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Abstra
t. We 
onsider an initial boundary value problem for a system of equa-

tions des
ribing nonstationary 
ows of nonhomogeneous in
ompressible asymmetri


(polar) 
uids. Under 
onditions similar to the ones for the usual Navier-Stokes

equations, we prove the existen
e and uniqueness of strong solutions by the use

of the spe
tral semi-Galerkin method. Several estimates for the solution and their

approximations are given. These estimates 
an be used for the derivation of error

bounds for the Galerkin approximations.

1. Introdu
tion

In this paper we will study the equations for the motion of a nonhomoge-

neous vis
ous in
ompressible asymmetri
 
uid. These equations are 
onsidered in a

bounded domain 
 � IR

3

, with boundary �, in a time interval [0; T

�

℄. To des
ribe

them let u(x; t) 2 IR

3

; w(x; t) 2 IR

3

; �(x; t) 2 IR and p(x; t) 2 IR denote,

respe
tively, the unknown velo
ity, angular velo
ity of rotation of the 
uid parti
les,

the density and the pressure at a point x 2 
 and time t 2 [0; T

�

℄. Then, the

governing equations are
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:

�u

t

+ �(u � r)u� (�+ �

r

)�u+ grad p = 2�

r

rotw + �f;

div u = 0;

�w

t

+ �(u � r)w � (


a

+ 


d

)�w � (


0

+ 


d

� 


a

)rdivw

+4�

r

w = 2�

r

rotu+ �g;

�

t

+ (u � r)� = 0 ;

(1.1)
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together with the following boundary and initial 
onditions

(

u = 0; w = 0; on �� (0; T

�

);

u(x; 0) = u

0

(x); w(x; 0) = w

0

(x); �(x; 0) = �

0

(x) in 
;

(1.2)

where for simpli
ity of exposition we have taken homogeneous boundary 
onditions.

Here f(x; t) and g(x; t) are respe
tively known external sour
es of linear and an-

gular momentum of parti
les. The positive 
onstants �; �

r

; 


0

; 


a

; 


d


hara
terize

isotropi
 properties of the 
uid; � is the usual Newtonian vis
osity; �

r

; 


0

; 


a

; 


d

are new positive vis
osities related to the asymmetry of the stress tensor, and in


onsequen
e related to the appearan
e of the �eld of internal rotation w; these


onstants satisfy 


0

+ 


d

> 


a

. The expressions grad, �, div and rot denote the

gradient, Lapla
ian, divergen
e and rotational operators, respe
tively (we also de-

note the gradient by r and

�u

�t

by u

t

); the i

th


omponent of (u � r)u and (u � r)w

in 
artesian 
oordinates are given by [(u � r)u℄

i

=

n

X

j=1

u

j

�u

i

�x

j

and [(u � r)w℄

i

=

n

X

j=1

u

j

�w

i

�x

j

respe
tively; also (u � r)� =

n

X

j=1

u

j

��

�x

j

.

For the derivation and physi
al dis
ussion of equations (1.1) see Petrosyan [17℄

and Condi�, Dahler [5℄. We observe that this model of 
uid in
ludes as a parti
ular


ase the 
lassi
al Navier-Stokes, whi
h has been mu
h studied (see, for instan
e, the


lassi
al books by Ladyzhenskaya [10℄ and Temam [20℄ and the referen
es there in).

It also in
ludes the redu
ed model of the nonhomogeneous Navier-Stokes equations,

whi
h has been less studied than the previous 
ase (see for instan
e Simon [19℄, Kim

[9℄, Ladyzhenskaya and Solonnikov [11℄ and Salvi [18℄).

Con
erning the generalized model of 
uids 
onsidered in this paper, Lukaszewi
z

[16℄ established the lo
al existen
e of weak solutions for (1.1), (1.2) under 
ertain

assumptions by using linearization and an almost �xed point theorem. In that same

paper Lukaszewi
z remarked about the possibility of proving the existen
e of strong

solutions (under the hyposthesis that the initial density is separated from zero) by

using the te
hniques of [14℄ and [15℄ (linearization and �xed point theorems; [14℄

and [15℄ assume 
onstant density). The properties of their solution are asserted to

be similar to the ones in [14℄ and [15℄.

Sin
e we are more interested in te
hniques more dire
tly related with numeri
al

appli
ations, in this paper we will stablish the existen
e of strong of (1.1) and (1.2) by

using the spe
tral semi-Galerkin method. We assume more regular initial data than

the ones in [16℄, with initial density separated from zero, be
ause we want to prove
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the existen
e of solutions that are stronger that the ones alluded in Lukaszewi
z [16℄.

The reason for this is that the estimates we present in this paper are fundamental

for obtaining error bounds for the Galerkin approximations 
onstru
ted here. This

is presented in another paper, [2℄.

2. Preliminaries and Results

In what follows we will assume 
 to be a bounded domain in IR

n

(n = 2 or 3) of


lass C

1;1

. The fun
tions in this paper are either IR or IR

n

-valued, and sometimes

we will not distinguish them in our notations. This being 
lear from the 
ontext.

We will 
onsider the usual Sobolev spa
es

W

m;q

(D) = f f 2 L

q

(D) = k�

�

fk

L

q

(D)

<1; (j�j � mg

for m 2 IN; 1 � q � 1; D = 
 or D = 
 � (0; T

�

); 0 < T

�

� 1, with the usual

norm. When q = 2, we denote H

m

(D) =W

m;2

(D) and H

m

0

(D) = 
losure of C

1

0

(D)

in H

m

(D). If B is a Bana
h-spa
e, we denote, by L

q

([0; T

�

);B) the Bana
h spa
e of

B-valued fun
tions de�ned in the interval [0; T

�

) that are L

q

-integrables in the sense

of Bo
hner. Let

C

1

0;�

(
) = fv 2 C

1

0

(
) = div v = 0 in 
g;

H = 
losure of C

1

0;�

(
) in (L

2

(
))

n

;

V = 
losure of C

1

0;�

(
) in (H

1

(
))

n

:

Let P be the orthogonal proje
tion from L

2

(
) onto H obtained by the usual

Helmholtz de
omposition. Then the operator A : H ! H gives by A = �P�,

with domain D(A) = V \H

2

(
) is 
alled the Stokes operator. It is well known that

A is a positive de�nite self-adjoint operator and is 
hara
terized by the relation

(Aw; v) = (rw;rv) for all w 2 D(A); v 2 V:

From now on, we denote the inner produ
t in H (i.e., the L

2

-inner produ
t) by ( ,

) with 
orresponding norm k � k. The norm for other L

p

-spa
es will be denoted by

k � k

L

p

.

The following assumptions on the initial data will hold throughouth this paper.

(A.1) The initial value for the density for belongs to C

1

(
) and satis�es

0 < � � �

0

(x) � � < +1 in 
,

(A.2) The initial value u

0

belong to V \ (H

2

(
))

n

,
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(A.3) The initial value w

0

belong to (H

1

0

(
))

n

\ (H

2

(
))

n

.

Now, by using the properties of P , we 
an reformulate the problem (1.1)-(1.2)

as follows: �nd � 2 C

1

(
 � (0; T

�

)) and u 2 C

1

([0; T

�

);H) \ C((0; T

�

);D(A)), and

w 2 C

1

([0; T

�

); (H

1

0

(
))

n

) \ C((0; T

�

);D(B)) su
h that
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>

>

>
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>

>

>
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>
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:

�

t

+ u � r� = 0 for (x; t) 2 
� (0; T

�

);

(�u

t

; v) + (�u � ru; v) + (�+ �

r

)(Au; v)

= 2�

r

(rotw; v) + (�f; v) for 0 < t < T

�

; 8 v 2 V;

(�w

t

;  ) + (�u � rw;  )� (


a

+ 


d

)(�w;  )� (


0

+ 


d

� 


a

)(rdivw;  )

+4�

r

(w;  ) = 2�

r

(rotu;  ) + (�g;  ) for 0 < t < T

�

; 8 2 (H

1

0

(
))

n

;

u(x; 0) = u

0

(x); �(x; 0) = �

0

(x; 0) = �

0

(x); w(x; 0) = w

0

(x):

(2.1)

A
tually, we will prove that the solution is better than what stated above. For this

we need to re
all some properties of the stokes operator A = �P�. If 
 is bounded

and �
 is of 
lass C

1;1

, the mapping A : V \ H

2

(
) ! H is one-to-one and onto

(Amrou
he and Girault [1℄, Cattabriga [4℄ when �
 is of 
lass C

3

). The inverse

A

�1

is 
omplety 
ontinuous as a map A

�1

: H ! H. Also, A is symmetri
 and,

therefore, so is its inverse. Being 
omplety 
ontinuous and symmetri
, the operator

A

�1

posses an orthogonal sequen
e of eigenfun
tions f'

k

(x)g whi
h is 
omplete in

its image V \ (H

2

(
))

n

. As the image 
ontains C

1

0;�

(
), the eigenfun
tions are also


omplete in H. They are also orthogonal and 
omplete in V sin
e

Z

r�r'

k

dx = �

k

Z

�'

k

dx

holds for � 2 V , it �

k

is the k-th eigenvalue (A'

k

= �

k

'

k

). We take f'

k

(x)g

to be sequen
e of eigenfun
tions, orthogonal in H. Therefore, the eigenfun
tions

f'

k

(x)=(�

k

)

1=2

g and f'

k

(x)=�

k

g are 
omplete and orthogonal in V (endowed with

the inner produ
t (ru;rv), for u; v 2 V ) and (H

2

(
))

n

\ V (endowed with the

inner produ
t (Au;Av), for u; v 2 D(A)), respe
tively.

