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Abstrat. We onsider an initial boundary value problem for a system of equa-

tions desribing nonstationary ows of nonhomogeneous inompressible asymmetri

(polar) uids. Under onditions similar to the ones for the usual Navier-Stokes

equations, we prove the existene and uniqueness of strong solutions by the use

of the spetral semi-Galerkin method. Several estimates for the solution and their

approximations are given. These estimates an be used for the derivation of error

bounds for the Galerkin approximations.

1. Introdution

In this paper we will study the equations for the motion of a nonhomoge-

neous visous inompressible asymmetri uid. These equations are onsidered in a

bounded domain 
 � IR

3

, with boundary �, in a time interval [0; T

�

℄. To desribe

them let u(x; t) 2 IR

3

; w(x; t) 2 IR

3

; �(x; t) 2 IR and p(x; t) 2 IR denote,

respetively, the unknown veloity, angular veloity of rotation of the uid partiles,

the density and the pressure at a point x 2 
 and time t 2 [0; T

�

℄. Then, the

governing equations are

8

>

>

>

>
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>
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>

:

�u

t

+ �(u � r)u� (�+ �

r

)�u+ grad p = 2�

r

rotw + �f;

div u = 0;

�w

t

+ �(u � r)w � (

a

+ 

d

)�w � (

0

+ 

d

� 

a

)rdivw

+4�

r

w = 2�

r

rotu+ �g;

�

t

+ (u � r)� = 0 ;

(1.1)

�
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together with the following boundary and initial onditions

(

u = 0; w = 0; on �� (0; T

�

);

u(x; 0) = u

0

(x); w(x; 0) = w

0

(x); �(x; 0) = �

0

(x) in 
;

(1.2)

where for simpliity of exposition we have taken homogeneous boundary onditions.

Here f(x; t) and g(x; t) are respetively known external soures of linear and an-

gular momentum of partiles. The positive onstants �; �

r

; 

0

; 

a

; 

d

haraterize

isotropi properties of the uid; � is the usual Newtonian visosity; �

r

; 

0

; 

a

; 

d

are new positive visosities related to the asymmetry of the stress tensor, and in

onsequene related to the appearane of the �eld of internal rotation w; these

onstants satisfy 

0

+ 

d

> 

a

. The expressions grad, �, div and rot denote the

gradient, Laplaian, divergene and rotational operators, respetively (we also de-

note the gradient by r and

�u

�t

by u

t

); the i

th

omponent of (u � r)u and (u � r)w

in artesian oordinates are given by [(u � r)u℄

i

=

n

X

j=1

u

j

�u

i

�x

j

and [(u � r)w℄

i

=

n

X

j=1

u

j

�w

i

�x

j

respetively; also (u � r)� =

n

X

j=1

u

j

��

�x

j

.

For the derivation and physial disussion of equations (1.1) see Petrosyan [17℄

and Condi�, Dahler [5℄. We observe that this model of uid inludes as a partiular

ase the lassial Navier-Stokes, whih has been muh studied (see, for instane, the

lassial books by Ladyzhenskaya [10℄ and Temam [20℄ and the referenes there in).

It also inludes the redued model of the nonhomogeneous Navier-Stokes equations,

whih has been less studied than the previous ase (see for instane Simon [19℄, Kim

[9℄, Ladyzhenskaya and Solonnikov [11℄ and Salvi [18℄).

Conerning the generalized model of uids onsidered in this paper, Lukaszewiz

[16℄ established the loal existene of weak solutions for (1.1), (1.2) under ertain

assumptions by using linearization and an almost �xed point theorem. In that same

paper Lukaszewiz remarked about the possibility of proving the existene of strong

solutions (under the hyposthesis that the initial density is separated from zero) by

using the tehniques of [14℄ and [15℄ (linearization and �xed point theorems; [14℄

and [15℄ assume onstant density). The properties of their solution are asserted to

be similar to the ones in [14℄ and [15℄.

Sine we are more interested in tehniques more diretly related with numerial

appliations, in this paper we will stablish the existene of strong of (1.1) and (1.2) by

using the spetral semi-Galerkin method. We assume more regular initial data than

the ones in [16℄, with initial density separated from zero, beause we want to prove
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the existene of solutions that are stronger that the ones alluded in Lukaszewiz [16℄.

The reason for this is that the estimates we present in this paper are fundamental

for obtaining error bounds for the Galerkin approximations onstruted here. This

is presented in another paper, [2℄.

2. Preliminaries and Results

In what follows we will assume 
 to be a bounded domain in IR

n

(n = 2 or 3) of

lass C

1;1

. The funtions in this paper are either IR or IR

n

-valued, and sometimes

we will not distinguish them in our notations. This being lear from the ontext.

We will onsider the usual Sobolev spaes

W

m;q

(D) = f f 2 L

q

(D) = k�

�

fk

L

q

(D)

<1; (j�j � mg

for m 2 IN; 1 � q � 1; D = 
 or D = 
 � (0; T

�

); 0 < T

�

� 1, with the usual

norm. When q = 2, we denote H

m

(D) =W

m;2

(D) and H

m

0

(D) = losure of C

1

0

(D)

in H

m

(D). If B is a Banah-spae, we denote, by L

q

([0; T

�

);B) the Banah spae of

B-valued funtions de�ned in the interval [0; T

�

) that are L

q

-integrables in the sense

of Bohner. Let

C

1

0;�

(
) = fv 2 C

1

0

(
) = div v = 0 in 
g;

H = losure of C

1

0;�

(
) in (L

2

(
))

n

;

V = losure of C

1

0;�

(
) in (H

1

(
))

n

:

Let P be the orthogonal projetion from L

2

(
) onto H obtained by the usual

Helmholtz deomposition. Then the operator A : H ! H gives by A = �P�,

with domain D(A) = V \H

2

(
) is alled the Stokes operator. It is well known that

A is a positive de�nite self-adjoint operator and is haraterized by the relation

(Aw; v) = (rw;rv) for all w 2 D(A); v 2 V:

From now on, we denote the inner produt in H (i.e., the L

2

-inner produt) by ( ,

) with orresponding norm k � k. The norm for other L

p

-spaes will be denoted by

k � k

L

p

.

The following assumptions on the initial data will hold throughouth this paper.

(A.1) The initial value for the density for belongs to C

1

(
) and satis�es

0 < � � �

0

(x) � � < +1 in 
,

(A.2) The initial value u

0

belong to V \ (H

2

(
))

n

,
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(A.3) The initial value w

0

belong to (H

1

0

(
))

n

\ (H

2

(
))

n

.

Now, by using the properties of P , we an reformulate the problem (1.1)-(1.2)

as follows: �nd � 2 C

1

(
 � (0; T

�

)) and u 2 C

1

([0; T

�

);H) \ C((0; T

�

);D(A)), and

w 2 C

1

([0; T

�

); (H

1

0

(
))

n

) \ C((0; T

�

);D(B)) suh that

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�

t

+ u � r� = 0 for (x; t) 2 
� (0; T

�

);

(�u

t

; v) + (�u � ru; v) + (�+ �

r

)(Au; v)

= 2�

r

(rotw; v) + (�f; v) for 0 < t < T

�

; 8 v 2 V;

(�w

t

;  ) + (�u � rw;  )� (

a

+ 

d

)(�w;  )� (

0

+ 

d

� 

a

)(rdivw;  )

+4�

r

(w;  ) = 2�

r

(rotu;  ) + (�g;  ) for 0 < t < T

�

; 8 2 (H

1

0

(
))

n

;

u(x; 0) = u

0

(x); �(x; 0) = �

0

(x; 0) = �

0

(x); w(x; 0) = w

0

(x):

(2.1)

Atually, we will prove that the solution is better than what stated above. For this

we need to reall some properties of the stokes operator A = �P�. If 
 is bounded

and �
 is of lass C

1;1

, the mapping A : V \ H

2

(
) ! H is one-to-one and onto

(Amrouhe and Girault [1℄, Cattabriga [4℄ when �
 is of lass C

3

). The inverse

A

�1

is omplety ontinuous as a map A

�1

: H ! H. Also, A is symmetri and,

therefore, so is its inverse. Being omplety ontinuous and symmetri, the operator

A

�1

posses an orthogonal sequene of eigenfuntions f'

k

(x)g whih is omplete in

its image V \ (H

2

(
))

n

. As the image ontains C

1

0;�

(
), the eigenfuntions are also

omplete in H. They are also orthogonal and omplete in V sine

Z

r�r'

k

dx = �

k

Z

�'

k

dx

holds for � 2 V , it �

k

is the k-th eigenvalue (A'

k

= �

k

'

k

). We take f'

k

(x)g

to be sequene of eigenfuntions, orthogonal in H. Therefore, the eigenfuntions

f'

k

(x)=(�

k

)

1=2

g and f'

k

(x)=�

k

g are omplete and orthogonal in V (endowed with

the inner produt (ru;rv), for u; v 2 V ) and (H

2

(
))

n

\ V (endowed with the

inner produt (Au;Av), for u; v 2 D(A)), respetively.

