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Abstract

We establish the existence of a weak solution for the equations of motion of
magneto-micropolar fluid in exterior domains. Also we discuss the uniqueness
of weak solutions.

1. Introduction

In this work we study existence of weak solutions for the equations that describes
the motion of a viscous incompressible magneto-micropolar fluid in a exterior domain

Q C IR? . Such equation are given by (see [1], for instance):

u-Vu—(u—i—X)Au—i-V(p—l-gh-h)zxrotw—l-rh-Vh—i-f,
Jju-Vw — yAw + 2xw — (a + f)Vdivw = xrotu + g, (1.1)
—vAh+u-Vh—h-Vu=0,

divu =0, divh=0 in .

Here, u(z) € IR? denotes the velocity of the fluid at point z € Q; w(x) € IR?, h(z) €
IR? and p(z) € IR denote, respectively, the microrotational velocity, the magnetic
field and the hydrostatic pressure; the constants u, x, r, «, 3, 7, j and v are
constants associated to properties of the material. From physical reasons, these
constants satisfy min{u, x, r, j, v, v, a+ B8 +~v} > 0; f(x) and g(x) € IR® are

given external fields.
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We assume that on the boundary 02 of €2, the following conditions hold
u(z) = w(x) =h(x) =0, =€ 0Q (1.2)
and the following conditions at infinity

lim u(z) = lim w(zx) = lim h(z)=0. (1.3)

Equation (1.1)(i) has the familiar form of the Navier-Stokes equations but it is cou-
pled with equation (1.1)(ii), which essentially describes the motion inside the macro-
volumes as they undergo microrotational effects represented by the microrotational
velocity vector w. For fluids with no microstructure this parameter vasnishes. For
Newtonian fluids, equations (1.1)(i) and (1.1)(ii) decouple since x = 0.

It is now appropriate to cite some earlier works on the initial boundary-value
problem (1.1)-(1.3), which are related to ours and also to locate our contribution
therein. When the magnetic field is absent (h = 0), the reduced problem was studied
by Lukaszewicz [8], Abid [2]. Lukaszewicz [8] established existence of weak solutions
for (1.1) - (1.3) in bounded domains under certain assumptions by using linearization
and the Leray-Schauder principle. In the same paper, by using the regurality of the
Stokes equations and the elliptic systems proved the regularity of solutions, he also
show conditions under to which the uniqueness holds. Again when h = 0, Abid
[2] established results similar to the ones of Lukaszewicz [8] in exterior domains by
using the results of Girault and Sequeira [4] for Navier-Stokes equations .

In this work, we use ”the extending domain method” as in Ladyzhenskaya|[7]
and Heywood [6], to prove the existence of weak solutions , we also discuss the
uniqueness of solutions.

We reach in this way, for weak solutions, basically the same level of knowledge
as in the case of the classic Navier-Stokes equations.

Finally, the paper is organized as follows: in Section 2 we state the basic as-
sumptions and results that to used later on in the paper; we also rewrite (1.1) - (1.3)

in a more suitable weak form; we describe the approximation method and state our



results (Theorems 2.3 and 2.4). Each one of the following sections will be devoted

to their proofs.
2. Functions spaces and preliminaires

The functions in this paper are either IR or IR3-values and we will not distinguish
these two situations in our notations. To which case we refer to will be clear from
the context.

Now, we give the precise definition of the exterior domain €2 where our boundary-
value problem associated to the problem (1.1)-(1.3) has been formulated.

Let K a subset compact of IR*> whose bondary JK is of classe C?. The exterior
domain §2 that we will consider is 2 = K¢ and 02 = 0K.

The extending domain method was introduced by Ladyzhenkaya [7] to study
the Navier-Stokes equations in unbounded domains. As was observed by Heywood
[6] the method is useful in certain class of unbounded domain, in this class certainly
our domain is.

The principal ideia is the following: the exterior domain {2 can be approximated
by interior domain Q; = By N Q (By is a ball with radius £ and center at 0) as
k — oo.