As well, we have that if �
 is one C

k;m

-manifold of IR

n

(n = 2 or 3, m = ), then

the eigenfun
tions '

k

(x) belong to H(
).

In what follows we will also 
onsider either the Lapla
e operator B = �� , or

the strongly uniformly ellipti
 operator

L = �(


a

+ 


d

)�� (


0

+ 


d

� 


a

)rdiv;
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both with Diri
hlet boundary 
onditions. Due to the 
ondition 


0

+ 


d

> 


a

;L is a

positive de�nite operator. To simplify the notation, we will denote respe
tively by

f 

k

(x)g and f


k

g the eigenfun
tions and eigenvalues either of B or L. From the


ontext it will be 
lear in whi
h 
ase we are working with.

Let P

k

the proje
tion operator of L

2

(
) onto the spa
e V

k

spanned by the k-th

eigenfun
tions h'

1

(x); : : : ; '

k

(x)i of A and let R

k

the proje
tion operator of L

2

(
)

onto the spa
e W

k

spanned by the k-th eigenfun
tions h 

1

(x); : : : ;  

k

(x)i of either

B = �� or L a

ording to the 
ontext.

Then the solutions of problem (2.1) will 
an be obtained by using the semi-

Galerkin approximation. That is, we 
onsider the Galerkin approximations

u

k

(x; t) =

k

X




ik

(t)'

i

(x); w

k

(x; t) =

k

X

i=1

d

ik

(t) 

k

(x) for the velo
ity and rotation

of parti
les, respe
tively, and an approximation �

k

(x; t) for the density satisfying

the following equations:
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>

>

>

<

>

>

>

:

P

k

(�

k

u

k

t

+ �

k

u

k

� ru

k

� �

k

f � 2�

r

rotw

k

) + (�+ �

r

)Au

k

= 0;

R

k

(�

k

w

k

t

+ �

k

u

k

� rw

k

� �

k

g � 2�

r

rotu

k

+ 4�

r

w

k

) + Jw

k

= 0;

�

t

+ u

k

� r�

k

= 0;

u

k

(0) = P

k

u

0

; w

k

(0) = R

k

w

0

; �

k

(0) = �

0

;

(2.2)

where Jw

k

= (


a

+ 


d

)Bw

k

� R

k

(


0

+ 


d

� 


a

)rdivw

k

if we are working with the

Lapla
e operator (re
all that BR

k

= R

k

B in this 
ase), and Jw

k

= Lw

k

if, we are

working with the L operator (re
all that LR

k

= R

k

L in this 
ase).

Equations (2.2) forms a 
oupled system of ordinary di�erential equations with

a transport equation. By using the 
hara
teristi
s method for this last equation, it

is possible to prove in a standard way that there is an unique solution (u

k

; w

k

; �

k

)

for (2.2) in an interval [0; T

k

), for all k 2 IN . The a priori estimates that will prove

will allow-us to take T > 0 su
h that T � T

k

for all k 2 IN . Thus, the approximate

solutions (u

k

; w

k

; p

k

) will be 
onsidered to be de�ned in a single interval [0; T ) for

all k 2 IN . Equations (2.2) are equivalente to the following

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(�

k

u

k

t

+ �

k

u

k

� ru

k

� �

k

f � 2�

r

rot w

k

; v) + (�+ �

r

)(Au

k

; v) = 0;

(�

k

w

k

t

+ �

k

u

k

� rw

k

� �

k

g � 2�

r

rot u

k

;  ) + (Jw

k

;  ) = 0;

8 v 2 V

k

; 8 2 W

k

;

�

t

+ u

k

� r�

k

= 0;

u

k

(0) = P

k

u

0

; w

k

(0) = R

k

w

0

; �

k

(0) = �

0

:

(2.3)

The result in this paper are the following:
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Theorem 2.1 Let the initial values satisfy u

0

2 V \ (H

2

(
))

n

; w

0

2 (H

1

0

(
))

n

\

(H

2

(
))

n

; �

0

2 C

1

(
) and the external �elds f; g 2 L

2

(0; T

�

; (H

1

(
))

n

) with

f

t

; g

t

2 L

2

(0; T

�

; (L

2

(
))

n

). Then, on a (possibly small) time interval [0; T ℄; T � T

�

.

Problem (1.1) and (1.2) has a unique strong solution (u; w; �). That is, there are

fun
tions u; w; � su
h that

P (�u

t

+ �u � ru� 2�

r

rotw � �f � (�+ �

r

)�u) = 0 holds a.e. in 
� [0; T ℄;

�w

t

+ �u � rw � 2�

r

rot u� �g � (


a

+ 


d

)�w � (


0

+ 


d

� 


a

)r divw + 4�

r

w = 0

holds a.e. in 
� [0; T ℄;

�

t

+ u � r� = 0 holds in the L

2

(
� [0; T ℄) sense. Moreover,

� 2 C

1

(
� [0; T ℄);

u 2 C([0; T ℄; (H

2

(
))

n

\ V ) \ L

2

([0; T ℄; (L

1

(
))

n

)

\L

p

([0; T ℄; (H

3�"

(
))

n

) \ L

2

((0; T ℄; (H

3

(
))

n

) \ L

1

Lo


([0; T ℄; (H

3

(
))

n

);

u

t

2 C([0; T ℄;H) \ L

2

(0; T ; (H

2�"

(
))

n

) \ L

p

([0; T ℄; (H

1�"

(
))

n

)

\L

2

Lo


([0; T ℄; (H

2

(
))

n

) \ L

1

Lo


((0; T ℄; (H

1

(
))

n

);

u

tt

2 L

2

Lo


(0; T ;H);

w 2 C([0; T ℄; (H

2

(
))

n

\ (H

1

0

(
))

n

) \ L

2

(0; T ; (H

3

(
))

n

) \ L

2

([0; T ℄; (L

1

(
))

n

)

\L

p

(0; T ; (H

3�"

(
))

n

) \ L

1

Lo


((0; T ℄; (H

3

(
))

n

);

w

t

2 C([0; T ℄;L

2

(
) \ (H

1

0

(
))

n

) \ L

2

(0; T ; (H

2�"

(
))

n

)

\L

p

([0; T ℄; (H

1�"

(
))

n

) \ L

2

Lo


(0; T ; (H

2

(
))

n

) \ L

1

Lo


((0; T ℄; (H

1

(
))

n

);

w

tt

2 L

2

Lo


(0; T ; (L

2

(
))

n

);

for all " > 0 and 1 < p < +1.

Remark. A
tually it is possibly to prove that the strong solution of Theorem 2.1

is global either if n = 2 or if we take small enough initial data when n = 3.

6



The above result depends on 
ertain estimates for the approximations (u

k

; w

k

;

�

k

); sin
e these estimates will be ne
essary in a 
ompanion paper where we obtain

error bounds, for future referen
e we summarize them in the following

Proposition 2.2 Let (u

k

; w

k

; �

k

) be the solution of (2.3). Then, she satis�es

� � �

k

(x; t) � �; (0 < � = inf �

0

; � = sup �

0

)

kru

k

(t)k

2

+ krw

k

(t)k

2

� F

1

(t)

Z

t

0

fk�w

k

(s)k

2

+ kP�u

k

(s)k

2

gds � F

2

(t);

Z

t

0

fkw

k

t

(s)k

2

+ ku

k

t

(s)k

2

gds � F

3

(t);

kw

k

t

(t)k

2

+ ku

k

t

(t)k

2

+

Z

t

0

fkrw

k

t

(s)k

2

+ kru

k

t

(s)k

2

gds � F

4

(t);

kP�u

k

(t)k

2

+ k�w

k

(t)k

2

� F

5

(t);

kr�

k

(t)k

2

L

1

� F

6

(t);

k�

k

t

(t)k

2

L

1

� F

7

(t);

Z

t

0

fkru

k

(s)k

2

L

1

+ krw

k

(s)k

2

L

1

gds � F

8

(t);

Z

t

0

fku

k

(s)k

2

H

3

+ kw

k

(s)k

2

H

3

gds � F

9

(t);

Z

t

0

�(s)fku

k

tt

(s)k

2

+ kw

k

tt

(s)k

2

gds+ �(t)fkru

k

t

(t)k

2

+ krw

k

t

(t)kg � F

10

(t);

�(t)fku

k

(t)k

2

H

3

+ kw

k

(t)k

2

H

3

g � F

11

(t);

�(t)fkru

k

(t)k

2

L

1

+ krw

k

(t)k

2

L

1

g � F

12

(t);

Z

t

0

�(s)fkP�u

k

t

(s)k

2

+ k�w

k

t

(s)k

2

gds � F

13

(t);

Here, �(t) = minf1; tg. Moreover, the same estimates hold for (u; w; �) give in The-

orem 2.1. The above results are true without any restri
tion if we the eigengun
tions

of L to build the approximations for w

k

. If we use the eigenfun
tions of �� then

the above estimates are true if � = (


0

+ 


d

� 


a

)=(


a

+ 


d

) is suÆ
iently small.

