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Abstrat

We establish the existene of a weak solution for the equations of motion of

magneto-miropolar uid in exterior domains. Also we disuss the uniqueness

of weak solutions.

1. Introdution

In this work we study existene of weak solutions for the equations that desribes

the motion of a visous inompressible magneto-miropolar uid in a exterior domain


 � IR

3

. Suh equation are given by (see [1℄, for instane):

u � ru� (�+ �)�u+r(p+

r

2

h � h) = � rotw + rh � rh + f;

ju � rw � �w + 2�w � (� + �)rdivw = �rotu+ g; (1.1)

���h + u � rh� h � ru = 0;

div u = 0; div h = 0 in 
:

Here, u(x) 2 IR

3

denotes the veloity of the uid at point x 2 
; w(x) 2 IR

3

; h(x) 2

IR

3

and p(x) 2 IR denote, respetively, the mirorotational veloity, the magneti

�eld and the hydrostati pressure; the onstants �; �; r; �; �; ; j and � are

onstants assoiated to properties of the material. From physial reasons, these

onstants satisfy minf�; �; r; j; ; �; � + � + g > 0; f(x) and g(x) 2 IR

3

are

given external �elds.
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We assume that on the boundary �
 of 
, the following onditions hold

u(x) = w(x) = h(x) = 0; x 2 �
 (1.2)

and the following onditions at in�nity

lim

jxj!1

u(x) = lim

jxj!1

w(x) = lim

jxj!1

h(x) = 0: (1.3)

Equation (1.1)(i) has the familiar form of the Navier-Stokes equations but it is ou-

pled with equation (1.1)(ii), whih essentially desribes the motion inside the maro-

volumes as they undergo mirorotational e�ets represented by the mirorotational

veloity vetor w. For uids with no mirostruture this parameter vasnishes. For

Newtonian uids, equations (1.1)(i) and (1.1)(ii) deouple sine � = 0.

It is now appropriate to ite some earlier works on the initial boundary-value

problem (1.1)-(1.3), whih are related to ours and also to loate our ontribution

therein. When the magneti �eld is absent (h � 0), the redued problem was studied

by Lukaszewiz [8℄, Abid [2℄. Lukaszewiz [8℄ established existene of weak solutions

for (1.1) - (1.3) in bounded domains under ertain assumptions by using linearization

and the Leray-Shauder priniple. In the same paper, by using the regurality of the

Stokes equations and the ellipti systems proved the regularity of solutions, he also

show onditions under to whih the uniqueness holds. Again when h � 0, Abid

[2℄ established results similar to the ones of Lukaszewiz [8℄ in exterior domains by

using the results of Girault and Sequeira [4℄ for Navier-Stokes equations .

In this work, we use "the extending domain method" as in Ladyzhenskaya[7℄

and Heywood [6℄, to prove the existene of weak solutions , we also disuss the

uniqueness of solutions.

We reah in this way, for weak solutions, basially the same level of knowledge

as in the ase of the lassi Navier-Stokes equations.

Finally, the paper is organized as follows: in Setion 2 we state the basi as-

sumptions and results that to used later on in the paper; we also rewrite (1.1) - (1.3)

in a more suitable weak form; we desribe the approximation method and state our
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results (Theorems 2.3 and 2.4). Eah one of the following setions will be devoted

to their proofs.

2. Funtions spaes and preliminaires

The funtions in this paper are either IR or IR

3

-values and we will not distinguish

these two situations in our notations. To whih ase we refer to will be lear from

the ontext.

Now, we give the preise de�nition of the exterior domain 
 where our boundary-

value problem assoiated to the problem (1.1)-(1.3) has been formulated.

Let K a subset ompat of IR

3

whose bondary �K is of lasse C

2

. The exterior

domain 
 that we will onsider is 
 = K



and �
 = �K.

The extending domain method was introdued by Ladyzhenkaya [7℄ to study

the Navier-Stokes equations in unbounded domains. As was observed by Heywood

[6℄ the method is useful in ertain lass of unbounded domain, in this lass ertainly

our domain is.

