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Abstrat

We onsider a lass of reversible vetor �elds with (1:1) resonane at an equilibrium.

By means of an eÆient normal form we study the loal behavior of the systems,

showing the existene of invariant varieties and reversible periodi solutions. Moreover,

we obtain an analogue of the Lyapunov-Devaney theorem in the 1:1 reversible setting,

whih an be treated as a limit ase where two pairs of non-resonant purely imaginary

eigenvalues tend to aumulate.
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1 Introdution

Consider a one-parameter family of vetor �elds having 1:1 resonane, i.e., sys-

tems having a form

_p = f(�; p); p 2 R

4

; ; � 2 R; (1.1)

where f is a smooth funtion suh that f(0; �) = 0. The eigenvalues of the

matrix L(0) in the linearized system _p = L(�)p has two pairs of purely imaginary

eigenvalues �!i, with a two dimensional Jordan blok. Moreover, we assume

that the system onerned is time reversible. That is, there exists an involution

' : R

4

! R

4

('

2

= id:) suh that the relation f(�; 'p) = �'

0

(x) �f(�; p) holds.

With the above assumption, we an write the above matrix L(0) in the form

L(0) =

0

B

�

0 ! 1 0

�! 0 0 1

0 0 0 !

0 0 �! 0

1

C

A
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and its generi deformation (see [1℄)

L(�) =

0

B

�

0 ! + �� 1 0

�! � �� 0 0 1

�� 0 0 !

0 �� �! 0

1

C

A

;

where � and � are onstant. Sine the eigenvalues of L(�) are �

�

= �i(!+��)�

p

��, it follows that if � 6= 0 then the eigenvalues of L(�) are either two pairs

of purely imaginary numbers or two pairs of omplex numbers. Conventionally,

� 6= 0 is alled transversality ondition.

We denote by S

'

the �xed point set of the involution ', i.e., S

'

= Fix'.

Then S

'

is a manifold whose dimension depends on the type of ' (see [11℄).

Throughout the paper we assume that S

'

is of dimension 2 and that ' takes

the form '(x

1

; x

2

; y

1

; y

2

) = (x

2

; x

1

;�y

2

;�y

1

). Observe that this is not a re-

strition sine by the Montgomery-Bohner theorem [9℄ any involution ' with

dim Fix' = 2 an be brought to this form by a smooth hange of oordinates.

By the Poinare-Dula theorem, one an formally put any '-time reversible

system in resonant normal form. In fat, a reversible system, based on its linear

part, an be formally put in normal form in suh a way that the normalization

remains in the entralizer of the involution. (see [10℄. Vetor �eld (1.1) is

formally onjugated to the following form in R

4

.

8

>

<

>

:

_x

1

= !x

2

+ y

1

+ x

2

F (�; u; v)

_x

2

= �!x

1

+ y

2

� x

1

F (�; u; v)

_y

1

= !y

2

+ y

2

F (�; u; v) + x

1

G(�; u; v)

_y

2

= �!y

1

� y

1

F (�; u; v) + x

2

G(�; u; v);

(1.2)

where F and G are real series of u; v, u = x

2

1

+x

2

2

, v = x

1

y

2

�x

2

y

1

. This means

that given a smooth (C

1

) vetor �eld one an normalize it up to a given order

O(juj+ jvj)

N

with arbitrary N .

In the paper we shall �rst lassify all suh 4-dimensional reversible systems

from their linear parts and then fous the study on systems with (1 : 1) reso-

nane. We normalize the normal form (1.2) and show that, with repset to its

priniple nonlinear part, the normalization an be taken from the entralizer

of the involution. As to the dynamis of the system around the equilibrium,

by means of the normal form the, we analyze the existene of the symmetri

periodi orbits. Remind that a periodi orbit of a reversible system is alled

symmetri if it enounters the �xed point set of the involution. We point out

that although the normalizing hanges of oordinates in general are divergent

and thus one an argue that the methods here is essentially the same as the
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method of `trunation" of the system, the normal form given here does onvine

one that generially the knowledge of the 3-jet of the system is essential (see

Theorem A). This orresponds to the non-degenerate assumptions whih are

traditionally imposed on the 3-jet of the system (see [11℄).

