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Abstract. We consider an initial boundary value problem for a system of equa-
tions describing nonstationary flows of nonhomogeneous incompressible asymmetric
(polar) fluids. Under conditions similar to the ones for the usual Navier-Stokes
equations, we prove the existence and uniqueness of strong solutions by the use
of the spectral semi-Galerkin method. Several estimates for the solution and their
approximations are given. These estimates can be used for the derivation of error
bounds for the Galerkin approximations.

1. Introduction

In this paper we will study the equations for the motion of a nonhomoge-
neous viscous incompressible asymmetric fluid. These equations are considered in a
bounded domain Q C IR*, with boundary T, in a time interval [0,7,]. To describe
them let wu(z,t) € R, w(z,t) € R, p(z,t) € R and p(z,t) € R denote,
respectively, the unknown velocity, angular velocity of rotation of the fluid particles,
the density and the pressure at a point = € Q and time ¢ € [0,7.]. Then, the
governing equations are

pug + p(u - V)u — (1 + p)Au + gradp = 2u,rot w + pf,
divu =0,
(1.1) pwi + p(u - V)w — (¢q + cq) Aw — (o + ¢g — ¢,) Vdivw
+4pw = 2p, rot u + pg,
prt(u-V)p=0,
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together with the following boundary and initial conditions

(1.2) {u:(), w=0, on I'x(0,T,),

u(xvo):uo(x)v w(xvo):wo(x)v p(.’E,O):pO(l‘) in €,

where for simplicity of exposition we have taken homogeneous boundary conditions.
Here f(x,t) and g(x,t) are respectively known external sources of linear and an-
gular momentum of particles. The positive constants u, pu,., co, cq, ¢q characterize
isotropic properties of the fluid; p is the usual Newtonian viscosity; p,, co, Ca, Cq
are new positive viscosities related to the asymmetry of the stress tensor, and in
consequence related to the appearance of the field of internal rotation w; these
constants satisfy c¢o + ¢4 > ¢,. The expressions grad, A, div and rot denote the
gradient, Laplacian, divergence and rotational operators, respectively (we also de-

note the gradient by V and g— by u;); the i component of (u - V)u and (u - V)w
O

in cartesian coordinates are given by [(u - V)u]; = Zu]a % and (u- V)w]; =

n
Zuj% respectively; also  (u-V)p = Zu] ap
j=1 X 8

For the derivation and physical dlscusswn of equations (1.1) see Petrosyan [17]
and Condiff, Dahler [5]. We observe that this model of fluid includes as a particular
case the classical Navier-Stokes, which has been much studied (see, for instance, the
classical books by Ladyzhenskaya [10] and Temam [20] and the references there in).
It also includes the reduced model of the nonhomogeneous Navier-Stokes equations,
which has been less studied than the previous case (see for instance Simon [19], Kim
[9], Ladyzhenskaya and Solonnikov [11] and Salvi [18]).

Concerning the generalized model of fluids considered in this paper, Lukaszewicz
[16] established the local existence of weak solutions for (1.1), (1.2) under certain
assumptions by using linearization and an almost fixed point theorem. In that same
paper Lukaszewicz remarked about the possibility of proving the existence of strong
solutions (under the hyposthesis that the initial density is separated from zero) by
using the techniques of [14] and [15] (linearization and fixed point theorems; [14]
and [15] assume constant density). The properties of their solution are asserted to
be similar to the ones in [14] and [15].

Since we are more interested in techniques more directly related with numerical
applications, in this paper we will stablish the existence of strong of (1.1) and (1.2) by
using the spectral semi-Galerkin method. We assume more regular initial data than
the ones in [16], with initial density separated from zero, because we want to prove

2



the existence of solutions that are stronger that the ones alluded in Lukaszewicz [16].
The reason for this is that the estimates we present in this paper are fundamental
for obtaining error bounds for the Galerkin approximations constructed here. This
is presented in another paper, [2].

2. Preliminaries and Results

In what follows we will assume €2 to be a bounded domain in IR"(n = 2 or 3) of
class Ob'. The functions in this paper are either IR or IR"-valued, and sometimes
we will not distinguish them in our notations. This being clear from the context.
We will consider the usual Sobolev spaces

WD) ={feLU(D)/ N0°fllLaw) < oo, (laf <m}

forme N,1<qg<oo, D=QorD=Qx(0,7,),0 < T, < oo, with the usual
norm. When ¢ = 2, we denote H™ (D) = W™?(D) and H}"(D) = closure of C§°(D)
in H™(D). If B is a Banach-space, we denote, by L?([0,7.); B) the Banach space of
B-valued functions defined in the interval [0, 7)) that are L%integrables in the sense
of Bochner. Let

Coor(2) = {v € Cg°(Q) /dive = 0 in Q},
H = closure of C55,(2) in (L*(2))",
V = closure of Cg%(€) in (H'(2))".

Let P be the orthogonal projection from L*(2) onto H obtained by the usual
Helmholtz decomposition. Then the operator A : H — H gives by A = —PA,
with domain D(A) = V N H?(Q) is called the Stokes operator. It is well known that
A is a positive definite self-adjoint operator and is characterized by the relation

(Aw,v) = (Vw, Vov) forall we D(A), ve V.

From now on, we denote the inner product in H (i.e., the L?-inner product) by ( ,
) with corresponding norm || - ||. The norm for other LP-spaces will be denoted by
-1l e-
The following assumptions on the initial data will hold throughouth this paper.
(A.1) The initial value for the density for belongs to C''(Q2) and satisfies
0<a<pr)<pB<+ooinQ,
(A.2) The initial value ugy belong to V N (H*(Q))",
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(A.3) The initial value wy belong to (Hy(Q))" N (H*(Q))".

Now, by using the properties of P, we can reformulate the problem (1.1)-(1.2)
as follows: find p € C1(Q x (0,7%)) and u € C'([0,T.); H) N C((0,T%); D(A)), and
w e CH[0,T.); (Hy(22))™) N C((0,T%); D(B)) such that

(pr+u-Vp=0 for (z,t) € Qx(0,T,),

(puta U) + (pu ’ VU, ’U) + (“ + Nr)(Aua ’U)
= 2u,(rotw,v) + (pf,v) for 0 <t <T,, YveV,
(2.1)
(pwe, V) + (pu - Vw, ) = (ca + ca) (Aw, ) — (co + ¢q — ¢q) (Vdivw, 1)
g (w, ) = 2p, (ot u, ) + (pg, ¥) for 0 <t <T,, Yo € (Hy(Q))",

[ w(z,0) = up(x), p(z,0)=po(z,0) = po(z), w(z,0)=wo(x).