The prinipal ideia is the following: the exterior domain 
 an be approximated

by interior domain 


k

= B

k

\ 
 (B

k

is a ball with radius k and enter at 0) as

k !1.

In eah interior domain 


k

, we will prove the existene of weak solution, to do is,

we will use the Galerkin method together with the Brouwer's Fixed Point Theorem

as in Heywood [6℄. Next, by using the estimates given in Ladyzhenskaya's book

[7℄ (we reall these estimates later) together with diagonal argument and Rellih's

ompatness theorem, we obtain the desirable weak solution to problem (1.1)-(1.3).

Properties of regularity and uniqueness are also studied.

We use several funtions spaes. D denotes 
 or 


k

.

W

r;p

(D) = fu ; D

�

u 2 L

p

(D); j�j � rg;

W

r;p

0

(D) = Completion of C

1

0

(D) in W

r;p

(D);

C

1

0;�

(D) = f' 2 C

1

0

(D) ; div' = 0g;
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J(D) = Completion ofC

1

0;�

(D) in norm kr�k

H(D) = Completion ofC

1

0;�

(D) in norm k�k

Here k � k is the L

2

-norm; the L

p

-norm we denote by k � k

p

.

We observe that J(D) is equivalent to

f� 2 W

1;2

(D) ; �j

�


= 0; div � = 0g;

as was proved by Heywood [5℄.

When p = 2, as it usual, we denote W

r;p

(D) � H

r

(D) and W

r;p

0

(D) � H

r

0

(D).

The following inequalities are in Ladyzhenskaya [7℄.

Lemma 2.1. Let D � IR

3

bounded or unbounded then

(a) For u 2 W

1;2

0

(D) (or J(D) or H

1

0

(D)), we have

kuk

L

6

(D)

� C

L

kruk

L

2

(D)

;

where C

L

= (48)

1=6

.

(b) (H�older's inequality). If eah integral makes sense, then we have

j((u � r)v; w)j � 3

1

p

+

1

r

kuk

L

p

(D)

krvk

L

q

(D)

kwk

L

r

(D)

where p; q; r > 0 and

1

p

+

1

q

+

1

r

= 1.

We make several assumptions on the boundary �
 and the external fores:

(S

1

) O

0

� int K (O

0

is a neighbourhood of the origen 0) and K � B(0; d) whih is

a ball with radius d and enter at 0.

(S

2

) �
 = �K 2 C

2

.

(S

3

) f 2 J(
)

�

; g 2 H

�1

(
),

where J(
)

�

is the topologial dual of J(
).

Let us denote

a(v; w) =

3

X

i;j=1

Z

D

�v

j

�x

i

�w

j

�x

i

dx; b(u; v; w) =

3

X

i;j=1

Z

D

u

j

�v

i

�x

j

w

i

dx
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whih we de�ne for all vetor-valued funtions u; v; w for whih the integrals are

well de�ned.

We an now de�ne a notion of weak solution for (1.1)-(1.3).

De�nition 2.2. We will say that a triple of funtions (u; w; h) de�ned on 
 is a

weak solution of (1.1)-(1.3) if only if the funtions u; w; h satisfy

u; h 2 J(
); w 2 H

1

0

(
)

and also satisfy the following equations

(�+ �)a(u; ')� b(u; '; u) + rb(h; '; h) = (f; ') + �(w; rot');

a(w; �) + (� + �)(divw; div�)� jb(u; �; w) + 2�(w; �) = (g; �) + �(u; rot�);

�a(h;  )� b(u;  ; h) + b(h;  ; u) = 0

for all ';  2 C

1

0;�

(
) and � 2 C

1

0

(
).

Remark. If u; h 2 J(
) and w 2 H

1

0

(
), then

uj

�


= hj

�


= wj

�


= 0

and moreover por (a) in Lemma

lim

jxj!1

u(x) = lim

jxj!1

w(x) = lim

jxj!1

h(x) = 0:

Our results are:

Theorem 2.3 (Existene). Under the hypotheses (S

1

), (S

2

) and (S

3

) the problem

(1.1)-(1.3) has a stationary weak solution.