In each interior domain €2, we will prove the existence of weak solution, to do is,
we will use the Galerkin method together with the Brouwer’s Fixed Point Theorem
as in Heywood [6]. Next, by using the estimates given in Ladyzhenskaya’s book
[7] (we recall these estimates later) together with diagonal argument and Rellich’s
compactness theorem, we obtain the desirable weak solution to problem (1.1)-(1.3).
Properties of regularity and uniqueness are also studied.

We use several functions spaces. D denotes €2 or ().
WD) = {u; D e LP(D),|a| <71},
Wy?(D) = Completion of C5°(D) in W"P(D),
Con(D) = {p e C5P(D); dive =0},



J(D) = Completion ofCg5, (D) in norm [|Vé||
H(D) = Completion ofC§% (D) in norm |||

Here || - || is the L?*-norm; the LP-norm we denote by || - ||,
We observe that J(D) is equivalent to

{6 € W(D) ; ¢lon =0, dive = 0},

as was proved by Heywood [5].
When p = 2, as it usual, we denote W™?(D) = H"(D) and Wy?(D) = H} (D).
The following inequalities are in Ladyzhenskaya [7].

Lemma 2.1. Let D C IR? bounded or unbounded then
(a) For u € Wy*(D) (or J(D) or H}(D)), we have
|ullzey < CrlIVull L2y,

where O}, = (48)1/°,

(b) (Holder’s inequality). If each integral makes sense, then we have

(- V)v,w)| < 30+

ul| o) IV V| Loy |wl| (D)

1
where p,q,r >0and — 4+ -+ - =1.
p q T

We make several assumptions on the boundary 02 and the external forces:
(S1) Op C int K (Oy is a neighbourhood of the origen 0) and K C B(0, d) which is

a ball with radius d and center at 0.
(Se) 02 = 0K € C?.

(Ss) feJ()*, g€ HH(9Q),
where J(£2)* is the topological dual of J(£2).

Let us denote

3 ov; Ow; 3 ov;
alv,w) = > /Daxji axjd:r, blu,v,w) = > /Duj a—xjwidx

ij=1 hj=1




which we define for all vector-valued functions w, v, w for which the integrals are
well defined.

We can now define a notion of weak solution for (1.1)-(1.3).

Definition 2.2. We will say that a triple of functions (u,w,h) defined on 2 is a
weak solution of (1.1)-(1.3) if only if the functions u, w, h satisfy

u, h € J(Q), w € Hy(N)
and also satisfy the following equations
(1 + x)alu, ©) = b(u, @, u) +rb(h, 0, h) = (f, ) + x(w, rot ),

Ja(w, 6) + (o + B)(divw, div§) — jb(u, 6,w) + 2x(w, ) = (9, 6) + X 108 6),
va(h, ) — b(u, v, h) +b(h,¢,u) =0
for all ¢, ¢ € G55 (2) and ¢ € C5°(Q2).
Remark. If u, h € J(Q) and w € H(2), then
ulon = hlag = wlsn =0
and moreover por (a) in Lemma
lim u(z) = lim w(zx) = lim h(z)=0.

Our results are:

Theorem 2.3 (Existence). Under the hypotheses (S1), (S2) and (S3) the problem

(1.1)-(1.3) has a stationary weak solution.

Theorem 2.4 (Uniqueness). Under the hypotheses (S;), (S2) and (S3) if there

exists a stationary weak solution satisfying the following conditions

3C,

2 ([Julls + Jwl[s + (1 +7) |[R]l5) < 1,
3C

?VL(HUH?» + (1 +7)[hll3) <1,

3C

2—,f||w||3 <1



where O, = (48)'/%, then the weak solution is unique.
3. The interior problem.

In this section we consider the following interior problem (Fy) in domains € =
B,NQ (ke N).
' —(p+x)Au+ (u-V)u+V(p+ gh-h) = xrotw +r(h-V)h + f,
—vAw — (a4 f)Vdivw + j(u - V)w + 2xw = yrotu + g,
(Fr) —vAh+ (u-V)h = (h-V)u =0,
divu =0, div h=0,
u=0, w=0, h=0 on 00 =002 NJIB.

\

The notion of weak solution for (Py)is completely similar to the ones for (1.1)-(1.3).