Vetor �elds with 1:1 resonane have been studied by several authors. In

[14℄ there is an exposition about 1:1 Hamiltonian systems and in [11℄ a ompre-

hensive and lear study about reversible systems. In [7℄, the existene and per-

sistene of homolini orbits of 1:1 reversible systems are studied. The relation

onerning the orbital equivalene between 1:1 Hamiltonian and 1:1 reversible

systems is established in [10℄. In this paper we lay emphasis on the detailed

aount of geometri invariants and symmetri properties of the system due to

the reversibility. As the result, the loal behavior of any smooth 1:1 reversible

vetor �eld whih is C

0

equivalent to our normal form is ompletely understood.

Moreover, all the desriptions given here are in an expliit way so that possible

appliations in the related subjets an be performed ([13℄).

Conerning the existene of the symmetri periodi orbits, our results an be

illustrated by the following example. This onise example holds the essential

part of the disussion of [7℄ on the existene of the periodi porbits.

Example 1 Consider vetor �eld

8

>

<

>

:

_x

1

= x

2

+ y

1

+ ��x

2

_x

2

= �x

1

+ y

2

� ��x

1

_y

1

= y

2

+ ��y

2

+ x

1

(��+ r

2

)

_y

2

= �y

1

� ��y

1

+ x

2

(��+ r

2

)

(1.3)

where r

2

= x

2

1

+ x

2

2

.

Let  = 1 and �� < 0 in (1.3). The system has two �rst integrals: I

1

=

x

1

y

2

� x

2

y

1

and I

2

= y

2

1

+ y

2

2

�

1

2

r

4

� ��r

2

. In (I

1

; I

2

) plane, we onsider the

parameterized equations I

2

1

= ��

2

(� + ��), I

2

= �

3

2

�

2

� ��� , 0 � � � ���.

This gives a losed urve C whih has two \usp" points P and P

0

(when

� = �

2

3

��, see Fig. 1). One sees that for any given pair (I

1

; I

2

) if it falls on

C then the algebrai system I

1

= jr�j, I

2

= �

2

�

1

2

r

4

� ��r

2

has one root of

multipliity two and one single root (r; �). If it falls inside C then there are

three di�erent roots, whereas outside C there is only one real root. The two

points P and P

0

orrespond to a root of multipliity 3.

Notie that those and only those orbits with starting points on C are sym-

metri periodi orbits. In fat, the system has the following two 2-parameter

families of symmetri periodi orbits around the equilibrium 0:

(r os(�t+ �

0

);�r sin(�t+ �

0

);�� sin(�t+ �

0

);�� os(�t+ �

0

)); (1.4)
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Figure 1: The urve of double roots of the equations of Example 1

where � = 1 + �� �

p

�(r

2

+ ��), � = r

p

�(r

2

+ ��), and r and �

0

are

parameters, 0 � r �

p

���. The �rst family of orbits meet S

'

, the �xed

point set of the involution ', at two points P

1

(�

p

2

2

r;�

p

2

2

r;�

p

2

2

�;

p

2

2

�) and

P

2

(

p

2

2

r;

p

2

2

r;

p

2

2

�;�

p

2

2

�), and the seond family at the points P

0

1

(�

p

2

2

r, �

p

2

2

r,

p

2

2

�, �

p

2

2

�) and P

0

2

(

p

2

2

r,

p

2

2

r, �

p

2

2

�,

p

2

2

�).

The periods of the both families of solutions go to 2� as the initial points

approah the origin.

If  = �1 in (1.3), then the system has no symmetri periodi orbits around

the origin, but outside a neighborhood of the origin there are two 2-parameter

families of symmetri periodi orbits (1.4), where � = 1+ ���

p

r

2

� ��, and

� = r

p

(r

2

� ��).

In the following theorems we �rst give the normal form of a smooth '-time

reversible vetor �eld with 1:1 resonane and then we extend and generalize the

results of the above example. For the methods of normalization of vetor �elds,

see [3, 12℄. In [15℄ also there is a short exposition on the normal forms of vetor

�elds.

