,sF ↪→ ⊗nF n!P1⊗···⊗Pn−−−−−−−−→ ⊗ni=1Ei

(this construction is, for n = 2, due to Bonet-Peris [BP] and was successively
extended to the present form by Defant-Maestre [DM], [AlF1] and Blasco [B1]).
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It follows that ⊗ni=1Ei is isomorphic to a complemented subspace of ⊗n,sF (with
“natural” mappings, which is important in view of the topological situation). In
particular: ⊗nE is isomorphic to a complemented subspace of ⊗n,sEn. If E ∼= En,
then ⊗nE and ⊗n,sE are complemented in each other. One can even show more
[DD]: if E ∼= E2, then ⊗nE ∼= ⊗n,sE; this result is also a consequence of the
formula ([AnF])

⊗n,s(F ⊕G) =
n⊕
k=0

[⊗k,sF ]⊗ [⊗n−k,sG]
(again with natural mappings and the convention ⊗0,sE := K).

1.11. Blasco [B2] showed that ⊗n,sE is isomorphic to a complemented subspace of
⊗n+1
s E – also with natural mappings; in particular: E = ⊗1,sE is complemented

in all ⊗n,sE. The dual result (i.e. for n-homogeneous polynomials) was proved in
1976 by Aron-Schottenloher [AS].

1.12. Recall that q : E −→ F is an n-homogeneous polynomial (notation: q ∈
Pn(E; F )) if there is a ϕ ∈ L(nE; F ) with q(x) = ϕ(x, . . . , x) for all x ∈ E;
notation: q := ϕ� := ϕ ◦ � where �(x) := (x, . . . , x). It is clear that also the
symmetrization ϕs ∈ Ls(nE; F ) of ϕ defined by

ϕs(x1, . . . , xn) =
1
n!

∑
η∈Sn

ϕ(xη−1(1), . . . , xη−1(n))

satisfies q(x) = ϕs(x, . . . , x). Note the relation

ϕs = ϕL ◦ ιnE ◦ ∨ .(∗)

The polarization formula implies that there is a unique q̌ ∈ Ls(nE; F ) with q = q̌�.
The following notation will be used:

Pn(E; F ) = Ls(nE; F ) = L(⊗n,sE; F )

q � q̌ � qL := (q̌)L,s

ϕ � ϕL,s = ϕL ◦ ιnE .

Applying q̌ = qL ◦ ∨ to the polarization formula gives

q̌(x1, . . . , xn) =
1
n!

∫
Ω

ε1(w) · · · εn(w) q

(
x0 +

n∑
k=1

εk(w)xk

)
P (dw) =

=
1

n!2n
∑

δ1,... ,δn∈{−1,1}
δ1 · · · δn q

(
x0 +

n∑
k=1

δkxk

)
for all q ∈ Pn(E; F ) and x0, . . . , xn ∈ E.

1.13. If 〈Ej , Fj〉 are dual systems of vector spaces, then 〈⊗nj=1Ej ,⊗nj=1Fj〉 forms a
dual system with the duality bracket〈∑

i

xi1 ⊗ · · · ⊗ xin,
∑
j

yj1 ⊗ · · · ⊗ yjn
〉

=
∑
i,j

n∏
k=1

〈xik, yjk〉 .

If all 〈Ej , Fj〉 are separating, then 〈⊗nj=1Ej ,⊗nj=1Fj〉 is also separating (for a proof,
by induction, reduce to n = 2). In particular: 〈⊗nE,⊗nF 〉 is separating if 〈E,F 〉
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is. Clearly, the restriction (via ιnE × ιnF ) to ⊗n,sE ×⊗n,sF gives a duality bracket.
It is clear that 〈uη, v〉 = 〈u, vη

−1〉 for all (u, v) ∈ ⊗nE ×⊗nF and η ∈ Sn, whence

〈σnE(u), v〉 = 〈u, σnF (v)〉 .(∗)

Proposition. If 〈E,F 〉 is a separating dual system, then 〈⊗n,sE,⊗n,sF 〉 is also a
separating dual system with the duality bracket

〈
∑
i

δi ⊗nxi,
∑
j

ηj ⊗nyj〉 =
∑
i,j

δiηj(〈xi, yj〉)n .

Proof. For 0 �= u ∈ ⊗n,sE ⊂ ⊗nE there is a v ∈ ⊗nF with 1 = 〈u, v〉 =
〈σnE(u), v〉 = 〈u, σnF (v)〉 whence σnF (v) ∈ ⊗n,sF ⊂ ⊗nF separates u from 0.

In particular: the natural map JE : ⊗n,sE ↪→ (⊗n,sF )∗ = Pn(F ) is injective
and

JE(x1 ∨ · · · ∨ xn)(y) =
n∏
j=1

〈xj , y〉

JE(⊗nx)(y) = 〈x, y〉n .

Following the notation of [DF], the polynomial JE(⊗nx) will be denoted by ⊗nx,
hence (⊗nx)(y) = 〈x, y〉n; this notation is helpful since the extension of JE to the
completion of ⊗n,sE (with respect to πs, see chap. 2) may fail to be injective (see
4.3.). If E is normed, then

JE′ : ⊗n,sE′ ↪→ Pn(E) ⊂ Pn(E)

(Pn(E) are the continuous n-homogeneous polynomials) is injective. In particular:
〈⊗n,sE,Pn(E)〉 is a separating dual system with the duality bracket

〈z, q〉 := 〈qL, z〉 .
Having in mind the tensor product description of the trace and the trace duality
for linear operators (see e.g. [DF, 2.5. and 2.6.]) one may call this last duality and
the duality in the proposition trace duality as well.

A polynomial q ∈ Pn(E; F ) is called of finite type (notation: q ∈ Pn
f (E; F )) if

there are (x∗
m, ym) ∈ E∗ × F with

q(x) =
n∑

m=1

〈x∗
m, x〉nym for all x ∈ E.

It follows that Pn
f (E; F ) = (⊗n,sE∗) ⊗ F and for normed spaces E,F

Pnf (E; F ) := Pn
f (E; F ) ∩ Pn(E; F ) = (⊗n,sE′) ⊗ F ;

for a proof use (⊗nE∗) ∩ L(nE) = ⊗nE′ (which can be proved by induction) and
the polarization formula. The relation L(n(E, σ(E,F ))) ∩ ⊗nE∗ = ⊗nF for a
separating dual system 〈E,F 〉 and the weak topology σ(E,F ) implies

Pn(E, σ(E,F )) ∩ ⊗n,sE∗ = ⊗n,sF .

In particular: the weak-∗-continuous n-homogeneous polynomials on E′ of finite
type are ⊗n,sE. These formulas were first observed by Ryan [R].

1.14. It is worthwhile to note that 1.6. and the formulas (∗) in 1.13. and 1.12. give
that the following diagrams commute for each dual system 〈E,F 〉:
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⊗n,sE (⊗n,sF )∗ =

❄

Ls(nF ) � ϕ

ιnE (σn
F )∗

✲Js

❄❄

✄�

❄

✄�

⊗nE (⊗nF )∗ = L(nF ) � ϕ✲J

⊗n,sE (⊗n,sF )∗ = Ls(nF ) � ϕs

σn
E

(ιnF )∗

✲Js

⊗nE (⊗nF )∗ = L(nF ) � ϕ✲J

✻✻ ✻

where Js and J are just the mappings coming from the respective duality brackets;
they are injective if 〈E,F 〉 is separating.

1.15. Just for the sake of a certain completeness of this introduction to the algebraic
theory of symmetric tensor products: the addition formula

(x1 + y1) ⊗ · · · ⊗ (xn + yn) =
∑

D⊂{1,... ,n}
(zD1 ⊗ · · · ⊗ zDn )

(where zD� := x� if / ∈ D and := y� otherwise) gives

⊗n(x + y) =
n∑
k=0

(
n

k

)
xkyn−k

with the definition xkyn−k := x ∨ · · · ∨ x︸ ︷︷ ︸
k-times

∨ y ∨ · · · ∨ y︸ ︷︷ ︸
n-k-times

. It follows that

q(x + y) =
n∑
k=0

(
n

k

)
qL(xkyn−k) =

n∑
k=0

(
n

k

)
q̌(x, . . . , x︸ ︷︷ ︸

k

, y, . . . , y︸ ︷︷ ︸
n−k

)

for all q ∈ Pn(E; F ) and x, y ∈ E.

1.16. As a consequence of these formulas every ϕ ∈ LR(E1, . . . , En; F ) and every
q ∈ Pn

R
(E; F ) (where Ej , E and F are real vector spaces) has a unique extension

ϕC ∈ LC(EC
1 , . . . , EC

n ; FC) and qC ∈ Pn
C

(nEC; FC) to the complexification (GC :=
G⊕ iG) given by (zD� is as in 1.15.)

ϕC(x1 + iy1, . . . , xn + iyn) :=
∑

D⊂{1,... ,n}
i|D|ϕ

(
zD1 , . . . , zDn

)

qC(x + iy) :=
n∑
k=0

(
n

k

)
ikqL

(
xkyn−k

)
.

