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Abstra
t

We establish the existen
e of a weak solution for the equations of motion of

magneto-mi
ropolar 
uid in exterior domains. Also we dis
uss the uniqueness

of weak solutions.

1. Introdu
tion

In this work we study existen
e of weak solutions for the equations that des
ribes

the motion of a vis
ous in
ompressible magneto-mi
ropolar 
uid in a exterior domain


 � IR

3

. Su
h equation are given by (see [1℄, for instan
e):

u � ru� (�+ �)�u+r(p+

r

2

h � h) = � rotw + rh � rh + f;

ju � rw � 
�w + 2�w � (� + �)rdivw = �rotu+ g; (1.1)

���h + u � rh� h � ru = 0;

div u = 0; div h = 0 in 
:

Here, u(x) 2 IR

3

denotes the velo
ity of the 
uid at point x 2 
; w(x) 2 IR

3

; h(x) 2

IR

3

and p(x) 2 IR denote, respe
tively, the mi
rorotational velo
ity, the magneti


�eld and the hydrostati
 pressure; the 
onstants �; �; r; �; �; 
; j and � are


onstants asso
iated to properties of the material. From physi
al reasons, these


onstants satisfy minf�; �; r; j; 
; �; � + � + 
g > 0; f(x) and g(x) 2 IR

3

are

given external �elds.
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We assume that on the boundary �
 of 
, the following 
onditions hold

u(x) = w(x) = h(x) = 0; x 2 �
 (1.2)

and the following 
onditions at in�nity

lim

jxj!1

u(x) = lim

jxj!1

w(x) = lim

jxj!1

h(x) = 0: (1.3)

Equation (1.1)(i) has the familiar form of the Navier-Stokes equations but it is 
ou-

pled with equation (1.1)(ii), whi
h essentially des
ribes the motion inside the ma
ro-

volumes as they undergo mi
rorotational e�e
ts represented by the mi
rorotational

velo
ity ve
tor w. For 
uids with no mi
rostru
ture this parameter vasnishes. For

Newtonian 
uids, equations (1.1)(i) and (1.1)(ii) de
ouple sin
e � = 0.

It is now appropriate to 
ite some earlier works on the initial boundary-value

problem (1.1)-(1.3), whi
h are related to ours and also to lo
ate our 
ontribution

therein. When the magneti
 �eld is absent (h � 0), the redu
ed problem was studied

by Lukaszewi
z [8℄, Abid [2℄. Lukaszewi
z [8℄ established existen
e of weak solutions

for (1.1) - (1.3) in bounded domains under 
ertain assumptions by using linearization

and the Leray-S
hauder prin
iple. In the same paper, by using the regurality of the

Stokes equations and the ellipti
 systems proved the regularity of solutions, he also

show 
onditions under to whi
h the uniqueness holds. Again when h � 0, Abid

[2℄ established results similar to the ones of Lukaszewi
z [8℄ in exterior domains by

using the results of Girault and Sequeira [4℄ for Navier-Stokes equations .

In this work, we use "the extending domain method" as in Ladyzhenskaya[7℄

and Heywood [6℄, to prove the existen
e of weak solutions , we also dis
uss the

uniqueness of solutions.

We rea
h in this way, for weak solutions, basi
ally the same level of knowledge

as in the 
ase of the 
lassi
 Navier-Stokes equations.

Finally, the paper is organized as follows: in Se
tion 2 we state the basi
 as-

sumptions and results that to used later on in the paper; we also rewrite (1.1) - (1.3)

in a more suitable weak form; we des
ribe the approximation method and state our
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results (Theorems 2.3 and 2.4). Ea
h one of the following se
tions will be devoted

to their proofs.

2. Fun
tions spa
es and preliminaires

The fun
tions in this paper are either IR or IR

3

-values and we will not distinguish

these two situations in our notations. To whi
h 
ase we refer to will be 
lear from

the 
ontext.

Now, we give the pre
ise de�nition of the exterior domain 
 where our boundary-

value problem asso
iated to the problem (1.1)-(1.3) has been formulated.

Let K a subset 
ompa
t of IR

3

whose bondary �K is of 
lasse C

2

. The exterior

domain 
 that we will 
onsider is 
 = K




and �
 = �K.

The extending domain method was introdu
ed by Ladyzhenkaya [7℄ to study

the Navier-Stokes equations in unbounded domains. As was observed by Heywood

[6℄ the method is useful in 
ertain 
lass of unbounded domain, in this 
lass 
ertainly

our domain is.