As well, we have that if �
 is one C

k;m

-manifold of IR

n

(n = 2 or 3, m = ), then

the eigenfuntions '

k

(x) belong to H(
).

In what follows we will also onsider either the Laplae operator B = �� , or

the strongly uniformly ellipti operator

L = �(

a

+ 

d

)�� (

0

+ 

d

� 

a

)rdiv;
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both with Dirihlet boundary onditions. Due to the ondition 

0

+ 

d

> 

a

;L is a

positive de�nite operator. To simplify the notation, we will denote respetively by

f 

k

(x)g and f

k

g the eigenfuntions and eigenvalues either of B or L. From the

ontext it will be lear in whih ase we are working with.

Let P

k

the projetion operator of L

2

(
) onto the spae V

k

spanned by the k-th

eigenfuntions h'

1

(x); : : : ; '

k

(x)i of A and let R

k

the projetion operator of L

2

(
)

onto the spae W

k

spanned by the k-th eigenfuntions h 

1

(x); : : : ;  

k

(x)i of either

B = �� or L aording to the ontext.

Then the solutions of problem (2.1) will an be obtained by using the semi-

Galerkin approximation. That is, we onsider the Galerkin approximations

u

k

(x; t) =

k

X



ik

(t)'

i

(x); w

k

(x; t) =

k

X

i=1

d

ik

(t) 

k

(x) for the veloity and rotation

of partiles, respetively, and an approximation �

k

(x; t) for the density satisfying

the following equations:

8

>

>

>

<

>

>

>

:

P

k

(�

k

u

k

t

+ �

k

u

k

� ru

k

� �

k

f � 2�

r

rotw

k

) + (�+ �

r

)Au

k

= 0;

R

k

(�

k

w

k

t

+ �

k

u

k

� rw

k

� �

k

g � 2�

r

rotu

k

+ 4�

r

w

k

) + Jw

k

= 0;

�

t

+ u

k

� r�

k

= 0;

u

k

(0) = P

k

u

0

; w

k

(0) = R

k

w

0

; �

k

(0) = �

0

;

(2.2)

where Jw

k

= (

a

+ 

d

)Bw

k

� R

k

(

0

+ 

d

� 

a

)rdivw

k

if we are working with the

Laplae operator (reall that BR

k

= R

k

B in this ase), and Jw

k

= Lw

k

if, we are

working with the L operator (reall that LR

k

= R

k

L in this ase).

Equations (2.2) forms a oupled system of ordinary di�erential equations with

a transport equation. By using the harateristis method for this last equation, it

is possible to prove in a standard way that there is an unique solution (u

k

; w

k

; �

k

)

for (2.2) in an interval [0; T

k

), for all k 2 IN . The a priori estimates that will prove

will allow-us to take T > 0 suh that T � T

k

for all k 2 IN . Thus, the approximate

solutions (u

k

; w

k

; p

k

) will be onsidered to be de�ned in a single interval [0; T ) for

all k 2 IN . Equations (2.2) are equivalente to the following

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(�

k

u

k

t

+ �

k

u

k

� ru

k

� �

k

f � 2�

r

rot w

k

; v) + (�+ �

r

)(Au

k

; v) = 0;

(�

k

w

k

t

+ �

k

u

k

� rw

k

� �

k

g � 2�

r

rot u

k

;  ) + (Jw

k

;  ) = 0;

8 v 2 V

k

; 8 2 W

k

;

�

t

+ u

k

� r�

k

= 0;

u

k

(0) = P

k

u

0

; w

k

(0) = R

k

w

0

; �

k

(0) = �

0

:

(2.3)

The result in this paper are the following:

5



Theorem 2.1 Let the initial values satisfy u

0

2 V \ (H

2

(
))

n

; w

0

2 (H

1

0

(
))

n

\

(H

2

(
))

n

; �

0

2 C

1

(
) and the external �elds f; g 2 L

2

(0; T

�

; (H

1

(
))

n

) with

f

t

; g

t

2 L

2

(0; T

�

; (L

2

(
))

n

). Then, on a (possibly small) time interval [0; T ℄; T � T

�

.

Problem (1.1) and (1.2) has a unique strong solution (u; w; �). That is, there are

funtions u; w; � suh that

P (�u

t

+ �u � ru� 2�

r

rotw � �f � (�+ �

r

)�u) = 0 holds a.e. in 
� [0; T ℄;

�w

t

+ �u � rw � 2�

r

rot u� �g � (

a

+ 

d

)�w � (

0

+ 

d

� 

a

)r divw + 4�

r

w = 0

holds a.e. in 
� [0; T ℄;

�

t

+ u � r� = 0 holds in the L

2

(
� [0; T ℄) sense. Moreover,

� 2 C

1

(
� [0; T ℄);

u 2 C([0; T ℄; (H

2

(
))

n

\ V ) \ L

2

([0; T ℄; (L

1

(
))

n

)

\L

p

([0; T ℄; (H

3�"

(
))

n

) \ L

2

((0; T ℄; (H

3

(
))

n

) \ L

1

Lo

([0; T ℄; (H

3

(
))

n

);

u

t

2 C([0; T ℄;H) \ L

2

(0; T ; (H

2�"

(
))

n

) \ L

p

([0; T ℄; (H

1�"

(
))

n

)

\L

2

Lo

([0; T ℄; (H

2

(
))

n

) \ L

1

Lo

((0; T ℄; (H

1

(
))

n

);

u

tt

2 L

2

Lo

(0; T ;H);

w 2 C([0; T ℄; (H

2

(
))

n

\ (H

1

0

(
))

n

) \ L

2

(0; T ; (H

3

(
))

n

) \ L

2

([0; T ℄; (L

1

(
))

n

)

\L

p

(0; T ; (H

3�"

(
))

n

) \ L

1

Lo

((0; T ℄; (H

3

(
))

n

);

w

t

2 C([0; T ℄;L

2

(
) \ (H

1

0

(
))

n

) \ L

2

(0; T ; (H

2�"

(
))

n

)

\L

p

([0; T ℄; (H

1�"

(
))

n

) \ L

2

Lo

(0; T ; (H

2

(
))

n

) \ L

1

Lo

((0; T ℄; (H

1

(
))

n

);

w

tt

2 L

2

Lo

(0; T ; (L

2

(
))

n

);

for all " > 0 and 1 < p < +1.

Remark. Atually it is possibly to prove that the strong solution of Theorem 2.1

is global either if n = 2 or if we take small enough initial data when n = 3.
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The above result depends on ertain estimates for the approximations (u

k

; w

k

;

�

k

); sine these estimates will be neessary in a ompanion paper where we obtain

error bounds, for future referene we summarize them in the following

Proposition 2.2 Let (u

k

; w

k

; �

k

) be the solution of (2.3). Then, she satis�es

� � �

k

(x; t) � �; (0 < � = inf �

0

; � = sup �

0

)

kru

k

(t)k

2

+ krw

k

(t)k

2

� F

1

(t)

Z

t

0

fk�w

k

(s)k

2

+ kP�u

k

(s)k

2

gds � F

2

(t);

Z

t

0

fkw

k

t

(s)k

2

+ ku

k

t

(s)k

2

gds � F

3

(t);

kw

k

t

(t)k

2

+ ku

k

t

(t)k

2

+

Z

t

0

fkrw

k

t

(s)k

2

+ kru

k

t

(s)k

2

gds � F

4

(t);

kP�u

k

(t)k

2

+ k�w

k

(t)k

2

� F

5

(t);

kr�

k

(t)k

2

L

1

� F

6

(t);

k�

k

t

(t)k

2

L

1

� F

7

(t);

Z

t

0

fkru

k

(s)k

2

L

1

+ krw

k

(s)k

2

L

1

gds � F

8

(t);

Z

t

0

fku

k

(s)k

2

H

3

+ kw

k

(s)k

2

H

3

gds � F

9

(t);

Z

t

0

�(s)fku

k

tt

(s)k

2

+ kw

k

tt

(s)k

2

gds+ �(t)fkru

k

t

(t)k

2

+ krw

k

t

(t)kg � F

10

(t);

�(t)fku

k

(t)k

2

H

3

+ kw

k

(t)k

2

H

3

g � F

11

(t);

�(t)fkru

k

(t)k

2

L

1

+ krw

k

(t)k

2

L

1

g � F

12

(t);

Z

t

0

�(s)fkP�u

k

t

(s)k

2

+ k�w

k

t

(s)k

2

gds � F

13

(t);

Here, �(t) = minf1; tg. Moreover, the same estimates hold for (u; w; �) give in The-

orem 2.1. The above results are true without any restrition if we the eigenguntions

of L to build the approximations for w

k

. If we use the eigenfuntions of �� then

the above estimates are true if � = (

0

+ 

d

� 

a

)=(

a

+ 

d

) is suÆiently small.