Kirwan [Ki] and Muñoz-Sarantopoulos-Tonge [MST] studied the behaviour of the
norms ‖ϕC‖ and ‖qC‖ if the complexifications EC

j and FC are equipped with (pos-
sibly different) “complexification norms”.
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2. The projective s-tensor norm

2.1. Let E and F be normed spaces. Then the projective norm π( · ;⊗nE) on the
full tensor product satisfies

L(nE; F ) 1= L(⊗nπE; F )

( 1= means isometrically equal). Ls(nE; F ) ⊂ L(nE; F ) has the induced norm. For
the natural norm

‖q‖Pn(E,F ) := sup{‖q(x)‖F | x ∈ BE}
of a continuous n-homogeneous polynomial q ∈ Pn(E; F ) one has

‖q‖Pn(E;F ) ≤ sup{‖q̌(x1, . . . , xn)‖F | x1, . . . , xn ∈ BE} =

= ‖q̌‖Ls(nE;F ) ≤ nn

n!
‖q‖Pn(E;F )

by the polarization formula. It follows that the n-th polarization constant of E
defined by

c(n,E) := sup
{‖q̌‖Ls(nE;F ) | F normed, q ∈ BPn(E;F )

}
=

= sup
{‖q̌‖Ls(nE) | q ∈ BPn(E)

}
is ≤ nn

n! . It is well-known that c(n, /1) = nn

n! and c(n, /2) = 1 (Harris [Ha] comments
in the Scottish book, that this can easily be deduced from results of Kellogg 1928
and from van der Corpurt-Schaake 1935, but that also Banach [B] proved it). In
particular: c(n,H) = 1 for all Hilbert spaces; conversely, Benitez and Sarantopoulos
[BeS] showed that each real normed space with c(2, E) = 1 is pre-Hilbert. For other
examples see [S], [D2], [D4].

It follows that ‖q‖ �= ‖q̌‖ in general. If π|s denotes the restriction to ⊗n,sE of
the projective norm on ⊗nE, then

‖σnE : ⊗nπE −→ ⊗n,sπ|sE‖ = 1

(if E �= {0}). Since qL(σnE(z)) = (q̌)L(z) ∈ F for all q ∈ Pn(E; F ) one obtains

‖q̌‖Ls(nE;F ) = ‖qL‖L(⊗n,s
π|sE;F )

.

This shows that π|s is not an appropriate norm for a metric theory of continuous
n-homogeneous polynomials.

2.2. For this one needs a norm πs on ⊗n,sE such that

Pn(E; F ) 1= L(⊗n,sπs
E; F ) .

The key calculation is the following:

‖q‖Pn(E;F ) = sup
{‖q(x)‖F

∣∣ x ∈
◦
BE

}
= sup

{‖qL(⊗nx)‖F
∣∣ x ∈

◦
BE

}
=

= sup
{‖qL(z)‖F

∣∣ z ∈ Γ(∆n
◦
BE)

}
(where ∆n is the “diagonal” map E −→ ⊗n,sE defined by x � ⊗nx). For the

absolute convex hull C := Γ(∆n
◦
BE) one has spanC = ⊗n,sE (by Corollary 1.5.).

The Minkowski-gauge functional of C on ⊗n,sE will be denoted by πs( · ;⊗n,sE)
(or shortly πs; notation ⊗n,sπs

E)

πs(z;⊗n,sE) := inf
{
λ ≥ 0

∣∣ z ∈ λΓ(∆n
◦
BE)

}
.
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It is clear that

‖q‖Pn(E;F ) = sup
{‖qL(z)‖F

∣∣ πs(z;⊗n,sE) ≤ 1
}

.

Since 〈⊗n,sE,Pn(E)〉 is a separating dual system (see 1.13.) this implies that πs is
even a norm. πs is called the projective s-tensor norm (or shortly: the projective
s-norm). The completion of ⊗n,sπs

E will be denoted by ⊗̃n,sπs
E.

The following properties of πs can be proved in rather the same way as the
analogous ones for π on ⊗2E (see e.g. [DF, §3 and §5]) for all normed spaces E:

Proposition.

(1) For all normed spaces F one has

Pn(E; F ) 1= L
(
⊗n,sπs

E; F
)

;

in particular: Pn(E; F ) is complete if F is and

Pn(E; F ) 1= L
(
⊗̃n,sπs

E; F
)

in this case.

This “universal property” of πs can also be formulated as follows: ‖q(x)‖F ≤ c‖x‖nE
for all x ∈ E if and only if ‖qL : ⊗n,sπs

E −→ F‖ ≤ c.

(2) πs is the unique seminorm α on ⊗n,sE which satisfies

(⊗n,sE,α)′ 1= Pn(E)

(3) πs(⊗nx;⊗n,sE) = ‖x‖n for all x ∈ E.
(4)

πs(z;⊗n,sE) = inf

{
m∑
j=1

|λj |‖xj‖n
∣∣∣∣ m ∈ N, z =

m∑
j=1

λj ⊗nxj
}

=

= inf

{ ∞∑
j=1

|λj |‖xj‖n
∣∣∣∣ z =

∞∑
j=1

λj ⊗nxj (πs-convergence)

}

Note that λj ⊗nxj can be written as δj ⊗nµjxj with δj ∈ Cn
K

(see 1.5.) and
|λj |‖xj‖n = ‖µjxj‖n.

(5) The open unit ball with respect to πs is Γ(∆n
◦
BE). In particular: if Q : E −→

F is a metric surjection (notation: Q : E
1� F ), then

⊗n,sQ : ⊗n,sπs
E

1� ⊗n,sπs
F

(“πs respects metric surjections”).

This justifies the name “projective”. But it does not respect metric injections, see
2.9..

(6) If T ∈ L(E; F ), then

‖ ⊗n,s T : ⊗n,sπs
E −→ ⊗n,sπs

F‖ = ‖T ‖n .

(“πs satisfies the metric mapping property”).
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(7) πs is finitely generated in the following sense:

πs(z;⊗n,sE) = inf {πs(z;⊗n,sM) | M ∈ FIN(E), z ∈ ⊗n,sM}
(recall from [DF] the notation FIN(E) for the set of finite-dimensional sub-
spaces of E).

See 2.5. for the somehow dual situation. The norm in the completion ⊗̃n,sπs
E will

also denoted by πs.

(8) If K ⊂ ⊗̃n,sπs
E is compact and ε > 0, then there are a zero-sequence (xj) in

BE and a compact set D ⊂ /1 with sup ‖D‖ ≤ (1 + ε) sup πs(K) such that for
every z ∈ K there is a (λj) ∈ D with

z =
∞∑
j=1

λj ⊗nxj .

(9) In particular: every z ∈ ⊗̃n,sπs
E has a representation

z =
∞∑
j=1

λj ⊗nxj

with
∑ |λj |‖xj‖n < ∞ and

πs(z) = inf

{ ∞∑
j=1

|λj |‖xj‖n
∣∣∣∣ z =

∞∑
j=1

λj ⊗nxj
}

.

(10) For every compact set K ⊂ ⊗̃n,sπs
E and ε > 0 there is a compact set C ⊂ E

with sup ‖C‖ ≤ (1 + ε)[sup πs(K)]1/n and Γ(∆nC) ⊃ K.

2.3. The “full” projective norm on ⊗nE can be calculated by

π(z;⊗nE) = inf

{
�∑

k=1

n∏
m=1

‖xk,m‖
∣∣∣∣ z =

�∑
k=1

xk,1 ⊗ · · · ⊗ xk,n

}
and therefore π(z) ≤ πs(z) for all z ∈ ⊗n,sE. On the other hand it follows from
the definition and 2.2.(3) that

πs(x1 ∨ · · · ∨ xn;⊗nE) ≤ nn

n!
‖x1‖ · · · ‖xn‖

hence ∨ : En −→ ⊗n,sπs
E is continuous and therefore also its linearization σnE :

⊗nπE −→ ⊗n,sπs
E. From 1.10. one obtains

Pn(E) 1= (⊗n,sπs
E)′

(σn
E)′−−−→ (⊗nπE)′ 1= L(nE)

and this mapping is just q � q̌. Altogether:

Proposition. Let E be a normed space. Then

(1) ‖ιnE : ⊗n,sπs
E −→ ⊗nπE‖ = 1 (if E �= {0})

(2) ‖σnE : ⊗nπE −→ ⊗n,sπs
E‖ = c(n,E)

(3) ⊗n,sπs
E is a topologically complemented subspace of ⊗nπE.
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In particular: π|s ≤ πs ≤ c(n,E)π|s and πs �= π|s in general but πs = π|s for
Hilbert spaces. For z ∈ ⊗n,sE it is not difficult to see that

π(z) = inf

{
�∑

k=1

‖x1k‖ · · · ‖xnk‖
∣∣∣∣ / ∈ N; z =

�∑
k=1

x1k ∨ · · · ∨ xnk

}
and that π|s is the quotient norm of σnE : ⊗nπE −→ ⊗n,sE.