Remark. The above estimates imply that the approximations (u

k

; w

k

; �

k

) 
on-

7



verges to the solution (u; w; �) in the senses indi
ated below

(i) u

k

! u; w

k

! w strongly in L

p

(0; T ;H

3�"

(
)) and weakly -?

in L

1

Lo


(0; T ;H

3

(
))

(ii) u

k

t

! u

t

; w

k

t

! w

t

weakly in L

1

Lo


(0; T ;H

1

(
)) and weakly in

L

2

(0; T ;H

2�"

(
)) in L

p

(0; T ;H

1�"

(
))

and in L

2

Lo


(0; T ;H

2

(
))

(iii) u

k

tt

! u

tt

; w

k

tt

! w

tt

weakly in L

2

Lo


(0; T ;L

2

(
))

(iv) �

k

! � strongly in L

p

(0; T ;C

0;


(
)) 0 � 
 < 1

(v) r�

k

! r� weakly - ? in L

1

(
� [0; T ℄)

(vi) �

k

t

! �

t

weakly - ? in L

1

(
� [0; T ℄):

The above is true for all " > 0 and 1 < p < +1

Finally, we would like to say that as it is usual we will denote by C a generi



onstant depending at most on 
 and the �xed parameters in the problem

(�; �

r

; 


a

; 


d

; 


0

and the initial 
onditions, and also f; g and T ). This will ap-

pear in most of the estimates to the be obtained. When for any reason we want to

emphasize the dependen
e of a 
ertain 
onstant on a given parameter we will denote

this 
onstant with a subs
ript.

3. A Priori Estimates

We start by proving the estimates stated in Proposition 2.2. This will be done

in several steps by 
ombining variants of arguments used by Heywood [6℄, [7℄, Kim

[9℄ and Boldrini and Rojas-Medar [3℄. To �x the ideas, �rst we prove the estimates

in the 
ase where one uses the eigenfun
tions of �� to approximate w; at the end

of this se
tion we explain the ne
essary 
hanges to obtain the estimates when one

uses eigenfun
tions of L.

Lemma 3.1 There is 0 < T � T

�

su
h that the approximations �

k

; u

k

; w

k

satisfy

for all t 2 [0; T ).

� � �

k

(x; t) � �;(3.1)

8



ku

k

(t)k

2

+ kw

k

(t)k

2

� L(t);(3.2)

Z

t

0

(kru

k

(s)k

2

+ krw

k

(s)k

2

)ds � H(t);(3.3)

kru

k

(t)k

2

+ krw

k

(t)k

2

� F

1

(t);(3.4)

Z

t

0

(kAu

k

(s)k

2

+ k�w

k

(s)k

2

)ds � F

2

(t);(3.5)

Z

t

0

(ku

k

t

(s)k

2

+ kw

k

t

(s)k

2

)ds � F

3

(t):(3.6)

The fun
tions on the right hand side of the above inequalities depend on �; �;


and the norms kru

0

k; krw

0

k. (3.5) and (3.6) depend also on ku

0

k

H

2

and kw

0

k

H

2

.

On the interval in question these fun
tions 
an be assumed to be in
reasing and


ontinuously di�erentiable with respe
t to t.

Proof. From the method of 
hara
teristi
s applied to the 
ontinuity equation (2.2)

(iii), it follows immediately that whenever �

k

exists it satis�es (3.1).

Now, by using v = u

k

and  = w

k

in (2.3) and working as in Lions [12℄, [13℄,

one obtains

1

2

d

dt

k(�

k

)

1

2

u

k

k

2

+ (�+ �

r

)kru

k

k

2

= (�

k

f; u

k

) + 2�

r

(rotw

k

; u

k

);

1

2

d

dt

k(�

k

)

1

2

w

k

k

2

+ (


a

+ 


d

)krw

k

k

2

+ (


0

+ 


d

� 


a

)kdivw

k

k

2

+ 4�

r

kw

k

k

2

= 2�

r

(rotu

k

; w

k

) + (�

k

g; w

k

):

By adding these two equations and working the terms in the right-hand side in a

standard way, together with the use of (3.1), after an integration with respe
t to

time from 0 to t, we are left with

�ku

k

(t)k

2

+ �kw

k

(t)k

2

+ (�+ �

r

)

Z

t

0

kru

k

(s)k

2

ds+ (


a

+ 


d

)

Z

t

0

krw

k

(s)k

2

ds

+(


0

+ 


d

� 


a

)

Z

t

0

kdivw

k

(s)k

2

ds+ 4�

r

Z

t

0

kw

k

(s)k

2

� C

1

+ C

2

Z

t

0

(kf(s)k

2

+ kg(s)k

2

)ds+ C

3

Z

t

0

(ku

k

(s)k

2

+ kw

k

(s)k

2

)ds

where C

1

; C

2

and C

3

are independent of k. (C

1

depends on the initial 
onditions).

Thus, by using Gronwall's Lemma, we obtain (3.2) and (3.3) for suitable L(t)

and H(t).

9



Now, we take v = u

k

t

and subsequently v = �"Au

k

, with a suitable small " > 0

in (2.3) (i). By adding the resulting equations and working as in Kim [9℄, one obtains

�ku

k

t

k

2

+(�+�

r

)

d

dt

kru

k

k

2

+C

4

kAu

k

k

2

� C

5

[kfk

2

+krw

k

k

2

+ku

k

�ru

k

k

2

℄;(3.7)

with positive 
onstants C

4

and C

5

independent of k (for instan
e, if we take " =

�(�+ �

r

)=9�

2

; C

4

= �(�+ �

r

)

2

=81�

2

).

Now, we have to �nd a similar di�erential inequality for w

k

. For this, we take

 = w

k

t

in (2.3) (ii) to obtain

�

2

kw

k

t

k

2

+

C

a

+ C

d

2

d

dt

krw

k

k

2

+




0

+ 


d

� 


a

2

d

dt

kdivw

k

k

2

+ 2�

r

d

dt

kw

k

k

2

� C

5

[kgk

2

+ kru

k

k

2

+ ku

k

� rw

k

k

2

℄;

with C

5

> 0 independent of k.

Now, we take  = ��w

k

in (2.3)(ii). This, with the remark that

Lw = �(


a

+ 


d

)�w � (


0

+ 


d

� 


a

)rdivw

is a strongly ellipti
 operator, and thus

(Lw

k

;��w

k

) � C

�

k�w

k

k

2

� C

��

krw

k

k

2

;

where C

�

> 0 and C

��

� 0 depend on 


a

+ 


d

; 


0

+ 


d

� 


a

and �, will furnish




a

+ 


d

2

k�w

k

k

2

+ 4�

r

krw

k

k

2

� C

7

[kgk

2

+ kru

k

k

2

+ kw

k

t

k

2

+ ku

k

� rw

k

k

2

℄

with C

7

> 0 independent of k.

Now, we add the above inequalities, but with this last one multiplied by

�

4C

7

.

We obtain

�kw

k

t

k

2

+ 2(


a

+ 


d

)

d

dt

krw

k

k

2

+ 2(


0

+ 


d

� 


a

)

d

dt

kdivw

k

k

2

+ 4�

r

d

dt

kw

k

k

2

+C

8

k�w

k

k

2

+ C

9

krw

k

k

2

� C

10

[kgk

2

+ kru

k

k

2

+ ku

k

� rw

k

k

2

℄;(3.8)

with positive 
onstants C

8

; C

9

and C

10

.

10



Now, we observe that by standard interpolation and Sobolev inequalities,

ku

k

ru

k

k

2

� ku

k

k

2

L

6

kru

k

k

2

L

3

� Ckru

k

k

2

kAu

k

k � C

"

kru

k

k

6

+ "kAu

k

k

2

;

for any " > 0 and suitable C

"

> 0.

