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Abstrat

We establish the existene of a weak solution of a generalized

Boussinesq model for thermally driven onvetion in exterior domains.

1 Introdution

We study stationary problem for the equations governing the oupled mass

and heat ow of a visous inompressible uid in a generalized Boussinesq

approximations by assuming that visosity and heat ondutivity are tem-

perature dependent in an exterior domain 
 � R

3

. The equations are

�div(�(T )ru) + u � ru� �Tg +rp = 0

divu = 0 (1)

�div(�(T )rT ) + u � rT = 0:

�
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Here u(x) 2 R

3

denotes the veloity of the uid at a point x 2 
; p(x) 2 R

is the hydrostati pressure; T (x) 2 R is the temperature; g(x) is the external

fore by unit of mass; �(�) > 0 and �(�) > 0 are kinemati visosity and

thermal ondutivity, respetively; and � is a positive onstant assoiated to

the oeÆient of volume expansion. Without loss of generality, we have taken

the referene temperature as zero. For a derivation of the above equations,

see, for instane, Drazin and Reid [?℄.

The expressions r;4; and div denote the Gradient, Laplae, and Di-

vergene operators, respetively, also we denote the Gradient by grad; the

ith omponent of u � ru is given by (u � ru)

i

=

3

P

j=1

u

j

(�u

i

=�x

i

); u � rT =

3

P

j=1

u

i

(�T=�x

j

):

The boundary and at in�nity onditions are

u j

�

= 0 and T j

�

= T

0

> 0 (2)

lim

jxj!1

u(x) = 0 and lim

jxj!1

T (x) = 0 (3)

where � is the boundary of 
:

The problem (1.1) was onsidered by Lora and Boldrini[8℄ in a bounded

domain with Dirihlet's onditions; while the redued model, where � and �

are positive onstants, was studied by Morimoto[10℄(in a bounded domain)

and reently by Oeda[11℄(in an exterior domain).

The evolution problem orresponding to (1.1) was analized by Lora and

Boldrini[9℄ in a bounded domain; when � and � are positive onstants was

disussed by many authors, see for instane, Korenev[6℄, Rojas-Medar and

Lora[14℄, [15℄(in a bounded domain) and Hishida[5℄, Oeda[12℄,[13℄ (in a ex-

terior domain). In another publiation we will study the evolution problem

orresponding to (1.1).

2 Funtions spaes and preliminaries

The funtions in this paper are either R or R

3

-values and we will not distin-

guish these two situations in our notations. To whih ase we refer to will

be lear from the ontext.
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Now, we given the preise de�nition of the exterior domain 
 where our

boundary-value problem assoiated to the problem (1)-(3) has been formu-

lated.

Let K a subset ompat of R

3

whose boundary �K os of lass C

2

. The

exterior domain 
 that we will onsider is 
 = K



and � = �
 = �K:

The extending domain method was introdued by Ladyzhenskaya [7℄ to

study the Navier-Stokes equations in unbounded domain. As was observed

by Heywood [3℄ the method is useful in ertain lass of unbouded domain,

in this lass ertainly our domain is. The basi idea is the following: The

exterior domain 
 an be approximated by interior domains 


m

= B

m

\ 
;

where B

m

is a ball with radius m and entre at 0; as m!1:

In eah interior domain 


m

; we will prove the existene of weak solu-

tion, by using the Galerkin method together with the Brouwer

,

s �xed point

theorem as in Heywood [3℄. Next, by using the estimates given in Ladyzhen-

skaya's book's[7℄ together with diagonal argument and Rellih's ompatness

theorem, we obtain the desirable weak solution to problem (1.1)-(1.3).