2.4. It is well-known (see e.g. [DF, 5.8.] for n = 2) that ⊗̃nT : ⊗̃nπE −→ ⊗̃nπF is
injective if T ∈ L(E; F ) is injective and E is a Banach space with the approximation
property. Hence 2.3.(3) implies the

Corollary. If E is a Banach space with the approximation property and T ∈
L(E; F ) is injective, then ⊗̃nsT : ⊗̃n,sπs

E −→ ⊗̃n,sπs
F is also injective.

2.5. Denote by COFIN(E) the set of closed finite-codimensional subspaces of a
normed space. It is clear that πs

(
z;⊗n,sE) ≥ sup

{
πs
((⊗n,sQE

F

)
(z);⊗n,sE/F

)}
(where the supremum is taken over all F ∈ COFIN(E)), but – in general – there is
no equality: as in Example 2 in 4.3. below this can be deduced from the respective
fact for full tensor products (see e.g. [DF, 16.2.]).

Proposition. If the normed space E has the metric approximation property, then

πs
(
z;⊗n,sE) = sup

{
πs
((⊗n,sQE

F

)
(z);⊗n,sE/F

) ∣∣ F ∈ COFIN(E)
}

.

Proof. For ε > 0 take a representation z =
∑m

j=1 λj ⊗nxj with
∑ |λj | ‖xj‖n ≤

(1 + ε)πs(z) and – using the m.a.p. – a T ∈ L(E; E) of finite rank, ‖T ‖ ≤ 1 + ε

and Txj = xj (see e.g. [DF, 16.9.]). Then T = T̂ ◦ QE
kerT and

πs
(
z;⊗n,sE) = πs

(⊗n,sT̂ ◦ QE
kerT (z)

) ≤ ‖T̂‖nπs
(⊗n,sQE

kerT (z);⊗n,sE/ ker T
)

which implies the result.

2.6. A polynomial q ∈ Pn(E) is called nuclear (notation: q ∈ Pnnuc(E)) if there are
λm ∈ K and x′

m ∈ E′ such that

q(x) =
∞∑
m=1

λm〈x′
m, x〉n for all x ∈ E

with
∑∞

m=1 |λm|‖x′
m‖n < ∞, i.e. q =

∑∞
m=1 λm⊗nx′

m (see 1.13. for ⊗n). It is
well-known and easy that

‖q‖nuc = inf

{ ∞∑
m=1

|λm|‖x′
m‖n

∣∣∣∣ q =
∞∑
m=1

λm⊗nx′
m

}
is a norm and (Pnnuc(E), ‖ ‖nuc) is a Banach space. The description 2.2.(9) of ⊗̃n,sπs

E′

shows that the map JnE′ (see 1.13.) extends to a metric surjection

J̃nE′ : ⊗̃n,sπs
E′ 1� Pnnuc(E) .

Recall ⊗n,sE′ = Pnf (E) from 1.13.. In 4.3. the injectivity of this map will be
investigated.

2.7. For a set D ⊂ Pn(E) = (⊗n,sπs
E)′ = (⊗̃n,sπs

E)′ the following are equivalent if E
is a Banach space (Mackey theorem for polynomials):
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(a) D is norm-bounded.

(b) D is σ(Pn(E), ⊗̃n,sπs
E)-bounded.

(c) D is σ(Pn(E),⊗n,sE)-bounded.
(d) {q(x) | q ∈ D} is bounded for all x ∈ E.
The proof is immediate from this kind of theorem in L(nE) and the polarization

formula.

2.8. The construction in 1.10. shows that the full projective tensor product ⊗nπE is
isomorphic to a complemented subspace of ⊗n,sπs

En. The formula for ⊗n,s(F ⊕ G)
at the end of 1.10. holds topologically (see [AnF]) which implies that ⊗n,sπs

E ∼= ⊗nπE
if E ∼= E2 (a result which is due to Diaz-Dineen [DD]).

2.9. The construction 1.10. is also quite useful to transfer counterexamples from π to
πs; example: if G ⊂ E is a subspace, but the norm ⊗nπG is not equivalent to the in-
duced norm from ⊗nπE, then the same holds for ⊗n,sπs

Gn and ⊗n,sπs
En: the projective

s-tensor norm does not respect subspaces topologically. However, ⊗n,sπs
E ↪→ ⊗n,sπs

E′′

is always an isometry (see 6.7. below), in particular dense subspaces are respected
(this can also easily be deduced from 2.2.(2)).

2.10. Blasco’s construction [B2] mentioned in 1.11. gives that ⊗n,sπs
E is topologically

isomorphic to a complemented subspace of ⊗n+1,s
πs

E. In particular, E is isomorphic
to a complemented subspace of ⊗n,sπs

E for all n ∈ N.

3. The injective s-tensor norm

3.1. The metric theory of full tensor products of normed spaces, due to Grothendieck
and Schatten treats “reasonable” norms α on ⊗n(E1, . . . , En) with ε ≤ α ≤ π and
allows, for example, to treat interesting subclasses of multilinear forms or operators
via duality. To follow such strategies for polynomials, π was substituted by πs since
the latter is more appropriate for polynomials. In this sense, the injective s-tensor
norm εs on ⊗n,sE is defined to be the induced norm from

J : ⊗n,sE ↪→ Pn(E′) 1= (⊗n,sπs
E′)′

hence
εs(z;⊗n,sE) := ‖J(z)‖Pn(E′) = sup {|〈z,⊗nx′〉| | x′ ∈ BE′} =

= sup

{∣∣ m∑
k=1

λk〈x′, xk〉n
∣∣ ∣∣∣∣ x′ ∈ BE′

}
if z =

∑m
k=1 λk ⊗nxk. Notation: ⊗n,sεs

E and ⊗̃n,sεs
E for the completion. From the

commutative diagrams (see 1.14.)

⊗n,sεs
E (⊗n,sπs

E′ )′

❄

ιnE (σn
E′ )′

1

⊗nεE (⊗nπE′ )′

✲✄
✂

❄
1

⊗n,sεs
E (⊗n,sπs

E′ )′

σn
E

(ιn
E′)′

1

⊗nεE (⊗nπE′ )′✲✄
✂

1

✻ ✻

✲✄
✂

✲✄
✂

and the same with the rôles of E and E′ interchanged one obtains from 2.3. the
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Proposition.

(1) ‖ιnE : ⊗n,sεs
E −→ ⊗nεE‖ ≤ c(n,E′) and ‖ιnE′ : ⊗n,sεs

E′ −→ ⊗nεE′‖ ≤ c(n,E)
(2) ‖σnE : ⊗nεE −→ ⊗n,sεs

E‖ = 1 if E �= {0}
(3) ⊗n,sεs

E is a topologically complemented subspace of ⊗nεE.

If ε|s denotes the restriction of the injective norm ε of the full tensor product to
the symmetric one, one has in particular

εs ≤ ε|s ≤ c(n,E′)εs ;

in particular: εs = ε|s for Hilbert spaces. For equality in (1) see 5.3..

3.2. More properties of εs are collected in the

Proposition.

(1) εs(⊗nx;⊗n,sE) = ‖x‖n for all x ∈ E; in particular: εs ≤ πs.
(2) εs satisfies the metric mapping property, i.e.

‖ ⊗n,s T : ⊗n,sεs
E −→ ⊗n,sεs

F‖ = ‖T : E −→ F‖n .

(3) If E is a Banach space and T ∈ L(E; F ) is injective, then

⊗̃nsT : ⊗̃n,sεs
E −→ ⊗̃n,sεs

F

is injective as well.

(4) If I : G
1

↪→ E is a metric injection, then ⊗n,sI : ⊗n,sεs
G

1
↪→ ⊗n,sεs

E
(“εs respects metric injections”).

(5) εs(z;⊗n,sE) = inf{εs(z;⊗n,sM) | M ∈ FIN(E), z ∈ ⊗n,sM} (i.e. εs is
finitely generated). The infimum is attained.

(6) If C ⊂ BE′ is σ(E′, E)-dense, then

εs(z;⊗n,sE) = sup
{|〈z,⊗nx′〉| ∣∣ x′ ∈ C

}
for all z ∈ ⊗n,sE. In particular:

εs(z′;⊗n,sE′) = sup
{|〈z′,⊗nx〉| ∣∣ x ∈ BE

}
for all z′ ∈ ⊗n,sE′ – in other words:

Pnf (E) 1= ⊗n,sεs
E′ 1

↪→ Pn(E) 1= (⊗n,sπs
E)′

The proofs of these statements are straightforward; for (6) one uses that for z =∑m
k=1 λk ⊗nxk the function E′ � x′ � 〈z,⊗nx′〉 =

∑m
k=1 λk〈xk, x′〉n is σ(E′, E)-

continuous. Recall that D ⊂ BE′ is called norming if ‖x‖ = sup{|〈x′, x〉| | x′ ∈ D}
which is equivalent to ΓD being σ(E′, E)-dense in BE′ .

However, (6) does not hold for norming C ⊂ BE′ : take E = C[0, 1] and C :=
{δt | 0 ≤ t ≤ 1}, since

⊗2,sC[0, 1] ⊂ C[0, 1]2

one obtains sup{|〈h,⊗2δt〉| | 0 ≤ t ≤ 1} = sup{|h(t, t)| | 0 ≤ t ≤ 1} but there are
0 �= h ∈ ⊗2,sC[0, 1] which are 0 on the diagonal.