Remark. The above estimates imply that the approximations (u

k

; w

k

; �

k

) on-
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verges to the solution (u; w; �) in the senses indiated below

(i) u

k

! u; w

k

! w strongly in L

p

(0; T ;H

3�"

(
)) and weakly -?

in L

1

Lo

(0; T ;H

3

(
))

(ii) u

k

t

! u

t

; w

k

t

! w

t

weakly in L

1

Lo

(0; T ;H

1

(
)) and weakly in

L

2

(0; T ;H

2�"

(
)) in L

p

(0; T ;H

1�"

(
))

and in L

2

Lo

(0; T ;H

2

(
))

(iii) u

k

tt

! u

tt

; w

k

tt

! w

tt

weakly in L

2

Lo

(0; T ;L

2

(
))

(iv) �

k

! � strongly in L

p

(0; T ;C

0;

(
)) 0 �  < 1

(v) r�

k

! r� weakly - ? in L

1

(
� [0; T ℄)

(vi) �

k

t

! �

t

weakly - ? in L

1

(
� [0; T ℄):

The above is true for all " > 0 and 1 < p < +1

Finally, we would like to say that as it is usual we will denote by C a generi

onstant depending at most on 
 and the �xed parameters in the problem

(�; �

r

; 

a

; 

d

; 

0

and the initial onditions, and also f; g and T ). This will ap-

pear in most of the estimates to the be obtained. When for any reason we want to

emphasize the dependene of a ertain onstant on a given parameter we will denote

this onstant with a subsript.

3. A Priori Estimates

We start by proving the estimates stated in Proposition 2.2. This will be done

in several steps by ombining variants of arguments used by Heywood [6℄, [7℄, Kim

[9℄ and Boldrini and Rojas-Medar [3℄. To �x the ideas, �rst we prove the estimates

in the ase where one uses the eigenfuntions of �� to approximate w; at the end

of this setion we explain the neessary hanges to obtain the estimates when one

uses eigenfuntions of L.

Lemma 3.1 There is 0 < T � T

�

suh that the approximations �

k

; u

k

; w

k

satisfy

for all t 2 [0; T ).

� � �

k

(x; t) � �;(3.1)

8



ku

k

(t)k

2

+ kw

k

(t)k

2

� L(t);(3.2)

Z

t

0

(kru

k

(s)k

2

+ krw

k

(s)k

2

)ds � H(t);(3.3)

kru

k

(t)k

2

+ krw

k

(t)k

2

� F

1

(t);(3.4)

Z

t

0

(kAu

k

(s)k

2

+ k�w

k

(s)k

2

)ds � F

2

(t);(3.5)

Z

t

0

(ku

k

t

(s)k

2

+ kw

k

t

(s)k

2

)ds � F

3

(t):(3.6)

The funtions on the right hand side of the above inequalities depend on �; �;


and the norms kru

0

k; krw

0

k. (3.5) and (3.6) depend also on ku

0

k

H

2

and kw

0

k

H

2

.

On the interval in question these funtions an be assumed to be inreasing and

ontinuously di�erentiable with respet to t.

Proof. From the method of harateristis applied to the ontinuity equation (2.2)

(iii), it follows immediately that whenever �

k

exists it satis�es (3.1).

Now, by using v = u

k

and  = w

k

in (2.3) and working as in Lions [12℄, [13℄,

one obtains

1

2

d

dt

k(�

k

)

1

2

u

k

k

2

+ (�+ �

r

)kru

k

k

2

= (�

k

f; u

k

) + 2�

r

(rotw

k

; u

k

);

1

2

d

dt

k(�

k

)

1

2

w

k

k

2

+ (

a

+ 

d

)krw

k

k

2

+ (

0

+ 

d

� 

a

)kdivw

k

k

2

+ 4�

r

kw

k

k

2

= 2�

r

(rotu

k

; w

k

) + (�

k

g; w

k

):

By adding these two equations and working the terms in the right-hand side in a

standard way, together with the use of (3.1), after an integration with respet to

time from 0 to t, we are left with

�ku

k

(t)k

2

+ �kw

k

(t)k

2

+ (�+ �

r

)

Z

t

0

kru

k

(s)k

2

ds+ (

a

+ 

d

)

Z

t

0

krw

k

(s)k

2

ds

+(

0

+ 

d

� 

a

)

Z

t

0

kdivw

k

(s)k

2

ds+ 4�

r

Z

t

0

kw

k

(s)k

2

� C

1

+ C

2

Z

t

0

(kf(s)k

2

+ kg(s)k

2

)ds+ C

3

Z

t

0

(ku

k

(s)k

2

+ kw

k

(s)k

2

)ds

where C

1

; C

2

and C

3

are independent of k. (C

1

depends on the initial onditions).

Thus, by using Gronwall's Lemma, we obtain (3.2) and (3.3) for suitable L(t)

and H(t).

9



Now, we take v = u

k

t

and subsequently v = �"Au

k

, with a suitable small " > 0

in (2.3) (i). By adding the resulting equations and working as in Kim [9℄, one obtains

�ku

k

t

k

2

+(�+�

r

)

d

dt

kru

k

k

2

+C

4

kAu

k

k

2

� C

5

[kfk

2

+krw

k

k

2

+ku

k

�ru

k

k

2

℄;(3.7)

with positive onstants C

4

and C

5

independent of k (for instane, if we take " =

�(�+ �

r

)=9�

2

; C

4

= �(�+ �

r

)

2

=81�

2

).

Now, we have to �nd a similar di�erential inequality for w

k

. For this, we take

 = w

k

t

in (2.3) (ii) to obtain

�

2

kw

k

t

k

2

+

C

a

+ C

d

2

d

dt

krw

k

k

2

+



0

+ 

d

� 

a

2

d

dt

kdivw

k

k

2

+ 2�

r

d

dt

kw

k

k

2

� C

5

[kgk

2

+ kru

k

k

2

+ ku

k

� rw

k

k

2

℄;

with C

5

> 0 independent of k.

Now, we take  = ��w

k

in (2.3)(ii). This, with the remark that

Lw = �(

a

+ 

d

)�w � (

0

+ 

d

� 

a

)rdivw

is a strongly ellipti operator, and thus

(Lw

k

;��w

k

) � C

�

k�w

k

k

2

� C

��

krw

k

k

2

;

where C

�

> 0 and C

��

� 0 depend on 

a

+ 

d

; 

0

+ 

d

� 

a

and �, will furnish



a

+ 

d

2

k�w

k

k

2

+ 4�

r

krw

k

k

2

� C

7

[kgk

2

+ kru

k

k

2

+ kw

k

t

k

2

+ ku

k

� rw

k

k

2

℄

with C

7

> 0 independent of k.

Now, we add the above inequalities, but with this last one multiplied by

�

4C

7

.

We obtain

�kw

k

t

k

2

+ 2(

a

+ 

d

)

d

dt

krw

k

k

2

+ 2(

0

+ 

d

� 

a

)

d

dt

kdivw

k

k

2

+ 4�

r

d

dt

kw

k

k

2

+C

8

k�w

k

k

2

+ C

9

krw

k

k

2

� C

10

[kgk

2

+ kru

k

k

2

+ ku

k

� rw

k

k

2

℄;(3.8)

with positive onstants C

8

; C

9

and C

10

.

10



Now, we observe that by standard interpolation and Sobolev inequalities,

ku

k

ru

k

k

2

� ku

k

k

2

L

6

kru

k

k

2

L

3

� Ckru

k

k

2

kAu

k

k � C

"

kru

k

k

6

+ "kAu

k

k

2

;

for any " > 0 and suitable C

"

> 0.