The prin
ipal ideia is the following: the exterior domain 
 
an be approximated

by interior domain 


k

= B

k

\ 
 (B

k

is a ball with radius k and 
enter at 0) as

k !1.

In ea
h interior domain 


k

, we will prove the existen
e of weak solution, to do is,

we will use the Galerkin method together with the Brouwer's Fixed Point Theorem

as in Heywood [6℄. Next, by using the estimates given in Ladyzhenskaya's book

[7℄ (we re
all these estimates later) together with diagonal argument and Relli
h's


ompa
tness theorem, we obtain the desirable weak solution to problem (1.1)-(1.3).

Properties of regularity and uniqueness are also studied.

We use several fun
tions spa
es. D denotes 
 or 


k

.

W

r;p

(D) = fu ; D

�

u 2 L

p

(D); j�j � rg;

W

r;p

0

(D) = Completion of C

1

0

(D) in W

r;p

(D);

C

1

0;�

(D) = f' 2 C

1

0

(D) ; div' = 0g;
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J(D) = Completion ofC

1

0;�

(D) in norm kr�k

H(D) = Completion ofC

1

0;�

(D) in norm k�k

Here k � k is the L

2

-norm; the L

p

-norm we denote by k � k

p

.

We observe that J(D) is equivalent to

f� 2 W

1;2

(D) ; �j

�


= 0; div � = 0g;

as was proved by Heywood [5℄.

When p = 2, as it usual, we denote W

r;p

(D) � H

r

(D) and W

r;p

0

(D) � H

r

0

(D).

The following inequalities are in Ladyzhenskaya [7℄.

Lemma 2.1. Let D � IR

3

bounded or unbounded then

(a) For u 2 W

1;2

0

(D) (or J(D) or H

1

0

(D)), we have

kuk

L

6

(D)

� C

L

kruk

L

2

(D)

;

where C

L

= (48)

1=6

.

(b) (H�older's inequality). If ea
h integral makes sense, then we have

j((u � r)v; w)j � 3

1

p

+

1

r

kuk

L

p

(D)

krvk

L

q

(D)

kwk

L

r

(D)

where p; q; r > 0 and

1

p

+

1

q

+

1

r

= 1.

We make several assumptions on the boundary �
 and the external for
es:

(S

1

) O

0

� int K (O

0

is a neighbourhood of the origen 0) and K � B(0; d) whi
h is

a ball with radius d and 
enter at 0.

(S

2

) �
 = �K 2 C

2

.

(S

3

) f 2 J(
)

�

; g 2 H

�1

(
),

where J(
)

�

is the topologi
al dual of J(
).

Let us denote

a(v; w) =

3

X

i;j=1

Z

D

�v

j

�x

i

�w

j

�x

i

dx; b(u; v; w) =

3

X

i;j=1

Z

D

u

j

�v

i

�x

j

w

i

dx
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whi
h we de�ne for all ve
tor-valued fun
tions u; v; w for whi
h the integrals are

well de�ned.

We 
an now de�ne a notion of weak solution for (1.1)-(1.3).

De�nition 2.2. We will say that a triple of fun
tions (u; w; h) de�ned on 
 is a

weak solution of (1.1)-(1.3) if only if the fun
tions u; w; h satisfy

u; h 2 J(
); w 2 H

1

0

(
)

and also satisfy the following equations

(�+ �)a(u; ')� b(u; '; u) + rb(h; '; h) = (f; ') + �(w; rot');


a(w; �) + (� + �)(divw; div�)� jb(u; �; w) + 2�(w; �) = (g; �) + �(u; rot�);

�a(h;  )� b(u;  ; h) + b(h;  ; u) = 0

for all ';  2 C

1

0;�

(
) and � 2 C

1

0

(
).

Remark. If u; h 2 J(
) and w 2 H

1

0

(
), then

uj

�


= hj

�


= wj

�


= 0

and moreover por (a) in Lemma

lim

jxj!1

u(x) = lim

jxj!1

w(x) = lim

jxj!1

h(x) = 0:

Our results are:

Theorem 2.3 (Existen
e). Under the hypotheses (S

1

), (S

2

) and (S

3

) the problem

(1.1)-(1.3) has a stationary weak solution.