Theorem A Let X be a smooth '-reversible vetor �eld having 1:1 resonane.
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Then in generi ase, X is formally onjugated to the following reversible normal

form

8

>

>

<

>

>

:

_x

1

= !x

2

+ y

1

+ x

2

f(r

2

; v)

_x

2

= �!x

1

+ y

2

� x

1

f(r

2

; v)

_y

1

= !y

2

+ y

2

f(r

2

; v) + x

1

(r

2

+ dv)

_y

2

= �!y

1

� y

1

f(r

2

; v) + x

2

(r

2

+ dv);

(1.5)

where r

2

= x

2

1

+ x

2

2

, v = x

1

y

2

� x

2

y

1

and f(r

2

; v) =

P

1

k=1

(a

k

r

2

+ b

k

v)v

k�1

.

The generiity onditions, in terms of (1.5), are as follows:

d 6= 0; a

1

d� b

1

 6= 0: (1.6)

We shall throughout the paper onsider the following deformed normal form.

8

>

>

<

>

>

:

_x

1

= !x

2

+ y

1

+ x

2

f(�; r

2

; v)

_x

2

= �!x

1

+ y

2

� x

1

f(�; r

2

; v)

_y

1

= !y

2

+ y

2

f(�; r

2

; v) + x

1

(��+ r

2

+ dv)

_y

2

= �!y

1

� y

1

f(�; r

2

; v) + x

2

(��+ r

2

+ dv);

(1.7)

where f is a funtion of its arguments, f(0; 0; 0) = 0, � 6= 0,  6= 0.

We shall prove the following theorem.

Theorem B Let X be given by (1.7). If �� < 0 then X always has two

2-parameter families of symmetri periodi solutions whih shrink to the equi-

librium as the initial onditions tend to 0. The periods of both families tend to

2�=! as the initial onditions tend to 0.

If  < 0 and �� > 0 then outside a small neighborhood of the origin X also

has two 2-parameter families of symmetri periodi orbits.

If  > 0 and �� > 0 then there is no symmetri periodi orbits.

Theorem B in fat is an extension of the Lyapunov-Devaney theorem to the

(1:1) resonane ase (see [4℄. By the Devaney-Lyapunov enter theorem, if X

has eigenvalues �i!

1

, �i!

2

, (!

2

> !

1

> 0), then in the neighborhood of the

equilibrium X has a family of short periodi solutions whose periods tend to

2�=!

2

, moreover, if !

2

6= k!

1

, (k an integer), then there is a family of long

periodi solutions whose periods tend to 2�=!

1

. Therefore it seems reasonable

to explain the existene of the two families of symmetri periodi solutions in

(1:1) ase as follows. Treat the eigenvalues (�i!, �i!) as a limit ase of �i!

1

and �i!

2

(!

2

> !

1

> 0). Sine ! 6= 0, take !

1

and !

2

so lose to ! that !

2

=!

1

is not an integer. Then applying the Devaney-Lyapunov theorem, we get two
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families of periodi solutions, one is of short periods and another long periods.

Both families of periods tend to, as !

i

! !, i = 1; 2, the same value 2�=!.

We notie the similarity of Theorem B in the Hamiltonian setting. The orre-

sponding results for Hamiltonian systems has been well known for deades. Re-

all that in [10℄ it is proved that any reversible vetor �eld with non-semisimple

1:1 resonane an be deomposed into Hamiltonian part and non-Hamiltonian

part and the original system is orbitally equivalent to its Hamiltonian part.

Therefore Theorem B inidentally veri�es the validity of [10℄.

The paper is organized as follows. In setion 2 we give a brief lassi�ation

of 4-dimensional reversible vetor �elds in order to loate our objets (see [8, 5℄).

Setion 3 is devoted to the normalization of the 1:1 reversible vetor �elds. In

setion 4 we present a detailed disussion of geometri invariant of suh systems.

2 Classi�ation of reversible vetor �elds from

the linear approximation

It is easy to see that the eigenvalues of reversible vetor �elds always our in

pairs. In fat, Let X be a reversible vetor �eld on R

4

with linear part _x = Ax.