Actually, we will prove that the solution is better than what stated above. For this
we need to recall some properties of the stokes operator A = —PA. If 2 is bounded
and 09 is of class C*!, the mapping A : V N H*(2) — H is one-to-one and onto
(Amrouche and Girault [1], Cattabriga [4] when 9 is of class C?). The inverse
A~!is complety continuous as a map A~' : H — H. Also, A is symmetric and,
therefore, so is its inverse. Being complety continuous and symmetric, the operator
A1 posses an orthogonal sequence of eigenfunctions {*(x)} which is complete in
its image V N (H*(Q))". As the image contains Cg5 (), the eigenfunctions are also
complete in H. They are also orthogonal and complete in V' since

/ VoVords = A, / bt d

holds for ¢ € V, it Ay is the k-th eigenvalue (Ap® = M\p*). We take {o*(z)}
to be sequence of eigenfunctions, orthogonal in H. Therefore, the eigenfunctions
{o*(2)/(M\k)Y?} and {@*(x)/\} are complete and orthogonal in V' (endowed with
the inner product (Vu, Vo), for u,v € V) and (H?*(2))" NV (endowed with the
inner product (Au, Av), for u,v € D(A)), respectively.

As well, we have that if 9Q is one C*™-manifold of IR"(n =2 or 3, m =), then
the eigenfunctions ¢*(x) belong to H ().

In what follows we will also consider either the Laplace operator B = —A , or
the strongly uniformly elliptic operator

L=—(ca+ca)A — (co+ cqg — o) Vdiv,
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both with Dirichlet boundary conditions. Due to the condition ¢y 4+ ¢4 > ¢4, L is a
positive definite operator. To simplify the notation, we will denote respectively by
{*(z)} and {1} the eigenfunctions and eigenvalues either of B or £. From the
context it will be clear in which case we are working with.

Let Py, the projection operator of L?(£2) onto the space Vj spanned by the k-th
eigenfunctions (p'(z),..., o (x)) of A and let Ry the projection operator of L?(€2)
onto the space Wy spanned by the k-th eigenfunctions (1)!(x),...,¥*(z)) of either
B = —A or £ according to the context.

Then the solutions of problem (2.1) will can be obtained by using the semi-
Galerkin approximation. That is, we consider the Galerkin approximations

k k
uF(z,t) = D ()i (x), wh(z,t) =D du(t)y*(z) for the velocity and rotation
i=1

of particles, respectively, and an approximation pF(x,t) for the density satisfying
the following equations:

Pr(pFuk + pFuk - Vuk — pF f — 2p, rot w) + (1 + pr) AuF = 0,
Ry (pfwk + pfu® - Vw* — pFg — 2, rot uf + dp,w) + Jw* = 0,
pt"‘ukvf’k :07

u*(0) = Prug, w*(0) = Rgwo, p*(0) = po,

(2.2)

where Juw* = (¢, + ¢g) Bw* — Ry (co + ¢4 — ¢)Vdivw® if we are working with the
Laplace operator (recall that BRj, = RyB in this case), and Jw* = Lw* if, we are
working with the £ operator (recall that LRy = RiL in this case).

Equations (2.2) forms a coupled system of ordinary differential equations with
a transport equation. By using the characteristics method for this last equation, it
is possible to prove in a standard way that there is an unique solution (u®, w*, p¥)
for (2.2) in an interval [0,7}), for all £ € IN. The a priori estimates that will prove
will allow-us to take T" > 0 such that T" < T} for all £ € IN. Thus, the approximate
solutions (u”, w¥, p¥) will be considered to be defined in a single interval [0, T) for
all k € IN. Equations (2.2) are equivalente to the following

(pPul + pFu® - VuF — pF f — 2p, rot wk v) + (p+ p, ) (Au®,v) =0,
(pFwf + pruk - Vwk — pFg — 24, ot u*, ¥) + (Jwk, ) =0,
(23) VoveVi, YyeW,
pr+uf - VpF =0,
uk(0) = Prug, w*(0) = Rypwy, pF(0) = po.

The result in this paper are the following:
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Theorem 2.1 Let the initial values satisfy uy € V N (H*(Q))", wy € (Hy(Q))" N
(H2(2))", po € CYQ) and the external fields f, g € L*(0,Ts; (H'(Q))") with
ft» g0 € L*(0,T.; (L*(2))"). Then, on a (possibly small) time interval [0, 7], T < T..
Problem (1.1) and (1.2) has a unique strong solution (u,w,p). That is, there are
functions u,w, p such that

P(pu; + pu - Vu —2p.rotw — pf — (u + p)Au) = 0 holds a.e. in Q x [0, T7;
pwy + pu - Vw — 2p,rot u — pg — (g + cq) Aw — (co + ¢4 — ¢)Vdivw + 4p,w = 0
holds a.e. in Q x [0,T7;

pi+u-Vp=0 holds in the L?(2 x [0,77]) sense. Moreover,
p€CHQx[0,T)),

we C([0,T]; (HA(Q)" N V) N L2([0, T]; (L=(2))™)
NLP([0, T (HP72(2))") N L2((0, T (H*(2))") N Lo ([0, T; (H*(92)"),

ue € C([0, T H) N L*(0, T (H*75(2))") N LP([0, TT; (H'~#(2))")
N LEoc ([0, 7T (H*(2))") N LS ((0, TT; (HH(2)"),

Ut S LEOC(O, T, H),

w € C([0, TT; (H*(2))" N (Ho (2))") N L*(0, T3 (H*($2))") N L*([0, TT; (L>(2))")
NLP(0,T5 (H* =(Q)") N Lig (0, TT; (H*(€2)"),

wy € C([0,T]; L*() N (Ho (2))") N L0, T5 (H*~*(2)")
NLP([0, TT; (H'(2)") N Lioe (0, T5 (H*())") N Ly

Loc Loc

((0, 7T (HY(2))"),

Wy € Lioc(oa T; (L2(Q))n)7
forall e >0 and 1<p<+oo.
Remark. Actually it is possibly to prove that the strong solution of Theorem 2.1
is global either if n =2 or if we take small enough initial data when n = 3.
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The above result depends on certain estimates for the approximations (u*, w*,

p¥); since these estimates will be necessary in a companion paper where we obtain
error bounds, for future reference we summarize them in the following

Proposition 2.2 Let (u*, w*, p*) be the solution of (2.3). Then, she satisfies
a<pf(r,t) < B, (0<a=infp, B=supp)
IVat@)|? + [Vt @)]* < Fi(2)
t
/ {[Aw*(s)[1* + |PAu*(s)[*}ds < Fa(t),
0