Analogously, we have

ku

k

� rw

k

k

2

� C

"

kru

k

k

4

krw

k

k

2

+ "k�w

k

k

2

:

By adding (3.7) and (3.8) and using the above inequalities with suitable small ", we


on
lude that there is a positive 
onstant C su
h that

d

dt

�(t) +  (t) � �(t) + C�

3

(t)

with �(t) = (�+ �

r

)kru

k

(t)k

2

+ (


a

+ 


d

)krw

k

k

2

+ (


0

+ 


d

� 


a

)kdivw

k

k

2

+4�

r

kw

k

k

2

;

 (t) = �ku

k

t

k

2

+

C

4

2

kAu

k

k

2

+

C

8

2

k�w

k

k

2

+ C

9

krw

k

k

2

;

�(t) = C(kfk

2

+ kgk

2

):

By making use of Lemma 3 in Heywood [8℄, p. 656, we 
on
lude that there is

0 < T � T

�

su
h that on the interval [0; T ℄ (3.4) - (3.6) hold with suitable F

i

(t); i =

1; 2; 3:

Lemma 3.2 For all t 2 [0; T ℄, the approximations (u

k

; w

k

) satisfy

ku

k

t

(t)k

2

+ kw

k

t

(t)k

2

+

Z

t

0

(kru

k

t

(s)k

2

+rw

k

t

(s)k

2

)ds � F

4

(t);(3.9)

kAu

k

(t)k

2

+ k�w

k

(t)k

2

� F

5

(t):(3.10)

The fun
tions on the right hand side of the above inequalities depend on �; �;
,

the norms ku

0

k

H

2

; kw

0

k

H

2

and the fun
tions given in the Lemma 3.1. On the in-

terval in question the fun
tions 
an be assumed to be in
reasing and 
ontinuously

di�erentiable with respe
t to t.

Proof. By di�erentiating (2.3)(i) and (ii) with respe
t to t and setting v = u

k

t

;  =

w

k

t

and working analogously as in Boldrini and Rojas-Medar [3℄ (use the fa
t that

�

k

t

= �div(�

k

u

k

)), we obtain

1

2

d

dt

k(�

k

)

1=2

u

k

t

k

2

+

1

9

(�+ �

r

)kru

k

t

k

2

11



� C

10

ku

k

t

k

2

fkAu

k

k

2

+ kru

k

k

4

+ kru

k

k

8

+ 1g+ C

10

kru

k

k

4

kAu

k

k

2

+"krw

k

t

k

2

+ C

10

kf

t

k

2

+ C

10

kfk

2

H

1

fkru

k

k

2

+ 1g;

1

2

d

dt

k(�

k

)

1=2

w

k

t

k

2

+

1

5

(


a

+ 


d

)krw

k

t

k

2

+ (


0

+ 


d

� 


a

)kdivw

k

t

k

2

+ 4�

r

kw

k

t

k

2

� C

11

ku

k

t

k

2

fkAu

k

k

2

+ k�w

k

k

2

+ 1g+ C

11

kw

k

t

k

2

fkAu

k

k

2

+ 1g

+C

11

fkAu

k

k

2

+ k�w

k

k

2

g+ Ækru

k

t

k

2

+ "krw

k

t

k

2

+C

11

kg

t

k

2

+ C

11

kgk

2

H

1

fkru

k

k

2

+ 1g

for any "; Æ > 0 and suitable C

10

("); C

11

("; Æ).

By taking Æ = (� + �

r

)=10 and " = (


a

+ 


d

)=12, by adding and integrating in

time the above two inequalities, we obtain the integral inequality

(


a

+ 


d

)

30

Z

t

0

krw

k

t

(s)k

2

ds+

(�+ �

r

)

90

Z

t

0

kru

k

t

(s)k

2

ds+

1

2

k(�

k

)

1=2

(t)u

k

t

(t)k

2

+

1

2

k(�

k

)

1=2

(t)w

k

t

(t)k

2

+ 4�

r

Z

t

0

kw

k

t

(s)k

2

ds+ (


0

+ 


d

� 


a

)

Z

t

0

kdivw

k

t

(s)k

2

ds

� M(t) + C

12

Z

t

0

(kAu

k

(s)k

2

+ k�w

k

(s)k

2

)ds

+C

12

Z

t

0

ku

k

t

(s)k

2

fkAu

k

(s)k

2

+ k�w

k

(s)k

2

+ 1gds

+C

12

Z

t

0

kw

k

t

(s)k

2

fkAu

k

(s)k

2

+ 1gds

+

1

2

k(�

k

0

)

1=2

u

k

t

(0)k

2

+

1

2

k(�

k

0

)

1=2

w

k

t

(0)k

2

;(3.11)

with a suitable 
onstant C

12

> 0 and

M(t) = C

Z

t

0

(kg

t

(s)k

2

+ kg(s)k

2

H

1

+ kf

t

(s)k

2

+ kf(s)k

2

H

1

)ds

where we have used the estimates in Lemma 3.1

Now, by taking t = 0 and v = u

k

t

(0) in (2.3)i, we obtain

ku

k

t

(0)k

2

�

1

�

fk(�

k

0

)

1=2

u

k

0

�ru

k

0

k+(�+�

r

)kAu

k

0

k+k�

k

0

f(0)k+2�

r

krotw

k

0

kgku

k

t

(0)k;

and 
onsequently,

ku

k

t

(0)k �

1

�

fC�kf

0

k+ 2�

r

Ckrw

0

kg+ fC�kru

0

k+ (�+ �

r

)g

kAu

k

k

�

� C;

12



with C independent of k, be
ause u

k

(0)! u

0

in H

2

(
) as k!1:

We 
an bound kw

k

t

(0)k � C in the same way. Thus, by using this we obtain

(


a

+ 


d

)

15

Z

t

0

krw

k

t

(s)k

2

ds+

(�+ �

r

)

45

Z

t

0

kru

k

t

(s)k

2

ds+ �fku

k

t

(t)k

2

+ kw

k

t

(t)k

2

g

+8�

r

Z

t

0

kw

k

t

(s)k

2

ds+ 2(


0

+ 


d

� 


a

)

Z

t

0

kdivw

k

t

(s)k

2

ds

�M(t) + CF

2

(t) + C

+C

Z

t

0

(ku

k

t

(s)k

2

+ kw

k

t

(s)k

2

)fkP�u

k

(s)k

2

+ k�w

k

(s)k

2

+ 1gds:

Now applying of Gronwall's Lemma, we get (3.9) with

F

4

(t) = 


�1

(M(t) + CF

2

(t) + C) exp(F

2

(t) + Ct);

where 
 = minf

(


a

+ 


d

)

15

;

(�+ �

r

)

45

; � g > 0:

The se
ond estimate follows, from the �rst one by observing that by taking

v = P�u

k

in (2.3)i, we obtain

(�+ �

r

)kP�u

k

k � k�

k

u

k

t

k+ 2�

r

krotw

k

k+ k�

k

fk+ k�

k

u

k

� ru

k

k:

Now, we observe that

k�

k

u

k

� ru

k

k � �ku

k

k

L

4

kru

k

k

L

4

� �kru

k

k kru

k

k

1=4

kP�u

k

k

3=4

� C

"

�kru

k

k

5

+ "kP�u

k

k;

s
hoosing " = (�+ �

r

)=2, we obtain

kP�u

k

k �

2

�+ �

r

[C�kru

k

k

5

+ �ku

k

t

k+ 2�

r

Ckrw

k

k+ �kfk℄

�

2

�+ �

r

[C�F

1

(t)

5=2

+ �F

4

(t)

1=2

+ CF

1

(t)

1=2

+ �kfk℄ � F

5

(t):

We 
an treat k�w

k

k in the same way, and this 
omplete the proof of Lemma 3.2.

Lemma 3.3 The approximations �

k

; u

k

satisfy for all t 2 [0; T ℄,

Z

t

0

ku

k

(s)k

2

W

2;6

ds � G

1

(t);(3.12)

Z

t

0

kru

k

(s)k

2

L

1

ds � G

2

(t);(3.13)

kr�

k

(t)k

L

1

� F

6

(t);(3.14)

k�

k

t

(t)k

L

1

� F

7

(t):(3.15)
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The fun
tions on the righ hand side of the above inequalities depend only on

�; �;
; ku

0

k

H

2

; kw

0

k

H

2

and the fun
tions F

i

; i = 1; 2; 3; 4; 5 of the above Lemmas.

These fun
tions on 
ontinuous on the interval in question.

Proof. We observe that for any � 2 C

1

0;�

(
), we have

�(� + �

r

)(ru

k

;r�) = (P

k

(�

k

u

k

t

+ �

k

u

k

� ru

k

� �

k

f � 2�

r

rotw

k

); �) � (�

k

; �):

From the previous estimates, we have �

k

2 L

2

(0; T ;L

6

(
)) uniformly in k when
e,

by Amrou
he and Girault results for the Stokes operator, we get (3.12). From usual

Sobolev's embedding results, we then have

Z

t

0

kru

k

(s)k

2

L

1

ds � G

2

(t); 8t 2 [0; T ℄:

Hen
e, from the formula of Ladyzhenkaya and Solonnikov [11, Lemma 1.3℄, we


on
lude

kr�

k

(t)k

L

1

� F

6

(t) and k�

k

t

(t)k

L

1

� F

7

(t):

Lemma 3.4 In the 
ase of J = B we have that if � = (


0

+ 


d

� 


a

)=(


a

+ 


d

) is

small enough, the approximations w

k

satisfy for all t 2 [0; T ℄

Z

t

0

kw

k

(s)k

2

W

2;6

ds � G

3

(t);(3.16)

Z

t

0

krw

k

(s)k

2

L

1

ds � G

4

(t):(3.17)

The fun
tions on the righ hand sides of the above inequalities depend only on �; �;


the norm kw

0

k

H

2

and the fun
tions of the above Lemmas. These fun
tions one


ontinuous in the interval in question.