Then the eigenvalues of A always satisfy the following relation

�

4

+ a�

2

+ b = 0; (2.8)

where a and b are onstant. Thus the linearization at the origin ontains all

possible qualitatively distint ombinations of eigenvalues when a and b run over

all possibilities. This fat makes us possible to give a lassi�ation of reversible

systems from their linear parts (see Fig. 2):

At the linear level, we have the following lassi�ation:

� Generi ase: for generi a; b, the four eigenvalues are mutually di�erent.

In Fig. 2 this means that a; b falls in Regions 1-4. More exatly, in Regions

3 and 4, the linearized vetor �elds are hyperboli, the eigenvalues have

the forms (��

1

;��

2

) and �(���i), (�� 6= 0), respetively. In Regions 1

and 2, the system is non-hyperboli sine the eigenvalues have the forms

(��

1

i;��

2

i) and (��;��i), respetively.

Systems orresponding to di�erent regions are qualitatively distint. They

are bounded by four urves C

1

� C

4

.

� Codimension 1 ase: If a and b satisfy an extra algebrai ondition

then the orresponding system is of odimension 1. In (a; b) plane this

6



b

a
o

C3
C

C1
C
4

Region 1

Region 2

Region 3

Region 4

:Reversible 1:1 resonance

(focus)

(saddle-center)

(saddle)

(saddle-focus)

:Devaney

2:: 
Reversible-Takens-Bogdanov-Hopf

Reversible-Takens-Bogdanov

p:q  resonance
1:2 resonance

Figure 2: Charateristi of the eigenvalues

extra ondition generally gives a rise to a urve. For example, the four

boundaries separating the regions are typial odimension-1 urves.

It is worthy pointing out that in Region 1 there are several most interest-

ing odimension-1 urves. Besides C

1

whih is traditionally alled (1:1)

resonane urve, there are other important urves, among them are (1 : N)

resonanes, N = 2; 3; : : : ; and subharmoni resonanes (p : q). One an

see that if b =

p

2

q

2

(p

2

+q

2

)

2

a

2

then (p : q) resonane ours. Notie also that

the urves C

2

and C

3

orrespond to vetor �elds of odimension 1.

� Codimension 2 ase: This means that two onstrains are imposed on

vetor �elds. For example, vetor �elds having 0 as quadruple eigenvalues

and having a 4-dimensional Jordan blok are of odimension 2. Vetor

�elds having (1:1) resonant but with vanishing nilpotent part is of at least

odimension 2.

7



3 Normal Forms

The normal form of Theorem A is obtained by the standard Lie algebrai meth-

ods. Given a ' reversible vetor �eld X , the �rst step of normalization is to put

X in the resonant normal form by the Poinare-Dula theorem:

8

>

<

>

:

_x

1

= i!x

1

+ y

1

+ x

1

f

1

+ y

1

g

1

_x

2

= �i!x

2

+ y

2

+ x

2

f

2

+ y

2

g

2

_y

1

= i!y

1

+ y

1

f

3

+ x

1

g

3

_y

2

= �i!y

2

+ y

2

f

4

+ x

2

g

4

(3.9)

where f

j

and g

j

are funtions of (x

1

x

2

; x

1

y

2

; x

2

y

1

; y

1

y

2

), f

j

(0) = g

j

(0) = 0,

j = 1; : : : ; 4.

The reversibility of X implies that the following relations hold.

x

2

f

2

+ y

2

g

2

= �x

2

f

1

+ y

2

g

1

; y

2

f

4

+ x

2

g

4

= �y

2

f

3

+ x

2

g

1

: (3.10)

On the other hand, due to the existene of nilpotent part in the linear part of X ,

the Belitskii theorem is appliable (see [2℄), that is, more terms in the funtions

f

j

and g

j

an be removed. More preisely, we have

x

1

('

j

)

y

1

+ x

2

('

j

)

y

2

= 0; j = 1; 2

x

1

('

j

)

y

1

+ x

2

('

j

)

y

2

= '

j�2

; j = 3; 4;

(3.11)

where '

j

= x

j

f

j

+ y

j

g

j

for j = 1; 2, and '

j

= y

j�2

f

j

+ x

j�2

g

j

for j = 3; 4.