We use several funtion spaes. D denote 
 or 


m

:

W

r;p

(D) = fu;D

�

u 2 L

p

(D); j�j � rg

W

r;p

0

(D) = ompletion of C

1

0

(D) in W

r;p

(D)

C

1

0;�

(D) = f' 2 C

1

0

(D); div' = 0g

J(D) = ompletion of C

1

0;�

(D) in norm kr�k

H(D) = ompletion of C

1

0;�

(D) in norm k�k :

Here k�k is the L

2

-norm; the L

p

-norm we denoted by k�k

p

:

We note that J(D) an be haraterized as

J(D) =

�

� 2 W

1;2

(D);� j

�

= 0; div� = 0

	

as was proved by Heywood [3℄.

When p = 2; as it usual, we denoted W

r;p

(D) � H

r

(D) and W

r;p

0

(D) �

H

r

0

(D):

We make use of some inequalities. Constants whih appear in those in-

equalities depend only on the dimension and they are independent of domain

(see, ap. I of [7℄).

Lemma 1 Suppose the spae dimension is 3 and D is bounded or unbounded.

Then
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(a) For u 2 W

1;2

0

(D) ( or J(D) or H

1

0

(D)); we have

kuk

L

6

(D)

� C

L

kruk

L

2

(D)

where C

L

= (48)

1=6

:

(b) (H�older

,

s inequality). If eah integral makes sense. Then we have

j((u � r)v; w)j � 3

1

p

+

1

r

kuk

L

p

(D)

krvk

L

q

(D)

kwk

L

r

(D)

where p; q; r > 0 and

1

p

+

1

q

+

1

r

= 1:

The following assumptions will be needed throughout the paper.

(S1) w

0

� K ( w

0

is a neighborhood of the origin 0) and K � B = B(0; d)

whih is a ball with radius d and enter at 0.

(S2) �
 = � = �K 2 C

2

:

(S3) g(x) is a bounded and ontinuous vetor funtion in R

3

nw

0

: Moreover

g 2 L

p

(
) for p � 6=5:

We suppose that the funtions �(�) and �(�) satisfy

0 < �

0

(T

0

) � �(�) � �

1

(T

0

)

0 < �

0

(T

0

) � �(�) � �

1

(T

0

)

for all � 2 R; where �

0

(T

0

) = inff�(t); jtj � sup

�


jT

0

jg=2; �

1

(T

0

) = supf�(t); jtj �

sup

�


jT

0

jg with analogous de�nitions for �

0

(T

0

) and �

1

(T

0

); and �; �; are

ontinuous funtions.

Here, in order to transform the boundary ondition on T to a homoge-

neous one, we introdue an auxiliary funtion S (see Gilbarg and Trudinger

[2℄ p. 137).

Lemma 2 There exists a funtion S whih satis�es the following properties

(i) S(�) = T

0:

(ii) S 2 C

2

0

(R

3

): (iii) for any � > 0 and p � 1; we an retake

S; if neessary, suh that kSk

L

p

< �:

Now we make a hange of variable: ' = T � S to obtain

�div(�(' + S)ru) + u � ru� �'g � �Sg +rp = 0

div u = 0 (4)

�div(�('+ S)r') + u � r'� div(�('+ S)rS) + u � rS = 0 in 
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u = 0 and ' = 0 on �
 (5)

lim

jxj!1

u(x) = 0 ; lim

jxj!1

'(x) = 0 (6)

De�nition 2.1 (u; ') 2 J(
)�H

1

0

(
) is alled a stationary weak solution

of (4)-(6) if it satis�es

(�('+ S)ru;rv) +B(u; u; v)� �('g; v)� �(Sg; v) = 0

for all v 2 J(
)(7)

(�('+ S)r';r ) + b(u; ';  ) + (�('+ S)rS;r ) + b(u; S;  ) = 0

for all  2 H

1

0

(
):

Where B(u; v; w) = (u � rv; w) =

Z




3

X

i;j=1

u

j

(x)(�v

i

=�x

j

)(x)w

i

(x)dx and

b(u; ';  ) = (u � r';  ) =

Z




3

X

i;j=1

u

j

(x)(�'

i

=�x

j

)(x) 

i

(x)dx:

Theorem 1 (existene) Suppose assumptions (S1), (S2) and (S3) are satis-

�ed. Then a stationary weak solution of (7) exists.