Proof. We have for any  2 C

1

0

(
);

�(


a

+ 


d

)(�w

k

;  ) = (�

k

;  ) + (


0

+ 


d

� 


a

)(rdivw

k

;  );

where �

k

= ��

k

w

k

t

� �

k

u

k

� rw

k

+ �

k

g + 2�

r

rotu

k

� 4�

r

w

k

, 
onsequently

(


a

+ 


d

)k�w

k

k

L

6

� k�

k

k

L

6

+ (


0

+ 


d

� 


a

)krdivw

k

k

L

6

:(3.18)

By other hand side, there exists positive 
onstants k

1

> 0 and k

2

> 0 su
h that

k�w

k

k

2

L

6

� k

1

kw

k

k

2

W

2;6

and krdivw

k

k

2

L

6

� k

2

kw

k

k

2

W

2;6

:
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Consequently in (3.16), we obtain

k

1

(


a

+ 


d

)kw

k

k

2

W

2;6

� k�

k

k

2

L

6

+ k

2

(


0

+ 


d

� 


a

)kw

k

k

2

W

2;6

thus

(k

1

(


a

+ 


d

)� k

2

(


0

+ 


d

� 


a

))kw

k

k

2

W

2;6

� k�

k

k

2

L

6

:

Sin
e � is small enough, we have k

1

(


a

+ 


d

) � k

2

(


0

+ 


d

� 


a

) > 0; also by the

previous estimates �

k

2 L

2

(0; T ;L

6

(
)) is bounded uniformly in k. We 
on
lude

that w

k

2 L

2

(0; T ;W

2;6

(
)) uniformly in k and, by using Sobolev's embedding

rw

k

2 L

2

(0; T ;L

1

(
)) also uniformly in k:

Now, we 
onsider the eigenfun
tions of the operator Lw = �(


a

+ 


d

)�w �

(


0

+ 


d

� 


a

)rdivw as basis for Galerkin approximations of w. In this 
ase, the

approximate equation for w is

(Lw

k

;  ) + (�

k

w

k

t

+ �

k

u

k

� rw

k

+ 4�

r

w

k

� �

k

g � 2�

r

rotu

k

;  ) = 0(3.19)

for all  2 W

k

.

We observe that two �rst estimates obtained in Lemma 3.1 remains valid. For

the se
ond estimate we pro
eed as follows: We take  = Lw

k

in (3.19), we get

kLw

k

k

2

= (�

k

g + 2�

r

rot u

k

� �

k

w

k

t

� �

k

u

k

� rw

k

� 4�

r

w

k

;Lw

k

):

By using the H�older and Young inequalities, we obtain

kLw

k

k

2

� Ck�

k

k

2

L

1

kgk

2

+ Ckru

k

k

2

+ Ck�

k

k

2

L

1

kw

k

t

k

2

+Ck�

k

k

2

L

1

ku

k

� rw

k

k

2

+ Ckw

k

k

2

� Ckgk

2

+ Ckru

k

k

2

+ Ckw

k

t

k

2

+ Cku

k

� rw

k

k

2

+ Ckw

k

k

2

by the estimate (3.1) in the Lemma 3.1.

Taking  = w

k

t

in (3.19), we have

�

2

kw

k

t

k

2

+




a

+ 


d

2

d

dt

krw

k

k

2

+




0

+ 


d

� 


a

2

d

dt

kdivw

k

k

2

+ 2�

r

d

dt

kw

k

k

2

� C(kgk

2

+ kru

k

k

2

+ ku

k

� rw

k

k

2

):

Now, we observe that

ku

k

� rw

k

k

2

� Cku

k

k

2

L

4

krw

k

k

2

L

4

� Cku

k

k

2

L

4

krw

k

k

1=2

kw

k

k

3=2

H

2

� Ckru

k

k

2

krw

k

k

1=2

kLw

k

k

3=2

� C

"

kru

k

k

8

krw

k

k

2

+ "kLw

k

k

2

:
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The rest of analysis is exa
tly equal to the one in Lemma 3.1 to obtain the estimate

(3.5), in this 
ase, we obtain

Z

t

0

fkAu

k

(s)k

2

+ kLw

k

(s)k

2

gds �

e

F

2

(t):

We observe also that the estimate for w

k

t

is done exa
tly as in Lemma 3.1. Therefore,

the Lemm 3.1 remains valid if we 
onsider the L operator instead of the Lapla
ian

operator. The Lemmas 3.2 and 3.3 are proved exa
tly equals. The analogous to the

Lemma 3.4 in this 
ase is the following

Lemma 3.5 In the 
ase that J = L, the approximations w

k

satisfy the following

estimates for any t 2 [0; T ℄

Z

t

0

kw

k

(s)k

2

W

2;6

ds �

e

G

3

(t);(3.20)

Z

t

0

krw

k

(s)k

2

L

1

ds �

e

G

4

(t):(3.21)

Proof. We have, for any  2 C

1

0

(
),

(Lw

k

;  ) = (�

k

;  );

where �

k

= �

k

g + 2�

r

rotu

k

� 4�

r

w

k

� �

k

w

k

t

� �

k

u

k

� rw

k

.

We observe that �

k

2 L

2

(0; T ;L

6

(
)) is bounded uniformly in k. We 
on
lude

that w

k

2 L

2

(0; T ;W

2;6

(
)) uniformly in k and, by using Sobolev's embedding

rw

k

2 L

2

(0; T ;L

1

(
)) also uniformly in k:

Now, by taking F

8

(t) = G

2

(t) +G

4

(t), the estimates in the last Lemmas prove

the ninth estimate in Proposition 2.2.

Lemma 3.6 The approximations (�

k

; u

k

; w

k

) satisfy for all t 2 [0; T ℄

Z

t

0

(ku

k

(s)k

2

H

3

+ kw

k

(s)k

2

H

3

)ds � F

9

(t):(3.22)

Proof. We observe that (2.2)i is equivalent to

�

k

u

k

t

+ �

k

u

k

� ru

k

� �

k

f � 2�

r

rotw

k

+ (�+ �

r

)�u

k

+rp

k

+ �

k

= 0;(3.23)

where �

k

2 C

1

(0; T ;V ); p

k

2 C

1

(0; T ;H

2

(
)) with �

k

(t) 2 V

?

k

; rp

k

2 V

?

for

ea
h t 2 [0; T ℄, where S

?

denote the orthogonal of the subspa
e S in L

2

(
):
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Di�erentiating the above identity with respe
t to x

i

;i=1,...,n and taking the

L

2

-inner produ
t with A

�u

k

�x

i

, after of adding over i, we obtain

ku

k

(s)k

2

H

3

� Cfkw

k

(s)k

2

H

2

+ k�

k

k

2

L

1

kfk

2

H

1

+ kr�

k

k

2

L

1

kfk

2

+k�

k

k

2

L

1

ku

k

k

2

L

1

ku

k

k

2

H

2

+ k�

k

k

2

L

1

ku

k

k

4

H

2

+kr�

k

k

2

L

1

ku

k

k

2

L

1

kru

k

k

2

+ k�

k

k

2

L

1

kru

k

t

k

2

+ kr�

k

k

2

L

1

ku

k

t

k

2

sin
e,

X

(

��

k

�x

i

; A

�u

k

�x

i

) =

X

Z

�


�

k

A

�u

k

�x

i

+

Z




�

k

�

�x

i

A

�u

k

�x

i

= 0;

X

(r

�p

k

�x

i

; A

�u

k

�x

i

) =

X

(Pr

�p

k

�x

i

4

�u

k

�x

i

) = 0:

Now, we integrate (3.23) with respe
t to t and using the above's estimates, we obtain

the desired result. Analogously, we prove the result for w.

The following remark will be ne
essary for the following estimates.

Remark. Let f 2 L

1

(a; b) be a positive fun
tion. Then there is a sequen
e "

n

! a

+

su
h that "

n

f("

n

)! 0 as n!1:

Now we shall study higher order estimates for the approximations,

Lemma 3.7 Under the assumed hypotheses, there hold

i)

Z

t

0

�(s)(ku

k

tt

(s)k

2

+ kw

k

tt

(s)k

2

)ds+ �(t)(kru

k

t

(t)k

2

+ krw

k

t

(t)k

2

) � F

10

(t);

ii) �(t)(ku

k

(t)k

2

H

3

+ kw

k

(t)k

2

H

3

) � F

11

(t);

iii) �(t)(kru

k

(s)k

2

L

1

+ krw

k

(s)k

2

L

1

) � F

12

(t);

where �(t) = minf1; tg. The fun
tions on the right hand sides depend on their argu-

ment t, and in addition on T � T

�

; � > 0; � > 0;� and the norms ku

0

k

H

2

; kw

0

k

H

2

.