Theorem 2.4 (Uniqueness). Under the hypotheses (S

1

), (S

2

) and (S

3

) if there

exists a stationary weak solution satisfying the following 
onditions

3C

L

2�

(kuk

3

+ kwk

3

+ (1 + r) khk

3

) < 1;

3C

L

2r�

(kuk

3

+ (1 + r) khk

3

) < 1;

3C

L

2


kwk

3

< 1
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where C

L

= (48)

1=6

, then the weak solution is unique.

3. The interior problem.

In this se
tion we 
onsider the following interior problem (P

k

) in domains 


k

=

B

k

\ 
 (k 2 IN).

(P

k

)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�(�+ �)�u+ (u � r)u+r(p+

r

2

h � h) = �rotw + r(h � r)h+ f;

�
�w � (�+ �)rdivw + j(u � r)w + 2�w = �rotu+ g;

���h + (u � r)h� (h � r)u = 0;

div u = 0; div h = 0;

u = 0; w = 0; h = 0 on �


k

= �
 \ �B

k

:

The notion of weak solution for (P

k

)is 
ompletely similar to the ones for (1.1)-(1.3).

Proposition 3.1. The problem (P

k

) has a weak solution (

e

u

k

;

e

w

k

;

e

h

k

) 2 J(


k

) �

H

1

0

(


k

)� J(


k

).

To prove the existen
e of weak solution of the system (P

k

) we will use the

Galerkin method together with Brouwer's Fixed Point Theorem as in Fujita [3℄ (see

also Heywood [6℄).

First, we will prove a priori estimates for weak solution of (P

k

).

Lemma 3.2. Let (

e

u

k

;

e

w

k

;

e

h

k

) a weak solution of (P

k

). Then, they satisfy the

following estimates

� a(

e

u

k

;

e

u

k

) + 
 a(

e

w

k

;

e

w

k

) + 2r� a(

e

h

k

;

e

h

k

) �

1

�

kfk

2

J(
)

�

+

1




kgk

2

H

�1

(
)

: (3.1)

Proof. Multiplying (P

k

)i, (P

k

)ii and (P

k

)iii by

e

u

k

;

e

w

k

and r

e

h

k

, respe
tively, after

of integrate on 


k

, we obtain

(�+ �) a(

e

u

k

;

e

u

k

) = �(rot

e

w

k

;

e

u

k

) + rb(

e

h

k

;

e

h

k

;

e

u

k

) + (f;

e

u

k

);


 a(

e

w

k

;

e

w

k

) + (� + �)kdiv

e

w

k

k

2

+ 2�k

e

w

k

k

2

= �(rot

e

u

k

;

e

w

k

) + (g;

e

w

k

);

r� a(

e

h

k

;

e

h

k

) = rb(

e

h

k

;

e

u

k

;

e

h

k

):
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Adding the above equalities, we get

(�+ �) a(

e

u

k

;

e

u

k

) + 
 a(

e

w

k

;

e

w

k

) + r� a(

e

h

k

;

e

h

k

) + (�+ �)kdiv

e

w

k

k

2

+ 2�k

e

w

k

k

2

= 2�(

e

w

k

; rot

e

u

k

) + (f;

e

u

k

) + (g;

e

w

k

) (3.2)

sin
e r b(

e

h

k

;

e

h

k

;

e

u

k

) + r b(

e

h

k

;

e

u

k

;

e

h

k

) = 0.

We estimate of the right-hand side of the equality (3.2) as follows

2�(

e

w

k

; rot

e

u

k

) � 2�k

e

w

k

k krot

e

u

k

k � 2�k

e

w

k

k kr

e

u

k

k � �k

e

w

k

k

2

+ �a(

e

u

k

;

e

u

k

);

sin
e krot

e

u

k

k = kr

e

u

k

k. Also,

(f;

e

u

k

) � kfk

J(


k

)

�

kr

e

u

k

k �

1

2�

kfk

2

J(
)

�

+

�

2

a(

e

u

k

;

e

u

k

);

(g;

e

w

k

) � kgk

H

�1

(


k

)

kr

e

w

k

k �

1

2


kgk

2

H

�1

(
)

+




2

a(

e

w

k

;

e

w

k

):

Consequently, using the above estimates in (3.2), we get

�a(

e

u

k

;

e

u

k

) + 
a(

e

w

k

;

e

w

k

) + 2r�a(

e

h

k

;

e

h

k

) + 2�k

e

w

k

k

2

+ 2(� + �)kdiv

e

w

k

k

2

�

1

�

kfk

2

J(
)

�

+

1




kgk

2

H

�1

(
)

:

This estimates imply immediately (3.1).