Proposition 3.1. The problem (P;) has a weak solution (@, @*, h*) € J(S%) X

To prove the existence of weak solution of the system (FPj) we will use the
Galerkin method together with Brouwer’s Fixed Point Theorem as in Fujita [3] (see
also Heywood [6]).

First, we will prove a priori estimates for weak solution of (Py).

Lemma 3.2. Let (ak,wk,%k) a weak solution of (Py). Then, they satisfy the

following estimates

L . ~y o~ 1 1
pa(@®, ")+ a(@®, @) + 2rva(h*, h*) < ;||f||2j(9)* + ;Hg”%[—l(ﬂ)' (3.1)

Proof. Multiplying (P;)i, (P;)ii and (Py)iii by @, @"* and rh*, respectively, after
of integrate on {2, we obtain
(4 x) a(@*, @*) = x(rot @*, @) + rb(h*, B*, ") + (f,a"),
ya(@®, @) + (a + B)||diva®||* + 2x]|a*|]* = x(rot @*, @*) + (g, @"),
rva(hF, h¥) = rb(hF, @*, h*).



Adding the above equalities, we get

(1 + x) a(@, @) +y a(@®, @) + rva(B*, h*) + (a+ B)||div @*||* + 2x || @*||*
= 2x(@*, rot @*) + (f, ") + (g, @") (3.2)

since  b(R¥, h¥, @) + 7 b(h*, @, h¥) = 0.
We estimate of the right-hand side of the equality (3.2) as follows

2x(@", rot ") < 2x||@*| rotat|| < 2xl|@*|| | Va*|| < xll@*|* + xa(@®, @),
since [[rot a¥|| = ||V@*]|. Also,

~ ~ B
(f@) < Ml IVER] < ||f||3m+§a(uk,uk),

(05) < ollara IV < 5ol + Jal, o)
Consequently, using the above estimates in (3.2), we get
pa(at, a*) + W(w @) + 2T‘I/G(hk 1*) + 2x|| @[ + 2(e + B) |div @
< ﬁ”fHJ(Q)* + ;HQHH—l
This estimates imply immediately (3.1).
Remark. We observe that estimate (3.1) is independent of .
Now, we prove the existence of solution (@*, @*, h*) for (Py).

As m®" approximate solution of eq. (F}), we choose functions

Zcmﬁp Z my¢ and h"(x) = ZeijOj(ff);

satisfying the equations

(H + X) a(um, (IDJ) + b(uma um, (IDJ) -r b(hma hm) SOJ)



= x(rot w™, ¢7) + (f. "), (3.3)
ya(w™, ¢') + (o + B)(divw™, dive?) + jb(u™, w™, ¢7) + 2x(w™, ¢’)

= x(votu™, ¢’) + (g, &), (3.4)
va(h™, ¢) + b(u™, k™, @) — b(h™, u™, ') = 0, (3.5)

for 1<j5<m.

First we assume the existence of (u™, w™, k™) for any m € N. Note that solu-
tions (u™,w™, h™) must satisfy estimate (3.1). In fact, the identity (3.1) for u™ is
obtained by multiplying (3.3) by ¢p,; and summing over j from 1 to m. Similary, we
have identities (3.1) for w™ and h™.

Estimate (3.1) follow from eqs. (3.3), (3.4) and (3.5) as in Lemma 3.2. Therefore
the sequence (u™, w™, h™) is bounded in J(Q) x Hg (%) x J(Q).

Since J(€2) (respectively H{(£2)) is compactly imbedded in H (€2) (respectively
L*(£)) we can choose subsequences which we again denote by (u™,w™, h™) and
elements @ € J(Q), @F € H}(Q) and h¥ € J(€4) such that

u™ — zzk
h™ — ¥

m

w™ — @*  weakly in Hj(€;) and strongly in L?(€);).

} weakly in J(€2) and strongly in H (),

This is enough to take the limit as m goes to oo in (3.3), (3.4) and (3.5).
Therefore, (a*, @*, ?Lk) is a required weak solution to problem (Py).

In order to prove the solvability of system (Py) for any k£ € IV, we follow
Heywood [6] in applying Brouwer’s Fixed Point Theorem.