On the interval in question these fun
tions are 
ontinuous in the variable t.

Sket
h of Proof. Di�erentiating (2.3)i with respe
t to t, and multiplying by u

k

tt

and integrating in 
, we get




1

ku

k

tt

k

2

+

1

2

d

dt

kru

k

t

k

2

� 


2

+ 


3

kru

k

t

k

2

+ 


4

krw

k

t

k

2

;(3.24)
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where 


i

are 
onstants depend on the sup in t for the fun
tions done in the above

Lemmas, the regularity on �, the initial data and independ of k.

Multiplying (3.24) by �(t) and integrating in ("; t), we get




1

Z

t

"

�(s)ku

k

tt

(s)k

2

ds+

1

2

Z

t

"

�(s)

d

dt

kru

k

t

(s)k

2

ds

� 


2

Z

t

"

�(s)ds+ 


3

Z

t

"

�(s)kru

k

t

(s)k

2

ds+ 


4

Z

t

"

�(s)krw

k

t

(s)k

2

ds

� 


2

t+ 


3

Z

t

0

kru

k

t

(s)k

2

ds+ 


4

Z

t

0

krw

k

t

(s)k

2

ds:

A 
ontinuation, we observe that




1

Z

t

"

�(s)

d

dt

kru

k

t

(s)k

2

ds = �(t)kru

k

t

(t)k

2

� �(")kru

k

t

(")k

2

+

Z

t

"

�

0

(s)kru

k

t

(s)k

2

ds a.e. in t:(3.25)

Bearing in mind (3.9) and the above Remark, we have passing to the limit "! 0

+

,

(i); (ii) follows of (i), by using the inequality (3.25 ). (iii) follows imediately of (ii).

The arguments for w are analogous. This 
ompletes the proof.

Analogously, we 
an prove.

Lemma 3.8 Under the hypotheses done , we have

Z

t

0

�(s)(kP�u

k

t

(s)k

2

+ k�w

k

t

(s)k

2

)ds � F

13

(t):

4. Existen
e of Solutions

By the estimates given in tke Lemma 3.2, we 
an 
hoose a subsequen
e of fu

k

g

still denote by fu

k

g su
h that u

k

! u weak - ? in L

1

(0; T ;H

2

(
)) and u

k

t

! � weak

- ? in L

1

(0; T ;L

2

(
)). By standar arguments � = u

t

. Analogously, we 
an proved

for angular velo
ity. Truly, we 
an strenghten the 
onvergen
e of u

k

and w

k

using

the Aubin-Lions Lemma , we get u

k

! u and w

k

! w strongly in L

p

(0; T ;H

1

(
))

for every p �nite.

Also, we have by estimates given in the Lemma 3.3, �

k

! � weak - ? in

L

1

(0; T ;C

1

(
)) and �

k

t

! �

t

weak - ? in L

1

(0; T ;L

p

(
)) for every p 2 (1;1℄.

Thus, �

k

! � in D

0

(0; T ;L

q

(
)) when
e

1

p

+

1

q

= 1. Likewise, we observe that
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�

k

t

! � weak - ? in L

1

(0; T ;L

1

(
)) thanks to the estimate (3.15 ). Thus �

k

t

! �

weak - ? in L

1

(0; T ;L

p

(
)) with 1 � � <1; immediately � = �

k

t

. Therefore, we 
an

to streng then the 
onvergen
e to the density by using the Aubin-Lions Lemma, we

get �

k

! � in L

p

0

(0; T ;W

r;l

(
)) when
e 0 � r < 1; 1 < p

0

<1; 1 < l <1. It fol-

lows by using the Sobolev embedding, for l large enough, we have r�n=l > 0 (r = 2

or 3) and for so mu
h the 
onvergen
e, �

k

! � in L

p

0

(0; T ;C

0;


(
)) (0 � 
 < 1).

A 
ontinuation we show that

Z

T

0

h�

k

u

k

t

; v(x)�(t)idt �!

Z

T

0

h�u

t

; v(x)�(t)idt;(4.1)

Z

T

0

h�

k

w

k

t

; z(x)�(t)idt �!

Z

T

0

h�w

t

; z(x)�(t)idt;(4.2)

when
e k �! 1, for every v(x) 2 C

3

(
); �(t) 2 D(0; T ); z(x) 2 C

3

0

(
); �(t) 2

D (0; T ), respe
tively.

We have

j

Z

T

0

h�

k

u

k

t

; v(x)�(t)idtj � j

Z

T

0

h(�

k

� �)u

k

t

; v(x)�(t)idtj

+j

Z

T

0

h�

k

(u

k

t

� u

t

); v(x)�(t)idtj:

We observe that

j

Z

T

0

h(�

k

� �)u

k

t

; v(x)�(t)idtj � sup jv(x)�(t)j

Z

T

0

k�

k

� �k ku

k

t

kdt


onsequently,

j

Z

T

0

h(�

k

� �)u

k

t

; v(x)�(t)idtj �! 0 when
e k �!1:

Therefore,

j

Z

T

0

h�(u

k

t

� u

t

); v(x)�(t)idtj = j

Z

T

0

hu

k

t

� u

t

; �v(x)�(t)idtj

and bearing in mind that u

k

t

�! u

t

weakly, we have

Z

T

0

h�(u

k

t

� u

t

); v(x)�(t)idt �! 0 as k �!1:

Thus, we proved (4.1).( 4.2) is proved similary.
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Now we show that

Z

T

0

h�

k

u

k

� ru

k

; v(x)�(t)idt �!

Z

T

0

h�u � ru; v(x)�(t)idtj(4.3)

Z

T

0

h�

k

u

k

� rw

k

; z(x)�(t)idt �!

Z

T

0

h�u � rw; z(x)�(t)idt(4.4)

when
e k �! 1, for every v(x) 2 C

3

(
); �(t) 2 D(0; T ); z(x) 2 C

3

0

(
); �(t) 2

D(0; T ), respe
tively.

We show (4.4), (4.3) is make similary. Then we have

Z

T

0

h�

k

u

k

� rw

k

; z(x)�(t)idt

=

Z

T

0

h(�

k

� �)u

k

� rw

k

; z(x)�(t)idt+

Z

T

0

h�(u

k

� u) � rw

k

; z(x)�(t)idt

+

Z

T

0

h�u � r(w

k

� w); z(x)�(t)idt:

A 
ontinuation we observe that the �rsts integral 
onvergen
e to zero, enough to

apply of S
hwarz inequality with respe
t to spa
e variavel and observe that �

k

! �

in L

2

(
� (0; T )) and that

Z

T

0

Z




ju

k

� rw

k

jdx dt �

Z

T

0

ku

k

k

2

L

1

krw

k

k

2

dt � 
;

thanks to the Lemmas 3.1 and 3.2. In the se
ond integral, we have

Z

T

0

Z




�(u

k

� u) � rw

k

z(x)�(t)dxdt =

Z

T

0

Z




(u

k

� u) � rw

k

�z(x)�(t)dxdt

� sup j�z(x)�(t)j

Z

T

0

Z




ju

k

� uj jrw

k

jdxdt

� C

Z

T

0

�

Z




ju

k

� uj

2

dx

�

1=2

�

Z




jrw

k

j

2

dx

�

1=2

dt

� C

Z

T

0

ku

k

� uk

2

dt;

we observe that its integral 
onvergen
e to zero, thanks to (3.2).

The third integral is treated analogously.
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Passage to the Limit in the Approximated Equation

Thus,

Z

T

0

h�

k

u

k

t

+ �

k

u

k

� ru

k

� �

k

f � 2�

r

rotw

k

� (�+ �

r

)�u

k

; vi�(t)dt = 0

for every � 2 L

1

(0; T ) and passing to the limit for k ! 1, by standard way we

obtain

Z

T

0

h�u

t

+ �u � ru� �f � 2�

r

rotw � (�+ �

r

)�u; vi�(t)dt = 0

for every � 2 L

1

(0; T ). Now with help to the Du Bois-Reymond's Theorem we

obtain

h�u

t

+ �u � ru� �f � 2�

r

rotw � (�+ �

r

)�u; vi = 0

a.e. in 
, for every v 2 L

2

(
). This

P (�u

t

+ �u:ru� �f � 2�

r

rot w � (�+ �

r

)�u) = 0

a.e. in 
.

The passing to the limit in the equation for w

k

is similary. For the density, we

observe that

u

k

�! u strong in L

2

(
� (0; T )),

�

k

t

�! �

t

weak in L

2

(
� (0; T )) and

r�

k

�! r� weak in L

2

(
� (0; T )).