To draw the general forms of f

j

and g

j

satisfying (3.10) and (3.11), we notie

that u = x

1

x

2

, v = x

1

y

2

� x

2

y

1

satisfy (3.11

1

). Therefore we assume that '

i

has the general form '

i

= x

i

F

i

(u; v) + y

i

G

i

(u; v), i = 1; 2. Beause of (3.10

1

)

we have G

i

= 0. As a result, '

i

= x

i

F

i

(u; v). Again due to the relation (3.10

1

),

we have F

1

= �F

2

.

From (3.11

2

) we have '

3

= y

1

F

1

(u; v) + x

1

G

3

(u; v) and '

4

= �y

2

F

1

(u; v) +

x

2

G

4

(u; v). The relation (3.10

2

), however, implies G

4

= G

3

.

Colleting the above fats, we arrive at the normal form

8

>

<

>

:

_x

1

= i!x

1

+ y

1

+ x

1

f(x

1

x

2

; x

1

y

2

� x

2

y

1

)

_x

2

= �i!x

2

+ y

2

� x

2

f(x

1

x

2

; x

1

y

2

� x

2

y

1

)

_y

1

= i!y

1

+ y

1

f(x

1

x

2

; x

1

y

2

� x

2

y

1

) + x

1

g(x

1

x

2

; x

1

y

2

� x

2

y

1

)

_y

2

= �i!y

2

� y

2

f(x

1

x

2

; x

1

y

2

� x

2

y

1

) + x

2

g(x

1

x

2

; x

1

y

2

� x

2

y

1

):

(3.12)

The next step of normalization is to work on the nonlinear part of X . We
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shall prove that in (3.12) all the following monomials are removable:

zu

k

�

�z

, : : :, zu

2

v

k�2

�

�z

x

i

u

k

�

�y

i

, : : :, x

i

u

2

v

k�2

�

�y

i

, x

i

uv

k�1

�

�y

i

, x

i

v

k

�

�y

i

;

(3.13)

where z runs over x

1

; x

2

; y

1

; y

2

, i = 1; 2, and k = 2; 3; : : :, u = x

1

x

2

and v =

x

1

y

2

� x

2

y

1

.

We are seeking for the existene of a series of homogeneous transformations

� : x ! x + �(x), where �(x) ontains homogeneous resonant monomials.

Moreover, we request that � respets the reversibility of X , in other words, we

take � from the entralizer of R: f� : � ÆR = R �g.

To eliminate the terms of degree (2k+1) spei�ed in (3.13), take the trans-

formation � : x! x+ �(x), where

� =

X

m+n=k�1

0

B

�

�

m;n

x

1

�

m;n

x

2

�

m;n

y

1

+ �

m;n

x

1

�

m;n

y

2

� �

m;n

x

2

1

C

A

u

m

v

n

; (3.14)

and onsider the Lie braket [j

3

X; �℄. Then the elimination of terms in (3.13)

is equivalent to the solvability, in term of � and �, of the homologi system

[j

3

X; �℄ =

P

m+n=k;m�2;n�0

�

m;n

(x

1

�

�x

1

� x

2

�

�x

2

+ y

1

�

�y

1

� y

2

�

�y

2

)u

m

v

n

+

P

m+n=k;m;n�0

�

m;n

(x

1

�

�y

1

+ x

2

�

�y

2

)u

m

v

n

(3.15)

for any numbers (�

k;0

; : : : ; �

2;k�2

) and (�

k;0

; : : : ; �

0;k

).

Denote in (3.12) j

1

f(u; v) = a

1

u + b

1

v, j

1

g(u; v) = u + dv. Doing a little

alulation, one sees that the solvability of the equation (3.15) is equivalent to

the solvability of the linear system

8

<

:

b

1

(�

i;k�1�i

� �

i�1;k�i

) + a

1

�

i�1;k�i

= �

i;k�i

for i = 2; : : : k

d(�

i;k�1�i

� �

i�1;k�i

) + �

i�1;k�i

= �

i;k�i

for i = 0; 1; 2; : : : k:

(3.16)

This is a system of 2k equations of (�

k�1;0

; : : : ; �

0;k�1

) and (�

k�1;0

; : : : ; �

0;k�1

)

and its solvability is equivalent to the full rank of the oeÆient matrix. With

a straightforward alulation one sees that the latter is true if and only if

d 6= 0; a

1

d� b

1

 6= 0: (3.17)