3 Auxiliar problem.

Aording to the approah of the extending domain method, we �rst present

a lemma whih ensures the existene of weak solutions of interior problems

(P

m

) in domains 


m

= B

m

\ 
: The interior problem (P

m

) is as follows:

(P

m

)

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�div(�(' + S)ru) + u � ru� �'g � �Sg +rp = 0 in 


m

div u = 0

�div(�('+ S)r') + u � r'� div(�('+ S)rS) + u � rS = 0 in 


m

u = 0; ' = 0 on �


m

= �
 \ �B

m
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De�nition 2.2 (u; ') 2 J(


m

) � H

1

0

(


m

) is alled a stationary weak

solution for (P

m

) if it satis�es the following

(�('+ S)ru;rv) +B(u; u; v)� �('g; v)� �(Sg; v) = 0

for all v 2 J(


m

) (8)

(�('+ S)r';r ) + b(u; ';  ) + (�('+ S)rS;r ) + b(u; S;  ) = 0

for all  2 H

1

0

(


m

):

Lemma 3 Let assumptions (S1), (S2), and (S3) be satis�ed. Then we an

onstrut a weak solution (u

m

; '

m

) of (P

m

):

Proof Let m be arbitrary �xed. Let fv

j

g

1

j=1

� J(


m

) and f 

j

g

1

j=1

�

H

1

0

(


m

) be a sequene of funtions, linearly independent and total in J(


m

)

and H

1

0

(


m

) respetively.

Sine 


m

is bounded, we an take them suh that

(rv

j

;rv

k

) = Æ

ik

; (r 

j

;r 

k

) = Æ

jk

u

n

(x) =

n

X

k=1



n;k

v

k

(x) ; '

n

(x) =

n

X

k=1

d

n;k

 

k

(x):

Then we onsider the next system of equations:

(�('

n

+ S)ru

n

;rv

j

) +B(u

n

; u

n

; v

j

)� �('

n

g; v

j

)� �(Sg; v

j

) = 0

(�('

n

+ S)r'

n

;r 

j

) + b(u

n

; '

n

;  

j

) + (�('

n

+ S)rS;r 

j

) + b(u

n

; S;  

j

) = 0

(9)

where 1 � j � n: By using the representations of u

n

; '

n

; we have

n

P

k=1



k

(�('

n

+ S)rv

k

;rv

j

) +

n

P

k;l



k

d

l

B(v

k

; v

l

; v

j

)

�

n

P

k=1

�d

k

(g 

k

; v

j

)� �(Sg; v

j

) = 0

n

P

k=1

d

k

(�('

n

+ S)r 

k

;r 

j

) +

n

P

k;l



k

d

l

b(v

k

;  

l

;  

j

)

+(�('

n

+ S)rS;r 

j

) +

n

P

k=1



k

b(v

k

; S;  

j

) = 0

(10)
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where 1 � j � n:

We put (; d) = (

1

; :::; 

n

; d

1

; :::; d

n

); P (; d) = (P

1

(; d); :::; P

2n

(; d)):

Then, of (10) we obtain

n

X

k=1



k

�

0

(T

0

)(rv

k

;rv

j

) �

�

�

�

�

�

X

k;l



k

d

l

B(v

k

; v

j

; v

l

)

�

�

�

�

�

+

�

�

�

�

�

X

k

�d

k

(g 

k

; v

j

)

�

�

�

�

�

+ j�(Sg; v

j

)j

n

X

k=1

d

k

�

0

(T

0

)(r 

k

;r 

j

) �

�

�

�

�

�

X

k;l



k

d

l

b(v

k

;  

j

;  

l

)

�

�

�

�

�

+ �

1

(T

0

) j(rS;r 

j

)j (11)

+

�

�

�

�

�

X

k



k

b(v

k

; S;  

j

)