Remark. We observe that estimate (3.1) is independent of k.

Now, we prove the existen
e of solution (

e

u

k

;

e

w

k

;

e

h

k

) for (P

k

).

As m

th

approximate solution of eq. (P

k

), we 
hoose fun
tions

u

m

(x) =

m

X

j=1




mj

'

j

(x); w

m

(x) =

m

X

j=1

d

mj

�

j

(x) and h

m

(x) =

m

X

j=1

e

mj

'

j

(x);

satisfying the equations

(�+ �) a(u

m

; '

j

) + b(u

m

; u

m

; '

j

)� r b(h

m

; h

m

; '

j

)

7



= �(rotw

m

; '

j

) + (f; '

j

); (3.3)


 a(w

m

; �

j

) + (� + �)(divw

m

; div�

j

) + jb(u

m

; w

m

; �

j

) + 2�(w

m

; �

j

)

= �(rotu

m

; �

j

) + (g; �

j

); (3.4)

� a(h

m

; '

j

) + b(u

m

; h

m

; '

j

)� b(h

m

; u

m

; '

j

) = 0; (3.5)

for 1 � j � m.

First we assume the existen
e of (u

m

; w

m

; h

m

) for any m 2 N . Note that solu-

tions (u

m

; w

m

; h

m

) must satisfy estimate (3.1). In fa
t, the identity (3.1) for u

m

is

obtained by multiplying (3.3) by 


mj

and summing over j from 1 to m. Similary, we

have identities (3.1) for w

m

and h

m

.

Estimate (3.1) follow from eqs. (3.3), (3.4) and (3.5) as in Lemma 3.2. Therefore

the sequen
e (u

m

; w

m

; h

m

) is bounded in J(


k

)�H

1

0

(


k

)� J(


k

).

Sin
e J(


k

) (respe
tivelyH

1

0

(


k

)) is 
ompa
tly imbedded inH(


k

) (respe
tively

L

2

(


k

)) we 
an 
hoose subsequen
es whi
h we again denote by (u

m

; w

m

; h

m

) and

elements

e

u

k

2 J(


k

);

e

w

k

2 H

1

0

(


k

) and

e

h

k

2 J(


k

) su
h that

u

m

!

e

u

k

h

m

!

e

h

k

)

weakly in J(


k

) and strongly in H(


k

);

w

m

!

e

w

k

weakly in H

1

0

(


k

) and strongly in L

2

(


k

):

This is enough to take the limit as m goes to 1 in (3.3), (3.4) and (3.5).

Therefore, (

e

u

k

;

e

w

k

;

e

h

k

) is a required weak solution to problem (P

k

).

In order to prove the solvability of system (P

k

) for any k 2 IN , we follow

Heywood [6℄ in applying Brouwer's Fixed Point Theorem.

Let V

m

be the subespa
e of J(


k

) spanned by f'

1

; :::; '

m

g, and let M

m

be the

subespa
e of H

1

0

(


k

) spanned by f�

1

; :::; �

m

g. For every (v; �; �) 2 V

m

�M

m

�V

m

we


onsider the unique solution L(v; �; �) = (u; w; h) 2 V

m

�M

m

�V

m

of the linearized

equations

(�+ �)a(u; '

j

) + b(v; u; '

j

)� rb(�; h; '

j

)� �(rotw; '

j

)� (f; '

j

) = 0; (3.6)


a(w; �

j

) + (� + �)(divw; div�

j

) + jb(v; w; �

j

) + 2�(w; �

j

)

8



��(rot u; �

j

)� (g; �

j

) = 0; (3.7)

�a(h; '

j

) + b(v; h; '

j

)� b(�; u; '

j

) = 0; (3.8)

for 1 � j � m. This is a system of 3m linear equations for the 
oeÆ
ients in the

expansions u =

m

X

j=1




j

'

j

; w =

m

X

j=1

d

j

�

j

; h =

m

X

j=1

e

j

'

j

.