9



Therefore under these onditions we an redue X to the following normal form:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

_x

1

= i!x

1

+ y

1

+ x

1

P

1

k=1

(a

k

u+ b

k

v)v

k�1

_x

2

= �i!x

2

+ y

2

� x

2

P

1

k=1

(a

k

u+ b

k

v)v

k�1

_y

1

= i!y

1

+ y

1

P

1

k=1

(a

k

u+ b

k

v)v

k�1

+ x

1

(u+ dv)

_y

2

= �i!y

2

� y

2

P

1

k=1

(a

k

u+ b

k

v)v

k�1

+ x

2

(u+ dv)

(3.18)

The �nal step of normalization is to put (3.18) in the real form. This an be

done by a linear hange of oordinates ~x

1

= x

1

+ix

2

, ~x

2

= ix

1

+x

2

, ~y

1

= y

1

+iy

2

,

~y

2

= iy

1

+ y

2

.

It is lear that all the normalizing transformations are within the entralizer

of the involution '.

4 Invariant Varieties

Any (1:1) reversible systemX having normal form (1.7) is ompletely integrable.

It has the following two �rst integrals:

I

1

= v; I

2

= y

2

1

+ y

2

2

�



2

r

4

� dr

2

v � ��r

2

: (4.19)

Consequently, any orbit  passing through an initial point p

0

= (x

0

1

; x

0

2

; y

0

1

; y

0

2

)

always lies in the intersetion of two 3-dimensional manifolds,

T

2

i=1

fp 2 R

4

:

I

i

(p) = I

i

(p

0

)g. In the present setion, we shall disuss the geometri properties

of this intersetion set aording to all the possible values of the parameters ,

� and I

1

and I

2

. First we de�ne

F : R

4

; 0 ! R

2

; 0

(x

1

; x

2

; y

1

; y

2

) 7! (I

1

; I

2

),

(4.20)

and denote

M



1

;

2

= f(x; y) : F(x; y) = (

1

; 

2

)g: (4.21)

S



1

;

2

= f(x; y) : F(x; y) = (

1

; 

2

); (

1

; 

2

) a ritial valueg (4.22)

R



1

;

2

= f(x; y) : F(x; y) = (

1

; 

2

); (

1

; 

2

) a regular valueg (4.23)

Then S



1

;

2

and R



1

;

2

are X-invariant sets, and the latter is a 2-dimensional

di�erentiable manifold.

10



4.1 The ritial values

We shall in what follows onsider the relation between the mapping F and the

sets S(F), R(F), and M(F). First we prove the following

Lemma 4.1 Any given pair (I

1

; I

2

) is the ritial value of F if and only if the

following relations hold:

8

<

:

�

2

+ r

2

(r

2

+ dI

1

+ ��) = 0

�

2

� r

2

(



2

r

2

+ dI

1

+ ��) = I

2

r� = �I

1

;

(4.24)

where r

2

= x

2

1

+ x

2

2

, �

2

= y

2

1

+ y

2

2

.

Proof. To prove the lemma we only need to �nd the onditions on (I

1

; I

2

)

suh that the preimage set M(F) ontains singular points only. Aording

to the de�nition of S

I

1

;I

2

(F), if p 2 S

I

1

;I

2

(F), then the rank of the matrix

�(I

1

;I

2

)

�(x

1

;x

2

;y

1

;y

2

)

j

p

is less than 2. With some alulation, one an see that it is

equivalent to the following equalities

(

x

1

y

1

+ x

2

y

2

= 0

y

2

1

+ x

2

2

((x

2

1

+ x

2

2

) + dI

1

+ ��) = 0

y

2

2

+ x

2

1

((x

2

1

+ x

2

2

) + dI

1

+ ��) = 0:

(4.25)

Sine p 2 S

I

1

;I

2

(F), therefore at the same time we have

�

x

1

y

2

� x

2

y

1

= I

1

y

2

1

+ y

2

2

�



2

(x

2

1

+ x

2

2

)

2

� (I

1

d+ ��)(x

2

1

+ x

2

2

) = I

2

:

(4.26)

Introdue the bi-polar oordinates

x

1

= r os �

1

; x

2

= r sin �

1

; y

1

= � os �

2

; y

2

= � sin �

2

; (4.27)

where � � 0, r � 0 and 0 � �

1

; �

2

� 2�. Then (4.25

1

) is equivalent to r� os(�

1

�

�

2

) = 0 and I

1

= r� sin(�

1

� �

2

). If I

1

6= 0 then r� 6= 0, and it follows that to

have singular points one has os(�

1

� �

2

) = 0. Therefore I

1

= �r�. If I

1

= 0

then from r� sin(�

1

� �

2

) = 0 and r� os(�

1

� �

2

) = 0, one has r� = 0. This also

leads to I

1

= �r� = 0. On the other hand, if (4.24) holds, then it is lear that

there exists singular set. Now the validity of the lemma follows from the above

fats. 2

Lemma 4.1 in fat says that if (I

1

; I

2

) satisfy (4.24) then M

I

1

;I

2

= S

I

1

;I

2

,

otherwise, M

I

1

;I

2

= R

I

1

;I

2

. On the other hand it is not hard to see that the

points (I

1

; I

2

) satisfying (4.24) form a urve C passing through the origin in the

(I

1

; I

2

) plane. Therefore for generi (I

1

; I

2

), M

I

1

;I

2

is a 2-dimensional manifold.

11



4.2 The regular set

>From above disussion, we know that for generi (

1

; 

2

) the preimage set

M

(

1

;

2

)

gives a 2-dimensional manifold. Below we shall onsider this in more

details aording to possible ombinations of the parameters in the normal form.

Case (1)  < 0. For simpliity we take  = �1 sine this an be done

by a suitable saling. Then generially M

(

1

;

2

)

is di�eomorphi to a regular

2-dimensional torus. This fat omes from the relation �

2

+

1

2

(r

2

� 

1

d���)

2

=



2

+

(

1

d+��)

2

2

whih gives a ompat surfae. By the Poinare-Hopf index

theorem (see [6℄) to the system (1.7), we know that the set M

(

1

;

2

)

de�nes a

regular torus.

Case (2)  > 0. Under a saling we an take  = 1. In this ase, we shall

show that generially M

(

1

;

2

)

an be a torus or a ylinder, depending on the

values of (

1

; 

2

). To show so, we distinguish two ases: I

1

= 0 and I

1

6= 0.

If I

1

= 0 then in bi-polar oordinates this means that r� sin(�

1

� �

2

) = 0,

�

2

�

1

2

r

4

� ��r

2

= I

2

: Therefore if �

1

= �

2

and �

2

+ r

4

+ ��r

2

6= 0 then M

0;

2

is a regular ylinder.

If I

1

6= 0, then M



1

;

2

de�ned by (4.21) gives a 2-dimensional ompat man-

ifold whih onsists of one to three piees of tori.

In fat, given (

1

; 

2

), we onsider below the surfae M



1

;

2

de�ned by

r

2

�

2

=



2

1

sin

2

(�

1

� �

2

)

; �

2

�

1

2

r

4

� (d

1

+ ��)r

2

= 

2

: (4.28)

In (r

2

; �

2

) plane, these equations give two urves, and in the �rst quadrant they

interset at least one point and at most three points. In partiular, if

3

2

r

4

+ 2(d

1

+ ��)r

2

+ 

2

= 0 (4.29)

then (4.28) has one solution of multipliity 2. If in addition of (4.29) the fol-

lowing relation holds

3r

2

+ 2(d

1

+ ��) = 0 (4.30)

then (4.28) has a root of multipliity of 3.

If (4.28) has one real root (three di�erent roots, resp.) thenM



1

;

2

onsists of

a torus (three tori, resp.). This is beause that in this ase (4.29) does not hold

and therefore aording to Lemma 4.1M



1

;

2

is a regular ompat manifold. By

the Poinare-Hopf index theorem we know it is a torus (three tori, resp.).

Notie that even if (4.29) or (4.30) hold but os(�

1

� �

2

) 6= 0, M



1

;

2

is

also a regular ompat manifold. This follows from sin(�

1

� �

2

) 6= �1 and the

12



violation of the last relation of (4.24). Thus M



1

;

2

ontains two or three tori,

respetively.