Analogously, we have

ku

k

� rw

k

k

2

� C

"

kru

k

k

4

krw

k

k

2

+ "k�w

k

k

2

:

By adding (3.7) and (3.8) and using the above inequalities with suitable small ", we

onlude that there is a positive onstant C suh that

d

dt

�(t) +  (t) � �(t) + C�

3

(t)

with �(t) = (�+ �

r

)kru

k

(t)k

2

+ (

a

+ 

d

)krw

k

k

2

+ (

0

+ 

d

� 

a

)kdivw

k

k

2

+4�

r

kw

k

k

2

;

 (t) = �ku

k

t

k

2

+

C

4

2

kAu

k

k

2

+

C

8

2

k�w

k

k

2

+ C

9

krw

k

k

2

;

�(t) = C(kfk

2

+ kgk

2

):

By making use of Lemma 3 in Heywood [8℄, p. 656, we onlude that there is

0 < T � T

�

suh that on the interval [0; T ℄ (3.4) - (3.6) hold with suitable F

i

(t); i =

1; 2; 3:

Lemma 3.2 For all t 2 [0; T ℄, the approximations (u

k

; w

k

) satisfy

ku

k

t

(t)k

2

+ kw

k

t

(t)k

2

+

Z

t

0

(kru

k

t

(s)k

2

+rw

k

t

(s)k

2

)ds � F

4

(t);(3.9)

kAu

k

(t)k

2

+ k�w

k

(t)k

2

� F

5

(t):(3.10)

The funtions on the right hand side of the above inequalities depend on �; �;
,

the norms ku

0

k

H

2

; kw

0

k

H

2

and the funtions given in the Lemma 3.1. On the in-

terval in question the funtions an be assumed to be inreasing and ontinuously

di�erentiable with respet to t.

Proof. By di�erentiating (2.3)(i) and (ii) with respet to t and setting v = u

k

t

;  =

w

k

t

and working analogously as in Boldrini and Rojas-Medar [3℄ (use the fat that

�

k

t

= �div(�

k

u

k

)), we obtain

1

2

d

dt

k(�

k

)

1=2

u

k

t

k

2

+

1

9

(�+ �

r

)kru

k

t

k

2

11



� C

10

ku

k

t

k

2

fkAu

k

k

2

+ kru

k

k

4

+ kru

k

k

8

+ 1g+ C

10

kru

k

k

4

kAu

k

k

2

+"krw

k

t

k

2

+ C

10

kf

t

k

2

+ C

10

kfk

2

H

1

fkru

k

k

2

+ 1g;

1

2

d

dt

k(�

k

)

1=2

w

k

t

k

2

+

1

5

(

a

+ 

d

)krw

k

t

k

2

+ (

0

+ 

d

� 

a

)kdivw

k

t

k

2

+ 4�

r

kw

k

t

k

2

� C

11

ku

k

t

k

2

fkAu

k

k

2

+ k�w

k

k

2

+ 1g+ C

11

kw

k

t

k

2

fkAu

k

k

2

+ 1g

+C

11

fkAu

k

k

2

+ k�w

k

k

2

g+ Ækru

k

t

k

2

+ "krw

k

t

k

2

+C

11

kg

t

k

2

+ C

11

kgk

2

H

1

fkru

k

k

2

+ 1g

for any "; Æ > 0 and suitable C

10

("); C

11

("; Æ).

By taking Æ = (� + �

r

)=10 and " = (

a

+ 

d

)=12, by adding and integrating in

time the above two inequalities, we obtain the integral inequality

(

a

+ 

d

)

30

Z

t

0

krw

k

t

(s)k

2

ds+

(�+ �

r

)

90

Z

t

0

kru

k

t

(s)k

2

ds+

1

2

k(�

k

)

1=2

(t)u

k

t

(t)k

2

+

1

2

k(�

k

)

1=2

(t)w

k

t

(t)k

2

+ 4�

r

Z

t

0

kw

k

t

(s)k

2

ds+ (

0

+ 

d

� 

a

)

Z

t

0

kdivw

k

t

(s)k

2

ds

� M(t) + C

12

Z

t

0

(kAu

k

(s)k

2

+ k�w

k

(s)k

2

)ds

+C

12

Z

t

0

ku

k

t

(s)k

2

fkAu

k

(s)k

2

+ k�w

k

(s)k

2

+ 1gds

+C

12

Z

t

0

kw

k

t

(s)k

2

fkAu

k

(s)k

2

+ 1gds

+

1

2

k(�

k

0

)

1=2

u

k

t

(0)k

2

+

1

2

k(�

k

0

)

1=2

w

k

t

(0)k

2

;(3.11)

with a suitable onstant C

12

> 0 and

M(t) = C

Z

t

0

(kg

t

(s)k

2

+ kg(s)k

2

H

1

+ kf

t

(s)k

2

+ kf(s)k

2

H

1

)ds

where we have used the estimates in Lemma 3.1

Now, by taking t = 0 and v = u

k

t

(0) in (2.3)i, we obtain

ku

k

t

(0)k

2

�

1

�

fk(�

k

0

)

1=2

u

k

0

�ru

k

0

k+(�+�

r

)kAu

k

0

k+k�

k

0

f(0)k+2�

r

krotw

k

0

kgku

k

t

(0)k;

and onsequently,

ku

k

t

(0)k �

1

�

fC�kf

0

k+ 2�

r

Ckrw

0

kg+ fC�kru

0

k+ (�+ �

r

)g

kAu

k

k

�

� C;

12



with C independent of k, beause u

k

(0)! u

0

in H

2

(
) as k!1:

We an bound kw

k

t

(0)k � C in the same way. Thus, by using this we obtain

(

a

+ 

d

)

15

Z

t

0

krw

k

t

(s)k

2

ds+

(�+ �

r

)

45

Z

t

0

kru

k

t

(s)k

2

ds+ �fku

k

t

(t)k

2

+ kw

k

t

(t)k

2

g

+8�

r

Z

t

0

kw

k

t

(s)k

2

ds+ 2(

0

+ 

d

� 

a

)

Z

t

0

kdivw

k

t

(s)k

2

ds

�M(t) + CF

2

(t) + C

+C

Z

t

0

(ku

k

t

(s)k

2

+ kw

k

t

(s)k

2

)fkP�u

k

(s)k

2

+ k�w

k

(s)k

2

+ 1gds:

Now applying of Gronwall's Lemma, we get (3.9) with

F

4

(t) = 

�1

(M(t) + CF

2

(t) + C) exp(F

2

(t) + Ct);

where  = minf

(

a

+ 

d

)

15

;

(�+ �

r

)

45

; � g > 0:

The seond estimate follows, from the �rst one by observing that by taking

v = P�u

k

in (2.3)i, we obtain

(�+ �

r

)kP�u

k

k � k�

k

u

k

t

k+ 2�

r

krotw

k

k+ k�

k

fk+ k�

k

u

k

� ru

k

k:

Now, we observe that

k�

k

u

k

� ru

k

k � �ku

k

k

L

4

kru

k

k

L

4

� �kru

k

k kru

k

k

1=4

kP�u

k

k

3=4

� C

"

�kru

k

k

5

+ "kP�u

k

k;

shoosing " = (�+ �

r

)=2, we obtain

kP�u

k

k �

2

�+ �

r

[C�kru

k

k

5

+ �ku

k

t

k+ 2�

r

Ckrw

k

k+ �kfk℄

�

2

�+ �

r

[C�F

1

(t)

5=2

+ �F

4

(t)

1=2

+ CF

1

(t)

1=2

+ �kfk℄ � F

5

(t):

We an treat k�w

k

k in the same way, and this omplete the proof of Lemma 3.2.

Lemma 3.3 The approximations �

k

; u

k

satisfy for all t 2 [0; T ℄,

Z

t

0

ku

k

(s)k

2

W

2;6

ds � G

1

(t);(3.12)

Z

t

0

kru

k

(s)k

2

L

1

ds � G

2

(t);(3.13)

kr�

k

(t)k

L

1

� F

6

(t);(3.14)

k�

k

t

(t)k

L

1

� F

7

(t):(3.15)
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The funtions on the righ hand side of the above inequalities depend only on

�; �;
; ku

0

k

H

2

; kw

0

k

H

2

and the funtions F

i

; i = 1; 2; 3; 4; 5 of the above Lemmas.

These funtions on ontinuous on the interval in question.

Proof. We observe that for any � 2 C

1

0;�

(
), we have

�(� + �

r

)(ru

k

;r�) = (P

k

(�

k

u

k

t

+ �

k

u

k

� ru

k

� �

k

f � 2�

r

rotw

k

); �) � (�

k

; �):

From the previous estimates, we have �

k

2 L

2

(0; T ;L

6

(
)) uniformly in k whene,

by Amrouhe and Girault results for the Stokes operator, we get (3.12). From usual

Sobolev's embedding results, we then have

Z

t

0

kru

k

(s)k

2

L

1

ds � G

2

(t); 8t 2 [0; T ℄:

Hene, from the formula of Ladyzhenkaya and Solonnikov [11, Lemma 1.3℄, we

onlude

kr�

k

(t)k

L

1

� F

6

(t) and k�

k

t

(t)k

L

1

� F

7

(t):

Lemma 3.4 In the ase of J = B we have that if � = (

0

+ 

d

� 

a

)=(

a

+ 

d

) is

small enough, the approximations w

k

satisfy for all t 2 [0; T ℄

Z

t

0

kw

k

(s)k

2

W

2;6

ds � G

3

(t);(3.16)

Z

t

0

krw

k

(s)k

2

L

1

ds � G

4

(t):(3.17)

The funtions on the righ hand sides of the above inequalities depend only on �; �;


the norm kw

0

k

H

2

and the funtions of the above Lemmas. These funtions one

ontinuous in the interval in question.