�

�

�

�

�

thus

P

j

(; d) �

1

�

0

(T

0

)

(

�

�

�

�

�

X

k;l



k

d

l

B(v

k

; v

j

; v

l

)

�

�

�

�

�

+

�

�

�

�

�

X

k

�d

k

(g 

k

; v

j

)

�

�

�

�

�

+ j�(Sg; v

j

)j

)

(12)

P

n+j

(; d) �

1

�

0

(T

0

)

(

�

�

�

�

�

X

k;l



k

d

l

b(v

k

;  

j

;  

l

)

�

�

�

�

�

+ �

1

(T

0

) j(rS;r 

j

)j+

�

�

�

�

�

X

k



k

b(v

k

; S;  

j

)

�

�

�

�

�

)

where 1 � j � n: Then our problem is redued to obtain a �xed point of

P : R

2n

! R

2n

: Now we will use Brouwer

,

s �xed point theorem. Namely, if

all possible solutions (; d) of the equation (; d) = �P (; d) for � 2 [0; 1℄ stay

in a same ball k(; d)k � r; then there exists a �xed point of P:

By multiplying (11)

i

(respetively. (11)

ii

) by 

j

(respetively. d

j

),

summing up with respet to j and noting B(u

n

; u

n

; u

n

) = 0; b(u

n

; '

n

; '

n

) = 0

we have

�

0

(T

0

)

n

X

j=1

j

j

j

2

= �

0

(T

0

) jru

n

j

2

= �

0

(T

0

)�

n

X

j=1

P

j

(; d)

j

� �� j(g'

n

; u

n

)j+ j(Sg; u

n

)j

� ��

n

jgj

3=2

j'

n

j

6

ju

n

j

6

+ jgj

3=2

jSj

6

ju

n

j

6

o

� ��

n

jgj

3=2

(jr'

n

j+ jSj

6

) jru

n

j

o

then

jru

n

j

2

�

��

�

0

(T

o

)

jgj

3=2

fjr'

n

j+ jrSjg : (13)
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In the same another, we �nd

jr'

n

j �

��

1

(T

0

)

�

0

(T

0

)

jrSj+

�

�

0

(T

0

)

jru

n

j jSj

3

(14)

by substituting the equation (14) into the equation (13), we obtain

jru

n

j �

��

�

0

(T

o

)

jgj

3=2

�

��

1

(T

0

)

�

0

(T

0

)

jrSj+

�

�

0

(T

0

)

jru

n

j jSj

3

�

+

��

�

0

(T

o

)

jgj

3=2

jrSj

thus,

�

1�

�

2

�

�

0

(T

o

)�

0

(T

0

)

jgj

3=2

jSj

3

�

jru

n

j �

��

�

0

(T

o

)

jgj

3=2

jrSj

�

�

1

(T

0

)

�

0

(T

0

)

+ 1

�

:

Aording to Lemma 2.2, with p = 3 , we an hoose an extension S of

T

0

suh that

 �

�

�

0

(T

o

)�

0

(T

0

)

jgj

3=2

jSj

3

< 1=2

then we have

jru

n

j �

��

(1� �

2

)�

0

(T

o

)

jgj

3=2

jrSj

�

�

1

(T

0

)

�

0

(T

0

)

+ 1

�

(15)

By substituting the previous inequality in the inequality (14), we obtain

jr'

n

j �

� jrSj

�

0

(T

o

)

�

�

1

(T

0

) +

��

(1� �

2

)�

0

(T

o

)

jgj

3=2

�

�

1

(T

0

)

�

0

(T

0

)

+ 1

�

jSj

3

�

:

(16)

Sine 0 � � � 1 and

1

1� �

2



�

1

1� 

; we have from (15) and (16)

jru

n

j �

�

(1� )�

0

(T

o

)

jgj

3=2

jrSj

�

�

1

(T

0

)

�

0

(T

0

)

+ 1

�

� r

1

(17)

jr'

n

j �

jrSj

�

0

(T

o

)