If os(�

1

� �

2

) = 0 and

3

2

r

4

+ 2(d

1

+ ��)r

2

+ 

2

= 0 then M



1

;

2

ontains

singular points of the mapping F . We shall onsider this ase in the next

subsetion.

4.3 The singular set and the periodi orbits

Lemma 4.1 an be used to determine the existene of symmetri periodi orbits.

In fat, from the above disussion we know that any (I

1

; I

2

) satisfying (4.24)

implies the relation M

I

1

;I

2

= S

I

1

;I

2

. To see the existene of symmetri periodi

orbits, we parameterize the singular set S

I

1

;I

2

. One an hek that it ontains

exatly those points (r os �; r sin �;�� sin �;�� os �), where r and � satisfy

(4.24), and � is a real parameter. Now it is straightforward to prove the following

result. The proof is omitted.

Proposition 4.1 For any given ritial value (

1

; 

2

) system (1.7) has two 2-

parameter families of periodi orbits:

(r os(�t+ �

0

);�r sin(�t+ �

0

);��sin(�t+ �

0

);�� os(�t+ �

0

)) (4.31)

and

(r os(~�t+ �

0

);�r sin(~�t+ �

0

); �sin(~�t+ �

0

); � os(~�t+ �

0

)) (4.32)

where � is a parameter, r and � are parameters satisfying (4.24), and

� = ! +

�

r

+ f(�; r

2

; I

1

); ~� = ! �

�

r

+ f(�; r

2

; I

1

): (4.33)

It is easy to show that as the initial onditions approah the origin the

periodi orbits shrink to 0 and the periods tend to 2�=!. In fat, the �rst point

follows from the following observation: as (

1

; 

2

) ! (0; 0) along C, we have

r ! 0; �! 0, due to (4.24). Consequently, the orbits shrink to the origin due to

the form (4.31). To prove the periods tend to 2�=!, one needs only to show that

both � and ~� tend to ! as (

1

; 

2

)! (0; 0) along C. Doing a little alulation,

one has

�

2

r

2

=

�(

1

d+ ��)�

p

4(

1

d+ ��)

2

� 6

2

3

:

As a result, one has � ! ! and ~� ! !.
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Below we onsider two ases  < 0 and  > 0.

Case  = �1. Assume that the generiity onditions of (I

1

; I

2

) are violated.

In the ase �� > 0, this happens when I

1

= 0 and I

2

= �

(��)

2

2

. It is easy to

see that the singular points onsist of (

p

�� os �

1

;

p

�� sin �

1

; 0; 0), whih gives

a losed urve. Sine it is invariant therefore it is a periodi orbit. Moreover,

for any �xed �, these orbits do not approah the equilibrium, beause the sin-

gular points exist only when r

2

� �� � 0. For more general I

1

, if M

(I

1

;I

2

)

onsists of singular points then neessarily os(�

1

� �

2

) = 0. This means that

in (I

1

; I

2

) plane there is a urve C suh that any orbit with starting point on C

is symmetri and periodi and has the form (4.31) and (4.32).

In the ase �� < 0, by the same arguments one sees that if the generiity

onditions are violated then in the neighborhood of the origin there also exist

periodi solutions.

Case  = 1. Assume that �� < 0. If I

1

6= 0, os(�

1

� �

2

) = 0 and

3

2

r

4

+

2(d

1

+ ��)r

2

+ 

2

= 0 then M



1

;

2

ontains singular points of the mapping F .

Therefore in (I

1

; I

2

) plane suh pairs of (

1

; 

2

) give a urve C. More preisely,

This gives a pieewisely smooth losed urve C. Any orbit with starting point

on C is symmetri and periodi.

If I

1

= 0 then one an show that there exist the following non-trivial sym-

metri periodi solutions

(

p

��� os(�t+ �

0

);�

p

��� sin(�t+ �

0

); 0; 0)

where � = 1 + ��.

Finally in the ase  = 1 and �� > 0 then M



1

;

2

is always regular and

onsequently the dynamis on M



1

;

2

is quasi-periodi.
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