Equations (3.6), (3.7) and (3.8) have a unique solution be
ause the asso
iated

homogeneous system (f = 0; g = 0) has an unique solution. In fa
t, if (u; w; h) is a

solution of the homogeneous system, pro
eeding as before, we multiply (3.6) by 


j

,

(3.7) by d

j

and (3.8) by re

j

and sum over j from 1 to m, to obtain

(�+ �))kruk

2

= �(rotw; u) + rb(�; h; u);


krwk

2

+ (� + �)kdivwk

2

+ 2�kwk

2

= �(rotu; w);

r�krhk

2

= rb(�; u; h):

Adding the above identities, we obtain

(�+ �)kruk

2

+ 
krwk

2

+ r�krhk

2

+ 2�kwk

2

+ (� + �)kdivwk

2

= 2�(rotu; w) � 2�krukkwk � �kruk

2

+ �kwk

2

:

Consequently,

�kruk

2

+ 
krwk

2

+ r�krhk

2

+ �kwk

2

+ (� + �)kdivwk

2

� 0:

Hen
e u = 0; w = 0 and h = 0. The 
ontinuity of L follows by applying

arguments that are similar to the ones used to takes the limit in (3.3), (3.4) and

(3.5).

We also have the estimate

�kruk

2

+ 
krwk

2

+ 2r�krhk

2

�

1

�

kfk

2

J(
)

�

+

1




kgk

2

H

�1

(
)

;

whi
h are shown in exa
tly the same way as was done for a solution (u

m

; w

m

; h

m

)

of (3.3), (3.4), (3.5).
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Then,

kruk

2

�

1

�

2

kfk

2

J(
)

�

+

1


�

kgk

2

H

�1

(
)

� `

2

1

(3.9)

krwk

2

�

1

�


kfk

2

J(
)

�

+

1




2

kgk

2

H

�1

(
)

� `

2

2

(3.10)

krhk

2

�

1

2r��

kfk

2

J(
)

�

+

1

2r�


kgk

2

H

�1

(
)

� `

2

3

(3.11)

Thus, (3.9), (3.10), (3.11) de�ne a 
ontinuous mapping L from the 
losed and


onvex set

S = f(v; �; �) 2 V

m

�M

m

� V

m

; krvk � `

1

; kr�k � `

2

; kr�k � `

3

g

into itself. Using Brouwer's Fixed Point Theorem, we 
on
lude that the map L has

at least one �xed point, whi
h is a solution of (3.6), (3.7), (3.8). Thus, the existen
e

of weak solution (

e

u

k

;

e

w

k

;

e

h

k

) of (P

k

) is 
omplete.

Lemma 3.2. Let (

e

u

k

;

e

w

k

;

e

h

k

) be a weak solution for (P

k

) obtained in Proposition

3.1. Put

u

k

(x) =

(

e

u

k

(x) if x 2 


k

;

0 if x 2 
 n


k

;

w

k

(x) =

(

e

w

k

(x) if x 2 


k

;

0 if x 2 
 n


k

;

h

k

(x) =

(

e

h

k

(x) if x 2 


k

;

0 if x 2 
 n


k

:

Then it holds that

(u

k

; w

k

; h

k

) 2 J(
)�H

1

0

(
)� J(
)

and furthermore

kru

k

k � `

1

; krw

k

k � `

2

; krh

k

k � `

3

10



where `

1

; `

2

e `

3

be taken uniformly in k.

Proof. It is easy to show (u

k

; w

k

; h

k

) 2 J(
) � H

1

0

(
) � J(
). The estimates are

dire
tly dedu
ed from the estimates (3.9)-(3-11) and the lower semi
ontinuity of the

norm.

4. Proof of Theorem of Existen
e

From estimates given in Lemma, we get by using the Relli
h's 
ompa
tness

theorem and the diagonal argument, that there exist subsequen
es whi
h we again

denote by (u

k

; w

k

; h

k

) and elements u; h 2 J(
) and w 2 H

1

0

(
) su
h that

u

k

! u

h

k

! h

)

weakly in J(
) and strongly in L

2

lo


(
); (4.1)

w

k

! w weakly in H

1

0

(
) and strongly in L

2

lo


(
): (4.2)

On
e we obtain these 
onvergen
es and limits we 
an show that (u; w; h) is a

desirable stationary weak solution for (P). In fa
t, let ('; �;  ) be an arbitrary given

tests fun
tions, then we �nd a bounded domain 


0

and k

0

su
h that supp ', supp

�, supp  � 


0

� 


k

0

� 


k

for all k � k

0

. Then,

j((u

k

� r)';w

k

)




� ((u � r)';w)




j

� j((u

k

� u)r';w)




0

j+ j((u

k

� r)';w � w

k

)