�

�

1

(T

0

) +

��

(1� )�

0

(T

o

)

jgj

3=2

�

�

1

(T

0

)

�

0

(T

0

)

+ 1

�

jSj

3

�

� r

2

(18)

Thus we have gotten uniform estimates on u

n

and '

n

: Indeed, r

1

and

r

2

are both independent of �; n;m: Hene solutions of (; d) = �P (; d) for

8



� 2 [0; 1℄ lie in a R

2n

�ball

(

n

P

j=1

�

j

j

j

2

+ jd

j

j

2

�

� r

2

1

+ r

2

2

)

: Therefore, due

to Brouwer

,

s �xed point theorem, we have obtained a solution (u

n

; '

n

) of

the equations (8) with the property (after getting the �xed point, repeat the

same alulation as � = 1)

jru

n

j � r

1

; jr'

n

j � r

2

: (19)

Sine J(


m

) (respetively. H

1

0

(


m

) ) is ompatly imbedded in H(


m

)

(respetively. L

2

(


m

)) we an hoose subsequenes, whih we again denote

by (u

n

; '

n

); and elements u

m

2 J(


m

); '

m

2 H

1

0

(


m

) suh that u

n

!

u

m

weakly in J(


m

) and strongly in H(


m

) and also '

n

! '

m

weakly in

H

1

0

(


m

); and strongly in L

2

(


m

) and also everywhere in 


m

:

Passing to the limit in (10) as n!1; we �nd that (u

m

; '

m

) is a desired

weak solution of (P

m

):

Lemma 4 Let us (u

m

; '

m

) be a weak solution for (P

m

) obtained in previous

lemma. By put

u

m

(x) =

�

u

m

(x) if x 2 


m

0 if x 2 
n


m

'

m

(x) =

�

'

m

(x) if x 2 


m

0 if x 2 
n


m

:

Then it holds that (u

m

; '

m

) 2 J(
)�H

1

0

(
) and furthermore

jru

m

j � r

1

; jr'

m

j � r

2

(20)

where r

1

and r

2

be taken uniformly in m:

Proof It is easy to show (u

m

; '

m

) 2 J(
) � H

1

0

(
): The estimates (20)

are diretly dedued from the estimates (19) and the lower semiontinuity of

the norm.

4 Proof of Theorem

By using the previous lemma, applying Rellih

,

s ompatness theorem and

using the diagonal argument, we an hoose subsequenes whih we again

denote by (u

m

; '

m

) and u 2 J(
); ' 2 H

1

0

(
) suh that

u

m

! u weakly in J(
) and strongly in L

2

lo

(
)

'

m

! ' weakly in H

1

0

(
) and strongly in L

2

lo

(
):

9



One we get suh subsequenes and limits, then we an show that (u; ')

beome a stationary weak solution of (7). In fat, let us (�;  ) be an arbitrary

given test funtion. Then we �nd a bounded domain 


0

and a number m

0

suh that supp �; supp � 


0

and 


0

� 


m

0

� 


m

for all m � m

0

: Then

j(�('

m

+ S)r�;ru

m

)




� (�('+ S)r�;ru)




j

� j((�('

m

+ S)� �(' + S))r�;ru

m

)




0

j+ j(�(' + S)r�;r(u

m

� u))




0

j

� j�('

m

+ S)� �(' + S)j

1

jr�j jru

m

j+ j(�(' + S)r�;r(u

m

� u))




0

j

beause the funtion � is ontinuous and '

m

! ' strongly in L

2

lo

(
), it is

now immediate that �('

m

+ S) onverges strongly towards �(' + S): This,

together with the weak onvergene u

m

! u in J(
); yields the following

onvergene

j(�('

m

+ S)r�;ru

m

)




� (�(' + S)r�;ru)




j ! 0

as m ! 1: The other onvergenes are analogously established. Thus, we

see (u; ') is a stationary weak solution for (7)
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