Theorem 2.4 (Uniqueness). Under the hypotheses (S

1

), (S

2

) and (S

3

) if there

exists a stationary weak solution satisfying the following onditions

3C

L

2�

(kuk

3

+ kwk

3

+ (1 + r) khk

3

) < 1;

3C

L

2r�

(kuk

3

+ (1 + r) khk

3

) < 1;

3C

L

2

kwk

3

< 1

5



where C

L

= (48)

1=6

, then the weak solution is unique.

3. The interior problem.

In this setion we onsider the following interior problem (P

k

) in domains 


k

=

B

k

\ 
 (k 2 IN).

(P

k

)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�(�+ �)�u+ (u � r)u+r(p+

r

2

h � h) = �rotw + r(h � r)h+ f;

��w � (�+ �)rdivw + j(u � r)w + 2�w = �rotu+ g;

���h + (u � r)h� (h � r)u = 0;

div u = 0; div h = 0;

u = 0; w = 0; h = 0 on �


k

= �
 \ �B

k

:

The notion of weak solution for (P

k

)is ompletely similar to the ones for (1.1)-(1.3).

Proposition 3.1. The problem (P

k

) has a weak solution (

e

u

k

;

e

w

k

;

e

h

k

) 2 J(


k

) �

H

1

0

(


k

)� J(


k

).

To prove the existene of weak solution of the system (P

k

) we will use the

Galerkin method together with Brouwer's Fixed Point Theorem as in Fujita [3℄ (see

also Heywood [6℄).

First, we will prove a priori estimates for weak solution of (P

k

).

Lemma 3.2. Let (

e

u

k

;

e

w

k

;

e

h

k

) a weak solution of (P

k

). Then, they satisfy the

following estimates

� a(

e

u

k

;

e

u

k

) +  a(

e

w

k

;

e

w

k

) + 2r� a(

e

h

k

;

e

h

k

) �

1

�

kfk

2

J(
)

�

+

1



kgk

2

H

�1

(
)

: (3.1)

Proof. Multiplying (P

k

)i, (P

k

)ii and (P

k

)iii by

e

u

k

;

e

w

k

and r

e

h

k

, respetively, after

of integrate on 


k

, we obtain

(�+ �) a(

e

u

k

;

e

u

k

) = �(rot

e

w

k

;

e

u

k

) + rb(

e

h

k

;

e

h

k

;

e

u

k

) + (f;

e

u

k

);

 a(

e

w

k

;

e

w

k

) + (� + �)kdiv

e

w

k

k

2

+ 2�k

e

w

k

k

2

= �(rot

e

u

k

;

e

w

k

) + (g;

e

w

k

);

r� a(

e

h

k

;

e

h

k

) = rb(

e

h

k

;

e

u

k

;

e

h

k

):
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Adding the above equalities, we get

(�+ �) a(

e

u

k

;

e

u

k

) +  a(

e

w

k

;

e

w

k

) + r� a(

e

h

k

;

e

h

k

) + (�+ �)kdiv

e

w

k

k

2

+ 2�k

e

w

k

k

2

= 2�(

e

w

k

; rot

e

u

k

) + (f;

e

u

k

) + (g;

e

w

k

) (3.2)

sine r b(

e

h

k

;

e

h

k

;

e

u

k

) + r b(

e

h

k

;

e

u

k

;

e

h

k

) = 0.