[t + uk(s) s < B,

lwg I + [luf )] + /Ot{||wa(8)||2 +[IVui(s)[[*}ds < Fu(t),
IPAGE (@) + [[Awk ()] < F5(t),

IV ()]~ < Fis(2),

oy (D)7 < Fr(t),

/0 {IIVu"(s)lZee + V" (s)[|Z bs < Fs(2),

[ ) s + () s s < B0,

/Ot<7(<9){||11Ji“t(<9)||2 + lwiy ()" s + o (O Vuy (O + [[Vwi (DI} < Fo(t),

o (@){Ilu* ()15 + (@)} < Fuu(b),
o(@{IIVu* ()| + IV (@)1} < Fa(?),

/ot0'(8){||PAUI’5(8)II2 + | Aw; (s)[|*}ds < Fis(2),

Here, o(t) = min{1,¢}. Moreover, the same estimates hold for (u, w, p) give in The-
orem 2.1. The above results are true without any restriction if we the eigengunctions
of £ to build the approximations for w*. If we use the eigenfunctions of —A then
the above estimates are true if o = (¢o + ¢q — ¢4)/(¢q + cq) is sufficiently small.

Remark. The above estimates imply that the approximations (u*, w*, p*) con-



verges to the solution (u,w,p) in the senses indicated below

(i) v —>u, w—w strongly in  LP(0,7; H*¢(Q2)) and weakly -
in L (0, T; H*(Q))

(i) wf —w, wf—w weakly in L2 (0,7; H'(Q2)) and weakly in
L*(0,T; H?=5(Q)) in LP(0,T; H'™*(12))
and in L? (0,7; H*Q))

(iii)  wf — uy, wf—wy  weakly in L2 (0,75 L*(Q))

Loc
iv) pf —p strongly in  LP(0,7;C*(Q)) 0<~v<1
(v) Vp*—Vp weakly -+« in  L>®(Q2 x [0,77])
(vi) pF—p weakly -x in  L*®(Q x [0,T]).

The above is true for all e > 0 and 1 < p < 400

Finally, we would like to say that as it is usual we will denote by C' a generic
constant depending at most on €2 and the fixed parameters in the problem
(i, fir, Ca, Cq,Co and the initial conditions, and also f, ¢ and 7). This will ap-
pear in most of the estimates to the be obtained. When for any reason we want to
emphasize the dependence of a certain constant on a given parameter we will denote
this constant with a subscript.

3. A Priori Estimates

We start by proving the estimates stated in Proposition 2.2. This will be done
in several steps by combining variants of arguments used by Heywood [6], [7], Kim
[9] and Boldrini and Rojas-Medar [3]. To fix the ideas, first we prove the estimates
in the case where one uses the eigenfunctions of —A to approximate w; at the end
of this section we explain the necessary changes to obtain the estimates when one
uses eigenfunctions of L.

Lemma 3.1 There is 0 < T' < T, such that the approximations p*, u*, w* satisfy
for all t € [0,7).

(3.1) a < pMx,t) < 6,



(32) @) + (@) < L2,

(33) LUV @I + [Vut(s)]2)ds < H(@),
(3.4) IVa @) + Ve ) < Fi(e),

(35) [ 1A () + A (5)][2)ds < Fa),
(36) [k @I + k() 2)ds < Fy(0),

The functions on the right hand side of the above inequalities depend on «, 3,2
and the norms ||Vug||, ||Vwpl|. (3.5) and (3.6) depend also on ||ug||gz and ||wo]|g=.
On the interval in question these functions can be assumed to be increasing and
continuously differentiable with respect to ¢.

Proof. From the method of characteristics applied to the continuity equation (2.2)
(iii), it follows immediately that whenever p* exists it satisfies (3.1).

Now, by using v = u* and ¢ = w* in (2.3) and working as in Lions [12], [13],
one obtains

1d R

Eﬂﬂ(pk) 2uf||? 4 (1 + ) [|[Vab|)? = (0 F,u®) + 24, (rot w*, u"),

1d . .

QEH(P’C)”U’CH2 + (o + ca) [VF||* + (co + ¢4 — ¢o) ||div w¥||* + 4p,[|w®|)?

— 2, (rot u, wh) + (pFg, wh).

By adding these two equations and working the terms in the right-hand side in a
standard way, together with the use of (3.1), after an integration with respect to
time from 0 to t, we are left with

b ()2 + b O + G+ ) [ IV ()P + (e o) [ V()P
Heo+ea—ca) [ divak@)lds + 4p, [ k()P
<+ [(IFGIF + lgt)IP)ds +Cs [ (A + k()]s
where C1, Cy and Cjy are independent of k. (C} depends on the initial conditions).

Thus, by using Gronwall’s Lemma, we obtain (3.2) and (3.3) for suitable L(¢)
and H(t).



Now, we take v = uf and subsequently v = —cAu¥, with a suitable small ¢ > 0
in (2.3) (i). By adding the resulting equations and working as in Kim [9], one obtains

d
(3.7) alluf|l®+ (1) Z IV P+ Call A | < 5[ FIP + [V | + [ - V|,

with positive constants Cy and C5 independent of k (for instance, if we take ¢ =

alp+ pr) /962, Cy = a(p+ py)? [816°).
Now, we have to find a similar differential inequality for w*. For this, we take
¢ = wf in (2.3) (ii) to obtain

Ca—|—Cd Co+Cd—Cad . k12 d
st - —||d 24—
5 5 g vt 4 2p = fjw

< Cs[llgll* + IIVul||* + [lu* - V|7,

«Q d
kP + “ L ot + P

with C5 > 0 independent of k.
Now, we take ¢ = —Aw" in (2.3)(ii). This, with the remark that

Lw = —(cq + cg) Aw — (co + cq — ¢)Vdivw
is a strongly elliptic operator, and thus
(Lw®, —Aw*) > C[|Awt|? — C*[|Vu*|?,

where C* > 0 and C** > 0 depend on ¢, + ¢4, ¢y + ¢4 — ¢, and I', will furnish

Cq + C4
AW P + 4, [Vt < CrlllglP” + Vb |]? + [wf 1” + [Ju® - Vot|?]
with C'; > 0 independent of k.
«
Now, we add the above inequalities, but with this last one multiplied by ol
7
We obtain
k|2 d k|2 d e d ke
b2+ 2(ca + ) IV + 200 + 0 — o) T div b2 + 4, 2 ]
(3.8) +Cs[| Aw* |2 + Co[[Vu*|[* < Cuolllgll* + [[Vul]]® + [|u* - Vuk|?],

with positive constants Cg, Cy and Chy.
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Now, we observe that by standard interpolation and Sobolev inequalities,
[u*Vur|? < fJuf (|26 [ Vut]Zs < OVt [P Aut]| < Cl[Vub|® + ef| Au®|?,

for any € > 0 and suitable C, > 0.
Analogously, we have

[ - Vot |* < CIVuF|[H[ V| + el w1

By adding (3.7) and (3.8) and using the above inequalities with suitable small ¢, we
conclude that there is a positive constant C' such that

Loty +(t) < o(t) + CO()

dt
with 0(t) = (pu+ ) [Vu* @) + (ca + ca) IVWH|I* + (co + ca — ca) [ div w"|?
g w1?,

C C
o(t) = a||u,'f||2+74||z4ukll2+78||Aw'“||2+09||Vw'“||2,
o(t) = CUfI*+llgl®).