It can be seen as in 2.9. that εs does not respect quotient mappings topologically.
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3.3. A neat application of the basic properties of εs (in particular its injectivity
3.2.14)) is the following: it is straightforward from the definition that (for n ≥ 2)

εs

(
n∑
k=1

λk ⊗nek;⊗n,s/n2
)

= max{|λk| | k = 1, . . . , n}

hence /n∞
1

↪→ ⊗n,sεs
/n2 . Dvoretzky’s theorem (/n2 is (1+ε)-isomorphic to a subspace of

every infinite-dimensional normed space E) implies that /n∞
1

↪→ ⊗n,sεs
/n2

1+ε
↪→ ⊗n,sεs

E.

It follows that /∞ is finitely represented in ⊗n,sεs
E and in Pn(E)

1←↩ ⊗n,sεs
E′; this

result is due to Dineen [D3]. In particular: none of these spaces have proper type
or cotype.

3.4. As in the n-linear case the description of the dual will be crucial. Since εs ≤ πs
one has

(⊗n,sεs
E)′ ⊂ (⊗n,sπs

E)′ = Pn(E) .

A polynomial q ∈ Pn(E) is called integral if qL ∈ (⊗n,sεs
E)′; notation q ∈ Pnint(E).

It is clear that with ‖ · ‖int defined by

‖q‖int := ‖qL‖(⊗n,s
εs E)′

Pnint(E) becomes a Banach space. Note that it is obvious from the Hahn-Banach
theorem and the fact that εs respects subspaces (see 3.2.(3)) that every integral
polynomial q on a subspace G ⊂ E has an integral extension q̃ ∈ Pnint(E) with
‖q̃‖int = ‖q‖int.
Theorem (Dineen [D1]). Let q ∈ Pn(E). Then q is integral if and only if there is
a signed Borel-measure µ on BE′ (with the σ(E′, E)-topology) such that

q(x) =
∫
BE′

〈x′, x〉nµ(dx′)(∗)

for all x ∈ E. Moreover:

‖q‖int = min{‖µ‖ | µ as in (∗) } .

If K = C or: K = R and n odd, then a best measure µ can be chosen positive, but
otherwise, in general, not.

Proof. If q (and hence also qL) has such an representation, it is immediate that
‖q‖int ≤ ‖µ‖. Vice versa I(z)(x′) := 〈⊗nx′, z〉 defines an isometry I : ⊗n,sεs

E ↪→
C(BE′) and the Hahn-Banach theorem gives a signed (regular) Borel-measure µ ∈
C(BE′)′ which extends qL (i.e.: I ′(µ) = qL) and ‖µ‖ = ‖qL‖(⊗n,s

εs E)′ . If K = R and
n is even, then positive measures represent (via (∗)) only non-negative q. In the
remaining cases Defant’s proof for the ⊗ε-situation ([DF, 4.6.]) can be adopted:
denote by D the Dirac-measures, by M+

1 the probability measures and by M :=
C(BE′)′ all signed Borel-measures on BE′ . Then, by definition, I ′(D) is norming
for εs on ⊗n,sE, equivalently:

I ′(D)0 = B⊗n,s
εs E .

For λ ∈ BK there is α ∈ BK with αn = λ (this were not possible if K = R and n
even!) hence λI ′(δx′) = I ′(δαx′) for all x′ ∈ BE′ . Since 0 ∈ I ′(D) if follows that
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conv (I ′(D)) = Γ(I ′(D)). The bipolar theorem and the σ(M,C(BE′ ))-compacity
of M+

1 give for σ∗ := σ((⊗n,sεs
E)′,⊗n,sεs

E)

B(⊗n,s
εs E)′ = I ′(D)00 = ΓI ′(D)

σ∗ = conv I ′(D)
σ∗ ⊂ I ′(M+

1 ) .

For x′ ∈ E′ it is clear that ⊗nx′ ∈ ⊗n,sE′ ⊂ Pn(E) is integral and ‖⊗nx′‖int =
‖x′‖n (by 3.2.(6)) hence (by the universal property 2.2.(1))

‖ ⊗n,sπs
E′ −→ Pnint(E)‖ ≤ 1

and also

J̃nE′ : ⊗̃n,sπs
E′ 1� Pnnuc(E) ↪→ Pnint(E)

has norm ≤ 1. It follows that ‖q‖ ≤ ‖q‖int ≤ ‖q‖nuc. In section 4 it will be
investigated under which circumstances JnE′ is injective, an isomorphism (in) and
onto.

3.5. The following example will turn out to be typical: let µ �= 0 be a signed
measure such that |µ| is strictly localizable (e.g. if µ is σ-finite), then ϕM ∈
Ls(nL∞(Ω, |µ|); L∞(Ω, |µ|)) is defined to be the multiplication

ϕM (f̃1, . . . , f̃n) :=

(
n∏
k=1

fk

)∼

.

Remark.
(1) (ϕM )L,s ∈ L(⊗n,sεs

L∞(Ω, |µ|); L∞(Ω, |µ|)) with norm 1.
(2) If µ is finite, then the n-homogeneous “integrating” polynomial qn defined by

qn(f̃) =
∫
Ω

fndµ

is integral and ‖qn‖int = ‖qn‖ ≤ |µ|(Ω).

Proof. If λ : L∞(Ω, |µ|) −→ L∞(Ω, |µ|) is a lifting (see e.g. [F1, 16.9.]), then
δw(f̃) := λ(f̃)(w) defines a functional in BL′∞ , hence one obtains for g̃ =

∑
αm⊗ñfm

‖ϕL,sM (g̃)‖L∞ = ‖∑αmf̃nm‖L∞ ≤ supw∈Ω | 〈δw,
∑

αmf̃nm〉| =

= sup
w∈Ω

|〈⊗nδw,
∑

αm ⊗nf̃m〉| ≤ εs(g̃;⊗n,sL∞) .

If µ is finite and ψI(f̃) :=
∫

f dµ, then qLn := ψI ◦ ϕL,sM which gives that qn is
integral; the rest is easy.

Corollary. For q ∈ Pn(E) the following statements are equivalent:
(1) q is integral.
(2) There exists a signed finite measure µ on some Ω and T ∈ L(E; L∞(|µ|) with

q(x) =
∫
Ω

[(Tx)(w)]nµ(dw)

for all x ∈ E.
(3) As in (2), but with a signed Borel measure on a compact set.
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In this case:
‖q‖int = min{‖µ‖ ‖T ‖n | µ, T as in (2)} =

= min{· · · | · · · (3)}
Proof. (2) implies (1) and ‖q‖int ≤ ‖µ‖ ‖ ⊗n,sεs

T ‖ = ‖µ‖ ‖T ‖n. If q is integral,

then define T : E
1
↪→ C(BE′) and Theorem 3.4. gives a representation (3) with

‖q‖int = ‖µ‖ ‖T ‖n.

In other words: q factors through the integrating polynomial

q : E
T−→ L∞(|µ|) qn−→ K .

Concerning positivity of µ the same statements as in 3.4. apply; in particular: if
K = C the measures in the corollary can be chosen positive.

3.6. Define for a normed space and the canonical mappings J0 and J1 the mapping
Φ by

Φ : ⊗n,sπs
E′ J0−→ ⊗n,sεs

E′ J1−→ (⊗n,sπs
E)′ 1= Pn(E) ;

note that J0 is onto and J1 an isometry (in). It follows that the Borel transform
B = Φ′ factors

B : Pn(E)′
J′
1−→ (⊗n,sεs

E′)′ = Pnint(E′)
J′
0−→ (⊗n,sπs

E′)′ 1= Pn(E′)

and J ′
1 is a metric surjection and J ′

0 injective. In other words: im B = Pnint(E′)
(an observation from [CZ]). Note that J ′

0 and J ′
1 are both norm-norm and weak∗-

weak∗ continuous. For ϕ ∈ Pn(E)′ the integral polynomial B(ϕ) ∈ Pn(E′) can be
calculated as follows:

B(ϕ)(x′) = 〈J ′
0 ◦ J ′

1(ϕ),⊗nx′〉 = 〈ϕ,⊗nx′〉
(see 1.13. for the notation ⊗nx′).

3.7. The statements of 2.8. and 2.10. hold also for the injective norms: ⊗nεE is
isomorphic to a complemented subspace of ⊗n,sεs

En and these two spaces are topo-
logically isomorphic if E ∼= E2 (see [AnF]). It was observed in [AnF] that a careful
check of Blasco’s construction [B2] gives also that ⊗n,sεs

E is topologically isomor-
phic to a complemented subspace of ⊗n+1,s

εs
E; in particular: E is isomorphic to a

complemented subspace of ⊗n,sεs
E for all n ∈ N.

4. Duality and the approximation property

4.1. If E is a normed space, the definition of εs (and 3.2.(6)) give that the natural
mappings

⊗̃n,sεs
E −→ (⊗n,sπs

E′)′ 1= Pn(E′)

⊗̃n,sεs
E′ −→ (⊗n,sπs

E)′ 1= Pn(E)

are metric injections. The polynomials in ⊗̃n,sεs
E′ ⊂ Pn(E) are usually called ap-

proximable. How is the dual situation? When are the mappings

JdE : ⊗̃n,sπs
E −→ (⊗n,sεs

E′)′ = Pnint(E′) ⊂ Pn(E′)

JE′ : ⊗̃n,sπs
E′ −→ (⊗n,sεs

E)′ = Pnint(E) ⊂ Pn(E)
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injective or even metric injections, when are they surjective?