We estimate of the right-hand side of the equality (3.2) as follows

2�(

e

w

k

; rot

e

u

k

) � 2�k

e

w

k

k krot

e

u

k

k � 2�k

e

w

k

k kr

e

u

k

k � �k

e

w

k

k

2

+ �a(

e

u

k

;

e

u

k

);

sine krot

e

u

k

k = kr

e

u

k

k. Also,

(f;

e

u

k

) � kfk

J(


k

)

�

kr

e

u

k

k �

1

2�

kfk

2

J(
)

�

+

�

2

a(

e

u

k

;

e

u

k

);

(g;

e

w

k

) � kgk

H

�1

(


k

)

kr

e

w

k

k �

1

2

kgk

2

H

�1

(
)

+



2

a(

e

w

k

;

e

w

k

):

Consequently, using the above estimates in (3.2), we get

�a(

e

u

k

;

e

u

k

) + a(

e

w

k

;

e

w

k

) + 2r�a(

e

h

k

;

e

h

k

) + 2�k

e

w

k

k

2

+ 2(� + �)kdiv

e

w

k

k

2

�

1

�

kfk

2

J(
)

�

+

1



kgk

2

H

�1

(
)

:

This estimates imply immediately (3.1).

Remark. We observe that estimate (3.1) is independent of k.

Now, we prove the existene of solution (

e

u

k

;

e

w

k

;

e

h

k

) for (P

k

).

As m

th

approximate solution of eq. (P

k

), we hoose funtions

u

m

(x) =

m

X

j=1



mj

'

j

(x); w

m

(x) =

m

X

j=1

d

mj

�

j

(x) and h

m

(x) =

m

X

j=1

e

mj

'

j

(x);

satisfying the equations

(�+ �) a(u

m

; '

j

) + b(u

m

; u

m

; '

j

)� r b(h

m

; h

m

; '

j

)

7



= �(rotw

m

; '

j

) + (f; '

j

); (3.3)

 a(w

m

; �

j

) + (� + �)(divw

m

; div�

j

) + jb(u

m

; w

m

; �

j

) + 2�(w

m

; �

j

)

= �(rotu

m

; �

j

) + (g; �

j

); (3.4)

� a(h

m

; '

j

) + b(u

m

; h

m

; '

j

)� b(h

m

; u

m

; '

j

) = 0; (3.5)

for 1 � j � m.

First we assume the existene of (u

m

; w

m

; h

m

) for any m 2 N . Note that solu-

tions (u

m

; w

m

; h

m

) must satisfy estimate (3.1). In fat, the identity (3.1) for u

m

is

obtained by multiplying (3.3) by 

mj

and summing over j from 1 to m. Similary, we

have identities (3.1) for w

m

and h

m

.

Estimate (3.1) follow from eqs. (3.3), (3.4) and (3.5) as in Lemma 3.2. Therefore

the sequene (u

m

; w

m

; h

m

) is bounded in J(


k

)�H

1

0

(


k

)� J(


k

).

Sine J(


k

) (respetivelyH

1

0

(


k

)) is ompatly imbedded inH(


k

) (respetively

L

2

(


k

)) we an hoose subsequenes whih we again denote by (u

m

; w

m

; h

m

) and

elements

e

u

k

2 J(


k

);

e

w

k

2 H

1

0

(


k

) and

e

h

k

2 J(


k

) suh that

u

m

!

e

u

k

h

m

!

e

h

k

)

weakly in J(


k

) and strongly in H(


k

);

w

m

!

e

w

k

weakly in H

1

0

(


k

) and strongly in L

2

(


k

):

This is enough to take the limit as m goes to 1 in (3.3), (3.4) and (3.5).

Therefore, (

e

u

k

;

e

w

k

;

e

h

k

) is a required weak solution to problem (P

k

).

In order to prove the solvability of system (P

k

) for any k 2 IN , we follow

Heywood [6℄ in applying Brouwer's Fixed Point Theorem.