0

j

� 3ku

k

� uk

L

2

(


0

)

kr'k

L

3

(


0

)

kwk

L

6

(


0

)

+3ku

k

k

L

6

(


0

kr'k

L

3

(


0

)

kw � w

k

k

L

2

(


0

)

� 3C

q

`

2

ku

k

� uk

L

2

(


0

)

kr'k

L

3

(


0

)

+ 3C

q

`

1

kw � w

k

k

L

2

(


0

)

kr'k

L

3

(


0

)

thanks you to Lemmas 2.1 and 3.2 and the 
onvergen
es (4.1) and (4.2) show that

j((u

k

:r)';w

k

)




� ((u:r)';w)




j ! 0

as k ! 1. The other 
onvergen
es are analogously established. Thus, we see

11



(u; w; h) is a stationary weak solution for (P).

5.Proof of Theorem of Uniqueness

Let (u

1

; w

1

; h

1

); (u

2

; w

2

; h

2

) be a weak solutions of (1.1), (1.2), (1.3). Put u =

u

1

� u

2

; w = w

1

� w

2

; h = h

1

� h

2

. Then, they satisfy

(�+ �) (ru;r') + (u � ru

1

; ') + (u

2

� ru; ') = �(rotw; ') + r(h � rh

1

; ')

+(h � rh; ');


(rw;r�) + (� + �)(divw; div�) + 2�(w; �) + j(u � rw

1

; �) + j(u

2

� rw; �)

= �(rotu; �);

�(rh;r ) + (u � rh

1

;  ) + (h

2

� rh;  )� (h � ru

1

;  )� (h

2

� ru;  ) = 0:

We take ' = u; � = w and  = rh in these last inequalities, thus obtaining

(�+ �)kruk

2

= �(rotw; u)� (u � ru

1

; u) + r(h � rh

1

; u)

+r(h

2

� rh; u); (5.1)


krwk

2

+ (� + �)kdivwk

2

+ 2�kwk

2

= �(rotu; w)� j(u � rw

1

; w); (5.2)

r�krhk

2

= r(h � ru

1

; h) + r(h

2

� ru; h)� r(u � rh

1

; h): (5.3)

By using the Lemma 2.1, we get

j(u � ru

1

; u)j = j(u � ru; u

1

)j � 3kuk

6

kruk ku

1

k

3

� 3C

L

kruk

2

ku

1

k

3

;

jr(h � rh

1

; u)j = jr(h � ru; h

1

)j � 3rkhk

6

kruk kh

1

k

3

� 3C

L

krhk kruk kh

1

k

3

;

j�(rotw; u)j = j�(w; rotu)j � �kwk kruk � �kwk

2

+ �kruk

2

j(u � rw

1

; w)j = j+ (u � rw;w

1

)j � 3kuk

6

krwk kw

1

k

3

� 3C

L

kruk krwk kw

1

k

3

jr(h � ru

1

; h)j = jr(h � rh; u

1

)j � 3rkhk

6

krhk ku

1

k

3

� 3rC

L

krhk

2

ku

1

k

3

jr(u � rh

1

; h)j = jr(u � rh; h

1

)j � 3rkuk

6

krhk kh

1

k

3

� 3rC

L

kruk krhk h

1

k

3

:
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Consequently, adding the equalities (5.1)-(5.3) and using the above estimates, we

obtain

�kruk

2

+ 
krwk

2

+ (�+ �)kdivwk

2

+ r�krhk

2

+ �kwk

2

�

3

2

C

L

(ku

1

k

3

+ kw

1

k

3

+ (1 + r) kh

1

k

3

)kruk

2

+

3C

L

2

(ku

1

k

3

+ (1 + r) kh

1

k

3

)krhk

2

+

3C

L

2

kw

1

k

3

krwk

2

=

3C

L

2�

(ku

1

k

3

+ kw

1

k

3

+ (1 + r) kh

1

k

3

)�kruk

2

+

3C

L

2r�

(ku

1

k

3

+ (1 + r) kh

1

k

3

) r�krhk

2

+

3C

L

2


kw

1

k

3

krwk

2

:

Thus, by hypotheses, we obtain

kruk = 0; krwk = 0; krhk = 0:

Therefore, we �nd u = 
onst., w = 
onst. and h = 
onst. But uj

�


= wj

�


= hj

�


=

0, hen
e u = 0; w = 0 and h = 0. Thus we have prove the uniqueness theorem.
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