4.2. The injectivity and surjectivity can easily be deduced from the analogous prop-
erties of the full tensor product. Here the result is as follows:

Theorem. Let E1, . . . , En−1 be Banach spaces �= {0}.
(1) E1, . . . , En−1 have the approximation property if and only if for all Banach

spaces En (or only separable reflexive En) the canonical map

⊗̃nπ,j=1Ej −→ ⊗̃nε,j=1Ej

is injective.
(2) E′

1, . . . , E′
n−1 have the Radon-Nikodým property (=: RNP ) if and only if for

all Banach spaces En the canonical map

⊗̃nπ,j=1E
′
j −→ (⊗̃nε,j=1Ej)

′

is surjective. In this case it is even a metric surjection.

Proof. These results are known. Proofs for n = 2 can be found e.g. in [DF, 5.6.,
21.9., 16.5.] – and the general case can be deduced from this: For (1) use [DF,
4.3.(2)] and

E1⊗̃π(E2⊗̃π . . . ) −→ E1⊗̃ε(E2⊗̃π . . . ) −→ E1⊗̃ε(E2⊗̃ε(E3⊗̃π . . . )) −→
. . . −→ E1⊗̃ε · · · ⊗̃εEn

and, for the other direction, that the condition implies that ⊗̃n−1
π,j=1Ej has a.p.. For

(2) look at

⊗̃π(E′
1, . . . , E′

n)
1� ⊗̃π(E′

1, . . . , E′
n−2, (En−1 ⊗ε En)′)

1� · · · 1� (⊗nε,j=1Ej)
′ .(∗)

For the converse note that the condition implies that

(⊗n−1
ε,j=1Ej)

′⊗̃πE′
n −→ (⊗nε,j=1Ej)

′(∗∗)

is always onto, hence (⊗n−1
ε,j=1Ej)

′ has RNP and so do all E′
j (for j = 1, . . . , n− 1)

since they are complemented in (⊗n−1
ε,j=1Ej)

′.

In particular: ⊗̃nπE has the approximation property if E has it and (⊗̃nεE)′ has
the RNP if E′ has RNP (use (∗∗) of the foregoing proof for this). Complementation
of the symmetric in the full projective tensor product and Blasco’s results cited in
2.10. and 3.7. give the

Corollary. The Banach space E has the approximation property (resp. E′ has
RNP) if and only if ⊗̃n,sπs

E has the approximation property (resp. Pnint(E) =
(⊗̃n,sεs

E)′ has RNP).

The result about the a.p. is from [Mu2]. Since (⊗nπ/2)′ does not have the a.p.
(for n = 2 this is the famous result of Szankowski, the case n > 2 easily follows
from this) 2.8. implies that also (⊗n,sπs

/2)′ = Pn(/2) does not have the approximation
property. Note that ⊗̃n,sεs

E also has the a.p. if E has it since this result is true for
⊗̃nεE (see e.g. [Ko, §44.5.(7)]).

4.3. The natural maps ⊗̃n,sπs
E −→ Pn(E′) and ⊗̃n,sπs

E′ −→ Pn(E) have ranges in
⊗̃n,sεs

E ∩ (⊗n,sεs
E′)′ and ⊗̃n,sεs

E′ ∩ (⊗n,sεs
E)′ respectively, hence the injectivity of JdE
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and JE′ (from 4.1.) is equivalent to the injectivity of ⊗̃n,sπs
· −→ ⊗̃n,sεs

· respectively.
Since certainly the diagram

✲

❄

✄�

❄

✄�

✲

⊗̃n,s
πs

E ⊗̃n,sεs
E

⊗̃nεE⊗̃nπE

fιnE
π

fιnE
ε

(natural mappings) is commutative, 4.2.(1) gives the

Proposition. If E is a Banach space with the approximation property, then, for
all n ∈ N, the natural map

⊗̃n,sπs
E −→ ⊗̃n,sεs

E

is injective.

Note that ⊗̃n,sεs
E

1
↪→ Pn(E′) and ⊗̃n,sεs

E′ 1
↪→ Pn(E). For the nuclear polynomials

(see 2.6.) it follows that ⊗̃n,sπs
E′ 1= Pnnuc(E) holds if E′ has the approximation

property; in particular: Pnnuc(E)′ 1= Pn(E′) in this case – a result which is due to
Gupta [Gu] in 1968 (see 0.1.).

Is the condition of E having a.p. in the proposition necessary?

Example 1. Let P be a Banach space without a.p. such that P⊗πP = P⊗εP holds
topologically (Pisier [Pi] has constructed such spaces). It follows that ⊗̃2,s

πs
P −→

⊗̃2,s

εs
P is injective, hence the converse of the proposition is false for n = 2. However,

an example like Pisier’s spaces P does not exist for n ≥ 3: John [J] has shown that
a Banach space E with ⊗nπE ∼= ⊗nεE for some n ≥ 3 is finite dimensional.

Example 2. Let E1, . . . , En be Banach spaces such that ⊗̃nπ,j=1Ej −→ ⊗̃nε,j=1Ej is
not injective and take Fn :=

∏n
j=1 Ej . It follows from the construction in 1.10.,

the metric mapping property of εs and πs and the continuity of σnFn
that

⊗̃n,sπs
Fn −→ ⊗̃n,sεs

Fn

is not injective. Take now (E1, . . . , En) = (K, . . . , K, E,E′) with an E without a.p.
such that E ∼= E × K (for example E = G ⊕ /2 and G without a.p.) one obtains
that Fn ∼= Kn−2 × E × E′ ∼= E × E′ hence G := E × E′ has the property that

⊗̃n,sπs
G −→ ⊗̃n,sεs

G

is not injective for all n ≥ 2.
It is not known whether the injectivity for some n ≥ 3 (or all n) implies the a.p..

4.4. If 〈F,G〉 is a separating dual system of normed spaces and the natural map

⊗̃n,sπs
F −→ Pn(G) = (⊗n,sπs

G)′

is injective, then (using 1.13.) 〈⊗̃n,sπs
F,⊗n,sG〉 is a separating dual system. In

particular

Corollary. Let E be a Banach space. If E (resp. E′) has the approximation
property, then 〈⊗̃n,sπs

E,⊗n,sE′〉 (resp. 〈⊗̃n,sπs
E′,⊗n,sE〉) is a separating dual system.
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Just one application of this result:

Proposition (Ryan [R]). Let E be a Banach space with the approximation property
such that Pn(E) is reflexive. Then every q ∈ Pn(E) is σ(E,E′)-continuous on
bounded subsets of E.

Proof. The fact that 〈D := ⊗n,sE′, ⊗̃n,sπs
E =: G〉 is a separating dual system implies

that σ(G,D) is a Hausdorff topology on G which (by the reflexity of G) coincides
with σ(G,G′) on bounded = σ(G,G′)-relatively compact sets.

Now take a bounded net (xα) in E with σ(E,E′)-limit x. Then 〈⊗nxα, z′〉 −→
〈⊗nx, z′〉 for every z′ =

∑
λm⊗nx′

m ∈ D = ⊗n,sE′ ⊂ Pn(E) = G′; hence (by what
was just said) ⊗nxα σ(G,G′)-converges to ⊗nx, i.e. for all q ∈ G′ = Pn(E)

q(xα) = 〈qL,⊗nxα〉 −→ 〈qL,⊗nx〉 = q(x) .

The space Pn(E) is reflexive for example in the following cases: E = /p (if
n < p < ∞; see [AlF1] and [GoJ]) or E = T , the original Tsirelson space (see
[AAD]). Note that the claim of the proposition holds also for the non-reflexive space
c0 since all q ∈ Pn(c0) are weakly sequentially continuous (due to Bogdanowicz
[Bo] and Pe[lczyński [Pe], see also [AlF1]) and the bounded sets in c0 are weakly
metrizable.

4.5. The diagram of natural maps

✲

✲

⊗̃n,sπs
E′ (⊗̃n,sεs

E)′

(⊗̃nεE)′⊗̃nπE′

gσn
E′

π (ιnE)′

Js

J

✻✻ ✻✻

is commutative (see 1.14.). Clearly, if J is surjective, Js is as well. Therefore, if
E′ has RNP 4.2.(b) implies that Js is onto and hence open, in particular (use 2.6.)
Pnnuc(E) = Pnint(E) (with equivalent norms); this result is due to Alencar [Al] who
even treated the vector-valued case. To see the norm equality, Boyd and Ryan [BR]

first used the metric surjection I ′ : C(BE′)′
1� (⊗n,sεs

E)′ 1= Pnint(E) (see the proof
of 3.4.) to show that the extreme points of the unit ball of Pnint(E) (where E is an
arbitrary normed space) are of the form ±⊗nx′ with x′ ∈ BE′ hence

ext BPn
int(E)

⊂ BPn
nuc(E)

⊂ BPn
int(E)

.(∗)

If E′ has RNP, then (as shown above) Pnnuc(E) = Pnint(E) and the norms are equiv-
alent. Since Pnint(E) has also RNP (see Corollary 4.2.) a result of Lindenstrauss’
(see [DU, p. 190]) implies that the unit ball of Pnint(E) is the norm-closed convex
hull of its extreme points, hence (∗) and 2.6. give the

Proposition ([Al], [BR], [CD]). If E′ has the RNP, then the natural map
Js : ⊗̃n,sπs

E′ −→ Pnint(E) is a metric surjection, in particular: Pnnuc(E) 1= Pnint(E).