Thus we have passing to the limit for k �! 1, in the 
ontinuity equation

approximed:

�

t

+ u � r� = 0 in the L

2

(
� (0; T )) sense:

Next, we prove the 
ontinuous assumption of the initial data, we have

Proposition 4.1 Under the hypotheses done, we have

(i) lim

t!0

+

ku(x; t)� u(x; 0)k = 0;

(ii) lim

t!0

+

kw(x; t)� w(x; 0)k = 0;

(iii) lim

t!0

+

kru(x; t)�ru(x; 0)k = 0;

(iv) lim

t!0

+

kru(x; t)�ru(x; 0)k = 0;
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i.e., the solution u; w assumes the initial data 
ontinuously in the H

1

(
)-norm.

Proof. We prove only (i) and (iii), (ii) and (iv) are analogously proved. We 
hosen

approximation u

k

, to satisfy the 
onditions u

k

(0) �! u(0), in the L

2

(
) sense

(strong). We have

u

k

(x; t)� u

k

(x; 0) =

Z

t

0

u

k

t

(x; s)ds

for every k = 1; 2; : : :. Thus,

ku

k

(x; t)� u

k

(x; 0)k �

Z

t

0

ku

k

t

(s)kds � Ct

in virtude of Lemma 3.2. Now, we have passing to the limit for k �!1

ku(x; t)� u(x; 0)k � Ct

Finally, if t �! 0

+

, we obtain (i).

Considerer now (iii). One easily 
on
ludes that

lim

t!0

+

sup kru(t)k � kru

0

k:

Thus, u(t) �! u

0

strongly in V if u(t) �! u

0

weakly in V ; and to established the

latter we need only show

Z




r(u(t)� u

0

)r'

l

dx �! 0 as t �! 0

+

;

for ea
h basis fun
tion '

l

. This requires several observations. First, noti
e that

j

Z




r(u

k

(t)� u

k

(0))r'

l

dxj = j

Z

t

0

d

dt

(ru

k

; r'

l

)dsj(4.5)

= j �

Z

t

0

(u

k

t

; P�'

l

)dsj �

1

2

Z

t

0

ku

k

t

k

2

ds+

1

2

Z

t

0

kP�'

l

k

2

ds � Ct

thanks to the lemmas. Consequently,

Z




r(u

k

(t)� u

k

(0))r'

l

dx �! 0 as t �! 0

+

:(4.6)

Next, observe that for any �xed t 2 (0; T ),

Z




r(u(t)� u

k

(t))r'

l

dx �! 0 as k �!1;
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be
ause if we set �

k

= u� u

k

and let h(s) be a smooth fun
tion, wi
h vanishes for

s � t=2 and equals one for s � t, then

Z




r

k

�r'

l

dx =

Z

t

0

d

ds

Z




h(s)r�

k

r'

l

dxds(4.7)

=

Z

t

0

Z




fh

s

r�

k

r'

l

� h�

k

t

P�'

l

gdxds �! 0

as k �! 1. Here we are appealing to the weak 
onvergen
e r�

k

; �

k

t

! 0 in

L

2

(0; T ;L

2

(
)) . Finally, we note

Z




r(u

k

(0)� u

0

)r'

l

dx = 0 for k � l;

is just another way of starting the 
ondition used to determine the initial value




l;k

(0). Cleary (4.5), (4.6) and (4.7) together imply (iii). This 
omplete the proof.

Proposition 4.2 Under the hypotheses done, we have

(i) lim

t!0

+

kP�u(x; t)� P�u(x; 0)k = 0,

i.e., the initial velo
ity is assumed strongly in H

2

(
).

(ii) lim

t!0

+

ku

t

(x; t)� u

t

(x; 0)k = 0.

Proof. To prove (i), it is suÆ
ient to show

lim

t!0

+

sup kP�u(:; t)k � kP�u

0

k;

as we already know u(:; t) ! u

0

in H

1

(
). Multiplying (2.3)i by P�u

k

t

and inte-

grating in 
, we get

kP�u

k

k

2

� kP�u

0

k

2

+ 2(�+ �

r

)

�1

f(�

k

u

k

ru

k

� �

k

f � 2�

r

rotw

k

; P�u

k

)

+(�

0

u

k

0

ru

k

0

� �

0

f

0

� 2�

r

rot w

k

0

; P�u

k

0

)g+Nt

uniformly in k. From this, we 
on
lude

kP�u(t)k

2

� kP�u

0

k

2

+ 2f(�uru� �f � 2�

r

rotw; P�u)� (�

0

u

0

ru

0

��

0

f

0

� 2�

r

rotw

0

; P�u

0

)g+Nt:

Sin
e �uru! �

0

u

0

ru

0

in L

2

; �f ! �

0

f

0

in L

2

; rotw ! rotw

0

in L

2

and P�u!

P�u

0

weakly in L

2

as t! 0

+

, we obtain the desired result. Cleary, now, (ii) follows

from (i). This 
omplete the proof of the Proposition.
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Analogously, for the angular velo
ity, we have the

Proposition 4.3 Under the hypotheses done, we have

(i) lim

t!0

+

k�w(x; t)��w(x; 0)k = 0,

i.e., the initial angular velo
ity is assumed strongly in H

2

(
).

(ii) lim

t!0

+

kw

t

(x; t)� w

t

(x; 0)k = 0,

Remark. The argument used in the propositions truly 
an be make for all t = t

0

> 0

instead of t = 0. This we will give the 
ontinuity to the right in the spa
es adequate.

The same type of analysis we give the ontinuity to the left for t = t

0

> 0. For the

same reason it is obtain the 
ontinuity indi
ate in the enun
iate of Theorem 2.1.

5. Uniqueness

We 
onsider now the question of uniqueness the solution. Let

�

1

= fv = v 2 L

2

(0; T

1

;H

3

(
) \ V ); v

t

2 L

2

(0; T

1

;V )g;

�

2

= fu = u satisfy the 
on
lusions of Theorem 2.1g;

H

1

= f = 2 L

2

(0; T

1

;H

2

(
) \H

1

0

(
));  

t

2 L

2

(0; T

1

;H

1

(
)g

H

2

= fw =w sa�sfy the 
onditions of Theorem 2.1g:

With this notations we 
an enun
iate the

Theorem 5.1 Assumed that (�; v;  ) is any one solution of the problem (1.1) - (1.3)

in C

1

(
� [0; T ℄)�

P

1

�H

1

. Then, we have

� = �; u = v and w =  

in [0; T

2

℄, where T

2

= minfT; T

1

g, where T is the time give in Theorem 1 and (�; u; w)

is the solution of the problem (1.1) - (1.3) obtained in C

1

(
� [0; T ℄)�

P

2

�H

2

.

Proof. Let � = �� �; � = u� v and � = w �  . Then these variables satisfy the
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following equations

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�

t

+ u � r� = ��r�;

�(0) = 0;

P (��

t

) + (�+ �

r

)A�(t) = P (�f) + 2�

r

P (rot �)� P (�v

t

)� P (�u � ru)

�P (�� � ru)� P (�v � r�);

�(x; 0) = 0;

��

t

� (


a

+ 


d

)�� � (


0

+ 


d

� 


a

)r div � + 4�

r

�

= �g + 2�

r

rot � � � 

t

� �u � rw � �� � w � �v � r�;

�(x; 0) = 0:

(5.1)

Multiplying (5.1)iii by � and integrating over 
 we obtain

1

2

d

dt

k�

1=2

�k

2

+ (�+ �

r

)kr�k

2

= (�f; �) + (�v

t

; �) + 2�

r

(rot �; �)� (�u � ru; �)

�(�� � ru; �)� (�v � r�; �) +

1

2

(�

t

�; �):

Now, estimating as it is usual in the above identity, we obtain the following integral

inequality

k�

1=2

(t)�(t)k

2

+ (�+ �

r

)

Z

t

0

kr�(s)k

2

ds

� C

Z

t

0

(kf(s)k

2

H

1

+ krv

t

(s)k

2

+ kAu(s)k

4

)k�(s)k

2

ds+ C

Z

t

0

k�(s)k

2

ds

+C

Z

t

0

(kAu(s)k

2

+ kA�(s)k

2

+ k�

t

(s)k

L

1

)k�(s)k

2

ds:

(Æ will be 
hosen suitably).