By making use of Lemma 3 in Heywood [8], p. 656, we conclude that there is
0 < T < T, such that on the interval [0,7] (3.4) - (3.6) hold with suitable F;(t),i =
1,2,3, =

Lemma 3.2 For all ¢ € [0, 7], the approximations (u*, w*) satisfy

(3.9) g (£)1* + [lwy (£)]* + /Ot(HVu,’f(S)H2 +Vur (s)[*)ds < Fi(t),
(3.10) [Au* O] + [|Awt (B < F5(t).

The functions on the right hand side of the above inequalities depend on «, 3, €2,
the norms ||ug||y2, ||wo||x2 and the functions given in the Lemma 3.1. On the in-
terval in question the functions can be assumed to be increasing and continuously
differentiable with respect to t.

Proof. By differentiating (2.3)(i) and (ii) with respect to ¢ and setting v = uf, ) =
w? and working analogously as in Boldrini and Rojas-Medar [3] (use the fact that
pF = —div(pfu*)), we obtain

1d

1
ST + 5t o) [V

9
11



< Cuollug IP{[ AW 1* + (VU |* + IVuf|* + 1} + Crol[Vu|[*| Au®|?
+el Vi |* + Cuoll £ell” + Croll FIE LI VUt + 13,

1 .
5 2 1P 2w+ < (e + ea) [ VWi 1* + (co + ca = ca) [div g + dpur|wf |

< Cullug IP{I[Au®|” + [|Aw"[|* + 1} + Cu lwf |P{]] Au®|[* + 1}
+Cu [ Auf|* + [[Aw® ]} + 0] Vug||* + e[ Vur||*
+Cullgell® + Cullgllzn IVt (* + 1}

for any £,0 > 0 and suitable Cyy(¢), Cy (g, 9).
By taking 6 = (p + ,)/10 and £ = (¢, + ¢4)/12, by adding and integrating in
time the above two inequalities, we obtain the integral inequality

Cotca) [ (o) s + LD [ outs) s + Lk et o)
I 2t O + e [ ok (5)[Pds + (eo - ca —a) [ v wh(s)]%ds
< M(0)+ O [ (1A (s) 2 + [ At(5) ) ds
+Cip [ T @IPUAL I + | Awk(s)? + 1}ds
+Cio [ Tk IA ) + 1)ds

(3.11) +5 ||(P0)1/2 FO)[* + ;H(po)”2 O,

with a suitable constant Cy5 > 0 and

= C/Ot(Hgt(s)H? F g2 + [ fel)IP + [1£(8)]%0)ds

where we have used the estimates in Lemma 3.1
Now, by taking ¢t = 0 and v = u¥(0) in (2.3)i, we obtain

lug (0)]* < {H(Po)l/2 o Vgl + (+ o) | Aug | + 195 f (0) ] + 24 [rot w [ }Hlug ()],

and consequently,

| Aut]|

lug (0)]] < é{CﬁHfoll + 20 C|[Vwoll} +{CB[[Vuoll + (1 + pr) } <G
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with C independent of k, because u*(0) — ug in H?(Q) as k — oo.
We can bound [|wf(0)|| < C in the same way. Thus, by using this we obtain

e [ guf(s) s + LD [ guss + afluf () + et 0)7)

t t
+8,u,n/0 |lwk (s)||2ds 4 2(co + cq — ca) /0 |div wk(s)||*ds
<M(t)+CE(t)+C
t
+CA(Wﬁ@ﬂp+HWﬂ$WHﬂPAMﬁMF+HAwW$W+J}®-
Now applying of Gronwall’s Lemma, we get (3.9) with
Fy(t) = v 1 (M(t) + CFy(t) + C) exp(Fy(t) + Ct),

where v = min{ (Cai;cd), (/L+MT), a} > 0.

The second estimate follows, from the first one by observing that by taking
v = PAu* in (2.3)i, we obtain
(0 + p) | PACE] < (o ug || + 2p[rot w®[| + " 1] + (|07 a® - V]|
Now, we observe that
lpbut - Vbl < Bl |l Vut]| e < BIVEE|] [Vaf ||V 1P AGEP

< CHIVUE|P + el | PAut],
schoosing € = (u + p,)/2, we obtain

IPAGE| < [CBIVUE(P + Bllugll + 2 ClIVw*| + Bl FI]

Mt
2

< [CBR®)? + BEO'? + O + Bl fI]] = F5(t).

[+ pr

We can treat ||Aw*|| in the same way, and this complete the proof of Lemma 3.2.
]

Lemma 3.3 The approximations p¥, u* satisfy for all ¢ € [0, T],

(3.12) /Ot [0k (5)|Pyesds < G (1),
(3.13) [ 19t ©lds < Go(0),
(3.14) IV @)l < Fo(t),
(3.15) 10k (1)l < i (t).
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The functions on the righ hand side of the above inequalities depend only on
a, 3,8, |uol| g2, ||wo|| g2 and the functions Fj,i =1,2,3,4,5 of the above Lemmas.
These functions on continuous on the interval in question.

Proof. We observe that for any ¢ € C§%(€2), we have
— (4 1) (Vu, Vo) = (Pe(p"ui + pfut - Vub — p* f — 2p,r0t w*), ¢) = (X, ).

From the previous estimates, we have x* € L?(0,T; L5()) uniformly in k& whence,
by Amrouche and Girault results for the Stokes operator, we get (3.12). From usual
Sobolev’s embedding results, we then have

t
/ [V ()| wds < Golt), Vit € [0,T).
0

Hence, from the formula of Ladyzhenkaya and Solonnikov [11, Lemma 1.3], we
conclude
VA @)l < Fo(t)  and  [|pf(8) ]|z < Fy(2).
m

Lemma 3.4 In the case of J = B we have that if 0 = (¢y + ¢4 — ¢4)/(cq + ¢q) is
small enough, the approximations w* satisfy for all ¢ € [0, T

(3.16) [ A @)y ads < Gt
(3.17) /Ot IV (s)|2uds < Ga(t).