Proof. We have for any  2 C

1

0

(
);

�(

a

+ 

d

)(�w

k

;  ) = (�

k

;  ) + (

0

+ 

d

� 

a

)(rdivw

k

;  );

where �

k

= ��

k

w

k

t

� �

k

u

k

� rw

k

+ �

k

g + 2�

r

rotu

k

� 4�

r

w

k

, onsequently

(

a

+ 

d

)k�w

k

k

L

6

� k�

k

k

L

6

+ (

0

+ 

d

� 

a

)krdivw

k

k

L

6

:(3.18)

By other hand side, there exists positive onstants k

1

> 0 and k

2

> 0 suh that

k�w

k

k

2

L

6

� k

1

kw

k

k

2

W

2;6

and krdivw

k

k

2

L

6

� k

2

kw

k

k

2

W

2;6

:
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Consequently in (3.16), we obtain

k

1

(

a

+ 

d

)kw

k

k

2

W

2;6

� k�

k

k

2

L

6

+ k

2

(

0

+ 

d

� 

a

)kw

k

k

2

W

2;6

thus

(k

1

(

a

+ 

d

)� k

2

(

0

+ 

d

� 

a

))kw

k

k

2

W

2;6

� k�

k

k

2

L

6

:

Sine � is small enough, we have k

1

(

a

+ 

d

) � k

2

(

0

+ 

d

� 

a

) > 0; also by the

previous estimates �

k

2 L

2

(0; T ;L

6

(
)) is bounded uniformly in k. We onlude

that w

k

2 L

2

(0; T ;W

2;6

(
)) uniformly in k and, by using Sobolev's embedding

rw

k

2 L

2

(0; T ;L

1

(
)) also uniformly in k:

Now, we onsider the eigenfuntions of the operator Lw = �(

a

+ 

d

)�w �

(

0

+ 

d

� 

a

)rdivw as basis for Galerkin approximations of w. In this ase, the

approximate equation for w is

(Lw

k

;  ) + (�

k

w

k

t

+ �

k

u

k

� rw

k

+ 4�

r

w

k

� �

k

g � 2�

r

rotu

k

;  ) = 0(3.19)

for all  2 W

k

.

We observe that two �rst estimates obtained in Lemma 3.1 remains valid. For

the seond estimate we proeed as follows: We take  = Lw

k

in (3.19), we get

kLw

k

k

2

= (�

k

g + 2�

r

rot u

k

� �

k

w

k

t

� �

k

u

k

� rw

k

� 4�

r

w

k

;Lw

k

):

By using the H�older and Young inequalities, we obtain

kLw

k

k

2

� Ck�

k

k

2

L

1

kgk

2

+ Ckru

k

k

2

+ Ck�

k

k

2

L

1

kw

k

t

k

2

+Ck�

k

k

2

L

1

ku

k

� rw

k

k

2

+ Ckw

k

k

2

� Ckgk

2

+ Ckru

k

k

2

+ Ckw

k

t

k

2

+ Cku

k

� rw

k

k

2

+ Ckw

k

k

2

by the estimate (3.1) in the Lemma 3.1.

Taking  = w

k

t

in (3.19), we have

�

2

kw

k

t

k

2

+



a

+ 

d

2

d

dt

krw

k

k

2

+



0

+ 

d

� 

a

2

d

dt

kdivw

k

k

2

+ 2�

r

d

dt

kw

k

k

2

� C(kgk

2

+ kru

k

k

2

+ ku

k

� rw

k

k

2

):

Now, we observe that

ku

k

� rw

k

k

2

� Cku

k

k

2

L

4

krw

k

k

2

L

4

� Cku

k

k

2

L

4

krw

k

k

1=2

kw

k

k

3=2

H

2

� Ckru

k

k

2

krw

k

k

1=2

kLw

k

k

3=2

� C

"

kru

k

k

8

krw

k

k

2

+ "kLw

k

k

2

:
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The rest of analysis is exatly equal to the one in Lemma 3.1 to obtain the estimate

(3.5), in this ase, we obtain

Z

t

0

fkAu

k

(s)k

2

+ kLw

k

(s)k

2

gds �

e

F

2

(t):

We observe also that the estimate for w

k

t

is done exatly as in Lemma 3.1. Therefore,

the Lemm 3.1 remains valid if we onsider the L operator instead of the Laplaian

operator. The Lemmas 3.2 and 3.3 are proved exatly equals. The analogous to the

Lemma 3.4 in this ase is the following

Lemma 3.5 In the ase that J = L, the approximations w

k

satisfy the following

estimates for any t 2 [0; T ℄

Z

t

0

kw

k

(s)k

2

W

2;6

ds �

e

G

3

(t);(3.20)

Z

t

0

krw

k

(s)k

2

L

1

ds �

e

G

4

(t):(3.21)

Proof. We have, for any  2 C

1

0

(
),

(Lw

k

;  ) = (�

k

;  );

where �

k

= �

k

g + 2�

r

rotu

k

� 4�

r

w

k

� �

k

w

k

t

� �

k

u

k

� rw

k

.

We observe that �

k

2 L

2

(0; T ;L

6

(
)) is bounded uniformly in k. We onlude

that w

k

2 L

2

(0; T ;W

2;6

(
)) uniformly in k and, by using Sobolev's embedding

rw

k

2 L

2

(0; T ;L

1

(
)) also uniformly in k:

Now, by taking F

8

(t) = G

2

(t) +G

4

(t), the estimates in the last Lemmas prove

the ninth estimate in Proposition 2.2.

Lemma 3.6 The approximations (�

k

; u

k

; w

k

) satisfy for all t 2 [0; T ℄

Z

t

0

(ku

k

(s)k

2

H

3

+ kw

k

(s)k

2

H

3

)ds � F

9

(t):(3.22)

Proof. We observe that (2.2)i is equivalent to

�

k

u

k

t

+ �

k

u

k

� ru

k

� �

k

f � 2�

r

rotw

k

+ (�+ �

r

)�u

k

+rp

k

+ �

k

= 0;(3.23)

where �

k

2 C

1

(0; T ;V ); p

k

2 C

1

(0; T ;H

2

(
)) with �

k

(t) 2 V

?

k

; rp

k

2 V

?

for

eah t 2 [0; T ℄, where S

?

denote the orthogonal of the subspae S in L

2

(
):
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Di�erentiating the above identity with respet to x

i

;i=1,...,n and taking the

L

2

-inner produt with A

�u

k

�x

i

, after of adding over i, we obtain

ku

k

(s)k

2

H

3

� Cfkw

k

(s)k

2

H

2

+ k�

k

k

2

L

1

kfk

2

H

1

+ kr�

k

k

2

L

1

kfk

2

+k�

k

k

2

L

1

ku

k

k

2

L

1

ku

k

k

2

H

2

+ k�

k

k

2

L

1

ku

k

k

4

H

2

+kr�

k

k

2

L

1

ku

k

k

2

L

1

kru

k

k

2

+ k�

k

k

2

L

1

kru

k

t

k

2

+ kr�

k

k

2

L

1

ku

k

t

k

2

sine,

X

(

��

k

�x

i

; A

�u

k

�x

i

) =

X

Z

�


�

k

A

�u

k

�x

i

+

Z




�

k

�

�x

i

A

�u

k

�x

i

= 0;

X

(r

�p

k

�x

i

; A

�u

k

�x

i

) =

X

(Pr

�p

k

�x

i

4

�u

k

�x

i

) = 0:

Now, we integrate (3.23) with respet to t and using the above's estimates, we obtain

the desired result. Analogously, we prove the result for w.

The following remark will be neessary for the following estimates.

Remark. Let f 2 L

1

(a; b) be a positive funtion. Then there is a sequene "

n

! a

+

suh that "

n

f("

n

)! 0 as n!1:

Now we shall study higher order estimates for the approximations,

Lemma 3.7 Under the assumed hypotheses, there hold

i)

Z

t

0

�(s)(ku

k

tt

(s)k

2

+ kw

k

tt

(s)k

2

)ds+ �(t)(kru

k

t

(t)k

2

+ krw

k

t

(t)k

2

) � F

10

(t);

ii) �(t)(ku

k

(t)k

2

H

3

+ kw

k

(t)k

2

H

3

) � F

11

(t);

iii) �(t)(kru

k

(s)k

2

L

1

+ krw

k

(s)k

2

L

1

) � F

12

(t);

where �(t) = minf1; tg. The funtions on the right hand sides depend on their argu-

ment t, and in addition on T � T

�

; � > 0; � > 0;� and the norms ku

0

k

H

2

; kw

0

k

H

2

.