Let V}, be the subespace of J(€) spanned by {¢', ..., ™}, and let M, be the
subespace of Hj () spanned by {¢', ..., ¢"}. For every (v,&,0) € V,, x M, x V,,, we
consider the unique solution L(v,&,6) = (u,w,h) € Vy, X My, X Vi, of the linearized

equations

(b + X)a(u, ") +b(v,u,@") —rb(0, h, ') — x(rotw,¢’) — (f,¢’) = 0, (3.6)
ya(w, ¢’) + (o + B)(div w, div ¢?) + jb(v, w, ¢') + 2x(w, ¢)

8



—x(rotu, ¢’) — (g,4’) =0, (3.7)
va(h, ¢’) +b(v, h, ') — b0, u, ') =0, (3.8)

for 1 < 5 < m. This is a system of 3m linear equations for the coefficients in the
m

expansions u = chgoj, w = Zdjqﬁj, h = Zejgoj.
7j=1 7j=1 7j=1

Equations (3.6), (3.7) and (3.8) have a unique solution because the associated

homogeneous system (f = 0, g = 0) has an unique solution. In fact, if (u,w,h) is a

solution of the homogeneous system, proceeding as before, we multiply (3.6) by ¢;,

(3.7) by d; and (3.8) by re; and sum over j from 1 to m, to obtain

(1 + XD Vul* = x(rot w, u) + rb(0, h, u),
HVwll* + (o + B)ldivew|* + 2xlw[* = x(rotu, w),
rv||Vh||? = rb(0,u, h).

Adding the above identities, we obtain

(20 NVull* + IVl + rv [ VA + 2xw]l* + (o + 8) [ div w]]*
= 2x(rot u, w) < 2x[|Vul[lw]] < x[[Vull* + x[Jw]*.

Consequently,
pllVall* + [Vl + rv]|VA[1* + xl[w]® + (o + 8)||div w|[* < 0.

Hence v = 0, w = 0 and h = 0. The continuity of L follows by applying
arguments that are similar to the ones used to takes the limit in (3.3), (3.4) and
(3.5).

We also have the estimate
1 1
plIVull® + Y IVwl|® + 2rv||VA||? < ;HfH?I(Q)* + ;|lg|lif—1(g>,

which are shown in exactly the same way as was done for a solution (u™, w™, h™)

of (3.3), (3.4), (3.5).



Then,

1 1

Vul? < — 2 ot — 2 =2 3.9

IVal? < 517wy + =gl = 6 (3.9)
1 1

Voull2 < —IIflI20n + —lgll2_, = ¢2 3.10

IVl < il + ol =6 (3.10)
1 1

Vall? < —— 11200 + ——I|gl|? -1 = ¢2 3.11

IVAIP < 5l ey + 5ol = 6 (3.11)

Thus, (3.9), (3.10), (3.11) define a continuous mapping L from the closed and

convex set
S = {(,07679) € Vm X Mm X Vm ; ||VU|| S 617 ||V§|| S 627 ||V9|| S 63}

into itself. Using Brouwer’s Fixed Point Theorem, we conclude that the map L has
at least one fixed point, which is a solution of (3.6), (3.7), (3.8). Thus, the existence

of weak solution (¥, @F, h*) of (P) is complete.

Lemma 3.2. Let (@*,@", h¥) be a weak solution for (P) obtained in Proposition
3.1. Put

Nk .
k f af(x) if w e Qy,
wix) = {0 if o€ Q\ Q,

Nk .
k | a(w) it xoe Qy,
wile) = {0 if 7 € Q\Q,

hF(x) if 2 € Q
k _ k>
(@) {0 it v € Q\ Q.

Then it holds that
(u, wk, h¥) € J(Q) x HE(Q) x J(Q)
and furthermore
IVufl < b, VW] < b, IVAFI< £

10



where /1, {5 e {3 be taken uniformly in k.