As a consequence one obtains that

(⊗̃n,sπs
E′)⊗̃πF 1� (⊗n,sεs

E)′⊗̃πF 1� N (⊗̃n,sεs
E; F ) 1= PI(⊗̃n,sεs

E; F )
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(N for the nuclear and PI for the Pietsch-integral linear operators; see [DF, D8.]
for the last isometry and note that (⊗n,sεs

E)′ has RNP) is a metric surjection:

Corollary ([Al], [CD]). If E′ has the RNP, then the natural map

(⊗̃n,sπs
E′)⊗̃πF −→ PI(⊗̃n,sεs

E; F )

is a metric surjection for all Banach spaces F .

It follows (see Carando-Dimant [CD] for details) that – in this case – the latter
space is the space of integral n-homogeneous polynomials E −→ F in the sense of
Alencar [Al].

Note that the mappings in the proposition (use 4.3.) and in the corollary (use
the proposition, 4.2. and [DF, 5.7.]) are injective (hence isometric) if E′ has the
approximation property.

4.6. Concerning the isometric embeddings one has the

Duality theorem. Let E be a normed space.
(1) If E has the metric approximation property, then

⊗n,sπs
E ↪→ (⊗n,sεs

E′)′

is a metric injection.
(2) If E′ has the metric approximation property, then

⊗n,sπs
E′ ↪→ (⊗n,sεs

E)′

is a metric injection.

The natural setting for the duality theorem and its proof is the theory of s-tensor
norms which will be presented in [F2]. Therefore only the proof of (2) will be given;
(1) can be shown along the same lines.

Proof of (2). Note first that for finite-dimensional G one has ⊗n,sεs
G

1= (⊗n,sπs
G′)′

hence ⊗n,sπs
G′ 1

↪→ (⊗n,sεs
G)′. Now define for dual Banach spaces F ′ the norm

γ(·;⊗n,sF ′) on ⊗n,sF ′ (notation: ⊗n,sγ F ′) by

⊗n,sγ F ′ 1
↪→ (⊗n,sεs

F )′ .

The following properties of γ are easily checked:
(a) γ ≤ πs on all ⊗n,sF ′.
(b) γ = πs on ⊗n,sF ′ if dim F < ∞.
(c) If T ∈ L(F1; F2), then ‖ ⊗n,s T ′ : ⊗n,sγ F ′

2 −→ ⊗n,sγ F ′
1‖ ≤ ‖T ′‖n = ‖T ‖n.

Statement (2) says that πs = γ on ⊗n,sE′ if E′ has the m.a.p.. Now suppose – a
bit more general – that E′ has the λ-approximation property and take z′ ∈ ⊗n,sE′.
Then there is a finite dimensional subspace F ⊂ E′ with z′ ∈ ⊗n,sF . The quotient
map Q : E −→ E/F 0 (the dual of which is the embedding I : F ↪→ E′) has finite
rank, hence (see e.g. [DF, 16.9. Cor. (2)]) the λ-a.p. of E′ implies the existence of
a finite rank operator S ∈ L(E; E) with ‖S‖ ≤ λ(1 + ε) and Q = Q ◦ S; it follows
that S′ ◦ I = I and therefore

z′ = (⊗n,sS′)(z′) ∈ ⊗n,sS′(E′) .
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The properties (b), (c) and the metric mapping property for πs imply

πs(z′;⊗n,sE′) = πs((⊗n,sS′)(z′);⊗n,sE′) ≤ πs((⊗n,sS′)(z′);⊗n,sS′(E′)) =

= γ((⊗n,sS′)(z′);⊗n,sS′(E′)) ≤ ‖S‖nγ(z′;⊗n,sE′) ≤
≤ λn(1 + ε)nγ(z′;⊗n,sE′) .

It follows that γ ≤ πs ≤ λnγ on ⊗n,sE′.

4.7. In particular: Pnnuc(E)
1

↪→ Pnint(E) if E′ has the m.a.p.. The proof even showed
that, if E′ has the λ-approximation property, then

‖q‖int ≤ ‖q‖nuc ≤ λn‖q‖int
for all q ∈ Pnnuc(E).

5. Some consequences for the polarization constants

5.1. From §2 it is known that

c(n,E) = sup
{‖q̌‖L(nE)

∣∣ ‖q‖Pn(E) ≤ 1
}

= ‖σnE : ⊗nπE −→ ⊗n,sπs
E‖

for every normed space E. Since (⊗nT )zη = [⊗nT (z)]η the diagram

⊗nE ⊗n,sE

⊗nT ⊗n,sT

✲σn
E

⊗nF ⊗n,sF✲σn
F

❄ ❄
if T ∈ L(E; F )

commutes and simple diagram chasing (or manipulation with polynomials) give the

Proposition.
(1) If G ⊂ E is a closed subspace, then c(n,E/G) ≤ c(n,E).
(2) If F ⊂ E is complemented subspace with projection P , then

c(n, F ) ≤ ‖P‖nc(n,E) .

(3) If M is a filtrating subset in FIN(E) (i.e. for each M,N ∈ M exists an
L ∈ M with M ∪N ⊂ L) such that ∪M is dense in E, then

c(n,E) ≤ sup{c(n,M) | M ∈ M} .

(4) c(n, /p) = supk c(n, /kp).

(5) If E is an Lgp,λ-space, then c(n,E) ≤ λnc(n, /p).

Recall from [DF, §23] that E is an Lgp,λ-space if for all M ∈ FIN(E) and ε > 0
there is factorization IEM = S ◦ R with ‖R : M −→ /kp‖ ‖S : /kp −→ E‖ ≤ λ + ε.

Proof of (5): Take z ∈ ⊗nE and M ∈ FIN(E) with z ∈ ⊗nM . For a factorization
IEM = S ◦ R through /kp one obtains

πs
(
σnE(z);⊗n,sE) = πs

(
[⊗n,sS] ◦ σn�kp ◦ [⊗nR](z);⊗n,sE) ≤

≤ ‖S‖n ‖R‖nc(n, /kp
)
π(z;⊗nM)
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and the fact that π is finitely generated (i.e. π(·,⊗nE) = inf
{
π(·;⊗nM)

∣∣ M ∈
FIN(E)

}
) easily gives the result.

Since /p is 1-complemented in Lp(µ), properties (5) and (2) imply

Corollary ([S]). If Lp(µ) is infinite-dimensional, then c(n,Lp(µ)) = c(n, /p).

Sarantopoulos [S] gives estimates and some precise values for c(n, /p).

5.2. However, in general there is no equality in (3) (take, in the complex case
E = /∞ and M = /n1 and note that c(n, /∞) < nn

n! ; see e.g. [D2, 1.3.]). Therefore
the polarization constant is not locally determined, but it is somehow “co-local” –
at least under the presence of the m.a.p.:

Proposition. Let E be a normed space with the metric approximation property. If
G is a cofinal subset of COFIN(E) (i.e. for each F ∈ COFIN(E) exists G ∈ G with
G ⊂ F ), then

c(n,E) = sup{c(n,E/G) | G ∈ G}
Proof. Since G is cofinal in COFIN(E) 2.5. and the metric mapping property of πs
give

πs(z;⊗n,sE) = sup
{
πs
((⊗n,sQE

G

)
(z);⊗n,sE/G

) ∣∣ G ∈ G} .

The same statement holds also for the “full” projective norm π on ⊗nE (see e.g.
[DF, 16.2.] for n = 2 or use the same type of arguments as in 2.5.). For z ∈ ⊗nE
and G ∈ G one has

[⊗n,sQE
G

]
◦ σnE = σnE/G ◦

[⊗nQE
G

]
hence

πs
([⊗n,sQE

G

]
σnE(z);⊗n,sE/G

) ≤ ∥∥σnE/G∥∥π(⊗nQE
G(z);⊗nE/G

)
.

Taking sup’s gives c(n,E) ≤ sup . . . . The other inequality was already stated in
5.1.(1).

5.3. The duality results in §4 have also interesting consequences for the polarization
constants. The upper arrows of the commutative diagrams (see 1.14.)

⊗n,sπs
E (⊗n,sεs

E′ )′

σn
E

(ιn
E′)′

⊗nπE (⊗nεE′ )′

✲✄
✂ ⊗n,sπs

E′ (⊗n,sεs
E)′

σn
E′ (ιnE)′

⊗nπE′ (⊗nεE)′✲✄
✂

✻ ✻

✲✄
✂

✲✄
✂

✻✻

are isometries if E or E′ has the m.a.p. respectively; the lower are also isometries
in these cases (for a proof generalize the approximation lemma [DF], 13.1. and the
duality theorem [DF], 15.5. from 2 to n) hence (with an obvious notation)

c(n,E) = ‖σnE,π‖ ≤ ‖ιnE′,ε‖ if E has m.a.p.

c(n,E′) = ‖σnE′,π‖ ≤ ‖ιnE,ε‖ if E′ has m.a.p.