On the interval in question these funtions are ontinuous in the variable t.

Sketh of Proof. Di�erentiating (2.3)i with respet to t, and multiplying by u

k

tt

and integrating in 
, we get



1

ku

k

tt

k

2

+

1

2

d

dt

kru

k

t

k

2

� 

2

+ 

3

kru

k

t

k

2

+ 

4

krw

k

t

k

2

;(3.24)
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where 

i

are onstants depend on the sup in t for the funtions done in the above

Lemmas, the regularity on �, the initial data and independ of k.

Multiplying (3.24) by �(t) and integrating in ("; t), we get



1

Z

t

"

�(s)ku

k

tt

(s)k

2

ds+

1

2

Z

t

"

�(s)

d

dt

kru

k

t

(s)k

2

ds

� 

2

Z

t

"

�(s)ds+ 

3

Z

t

"

�(s)kru

k

t

(s)k

2

ds+ 

4

Z

t

"

�(s)krw

k

t

(s)k

2

ds

� 

2

t+ 

3

Z

t

0

kru

k

t

(s)k

2

ds+ 

4

Z

t

0

krw

k

t

(s)k

2

ds:

A ontinuation, we observe that



1

Z

t

"

�(s)

d

dt

kru

k

t

(s)k

2

ds = �(t)kru

k

t

(t)k

2

� �(")kru

k

t

(")k

2

+

Z

t

"

�

0

(s)kru

k

t

(s)k

2

ds a.e. in t:(3.25)

Bearing in mind (3.9) and the above Remark, we have passing to the limit "! 0

+

,

(i); (ii) follows of (i), by using the inequality (3.25 ). (iii) follows imediately of (ii).

The arguments for w are analogous. This ompletes the proof.

Analogously, we an prove.

Lemma 3.8 Under the hypotheses done , we have

Z

t

0

�(s)(kP�u

k

t

(s)k

2

+ k�w

k

t

(s)k

2

)ds � F

13

(t):

4. Existene of Solutions

By the estimates given in tke Lemma 3.2, we an hoose a subsequene of fu

k

g

still denote by fu

k

g suh that u

k

! u weak - ? in L

1

(0; T ;H

2

(
)) and u

k

t

! � weak

- ? in L

1

(0; T ;L

2

(
)). By standar arguments � = u

t

. Analogously, we an proved

for angular veloity. Truly, we an strenghten the onvergene of u

k

and w

k

using

the Aubin-Lions Lemma , we get u

k

! u and w

k

! w strongly in L

p

(0; T ;H

1

(
))

for every p �nite.

Also, we have by estimates given in the Lemma 3.3, �

k

! � weak - ? in

L

1

(0; T ;C

1

(
)) and �

k

t

! �

t

weak - ? in L

1

(0; T ;L

p

(
)) for every p 2 (1;1℄.

Thus, �

k

! � in D

0

(0; T ;L

q

(
)) whene

1

p

+

1

q

= 1. Likewise, we observe that
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�

k

t

! � weak - ? in L

1

(0; T ;L

1

(
)) thanks to the estimate (3.15 ). Thus �

k

t

! �

weak - ? in L

1

(0; T ;L

p

(
)) with 1 � � <1; immediately � = �

k

t

. Therefore, we an

to streng then the onvergene to the density by using the Aubin-Lions Lemma, we

get �

k

! � in L

p

0

(0; T ;W

r;l

(
)) whene 0 � r < 1; 1 < p

0

<1; 1 < l <1. It fol-

lows by using the Sobolev embedding, for l large enough, we have r�n=l > 0 (r = 2

or 3) and for so muh the onvergene, �

k

! � in L

p

0

(0; T ;C

0;

(
)) (0 �  < 1).

A ontinuation we show that

Z

T

0

h�

k

u

k

t

; v(x)�(t)idt �!

Z

T

0

h�u

t

; v(x)�(t)idt;(4.1)

Z

T

0

h�

k

w

k

t

; z(x)�(t)idt �!

Z

T

0

h�w

t

; z(x)�(t)idt;(4.2)

whene k �! 1, for every v(x) 2 C

3

(
); �(t) 2 D(0; T ); z(x) 2 C

3

0

(
); �(t) 2

D (0; T ), respetively.

We have

j

Z

T

0

h�

k

u

k

t

; v(x)�(t)idtj � j

Z

T

0

h(�

k

� �)u

k

t

; v(x)�(t)idtj

+j

Z

T

0

h�

k

(u

k

t

� u

t

); v(x)�(t)idtj:

We observe that

j

Z

T

0

h(�

k

� �)u

k

t

; v(x)�(t)idtj � sup jv(x)�(t)j

Z

T

0

k�

k

� �k ku

k

t

kdt

onsequently,

j

Z

T

0

h(�

k

� �)u

k

t

; v(x)�(t)idtj �! 0 whene k �!1:

Therefore,

j

Z

T

0

h�(u

k

t

� u

t

); v(x)�(t)idtj = j

Z

T

0

hu

k

t

� u

t

; �v(x)�(t)idtj

and bearing in mind that u

k

t

�! u

t

weakly, we have

Z

T

0

h�(u

k

t

� u

t

); v(x)�(t)idt �! 0 as k �!1:

Thus, we proved (4.1).( 4.2) is proved similary.
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Now we show that

Z

T

0

h�

k

u

k

� ru

k

; v(x)�(t)idt �!

Z

T

0

h�u � ru; v(x)�(t)idtj(4.3)

Z

T

0

h�

k

u

k

� rw

k

; z(x)�(t)idt �!

Z

T

0

h�u � rw; z(x)�(t)idt(4.4)

whene k �! 1, for every v(x) 2 C

3

(
); �(t) 2 D(0; T ); z(x) 2 C

3

0

(
); �(t) 2

D(0; T ), respetively.

We show (4.4), (4.3) is make similary. Then we have

Z

T

0

h�

k

u

k

� rw

k

; z(x)�(t)idt

=

Z

T

0

h(�

k

� �)u

k

� rw

k

; z(x)�(t)idt+

Z

T

0

h�(u

k

� u) � rw

k

; z(x)�(t)idt

+

Z

T

0

h�u � r(w

k

� w); z(x)�(t)idt:

A ontinuation we observe that the �rsts integral onvergene to zero, enough to

apply of Shwarz inequality with respet to spae variavel and observe that �

k

! �

in L

2

(
� (0; T )) and that

Z

T

0

Z




ju

k

� rw

k

jdx dt �

Z

T

0

ku

k

k

2

L

1

krw

k

k

2

dt � ;

thanks to the Lemmas 3.1 and 3.2. In the seond integral, we have

Z

T

0

Z




�(u

k

� u) � rw

k

z(x)�(t)dxdt =

Z

T

0

Z




(u

k

� u) � rw

k

�z(x)�(t)dxdt

� sup j�z(x)�(t)j

Z

T

0

Z




ju

k

� uj jrw

k

jdxdt

� C

Z

T

0

�

Z




ju

k

� uj

2

dx

�

1=2

�

Z




jrw

k

j

2

dx

�

1=2

dt

� C

Z

T

0

ku

k

� uk

2

dt;

we observe that its integral onvergene to zero, thanks to (3.2).

The third integral is treated analogously.

20



Passage to the Limit in the Approximated Equation

Thus,

Z

T

0

h�

k

u

k

t

+ �

k

u

k

� ru

k

� �

k

f � 2�

r

rotw

k

� (�+ �

r

)�u

k

; vi�(t)dt = 0

for every � 2 L

1

(0; T ) and passing to the limit for k ! 1, by standard way we

obtain

Z

T

0

h�u

t

+ �u � ru� �f � 2�

r

rotw � (�+ �

r

)�u; vi�(t)dt = 0

for every � 2 L

1

(0; T ). Now with help to the Du Bois-Reymond's Theorem we

obtain

h�u

t

+ �u � ru� �f � 2�

r

rotw � (�+ �

r

)�u; vi = 0

a.e. in 
, for every v 2 L

2

(
). This

P (�u

t

+ �u:ru� �f � 2�

r

rot w � (�+ �

r

)�u) = 0

a.e. in 
.

The passing to the limit in the equation for w

k

is similary. For the density, we

observe that

u

k

�! u strong in L

2

(
� (0; T )),

�

k

t

�! �

t

weak in L

2

(
� (0; T )) and

r�

k

�! r� weak in L

2

(
� (0; T )).