Proof. It is easy to show (u*,w®, h*) € J(Q) x H}(2) x J(Q). The estimates are
directly deduced from the estimates (3.9)-(3-11) and the lower semicontinuity of the

norm.
4. Proof of Theorem of Existence

From estimates given in Lemma, we get by using the Rellich’s compactness
theorem and the diagonal argument, that there exist subsequences which we again
denote by (uf, w* h*¥) and elements u, h € J(Q) and w € H}(Q) such that

k
Zk : Z } weakly in J(€2) and strongly in L (), (4.1)
w® — w  weakly in H(Q) and strongly in L2 (). (4.2)

Once we obtain these convergences and limits we can show that (u,w,h) is a
desirable stationary weak solution for (P). In fact, let (¢, ¢, 1) be an arbitrary given
tests functions, then we find a bounded domain Q' and kg such that supp ¢, supp
¢, supp 1 C Q' C Qy, CQ for all k > ky. Then,

(" V)p,u)g — ((u- V)p, w)gl
< (" — ) Ve, we| + (1 V)p,w — wh)g|
< 3|u* = ull 2 Vel e lw] o
+3[|uf| oo [Vl Lol — w¥|| L2y
< 30V tollu — ull o 1V @l sy + 30y allw — w¥ | 2o 1V 0l 3

thanks you to Lemmas 2.1 and 3.2 and the convergences (4.1) and (4.2) show that
(" V), w")a = (u.V), w)a| = 0

as k — oo. The other convergences are analogously established. Thus, we see

11



(u,w, h) is a stationary weak solution for (P).
5.Proof of Theorem of Uniqueness

Let (u',w', '), (u? w? h?) be a weak solutions of (1.1), (1.2), (1.3). Put u =

ul —u?, w=w!'—w?, h=h'—h? Then, they satisfy

(1 +X) (Vu, V) + (u- Vu', ) + (u” - Vu, p) = x(rotw, ) +r(h - V', ¢)
+(h - Vh, ),
Y(Vw, Vo) + (a + B)(divw, div ¢) + 2x(w, ) + j(u - Vw', ¢) + j(u* - Vw, @)
= x(rotu, ¢),
v(Vh, V) + (u- Vh', ¢) + (h* - Vh, ) — (h- Vu', ) — (h* - Vu, ) = 0.
We take ¢ = u, ¢ = w and ¢ = rh in these last inequalities, thus obtaining

(b4 )| Vul* = x(rot w, u) — (u- Vu',u) +7r(h - Vi, u)

+r(h? - Vh,u), (5.1)
YIVw|)? + (o + B)||div w||* + 2x||w|]* = x(rot u, w) — j(u - Vw',w), (5.2)
rv||Vh|)? = r(h-Vu',h) +r(h? - Vu, h) — r(u- Vh',h). (5.3)

By using the Lemma 2.1, we get

|(u- Vul,u)] = [(u- Vu,u')| < 3fluflsl| Vull Ju'lls < 3CL[Vull?[luls,
r(h- VR w)| = |r(h-Vu, K| < 3re||kfls|Vull [[2']]s
< 3CL|IVA| [Vl ([R5,
x(rotw, u)| = [x(w,rotu)| < x[lw[| [|[Vu| < xllw|* + x[|Vul?
(u- V', w)| =+ (u- Vw,wh)| < 3fulls][Vwl [Jw'ls
< 30|Vl [Vl flw'ls
r(h- Vul, )| = [r(h - Vh,u')] < 3r|[B|lsl| VA [lu'lls < 3rCL][VA|[*[lu'(|s
[r(u- VR )| = |r(u- VAW < 3rflulls| VA [|2']]3
< 3rCLl|Vull [IVA] A ls.

12



Consequently, adding the equalities (5.1)-(5.3) and using the above estimates, we

obtain

pllVull® +4[Vw|l* + (o + B)[|divw||* + rv[|VAI* + xJw]*
3
< SCullells + lw'lls + (1 +r) [PHls) [ Vel

30, 5y

([ lls + (L4 ) IRV + == [lw? 5] Vel

3C
= Gyl o'l () 1 o) s Vel
3C 3C
el + (1) I ) AP + o o,

Thus, by hypotheses, we obtain
[Vul| =0, [[Vw][ =0, [[VA] =0.

Therefore, we find u = const., w = const. and h = const. But u|sg = w|gg = h|ag =

0, hence u =0, w =0 and h = 0. Thus we have prove the uniqueness theorem:.
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