From 3.1.(1) one obtains the

Proposition.
(1) If E has the m.a.p., then

‖ιnE′ : ⊗n,sεs
E′ −→ ⊗nεE′‖ = c(n,E) .
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(2) If E′ has the m.a.p., then

‖ιnE : ⊗n,sεs
E −→ ⊗nεE‖ = c(n,E′) .

The continuous polynomials of finite type are

Pnf (E) 1= ⊗n,sεs
E′ ↪→ Pn(E)

hence one obtains from ⊗nεE′ 1
↪→ L(nE) that

c(n,E) = sup{‖q̌‖L(nE) | q ∈ Pnf (E), ‖q‖Pn ≤ 1}
if E has m.a.p. – but this can also be shown directly.

5.4. Another immediate consequence of this proposition (look at ‖ιnE′,ε‖) is the
following result from [LR]:

Corollary. If E′′ has m.a.p., then

c(n,E) = c(n,E′′) .

6. Extensions to the bidual and ultraproducts

6.1. Let E1, . . . , En be normed spaces and ϕ ∈ L(E1, . . . , En) with associated Lϕ ∈
L(E1, . . . , En−1; E′

n); the n-linear map ϕ∧(n) ∈ L(E1, . . . , En−1, E
′′
n) is defined by

ϕ∧(n)(x1, . . . , xn−1, x
′′
n) := 〈Lϕ(x1, . . . , xn−1), x′′

n〉E′
n,E

′′
n

=

= 〈xj , [Lϕ(x1, . . . , xj−1, ·, xj+1, . . . , xn−1)]′x′′
n〉Ej ,E′

j
=

= lim
α

ϕ(x1, . . . , xn−1, y
α)

if (yα) in E σ(E′′
n , E′

n)-converges to x′′
n. It is obvious that ‖ϕ∧(n)‖ = ‖ϕ‖ and that

ϕ∧(n) is the unique separately σ(E1, E
′
1)-· · · - σ(En−1, E

′
n−1)-σ(E′′

n , E
′
n)-continuous

ψ ∈ L(E1, . . . , En−1, E
′′
n) which extends ϕ. For other j ∈ {1, . . . , n − 1} the

extension ϕ∧(j) is defined in the analogous way. If λ ∈ Sn one defines

ϕ∧(λ) := (. . . ((ϕ∧(λ(1)))∧(λ(2))) . . . )∧λ(n) ∈ L(E′′
1 , . . . , E′′

n) .

Clearly, ‖ϕ∧(λ)‖ = ‖ϕ‖. It follows that

ϕ∧(λ)(x′′
1 , . . . , x′′

n) = lim
αλ(n)∈Aλ(n)

. . . lim
αλ(1)∈Aλ(1)

ϕ(xα1
1 , . . . , xαn

n )(∗)

if the net
(
x
αj

j

)
αj∈Aj

in Ej σ(E′′
j , E′

j)-converges to x′′
j . These extensions were first

studied by Arens [Ar] for n = 2. The special extension

ϕ :=
(· · · ((ϕ∧(n))∧(n−1)

) · · ·)∧(1) .
is called the Arens-extension of ϕ. It is the unique extension ψ ∈ L(E′′

1 , . . . , E′′
n)

of ϕ ∈ L(E1, . . . , En) such that for all j = 1, . . . , n, all xk ∈ Ek and x′′
k ∈ E′′

k

ψ(x1, . . . , xj−1, ·, x′′
j+1, . . . , x′′

n)(∗∗)

is σ(E′′
j , E

′
j)-continuous. Clearly, an analogous charaterization holds for ϕ∧(λ).

Just one simple example: if Tj ∈ L(Ej ; Fj) and ϕ ∈ L(F1, . . . , Fn), then it is
easy to check (e.g. with (∗∗)) that [ϕ ◦ (T1, . . . , Tn)]− = ϕ ◦ (T ′′

1 , . . . , T ′′
n ).

6.2. The characterizations (∗) and (∗∗) easily imply the
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Proposition. Let ϕ ∈ L(E1, . . . , En). Then the Arens-extension ϕ is separately
weak-∗-continuous if and only if ϕ = ϕ∧(λ) for all λ ∈ Sn.

Now recall (e.g. from [DF, 1.6.]) that for ϕ ∈ L(E,F ) the extension ϕ is sep-
arately weak-∗-continuous if and only if Lϕ : E −→ F ′ is weakly compact. Since
every permutation λ ∈ Sn is a product of transpositions one obtains (b) � (a) of
the well-known (see e.g. [ACG, sect. 8])

Corollary. Let E be a normed space and n ≥ 3. Then the following are equivalent:
(a) For every ϕ ∈ L(nE) the Arens-extension ϕ is separately weak-∗-continuous.
(b) The same as (a) with n = 2.
(c) Every T ∈ L(E; E′) is weakly compact.

Proof. For the remaining implication (a) � (b) take ϕ ∈ L(2E) and consider
ψ(x1, . . . , xn) := ϕ(x1, x2)〈x′, x3〉 · · · 〈x′, xn〉 for x′ �= 0.

6.3. Unfortunately, it is not true that ϕ is symmetric if ϕ ∈ L(nE) is. This follows
easily from the following

Observation. Let E be normed and ϕ ∈ Ls(nE). Then ϕ is symmetric if and only
if ϕ is separately weak-∗-continuous.

(This is an immediate consequence of (∗) in 6.1. and proposition 6.2..) Therefore
it is enough to find a symmetric ϕ ∈ L(2E) such that Lϕ ∈ L(E; E′) is not weakly
compact. The typical non-weakly compact operator is the summing operator /1 −→
/′1 = /∞ (see [LP, 8.1.]). Arens [Ar] considered ϕ ∈ Ls(2/1) having the representing
matrix 

1 1 1 1 · · ·
1 0 0 0 · · ·
1 0 1 1 · · ·
1 0 1 0 · · ·
· · · · · · ·
· · · · · · ·
· · · · · · ·


Its 2m-th row ϕ(e2m, ·) = Lϕ(e2m) =: xm σ(/∞, /1)-converges to (1, 0, 1, 0, 1, 0, . . . )
=: x′′; if b ∈ /′∞ is a Banach-limit on the odd components, then 〈b, xm〉 = 0,
but 〈b, x′′〉 = 1. It follows that Lϕ(B�1) is not σ(/∞, /′∞)-compact and the Arens-
extension ϕ is not symmetric. Another but related example was given in [ACG].

6.4. Using the same ideas as in 6.2. it is straightforward to verify that the following
holds true:

Proposition ([ACG]). For every normed space E the following statements are
equivalent:

(a) For every n ≥ 2 and every ϕ ∈ Ls(nE) the Arens-extension ϕ is symmetric
(equivalently: separately weak-∗-continuous).

(b) The same as (a) for n = 2 only.
(c) Every symmetric T ∈ L(E; E′) (i.e. 〈Tx, y〉 = 〈Ty, x〉) is weakly compact.
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Normed spaces E satisfying one of these equivalent conditions are called Arens-
regular or symmetrically regular; E is called regular if all T ∈ L(E; E′) are weakly
compact. Pisier’s factorization theorem [Pi, 4.1.] implies that E is regular if E′

has cotype 2 and E has the approximation property, since in this case all operators
E −→ E′ even factor through a Hilbert space. The Haagerup-Pisier-Grothendieck
inequality (see [H]) implies in the same way that every C∗-algebra is regular.

If E ∼= E2, then regular = Arens-regular, but Leung [L] showed that the dual of
the James space is Arens-regular but not regular; Harmand gave an example of an
Arens-regular space, the bidual of which is not (see [AGGM] for these and other
results on Arens-regularity).

6.5. If q ∈ Pn(E), then q defined by q(x′′) := q̌(x′′, . . . , x′′) extends q to a con-
tinuous n-homogeneous polynomial on E′′. Since Aron and Berner [AB] used this
extension for extending holomorphic functions E −→ C to E′′ (via their Taylor-
expansion) q is called nowadays the Aron-Berner extension of q. Though q̌ is not
symmetric, it is immediate from 6.1.(∗) that q(x′′) = (q̌)∧(λ)(x′′, . . . , x′′) for all
λ ∈ Sn – in other words: the Aron-Berner extension is independent from the order
of extending q̌ ∈ L(E, . . . , E) to the bidual.

Example 1. For q ∈ Pn(E) and T ∈ L(E; F ) one has (q ◦ T )− = q ◦ T ′′. This
follows from the example at the end of 6.1..

Example 2. Let µ be a finite signed measure and qn(f̃) :=
∫

fndµ the n-th inte-
grating polynomial on L∞ (see 3.5.). Then qn = qn ◦ κ′

L1
where κL1 : L1(|µ|) ↪→

L1(|µ|)′′ = L∞(|µ|)′ is the canonical embedding.