Thus we have passing to the limit for k �! 1, in the ontinuity equation

approximed:

�

t

+ u � r� = 0 in the L

2

(
� (0; T )) sense:

Next, we prove the ontinuous assumption of the initial data, we have

Proposition 4.1 Under the hypotheses done, we have

(i) lim

t!0

+

ku(x; t)� u(x; 0)k = 0;

(ii) lim

t!0

+

kw(x; t)� w(x; 0)k = 0;

(iii) lim

t!0

+

kru(x; t)�ru(x; 0)k = 0;

(iv) lim

t!0

+

kru(x; t)�ru(x; 0)k = 0;
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i.e., the solution u; w assumes the initial data ontinuously in the H

1

(
)-norm.

Proof. We prove only (i) and (iii), (ii) and (iv) are analogously proved. We hosen

approximation u

k

, to satisfy the onditions u

k

(0) �! u(0), in the L

2

(
) sense

(strong). We have

u

k

(x; t)� u

k

(x; 0) =

Z

t

0

u

k

t

(x; s)ds

for every k = 1; 2; : : :. Thus,

ku

k

(x; t)� u

k

(x; 0)k �

Z

t

0

ku

k

t

(s)kds � Ct

in virtude of Lemma 3.2. Now, we have passing to the limit for k �!1

ku(x; t)� u(x; 0)k � Ct

Finally, if t �! 0

+

, we obtain (i).

Considerer now (iii). One easily onludes that

lim

t!0

+

sup kru(t)k � kru

0

k:

Thus, u(t) �! u

0

strongly in V if u(t) �! u

0

weakly in V ; and to established the

latter we need only show

Z




r(u(t)� u

0

)r'

l

dx �! 0 as t �! 0

+

;

for eah basis funtion '

l

. This requires several observations. First, notie that

j

Z




r(u

k

(t)� u

k

(0))r'

l

dxj = j

Z

t

0

d

dt

(ru

k

; r'

l

)dsj(4.5)

= j �

Z

t

0

(u

k

t

; P�'

l

)dsj �

1

2

Z

t

0

ku

k

t

k

2

ds+

1

2

Z

t

0

kP�'

l

k

2

ds � Ct

thanks to the lemmas. Consequently,

Z




r(u

k

(t)� u

k

(0))r'

l

dx �! 0 as t �! 0

+

:(4.6)

Next, observe that for any �xed t 2 (0; T ),

Z




r(u(t)� u

k

(t))r'

l

dx �! 0 as k �!1;
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beause if we set �

k

= u� u

k

and let h(s) be a smooth funtion, wih vanishes for

s � t=2 and equals one for s � t, then

Z




r

k

�r'

l

dx =

Z

t

0

d

ds

Z




h(s)r�

k

r'

l

dxds(4.7)

=

Z

t

0

Z




fh

s

r�

k

r'

l

� h�

k

t

P�'

l

gdxds �! 0

as k �! 1. Here we are appealing to the weak onvergene r�

k

; �

k

t

! 0 in

L

2

(0; T ;L

2

(
)) . Finally, we note

Z




r(u

k

(0)� u

0

)r'

l

dx = 0 for k � l;

is just another way of starting the ondition used to determine the initial value



l;k

(0). Cleary (4.5), (4.6) and (4.7) together imply (iii). This omplete the proof.

Proposition 4.2 Under the hypotheses done, we have

(i) lim

t!0

+

kP�u(x; t)� P�u(x; 0)k = 0,

i.e., the initial veloity is assumed strongly in H

2

(
).

(ii) lim

t!0

+

ku

t

(x; t)� u

t

(x; 0)k = 0.

Proof. To prove (i), it is suÆient to show

lim

t!0

+

sup kP�u(:; t)k � kP�u

0

k;

as we already know u(:; t) ! u

0

in H

1

(
). Multiplying (2.3)i by P�u

k

t

and inte-

grating in 
, we get

kP�u

k

k

2

� kP�u

0

k

2

+ 2(�+ �

r

)

�1

f(�

k

u

k

ru

k

� �

k

f � 2�

r

rotw

k

; P�u

k

)

+(�

0

u

k

0

ru

k

0

� �

0

f

0

� 2�

r

rot w

k

0

; P�u

k

0

)g+Nt

uniformly in k. From this, we onlude

kP�u(t)k

2

� kP�u

0

k

2

+ 2f(�uru� �f � 2�

r

rotw; P�u)� (�

0

u

0

ru

0

��

0

f

0

� 2�

r

rotw

0

; P�u

0

)g+Nt:

Sine �uru! �

0

u

0

ru

0

in L

2

; �f ! �

0

f

0

in L

2

; rotw ! rotw

0

in L

2

and P�u!

P�u

0

weakly in L

2

as t! 0

+

, we obtain the desired result. Cleary, now, (ii) follows

from (i). This omplete the proof of the Proposition.

23



Analogously, for the angular veloity, we have the

Proposition 4.3 Under the hypotheses done, we have

(i) lim

t!0

+

k�w(x; t)��w(x; 0)k = 0,

i.e., the initial angular veloity is assumed strongly in H

2

(
).

(ii) lim

t!0

+

kw

t

(x; t)� w

t

(x; 0)k = 0,

Remark. The argument used in the propositions truly an be make for all t = t

0

> 0

instead of t = 0. This we will give the ontinuity to the right in the spaes adequate.

The same type of analysis we give the ontinuity to the left for t = t

0

> 0. For the

same reason it is obtain the ontinuity indiate in the enuniate of Theorem 2.1.

5. Uniqueness

We onsider now the question of uniqueness the solution. Let

�

1

= fv = v 2 L

2

(0; T

1

;H

3

(
) \ V ); v

t

2 L

2

(0; T

1

;V )g;

�

2

= fu = u satisfy the onlusions of Theorem 2.1g;

H

1

= f = 2 L

2

(0; T

1

;H

2

(
) \H

1

0

(
));  

t

2 L

2

(0; T

1

;H

1

(
)g

H

2

= fw =w sa�sfy the onditions of Theorem 2.1g:

With this notations we an enuniate the

Theorem 5.1 Assumed that (�; v;  ) is any one solution of the problem (1.1) - (1.3)

in C

1

(
� [0; T ℄)�

P

1

�H

1

. Then, we have

� = �; u = v and w =  

in [0; T

2

℄, where T

2

= minfT; T

1

g, where T is the time give in Theorem 1 and (�; u; w)

is the solution of the problem (1.1) - (1.3) obtained in C

1

(
� [0; T ℄)�

P

2

�H

2

.

Proof. Let � = �� �; � = u� v and � = w �  . Then these variables satisfy the
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following equations

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�

t

+ u � r� = ��r�;

�(0) = 0;

P (��

t

) + (�+ �

r

)A�(t) = P (�f) + 2�

r

P (rot �)� P (�v

t

)� P (�u � ru)

�P (�� � ru)� P (�v � r�);

�(x; 0) = 0;

��

t

� (

a

+ 

d

)�� � (

0

+ 

d

� 

a

)r div � + 4�

r

�

= �g + 2�

r

rot � � � 

t

� �u � rw � �� � w � �v � r�;

�(x; 0) = 0:

(5.1)

Multiplying (5.1)iii by � and integrating over 
 we obtain

1

2

d

dt

k�

1=2

�k

2

+ (�+ �

r

)kr�k

2

= (�f; �) + (�v

t

; �) + 2�

r

(rot �; �)� (�u � ru; �)

�(�� � ru; �)� (�v � r�; �) +

1

2

(�

t

�; �):

Now, estimating as it is usual in the above identity, we obtain the following integral

inequality

k�

1=2

(t)�(t)k

2

+ (�+ �

r

)

Z

t

0

kr�(s)k

2

ds

� C

Z

t

0

(kf(s)k

2

H

1

+ krv

t

(s)k

2

+ kAu(s)k

4

)k�(s)k

2

ds+ C

Z

t

0

k�(s)k

2

ds

+C

Z

t

0

(kAu(s)k

2

+ kA�(s)k

2

+ k�

t

(s)k

L

1

)k�(s)k

2

ds:

(Æ will be hosen suitably).