The functions on the righ hand sides of the above inequalities depend only on «, 3, {2
the norm ||wy||gz and the functions of the above Lemmas. These functions one
continuous in the interval in question.

Proof. We have for any ¢ € C§°(2),
—(cq + ca)(Aw", ) = (0", 9) + (co + cq — ca) (Vdivw®, 1),
where nf = —pfwlF — pfu¥ - Vwk + pFg + 2pu,rot uf — 4p,w*, consequently
(3.18) (ca + ca)l| Aw o < 10Fl|zs + (co + ca — €a) | Vdiv w"|| e
By other hand side, there exists positive constants k; > 0 and ks > 0 such that

||Awk||%e Z k1||wk||12/vz,6 and ||Vd1vwk||%s S kg“U)k“IZ/Vz,G.
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Consequently in (3.16), we obtain
ki (ca + ca)l|w®|[fyas < |Inf[17e + ka(co + ca — ca)[[w*|[fyae

thus
(k1 (ca + ca) = ka(co + ¢4 — ca)) [0 |fy2s < |||

Since o is small enough, we have k;(c, 4+ ¢4) — ko(co + cq — ¢4) > 0; also by the
previous estimates n* € L2(0,T;L%(Q)) is bounded uniformly in k. We conclude
that w* € L2(0,T;W?%5(Q)) uniformly in k and, by using Sobolev’s embedding
Vuw* € L*(0,T; L>*(9)) also uniformly in k. u

Now, we consider the eigenfunctions of the operator Lw = —(¢, + ¢q)Aw —
(co 4+ ¢qg — ¢o)Vdivw as basis for Galerkin approximations of w. In this case, the
approximate equation for w is

(3.19)  (Lw ¥) + (pPwl + pFuf - Vuk + dp0® — pFg — 2p,rot uF 1h) =0

for all ¢ € W.
We observe that two first estimates obtained in Lemma 3.1 remains valid. For
the second estimate we proceed as follows: We take 1) = LwF in (3.19), we get

|Lw||? = (p*g + 2u,rot u* — pFwf — pFuf - Vur — dpw®, Lw”).
By using the Holder and Young inequalities, we obtain
ILw®* < Cllpf[lillgl* + CIVut | + Cll o[ lwy |

+C|p* (oo lu® - Vet || + Clw®]|?
< Cllgl* + IVl |l + Cllwi|* + Cllu” - Vw'||* + Cflw®||*

by the estimate (3.1) in the Lemma 3.1.
Taking ¢ = w! in (3.19), we have

(0%
S ki +

Ca—l‘Cdd kN2 Co + Ccq —
5 gl Vel + 5

< Cllgll* + IV |l* + [|u® - Vw®[]?).

o d . d
= ldiv w1+ 20, = [t

Now, we observe that

Cllu* |5l Vur|lZa < Cllu¥ | Fal|Feok 12 w132

ClIVut PV |2 w72 < Ol VPVt |? + el Cw® |2,

lu® - Vuf|* <
<

15



The rest of analysis is exactly equal to the one in Lemma 3.1 to obtain the estimate
(3.5), in this case, we obtain

/Ot{||A7,uc(s)||2 + ||1Lw”(s)||2ds < Fy(t).

We observe also that the estimate for wf is done exactly as in Lemma 3.1. Therefore,
the Lemm 3.1 remains valid if we consider the £ operator instead of the Laplacian
operator. The Lemmas 3.2 and 3.3 are proved exactly equals. The analogous to the
Lemma 3.4 in this case is the following

Lemma 3.5 In the case that J = £, the approximations w* satisfy the following
estimates for any ¢ € [0, T

t ~
(3.20) [0 (5) Fsods < Ga(o)

t ~
(3.21) /0 IVwk (5)][2wds < Ga(t).
Proof. We have, for any ¢ € C§°(9),

(Lw®, ¥) = (", ¥),

where nf = p¥g + 2u,rot uf — 4wk — pFwk — pFur - Vwk.

We observe that n* € L2(0,7; L°(Q2)) is bounded uniformly in k. We conclude
that w* € L%(0,7;W?%5(Q)) uniformly in k and, by using Sobolev’s embedding
Vwk € L?(0,T; L>(Q)) also uniformly in £. "

Now, by taking Fy(t) = Ga(t) + G4(t), the estimates in the last Lemmas prove
the ninth estimate in Proposition 2.2.

Lemma 3.6 The approximations (p*, u”, w*) satisfy for all ¢ € [0, T]

t
(3.22) /0 (lu*(s)[3s + llw®(s)[l7s)ds < Fo(t)-
Proof. We observe that (2.2)i is equivalent to
(3.23) pful 4 pfub - VuF — p* f — 2p, rot wF + (4 ) AuF + VPP 4+ ¢F =0,

where ¢F € C®(0,T;V), p¥ € C>®(0,T; H*(Q)) with ¢*(t) € V-, Vp*¥ € V* for
each ¢t € [0, 7], where S+ denote the orthogonal of the subspace S in L?((2).
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Differentiating the above identity with respect to z;,i=1,...,n and taking the
L?-inner product with A , after of adding over i, we obtain

[ (s)[lZs < C{||w’“(8)||?p + PP Lo 1 1z + 1V R* (oo 1112
H1P oo [l [ Zoe [l 322 + Nl [ Zoe ll (322
HIV R Lol 2o V617 + 1 [ IV ug |2+ 1V 28 (e 1

since,
0¢* kA k Ou*
Z(axz 8xl Z/asz¢ Ow; /¢ 8% oz; =0
opF  ouF opFt  ouk

Z(Vaxl A = Z(Pvaszaxi)zo'

Ty

Now, we integrate (3.23) with respect to t and using the above’s estimates, we obtain
the desired result. Analogously, we prove the result for w.
The following remark will be necessary for the following estimates.

Remark. Let f € L'(a,b) be a positive function. Then there is a sequence &,, — a
such that €, f(g,) = 0 as n — oc. u
Now we shall study higher order estimates for the approximations,

Lemma 3.7 Under the assumed hypotheses, there hold
t
i) /0 o(s)(lug(s)|1” + wi(s)[*)ds + o) (| Vug @) + [[Vwi (1)) < Fro(?),
i) o) ([ (@)7 + [ )5e) < Ful),

iii) o ()([Vu' ()1 + IV (s)lie) < Fra(t),

where o(t) = min{1, ¢}. The functions on the right hand sides depend on their argu-
ment ¢, and in addition on 7" < T}, « > 0, > 0,1 and the norms |Jug|| g2, ||wol|zm2-
On the interval in question these functions are continuous in the variable ¢.