Multiplying (5.1)i by � and integrating over 
, after of integrate over [0; T ℄ we

obtain

k�(t)k

2

� C

Z

t

0

k�(s)kkr�(s)k

L

1

k�(s)kds

� C

�

Z

t

0

k�(s)k

2

ds+

Z

t

0

k�(s)k

2

ds

�

:(5.2)

Multiplying (5.1)v by � and integrating over 
 one has

1

2

d

dt

k�

1=2

�k

2

+ (


0

+ 


d

)kr�k

2

+ (


0

+ 


d

� 


a

)kdiv �k

2

+ 4�

r

k�k

2

= (�g; �) + 2�

r

(rot �; �)� (� 

t

; �)� (�u � rw; �)

�(�� � rw; �)� (�v � r�; �)�

1

2

(�

t

�; �):(5.3)
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Estimating as it is usual in the above identity, we obtain the following integral

inequality

k�

1=2

(t)�(t)k

2

+ (


a

+ 


d

)

Z

t

0

kr�(s)k

2

ds+ (


0

+ 


d

� 


a

)

Z

t

0

kdiv �(s)k

2

ds

+4�

r

Z

t

0

k�(s)k

2

ds

� C

Z

t

0

(kg(s)k

2

H

1

+ kr 

t

(s)k

2

+ kAu(s)k

2

k�w(s)k

2

) ds

+C

Z

t

0

k�(s)k

2

(1 + k�(s)k

2

L

1

k�w(s)k

2

) ds

+C

Z

t

0

k�(s)k

2

(k�

t

(s)k

L

1

+ k�(s)k

2

L

1

kAv(s)k

2

) ds:(5.4)

Adding (5.2), (5.3) and (5.4), one has

k�(s)k

2

+ k�(s)k

2

+ k�(s)k

2

�

Z

t

0

h(s)(k�(s)k

2

+ k�(s)k

2

+ k�(s)k

2

)ds

where h = C(1 + kfk

2

H

1

+ kgk

2

H

1

+ krv

t

k

2

+ kr 

t

k

2

+ kAuk

4

+ kAuk

2

k�wk

2

+kAuk

2

+ kAvk

2

+ k�

t

k

1

+ k�k

2

L

1

k�wk

2

+ k�k

2

L

1

kAvk

2

):

We observe that h(s) � 0 and h(�) is a integrable fun
tion, 
onsequently applying

the Gronwall's Lemma, we get

k�(t)k

2

+ k�(t)k

2

+ k�(t)k

2

= 0;

thus we obtain � = �; u = v and w =  .

6. Results the Pressure

We 
an also obtain now informations on the pressure.

Proposition 6.1 Under the hypothesis to the Theorem 2.1, there is p 2

C("; T ;H

1

(
)=IR), for any " > 0 su
h that together to the solution (u; w; �) given

the Theorem 2.1 satisfy

�u

t

+ �u � ru� (�+ �

r

)�u+rp = �f + 2�

r

rotw;

div u = 0;
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�w

t

+ �u � rw � (


0

+ 


d

)�w + (


0

+ 


d

� 


a

)rdivw + 4�

r

w

= �g + 2�

r

rotu;

�

t

+ u � r� = 0;

uj

�


= 0; wj

�


= 0; u(0) = u

0

; w(0) = w

0

; �(0) = �

0

:

Proof. We have

�(�+ �

r

)�u+rp = j

where j = �(f�u

t

�u�ru)+2�

r

rotw. We observe that the Theorem 2.1 implies that

j 2 L

1

(0; T ;L

2

(
))\L

2

(0; T ;H

1

(
)), applying the estimates for the Stokes problem

(Amrou
he and Girault [1℄), we have p 2 L

1

(0; T ;H

1

(
)=IR)\ L

2

(0; T ;H

2

(
)=IR).

Therefore, we have

�(�+ �

r

)�u

t

+rp

t

= j

t

;

where j

t

= p

t

(f � u

t

� u � ru) + 2�

r

rotw

t

+ �(f

t

� u

tt

� u

t

� ru � u � ru

t

) 2

L

1

("; T ;L

2

(
)). Thus, newly by the estimates for the Stokes problem, we get

p

t

2 L

1

("; T ;H

1

(
)=IR), for any " > 0, 
onsequently, we have

p 2 C("; T

0

H

1

(
)=IR); 8 " > 0:

Remark. In order to obtain informations in t = 0 are ne
essary 
ertain 
onditions

of 
ompatibility over the datum. This is done of the same manner as in the 
ase of

the Navier-Stokes equations and for this is very instru
tive the dis
ussion make in

the paper of Heywood and Ranna
her [8℄.

7. Remark on the Global Existen
e

We present three Theorems on global existen
e in time of strong solutions for

problem (1.1) - (1.3). By using the the
hni
ality of the above se
tion together with

the arguments of the work [3℄, we 
an proved easily in the 
ase n = 3

Theorem 7.1 (n = 3). Let the initial values satisfy u

0

2 V \ (H

2

(
)

3

); w

0

2

(H

1

0

(
)

3

)\(H

2

(
)

3

); �

0

2 C

1

(
) and the external �elds f; g 2 L

1

([0;1); (H

1

(
))

3

)

with f

t

; g

t

2 L

1

([0;1); (L

2

(
))

3

). If ku

0

k

H

1

; kw

0

k

H

1

and kfk

L

1

([0;1);L

2

(
))

and

kgk

L

1

([0;1);L

2

(
))

are suÆ
iently small, then the solution (�; u; w) of problem (1.1)

and (1.2) exists globally in time and satis�es

u 2 C([0;1);V \H

2

(
)); w

0

2 C([0;1); H

1

0

(
) \H

2

(
))
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� 2 C

1

(
 � [0; T ℄) for any T > 0. Moreover, for any 
 > 0 there exists some �nite

positive 
onstants M and C su
h that

sup

t�0

kru(t)k =M; sup

t�0

krw(t)k =M;

sup

t�0

ku

t

(t)k � C; sup

t�0

kw

t

(t)k � C;

sup

t�0

kAu(t)k � C; sup

t�0

k�w(t)k �M;

sup

t�0

e

�
t

Z

t

0

e


s

(kru

t

(s)k

2

+ krw

t

(s)k

2

)ds � C;

sup

t�0

e

�
t

Z

t

0

e


s

(ku(s)k

2

W

2;6

+ kw(s)k

2

W

2;6

)ds � C;

sup

t�0

e

�
t

Z

t

0

e


s

(kru(s)k

2

C(
)

+ krw(s)k

2

C(
)

)ds � C:

Also the same kind of estimates hold uniformly in k for the semi-Galerkin approxi-

mations.

In the 
ase two-dimensional, we have

Theorem 7.2 (n = 2). Suppose that the initial values satisfy u

0

2 V \

(H

2

(
))

2

; w

0

2 (H

1

0

(
))

2

\ (H

2

(
))

2

; �

0

2 C

1

(
) and the external �elds f; g 2

L

1

([0;1); (H

1

(
))

2

); f

t

; g

t

2 L

1

([0;1); (L

2

(
))

2

) then the solution (�; u; w) of

problem (1.1) and (1.2) exists globally in time and satis�es u; w 2 C([0;1);V \

(H

2

(
))

2

); � 2 C

1

(
 � [0; T ℄) for any T > 0. Moreover, the estimates given in

Theorem 7.1 are true for any 
 > 0.

Theorem 7.3 Suppose that n = 2 or 3, that

u

0

2 V \ (H

2

(
))

n

; w

0

2 (H

1

0

(
))

n

\ (H

2

(
))

n

;

�

0

2 C

1

(
) and that for some 
onstant 
 > 0,

e


t

(f + g) 2 L

1

([0;1); (H

1

(
))

n

); e


t

(f

t

+ g

t

) 2 L

1

([0;1); (L

2

(
))

n

):

Under these 
onditions if n = 2, or with the additional 
ondition that

ku

0

k

H

1

(
)

; kw

0

k

H

1

(
)

; ke


t

fk

L

1

([0;1);(L

2

(
))

n

)

and ke


t

gk

L

1

([0;1);(L

2

(
))

n

)

are small enough if n = 3, then there is a global solution

(�; u; w) of problem (1.1) - (1.2). Moreover, there is a positive 
onstant 


�

� 
 su
h
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that for any 0 � � < 


�

there hold the following estimates

sup e




�

t

(kru(t)k

2

+ krw(t)k

2

) < +1

sup

t�0

e

�t

(ku

t

(t)k

2

+ kw

t

(t)k

2

+ kAu(t)k

2

+ k�w(t)k

2

) < +1

sup

t�0

Z

t

0

e

�s

(kru

t

(s)k

2

+ krw

t

(s)k

2

)ds < +1

sup

t�0

Z

t

0

e

�s

(ku(s)k

2

W

2;6

+ kw(s)k

2

W

2;6

)ds < +1;

sup

t�0

Z

t

0

e

�s

(kru(s)k

2

C(
)

+ krw(s)k

2

C(
)

)ds < +1

sup

t�0

(kr�(t)k

L

1

+ k�

t

(s)k

L

1

) < +1

sup

t�0

�(t)(kru

t

(t)k

2

+ krw

t

(t)k

2

) < +1

sup

t�0

Z

t

0

�(s)(ku

tt

(s)k

2

+ kw

tt

(s)k

2

)ds < +1

sup

t�0

Z

t

0

�(s)(kAu

t

(s)k

2

+ k�w

t

(s)k

2

)ds < +1

In the last three estimates �(t) = minf1; tge

�t

the same kind of estimates hold

uniformly in k 2 IN for the semi-Galerkin approximations.
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