Multiplying (5.1)i by � and integrating over 
, after of integrate over [0; T ℄ we

obtain

k�(t)k

2

� C

Z

t

0

k�(s)kkr�(s)k

L

1

k�(s)kds

� C

�

Z

t

0

k�(s)k

2

ds+

Z

t

0

k�(s)k

2

ds

�

:(5.2)

Multiplying (5.1)v by � and integrating over 
 one has

1

2

d

dt

k�

1=2

�k

2

+ (

0

+ 

d

)kr�k

2

+ (

0

+ 

d

� 

a

)kdiv �k

2

+ 4�

r

k�k

2

= (�g; �) + 2�

r

(rot �; �)� (� 

t

; �)� (�u � rw; �)

�(�� � rw; �)� (�v � r�; �)�

1

2

(�

t

�; �):(5.3)
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Estimating as it is usual in the above identity, we obtain the following integral

inequality

k�

1=2

(t)�(t)k

2

+ (

a

+ 

d

)

Z

t

0

kr�(s)k

2

ds+ (

0

+ 

d

� 

a

)

Z

t

0

kdiv �(s)k

2

ds

+4�

r

Z

t

0

k�(s)k

2

ds

� C

Z

t

0

(kg(s)k

2

H

1

+ kr 

t

(s)k

2

+ kAu(s)k

2

k�w(s)k

2

) ds

+C

Z

t

0

k�(s)k

2

(1 + k�(s)k

2

L

1

k�w(s)k

2

) ds

+C

Z

t

0

k�(s)k

2

(k�

t

(s)k

L

1

+ k�(s)k

2

L

1

kAv(s)k

2

) ds:(5.4)

Adding (5.2), (5.3) and (5.4), one has

k�(s)k

2

+ k�(s)k

2

+ k�(s)k

2

�

Z

t

0

h(s)(k�(s)k

2

+ k�(s)k

2

+ k�(s)k

2

)ds

where h = C(1 + kfk

2

H

1

+ kgk

2

H

1

+ krv

t

k

2

+ kr 

t

k

2

+ kAuk

4

+ kAuk

2

k�wk

2

+kAuk

2

+ kAvk

2

+ k�

t

k

1

+ k�k

2

L

1

k�wk

2

+ k�k

2

L

1

kAvk

2

):

We observe that h(s) � 0 and h(�) is a integrable funtion, onsequently applying

the Gronwall's Lemma, we get

k�(t)k

2

+ k�(t)k

2

+ k�(t)k

2

= 0;

thus we obtain � = �; u = v and w =  .

6. Results the Pressure

We an also obtain now informations on the pressure.

Proposition 6.1 Under the hypothesis to the Theorem 2.1, there is p 2

C("; T ;H

1

(
)=IR), for any " > 0 suh that together to the solution (u; w; �) given

the Theorem 2.1 satisfy

�u

t

+ �u � ru� (�+ �

r

)�u+rp = �f + 2�

r

rotw;

div u = 0;
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�w

t

+ �u � rw � (

0

+ 

d

)�w + (

0

+ 

d

� 

a

)rdivw + 4�

r

w

= �g + 2�

r

rotu;

�

t

+ u � r� = 0;

uj

�


= 0; wj

�


= 0; u(0) = u

0

; w(0) = w

0

; �(0) = �

0

:

Proof. We have

�(�+ �

r

)�u+rp = j

where j = �(f�u

t

�u�ru)+2�

r

rotw. We observe that the Theorem 2.1 implies that

j 2 L

1

(0; T ;L

2

(
))\L

2

(0; T ;H

1

(
)), applying the estimates for the Stokes problem

(Amrouhe and Girault [1℄), we have p 2 L

1

(0; T ;H

1

(
)=IR)\ L

2

(0; T ;H

2

(
)=IR).

Therefore, we have

�(�+ �

r

)�u

t

+rp

t

= j

t

;

where j

t

= p

t

(f � u

t

� u � ru) + 2�

r

rotw

t

+ �(f

t

� u

tt

� u

t

� ru � u � ru

t

) 2

L

1

("; T ;L

2

(
)). Thus, newly by the estimates for the Stokes problem, we get

p

t

2 L

1

("; T ;H

1

(
)=IR), for any " > 0, onsequently, we have

p 2 C("; T

0

H

1

(
)=IR); 8 " > 0:

Remark. In order to obtain informations in t = 0 are neessary ertain onditions

of ompatibility over the datum. This is done of the same manner as in the ase of

the Navier-Stokes equations and for this is very instrutive the disussion make in

the paper of Heywood and Rannaher [8℄.

7. Remark on the Global Existene

We present three Theorems on global existene in time of strong solutions for

problem (1.1) - (1.3). By using the thehniality of the above setion together with

the arguments of the work [3℄, we an proved easily in the ase n = 3

Theorem 7.1 (n = 3). Let the initial values satisfy u

0

2 V \ (H

2

(
)

3

); w

0

2

(H

1

0

(
)

3

)\(H

2

(
)

3

); �

0

2 C

1

(
) and the external �elds f; g 2 L

1

([0;1); (H

1

(
))

3

)

with f

t

; g

t

2 L

1

([0;1); (L

2

(
))

3

). If ku

0

k

H

1

; kw

0

k

H

1

and kfk

L

1

([0;1);L

2

(
))

and

kgk

L

1

([0;1);L

2

(
))

are suÆiently small, then the solution (�; u; w) of problem (1.1)

and (1.2) exists globally in time and satis�es

u 2 C([0;1);V \H

2

(
)); w

0

2 C([0;1); H

1

0

(
) \H

2

(
))
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� 2 C

1

(
 � [0; T ℄) for any T > 0. Moreover, for any  > 0 there exists some �nite

positive onstants M and C suh that

sup

t�0

kru(t)k =M; sup

t�0

krw(t)k =M;

sup

t�0

ku

t

(t)k � C; sup

t�0

kw

t

(t)k � C;

sup

t�0

kAu(t)k � C; sup

t�0

k�w(t)k �M;

sup

t�0

e

�t

Z

t

0

e

s

(kru

t

(s)k

2

+ krw

t

(s)k

2

)ds � C;

sup

t�0

e

�t

Z

t

0

e

s

(ku(s)k

2

W

2;6

+ kw(s)k

2

W

2;6

)ds � C;

sup

t�0

e

�t

Z

t

0

e

s

(kru(s)k

2

C(
)

+ krw(s)k

2

C(
)

)ds � C:

Also the same kind of estimates hold uniformly in k for the semi-Galerkin approxi-

mations.

In the ase two-dimensional, we have

Theorem 7.2 (n = 2). Suppose that the initial values satisfy u

0

2 V \

(H

2

(
))

2

; w

0

2 (H

1

0

(
))

2

\ (H

2

(
))

2

; �

0

2 C

1

(
) and the external �elds f; g 2

L

1

([0;1); (H

1

(
))

2

); f

t

; g

t

2 L

1

([0;1); (L

2

(
))

2

) then the solution (�; u; w) of

problem (1.1) and (1.2) exists globally in time and satis�es u; w 2 C([0;1);V \

(H

2

(
))

2

); � 2 C

1

(
 � [0; T ℄) for any T > 0. Moreover, the estimates given in

Theorem 7.1 are true for any  > 0.

Theorem 7.3 Suppose that n = 2 or 3, that

u

0

2 V \ (H

2

(
))

n

; w

0

2 (H

1

0

(
))

n

\ (H

2

(
))

n

;

�

0

2 C

1

(
) and that for some onstant  > 0,

e

t

(f + g) 2 L

1

([0;1); (H

1

(
))

n

); e

t

(f

t

+ g

t

) 2 L

1

([0;1); (L

2

(
))

n

):

Under these onditions if n = 2, or with the additional ondition that

ku

0

k

H

1

(
)

; kw

0

k

H

1

(
)

; ke

t

fk

L

1

([0;1);(L

2

(
))

n

)

and ke

t

gk

L

1

([0;1);(L

2

(
))

n

)

are small enough if n = 3, then there is a global solution

(�; u; w) of problem (1.1) - (1.2). Moreover, there is a positive onstant 

�

�  suh
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that for any 0 � � < 

�

there hold the following estimates

sup e



�

t

(kru(t)k

2

+ krw(t)k

2

) < +1

sup

t�0

e

�t

(ku

t

(t)k

2

+ kw

t

(t)k

2

+ kAu(t)k

2

+ k�w(t)k

2

) < +1

sup

t�0

Z

t

0

e

�s

(kru

t

(s)k

2

+ krw

t

(s)k

2

)ds < +1

sup

t�0

Z

t

0

e

�s

(ku(s)k

2

W

2;6

+ kw(s)k

2

W

2;6

)ds < +1;

sup

t�0

Z

t

0

e

�s

(kru(s)k

2

C(
)

+ krw(s)k

2

C(
)

)ds < +1

sup

t�0

(kr�(t)k

L

1

+ k�

t

(s)k

L

1

) < +1

sup

t�0

�(t)(kru

t

(t)k

2

+ krw

t

(t)k

2

) < +1

sup

t�0

Z

t

0

�(s)(ku

tt

(s)k

2

+ kw

tt

(s)k

2

)ds < +1

sup

t�0

Z

t

0

�(s)(kAu

t

(s)k

2

+ k�w

t

(s)k

2

)ds < +1

In the last three estimates �(t) = minf1; tge

�t

the same kind of estimates hold

uniformly in k 2 IN for the semi-Galerkin approximations.
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