Sketch of Proof. Differentiating (2.3)i with respect to ¢, and multiplying by uf,
and integrating in €2, we get

1d
(3.24) erllugl® + 5 Z IVl < e + el Vg |l® + eal Vet
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where ¢; are constants depend on the sup in ¢ for the functions done in the above
Lemmas, the regularity on [, the initial data and independ of k.
Multiplying (3.24) by o(t) and integrating in (g, ), we get

t 1 rt d
o [ o(@)lluly(s)|ds + 5 [ o(9) 2| Vuf(s)]*ds
t t t
< [ ols)ds+ e [ o(s)[Vuf(s)|2ds + e [ o(s)[[Vuwk(s)[2ds
t t
<t o [ IVul()|Pds + i [ [[Vuf(s))ds.
0 0

A continuation, we observe that

o [0 LIVt = o)V - o Tut O
(3.25) —I-/ $)|IVuy(s)||’ds  ae. in ¢

Bearing in mind (3.9) and the above Remark, we have passing to the limit & — 07,
(i); (ii) follows of (i), by using the inequality (3.25 ). (iii) follows imediately of (ii).
The arguments for w are analogous. This completes the proof. u

Analogously, we can prove.

Lemma 3.8 Under the hypotheses done , we have

[ IPAE I + 2wk (s) s < Fi).

4. Existence of Solutions

By the estimates given in tke Lemma 3.2, we can choose a subsequence of {u”*}
still denote by {u*} such that u* — u weak - x in L*>°(0,T; H?*(2)) and uf — 0 weak
- % in L®(0,T; L*(2)). By standar arguments 6 = u,. Analogously, we can proved
for angular velocity. Truly, we can strenghten the convergence of u* and w* using
the Aubin-Lions Lemma , we get u* — u and w* — w strongly in L?(0,T; H*(Q2))
for every p finite.

Also, we have by estimates given in the Lemma 3.3, p* — p weak - % in
L>®(0,T;CY)) and pf — p; weak - x in L®(0,T; LP(Q)) for every p € (1,00].

1 1
Thus, p* — p in D'(0,T; L9(€2)) whence — + = = 1. Likewise, we observe that
p g
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pF — x weak - x in L®(0,T; L>°(Q)) thanks to the estimate (3.15 ). Thus pf — x
weak - x in L>(0,T; LP(Q2)) with 1 < p < oo; immediately xy = pF. Therefore, we can
to streng then the convergence to the density by using the Aubin-Lions Lemma, we
get pF — pin LPo(0, T; W™H(2)) whence 0 <7 <1, 1 <py<oo, 1 <[ < oo. It fol-
lows by using the Sobolev embedding, for [ large enough, we have r—n/l >0 (r =2
or 3) and for so much the convergence, p¥ — p in LP°(0,T;C%(Q)) (0 < v < 1).

A continuation we show that

(4.1) [kt w@oddt — [ o, vim)o()dr,
(42) [tk =@ — [ o, @)

whence k — oo, for every v(z) € C3(Q), ¢(t) € D(0,T); z(x) € C3(Q), ((t) €
D (0,T), respectively.

We have
[kt @otipad < 1 [ (0~ o)k, v()s(e)a
[0 =), o)),
We observe that
[ 4t = ot oot < sup oo [ 1ok = ol 1ok

consequently,
T
|/ (0" — p)uf, v(2)d(t))dt| — 0 whence k — oco.
0
Therefore,
[ ot =), o))t =1 [k~ i po()(e)a
and bearing in mind that uf — u, weakly, we have
T
/ (p(ulf — uy), v(@)pE))dt — 0 as k — oo.
0
Thus, we proved (4.1).( 4.2) is proved similary.
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Now we show that
(43) [kt w@oO)dt — [ Gpu- Tu, v@old)d
(4.4) [kt Tk, @)cdn — [ o T, @)
whence k — oo, for every v(z) € C3(Q), ¢(t) € D(0,T), =(x) € C3(Q),C(t) e

D(0,T), respectively.
We show (4.4), (4.3) is make similary. Then we have

T
| ot Tk, @)t
0
T T
= [ 0F = oy VuE, 2 @)C@)dt+ [ (ot =) - Yk, 2 (@) (1))t
0 0
T
+ [ ou- Vwh —w), 2(@)c(0)d.
0
A continuation we observe that the firsts integral convergence to zero, enough to
apply of Schwarz inequality with respect to space variavel and observe that p¥ — p
in L*(Q2 x (0,7)) and that
T T
/ / k- Vak|ds dt < / ]2 | Va0 2t < e,
0o Jo 0
thanks to the Lemmas 3.1 and 3.2. In the second integral, we have
T T
/ / p(uf — ) - Vw2 (z)((t)dvdt = / /(uk —u) - VwFpz(z)¢(t)ddt
0o Jo 0o Jo
T
<suplpz(@)o(®)] [ [ |uf = ul [Vutldadt
0 Ja
T 1/2 1/2
< C’/ {/ |uk—u|2dx} {/ |Vwk|2dx} dt
o Ua Q
T
<C [ - ulfat
0

we observe that its integral convergence to zero, thanks to (3.2).
The third integral is treated analogously.
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Passage to the Limit in the Approximated Equation
Thus,

T
/0 (p"ul + p*u* - Vur — pF f — 2, Totw® — (u+ p) AuF, V)@ (t)dt =0

for every ¢ € L*(0,T) and passing to the limit for £ — oo, by standard way we
obtain

T
/0 (puy + pu - Vu — pf —2p, rotw — (p + py)Au, v)$(t)dt =0

for every ¢ € L*(0,7). Now with help to the Du Bois-Reymond’s Theorem we
obtain
{puy + pu - Vu — pf — 2u, rotw — (u + py)Au, v) =0

a.e. in Q, for every v € L?(€2). This
P(puy + pu.Nu— pf —2p, vot w — (pn+ pr)Au) =0

a.e. in 2.

The passing to the limit in the equation for w* is similary. For the density, we
observe that

uF — u strong in L?(Q2 x (0,T)),

pF — py weak in L?(Q x (0,T)) and

Vot — Vp weak in L2(Q x (0,7T)).

Thus we have passing to the limit for & — o0, in the continuity equation

approximed:
pi+u-Vp=0 inthe L*(Q x (0,T)) sense.

Next, we prove the continuous assumption of the initial data, we have
Proposition 4.1 Under the hypotheses done, we have
' li t) — 0)||=0
(i) Jim Jlu(z,t) — u(z, 0 =0,
/1 li t) — 0)||=0
(i) Jim (e, ) — w(z,0)] =0,
(i7)  lim ||Vu(z,t) — Vu(z,0)|| =0,
t—0t

(iv)  lim ||Vu(z,t) — Vu(z,0)|| =0,
t—0t
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i.e., the solution u,w assumes the initial data continuously in the H'({2)-norm.