Proof. It is enough to show that the extension ψ of q̌n defined by

ψ(x′′
1 , . . . , x′′

n) :=
∫ n∏

j=1

κ′
L1

(x′′
j )dµ

satisfies the continuity-condition (∗∗) at the end of 6.1.. For this take f̃1, . . . , f̃j−1 ∈
L∞ and x′′

j+1, . . . , x′′
n ∈ L′′

∞. For g := f̃1 · · · f̃j−1 ·κ′
L1

(x′′
j+1) · · ·κ′

L1
(x′′
n) ∈ L∞ ⊂ L1

and x′′ ∈ L′′∞ one has

ψ(f̃1, . . . , f̃j−1, x
′′, x′′

j+1, . . . , x′′
n) = 〈g; κ′

L1
(x′′)〉L1,L∞ = 〈κL1(g), x′′〉L′∞,L′′∞

which proves the desired continuity.

An obvious modification of this proof shows that q̌ is even separately weak-∗-
continuous.

6.6. If P(E) :=
⊕∞

n=0 Pn(E) (with P0(E) := K) is the space of all polynomials,
then for q = c + x′ +

∑m
n=2 qn ∈ P(E)

q := c + x′ +
m∑
n=2

qn

defines a linear extension map P(E) −→ P(E′′) which, by 6.1.(∗), is multiplicative.

6.7. While it is obvious from the definition that ‖ϕ‖ = ‖ϕ‖ it is not at all trivial
that ‖q‖Pn(E) = ‖q‖Pn(E′′). This was proved by Davie and Gamelin; the key for
the proof is the following approximation result (see [DG] for a proof):
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Theorem. Let E be normed, S ⊂ E bounded and x′′
0 ∈ S

σ(E′′,E′)
. Then there is a

net (xα) in conv (S) such that

q(xα) −→ q(x′′
0 )

for all polynomials q ∈ P(E).

Applying this to S = BE gives the

Corollary 1. For every q ∈ Pn(E) one has ‖q‖Pn(E) = ‖q‖Pn(E′′).

Corollary 2. The natural embedding ⊗n,sκE : ⊗n,sπs
E −→ ⊗n,sπs

E′′ is an isometry.

Proof. Cleary ‖ ⊗n,s κE‖ ≤ 1 and 〈q, z〉 = 〈q,⊗n,sκE(z)〉 gives the remaining in-
equality.

There is a natural duality bracket between Pn(E) and ⊗n,sE′′:

〈q, z′′〉 := 〈q, z′′〉Pn(E′′),⊗n,sE′′

the restriction of which to ⊗n,sE gives the duality Pn(E) =
(⊗n,sπs

E
)′; hence the

bipolar theorem implies the

Corollary 3. The unit ball B⊗n,s
πs E

is σ(⊗n,sE′′,Pn(E))-dense in B⊗n,s
πs E

′′ .

6.8. It is well-known (see e.g. [DF, 6.7.] for n = 2, the extension to n > 2 is easy)
that ϕ ∈ [⊗ε(E′′

1 , . . . , E′′
n)] if ϕ ∈ [⊗ε(E1, . . . , En)]′ and the “integral” norm is the

same. This and the fact that εs respect subspaces (3.2.(4)) implies that q ∈ Pn(E)
is integral if and only if q is.

Actually also the norm remains unchanged:

Proposition (Carando-Zalduendo [CZ]). Let q ∈ P(E). Then q is integral if and
only if q is. Moreover, ‖q‖int = ‖q‖int holds in this case.

Proof. To see the norm equality, factor q = qn ◦ T according to Corollary 3.5. with
‖q‖int = ‖qn‖ ‖T ‖n. The Examples 1 and 2 in 6.5. give q = qn ◦ κ′

L1
◦ T ′′ hence,

again by 3.5.

‖q‖int ≤ ‖qn‖ ‖κ′
L1
‖n ‖T ′′‖n = ‖q‖int .

The other inequality is obvious from 3.2.(4).

6.9. The Arens- and Aron-Berner extensions can also be obtained using ultrapowers.
For this, take for a normed space E the index set I := FIN(E′′) × FIN(E′)×]0, 1]
and choose (with the strong principle of local reflexivity) for every ι = (M,N, ε)
an operator Tι ∈ L(M ; E) with Tιx = x for all x ∈ M ∩ E, having ‖Tι‖ ≤ 1 + ε
and satisfying 〈Tιx′′, x′〉 = 〈x′′, x′〉 for all (x′′, x′) ∈ M × N ; for x′′ ∈ E′′ define
fι(x′′) := Tιx

′′ if x′′ ∈ M and := 0 otherwise. Take an ultrafilter U on I which is
finer than the order filter; U is usually called a local ultrafilter of E.

For the ultrapower (E)U define the following two natural mappings:

J : E′′ −→ (E)U and Q : (E)U −→ E′′

x′′ � (fι(x))U (xι)U � lim
ι,U

xι

(σ(E′′, E′)-limit). It is easy to see that the (linear) isometry J extends the embed-
ding E � x � (x)U ∈ (E)U and QJ = idE′′ ; since ‖Q‖ ≤ 1 it follows that JQ is a
norm-1-projection of (E)U onto im J .
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If Uj is a local ultrafilter of Ej and ϕ ∈ L(E1, . . . , En), then

ϕ(Uj)

((
x1ι1
)
U1

, . . . ,
(
xnιn
)
Un

)
:= lim

ι1,U1
. . . lim

ιn,Un

ϕ
(
x1ι1 , . . . , xnιn

)
is in L((E1)U1 , . . . , (En)Un

)
with norm ‖ϕ‖. The special continuity of the Arens-

extension (6.1.(∗)) gives that

ϕ(Uj) = ϕ ◦ (Q1, . . . , Qn) and ϕ = ϕ(Uj) ◦ (J1, . . . , Jn)(∗)

in particular

Proposition ([LR]). If q ∈ Pn(E) and U a local ultrafilter of E, then

q(x′′) = lim
ι1,U

. . . lim
ιn,U

q̌
(
fι1(x′′), . . . , fιn(x′′)

)
.

If q ∈ Pn(E) and if qU := (q̌)�
U ∈ Pn((E)U) is the polynomial associated to (q̌)U,

then the proposition, (∗) and Corollary 1 in 6.7. imply that ‖qU‖ = ‖q‖.

6.10. For ultrapowers, however, it seems more natural not to use an iterated limit
(see [DT], [LR]): for a local ultrafilter U of E and ϕ ∈ L(nE) define

ϕ̃U

(
(x1ι )U, . . . , (xnι )U

)
:= lim

ι,U
ϕ(x1ι , . . . , xnι )

q̃U

(
(xι)U

)
:= lim

ι,U
q(xι)

Obviously, ‖ϕ̃U‖ = ‖ϕ‖ and ‖q̃U‖ = ‖q‖.

Observation ([LR]). qU �= q̃U on (E)U in general.

Proof. Take Arens’ example from 6.3. and Un ∈ U with Un ⊃ Un+1 and ∩Un = ∅.
For yι := 0 if ι �∈ U , and := e2n − e2n+1 if ι ∈ Un\Un+1 one gets

q̃U((yι))U = lim
ι1,U

lim
ι2,U

ϕ(yι1 , yι2) = 0 �= −1 = lim
ι,U

ϕ(yι, yι) .

It is likely that also qU := q̃U ◦ J �= q ∈ Pn(E′′) in general. In any case it is clear
that this “uniterated Aron-Berner” extension qU(x′′) = limι,U q(fι(x′′)) is also a
natural and useful extension of q ∈ Pn(E). Note that ‖qU‖ = ‖q‖ is obvious (but
‖q‖ = ‖q‖ was rather involved).

Using the ultrastability of maximal operator ideals (due to Kürsten, see [Ku]
and [He]) one can show that ϕ is integral if and only if ϕ̃U is – with the same
norm; it follows that q is integral if and only if q̃U (and hence also qU) is integral.
In [FH] it will be shown in the more general context of s-tensor norms that even
‖qU‖int = ‖q‖int holds.

6.11. If one has fixed an extension procedure L(nE) � ϕ� •
ϕ ∈ L(nE′′) (either the

Arens-extension or the “uniterated” ultrapower extension from 6.10.), then every
ϕ ∈ L(nE; G) (where G is normed as well) has an extension

•
ϕ ∈ L(nE′′; G′′) defined

as follows

〈•ϕ(x′′
1 , . . . , x′′

n), y′〉G′′,G′ := [y′ ◦ ϕ]•(x′′
1 , . . . , x′′

n)

which, clearly, has a characterization as in 6.1.(∗) – but with the σ(G′′, G′)-topology
on G′′. It follows that there is also an extension Pn(E; G) � q � •

q ∈ Pn(E′′; G′′).
Recall that Arens used his extension to extend the multiplication on a Banach
algebra to the bidual.
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[Ko] G. Köthe, Topological Vector Spaces II, Grundl. math. Wiss. 237, Springer, 1979.
[Ku] K.D. Kürsten, s-Zahlen und Ultraprodukte von Operatoren in Banachräumen, doctoral
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