Proof. We prove only (i) and (iii), (ii) and (iv) are analogously proved. We chosen
approximation u”, to satisfy the conditions u*(0) — wu(0), in the L?*(Q) sense
(strong). We have

¢
ub (2, t) — u(x,0) = / ul(x, s)ds
0
for every £ =1,2,.... Thus,

t
lu*(x,t) — u*(z,0)|| < / lu (s)[lds < Ct
0
in virtude of Lemma 3.2. Now, we have passing to the limit for & — oo
Ju(x, t) — u(z,0)[| < Ct

Finally, if t — 07, we obtain (i).
Considerer now (iii). One easily concludes that

li t)) < .
Jim sup [[Vu(@)]] < [[Vuo|

Thus, u(t) — ug strongly in V' if u(t) — uo weakly in V; and to established the
latter we need only show

/V ) — o) Vlde — 0 as t— 07,
for each basis function ¢'. This requires several observations. First, notice that
(15) | [ V) - o 0)Velde] =] [ (vt Vs
1 ft
~ _/ (u, PAGYs| < 3 [ ubl? ds+—/ IPAG!|%ds < Ct
0 2 Jo 2 Jo
thanks to the lemmas. Consequently,
(4.6) / V(u (0)Ve'de —0 as t—0".
Next, observe that for any fixed ¢ € (0, 7)),

/ V(u F)WVelde —s 0 as k — oo,
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because if we set x* = u — u* and let h(s) be a smooth function, wich vanishes for
s < t/2 and equals one for s > ¢, then

t
(4.7) /kavgoldx = /%/h(s)VXkV<pldxds
Q 0 Q
t
- / / (R VX"Vl — hxEPAG! Ydads —s 0
0 Jo

as k —» oo. Here we are appealing to the weak convergence Vx* y¥ — 0 in
L*(0,T; L*(Q)) . Finally, we note

/ V(uF(0) — up)Vlde =0 for k> 1,
Q

is just another way of starting the condition used to determine the initial value

c1x(0). Cleary (4.5), (4.6) and (4.7) together imply (iii). This complete the proof.
L

Proposition 4.2 Under the hypotheses done, we have
(i) lim||PAu(z,t) — PAu(z,0)|| =0,
t—07t
i.e., the initial velocity is assumed strongly in H?(().
i) i t) — = 0.
() Jim (e, 1) — e, 0] = 0
Proof. To prove (i), it is sufficient to show
lim sup [ PAu( ]| < | PAug),
t—0+t
as we already know u(.,t) — uo in H*(Q). Multiplying (2.3)i by PAuf and inte-
grating in {2, we get
IPAGF < [PAwll* + 2(p + o) H{(pP"u Vb — p" f — 2p, Tot w, PAu")
+(poubNul — pofo — 2, rot wh, PAuk)} + Nt
uniformly in k. From this, we conclude
|PAu(®)|> < |IPAul]* + 2{(puVu — pf — 2p,rot w, PAu) — (potoVug
—pofo — 2p,rot wy, PAug)} + Nt.

Since puVu — pougVug in L2, pf — pofo in L%, rotw — rot wy in L? and PAu —
PAuy weakly in L? as t — 0T, we obtain the desired result. Cleary, now, (ii) follows
from (i). This complete the proof of the Proposition. u
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Analogously, for the angular velocity, we have the
Proposition 4.3 Under the hypotheses done, we have
(i) lim||Aw(z,t) — Aw(z,0)|| =0,

t—0t+
i.e., the initial angular velocity is assumed strongly in H?(€2).

o ) P
(i) lim [z, t) — wi(z, 0)]| = 0,

Remark. The argument used in the propositions truly can be make for allt =¢5 > 0
instead of t = 0. This we will give the continuity to the right in the spaces adequate.
The same type of analysis we give the ontinuity to the left for t = ¢y > 0. For the
same reason it is obtain the continuity indicate in the enunciate of Theorem 2.1.

5. Uniqueness

We consider now the question of uniqueness the solution. Let

Y1 ={v/veL*0,T;H*Q)NV), v, € L*(0,11;V)},
Yo={u/u satisfy the conclusions of Theorem 2.1},

Hy = {¢ /¢ € L*(0,Ty; H*(Q) N Hy(Q)), v, € L*(0,Ty; H(Q)}
Ho ={w /w safisfy the conditions of Theorem 2.1}.

With this notations we can enunciate the

Theorem 5.1 Assumed that (o, v, ) is any one solution of the problem (1.1) - (1.3)
in C*(Q x [0,T]) x 3y xH1. Then, we have

p=0, U= and w =1

in [0, T3], where T = min{7’, T} }, where 7" is the time give in Theorem 1 and (p, u, w)
is the solution of the problem (1.1) - (1.3) obtained in C*(2 x [0,T]) x Y9 X Hs.

Proof. Let r =p—0, n =u — v and £ = w — 1. Then these variables satisfy the
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following equations

(7 4+u- V1T =-nVo,
©(0) =0,
P(pm) + (i + i) An(t) = P(x ) + 241, P(rot €) — P(wvy) — P(ru - V)
(5.1) —P(on-Vu)— P(ov-Vn),
' 77(%0) =0,
pft - (Ca + Cd)Af - (CO +Cq — Ca)v lef + 4#’7‘6
=mg+2u, rotn — Yy — 7w Vw —on-w—ov - Vn,

| &(z,0)=0.
Multiplying (5.1)iii by 7 and integrating over €2 we obtain
1d

Sl et ) [Vnl* = (fom) + (v, m) + 2420 (vt &, m) = (wu - Y, )

1
—(on - Vu,n) — (ov-Vn,n) + §(pm, n).

Now, estimating as it is usual in the above identity, we obtain the following integral
inequality

OO + (ot ) [ 190(5) s
< C (56 i + 19 + LAu(s)|lir(s) Pds + € [ (o)l Pds

+C /Ot(IIAU(S)H2 + 1 Aa ()1 + lloe(s) o) lIn(s) [ *ds.

(0 will be chosen suitably).
Multiplying (5.1)i by 7 and integrating over €, after of integrate over [0, T"] we
obtain

IOl < C/Ot||77(8)||||V0(8)||Loo||7f(8)||d8

C ([ ) Pds + [ in(s))ds).

Multiplying (5.1)v by & and integrating over €2 one has

(5.2)

IN

d
%EHPWHP + (co + ca) [VEII* + (co + ca — ca)[|div &|J* + 4p,[I<]?
= (ﬂ-g: 5) + 2[LT(I'Ot 7776) - (tha 5) - (7TU ) Vw)é-)
(53 (o1 V&) ~ (00 VE ) ~ 5 (0, 6).
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Estimating as it is usual in the above identity, we obtain the following integral
inequality

0 OO + o+ ca) [ IVEG) s+ o+ ca— ) [ v (o) s
YN EEIRE
< C [ g + IT6 I + 4u(s) | Aw(s) ) ds
+C [ Is) P+ o) | S (s) ) ds
6.4 4 [ Il + o) A0()]?) d.

Adding (5.2), (5.3) and (5.4), one has

€I + () + I () < /01t h(s) ([l (s)I* + ()1 + [In(s)[I*)ds

where h = C(L+If5n + llgllin + [V0ll* + IVl + [ Aull® + || Aull*]| Aw|?
HAull* + [[Av]]* + [lpelloo + 1ol Zoe | Aw]* + [lo|[Z< [| Av]*).

We observe that h(s) > 0 and h(-) is a integrable function, consequently applying
the Gronwall’s Lemma, we get

IEON* + In@I* + l=@)]* = o,

thus we obtain 0 = p, u = v and w = 1. u
6. Results the Pressure

We can also obtain now informations on the pressure.

Proposition 6.1 Under the hypothesis to the Theorem 2.1, there is p €
C(e, T; HY(Q)/IR), for any € > 0 such that together to the solution (u,w, p) given
the Theorem 2.1 satisfy

puy + pu - Vu — (p+ pp)Au+ Vp = pf + 2p, rot w,
div u =0,
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pwy + pu - Vw — (co + cq) Aw + (co + ¢4 — ¢)Vdivw + 4dp,w
= pg + 2, rot u,

pr+u-Vp=0,

ulon = 0, wlsq =0, u(0) = uy, w(0) = wy, p(0) = py.

Proof. We have
—(p+ p)Au+Vp =

where j = p(f —uy—u-Vu)+2u, rot w. We observe that the Theorem 2.1 implies that
j € L>(0,T;L*(Q))NL*(0,T; H'(Q)), applying the estimates for the Stokes problem
(Amrouche and Girault [1]), we have p € L*>(0,7; H'(Q)/R) N L*(0,T; H*()/R).
Therefore, we have

—(p+ pr) Aug + Vpy = jy,

where j; = p(f — up — u - Vu) + 2p,rotwy + p(fy — wye — uy - Vu — u - Vuy) €
L>®(e,T; L*(Q2)). Thus, newly by the estimates for the Stokes problem, we get
pe € L®(e, T; HY(Q)/IR), for any £ > 0, consequently, we have

peC(e, T'"H' (Q)/IR), Ve > 0.

Remark. In order to obtain informations in ¢ = ( are necessary certain conditions
of compatibility over the datum. This is done of the same manner as in the case of
the Navier-Stokes equations and for this is very instructive the discussion make in
the paper of Heywood and Rannacher [8].

7. Remark on the Global Existence

We present three Theorems on global existence in time of strong solutions for
problem (1.1) - (1.3). By using the thechnicality of the above section together with
the arguments of the work [3], we can proved easily in the case n = 3

Theorem 7.1 (n = 3). Let the initial values satisfy ug € V N (H*(Q)?), wy €
(H Q)N (H?(2)?), po € CHQ) and the external fields f, g € L*°([0, 00); (H*(Q))?)
with fi, g, € L®([0,00); (L*())?). If |luollmr, |wollmr and || f]|Lee(0,00):22(02)) and
|91l Lo (j0,00);22(52)) are sufficiently small, then the solution (p,u,w) of problem (1.1)
and (1.2) exists globally in time and satisfies

u € O([0,00); VN H?*(R)), wy € C([0,00); Hy () N H*(Q))
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p € CY Q2 x [0,T)) for any T > 0. Moreover, for any v > 0 there exists some finite
positive constants M and C such that

sup || Vu(t)|| = M, sup [|Vw(t)|| = M
>0 >0

sup [Ju(t)[] < C, sup [[w(t)|| < C,
>0 >0

sup ||Au(t)|| < C, sup ||Aw(t)|| < M,
>0 >0

t
sup 6_”/0 e (IVu()[1* + [Vwe(s)[*)ds < C,

t>0

t
sup e 7t/ e (lu(s)iy2s + llw(s)liy2s)ds < C,
t>0 0

t
sup 6‘”/0 " (IVu(s)llé) + IVw(s)E@)ds < C.

>0

Also the same kind of estimates hold uniformly in k£ for the semi-Galerkin approxi-
mations. u
In the case two-dimensional, we have

Theorem 7.2 (n = 2). Suppose that the initial values satisfy uwy € V N
(H%(Q))%,we € (Hg(Q)2 N (H?(2))%,po € C'(Q) and the external fields f,g €
L>([0,00); (HY(2))?), fi,9: € L*®([0,00); (L*(22))?) then the solution (p,u,w) of
problem (1.1) and (1.2) exists globally in time and satisfies u,w € C([0,00);V N
(H2(2))%), p € CHQ x [0,T]) for any T' > 0. Moreover, the estimates given in
Theorem 7.1 are true for any v > 0.

Theorem 7.3 Suppose that n = 2 or 3, that
uo € VN (H*(Q))", wo € (Hy()" N (H*(Q)",
po € C*(Q) and that for some constant 7 > 0,
"' (f +9) € L=([0,00); (H'()"), ™ (fi +g0) € L=([0, 00); (L*(2))").
Under these conditions if n = 2, or with the additional condition that
luollry, lwollar@ys [1€7 Fll oo o.00)L2@)m)

and [|€7 g|| oo ((0,00);(L2())) are small enough if n = 3, then there is a global solution
(p, u,w) of problem (1.1) - (1.2). Moreover, there is a positive constant v* < 7 such
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that for any 0 < 6 < v* there hold the following estimates

sup 67*t(||vu(7f)||2 + [Vw(®)[]?) < 400

sup " ([|us ()| + [lwe ()| + [|4a(@)|* + [|Aw(®)]*) < +o0

&m/ (IVu(s) 12 + |V we(s)|[)ds < +oc

Sw/ (18 By + lJ1(5)|[Zyas)ds < +00.

sup [ e (IVu(5) ) + V(5 o s < 400
sup([ 760 1 + lou(s) 1) < oo

sup o (8)([[Vuu ()| + [V (4)|I*) < +o0

sw/ )la() 12 + lfwn(3)]12)ds < +o00

am/ (| Aug(s)|I” + [ Awy(s)][2)ds < +o0c

In the last three estimates o(t) = min{l,¢}e’ the same kind of estimates hold
uniformly in k£ € IN for the semi-Galerkin approximations.
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