Let V

m

be the subespae of J(


k

) spanned by f'

1

; :::; '

m

g, and let M

m

be the

subespae of H

1

0

(


k

) spanned by f�

1

; :::; �

m

g. For every (v; �; �) 2 V

m

�M

m

�V

m

we

onsider the unique solution L(v; �; �) = (u; w; h) 2 V

m

�M

m

�V

m

of the linearized

equations

(�+ �)a(u; '

j

) + b(v; u; '

j

)� rb(�; h; '

j

)� �(rotw; '

j

)� (f; '

j

) = 0; (3.6)

a(w; �

j

) + (� + �)(divw; div�

j

) + jb(v; w; �

j

) + 2�(w; �

j

)

8



��(rot u; �

j

)� (g; �

j

) = 0; (3.7)

�a(h; '

j

) + b(v; h; '

j

)� b(�; u; '

j

) = 0; (3.8)

for 1 � j � m. This is a system of 3m linear equations for the oeÆients in the

expansions u =

m

X

j=1



j

'

j

; w =

m

X

j=1

d

j

�

j

; h =

m

X

j=1

e

j

'

j

.

Equations (3.6), (3.7) and (3.8) have a unique solution beause the assoiated

homogeneous system (f = 0; g = 0) has an unique solution. In fat, if (u; w; h) is a

solution of the homogeneous system, proeeding as before, we multiply (3.6) by 

j

,

(3.7) by d

j

and (3.8) by re

j

and sum over j from 1 to m, to obtain

(�+ �))kruk

2

= �(rotw; u) + rb(�; h; u);

krwk

2

+ (� + �)kdivwk

2

+ 2�kwk

2

= �(rotu; w);

r�krhk

2

= rb(�; u; h):

Adding the above identities, we obtain

(�+ �)kruk

2

+ krwk

2

+ r�krhk

2

+ 2�kwk

2

+ (� + �)kdivwk

2

= 2�(rotu; w) � 2�krukkwk � �kruk

2

+ �kwk

2

:

Consequently,

�kruk

2

+ krwk

2

+ r�krhk

2

+ �kwk

2

+ (� + �)kdivwk

2

� 0:

Hene u = 0; w = 0 and h = 0. The ontinuity of L follows by applying

arguments that are similar to the ones used to takes the limit in (3.3), (3.4) and

(3.5).

We also have the estimate

�kruk

2

+ krwk

2

+ 2r�krhk

2

�

1

�

kfk

2

J(
)

�

+

1



kgk

2

H

�1

(
)

;

whih are shown in exatly the same way as was done for a solution (u

m

; w

m

; h

m

)

of (3.3), (3.4), (3.5).
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Then,

kruk

2

�

1

�

2

kfk

2

J(
)

�

+

1

�

kgk

2

H

�1

(
)

� `

2

1

(3.9)

krwk

2

�

1

�

kfk

2

J(
)

�

+

1



2

kgk

2

H

�1

(
)

� `

2

2

(3.10)

krhk

2

�

1

2r��

kfk

2

J(
)

�

+

1

2r�

kgk

2

H

�1

(
)

� `

2

3

(3.11)

Thus, (3.9), (3.10), (3.11) de�ne a ontinuous mapping L from the losed and

onvex set

S = f(v; �; �) 2 V

m

�M

m

� V

m

; krvk � `

1

; kr�k � `

2

; kr�k � `

3

g

into itself. Using Brouwer's Fixed Point Theorem, we onlude that the map L has

at least one �xed point, whih is a solution of (3.6), (3.7), (3.8). Thus, the existene

of weak solution (

e

u

k

;

e

w

k

;

e

h

k

) of (P

k

) is omplete.

Lemma 3.2. Let (

e

u

k

;

e

w

k

;

e

h

k

) be a weak solution for (P

k

) obtained in Proposition

3.1. Put

u

k

(x) =

(

e

u

k

(x) if x 2 


k

;

0 if x 2 
 n


k

;

w

k

(x) =

(

e

w

k

(x) if x 2 


k

;

0 if x 2 
 n


k

;

h

k

(x) =

(

e

h

k

(x) if x 2 


k

;

0 if x 2 
 n


k

:

Then it holds that

(u

k

; w

k

; h

k

) 2 J(
)�H

1

0

(
)� J(
)

and furthermore

kru

k

k � `

1

; krw

k

k � `

2

; krh

k

k � `

3

10



where `

1

; `

2

e `

3

be taken uniformly in k.

Proof. It is easy to show (u

k

; w

k

; h

k

) 2 J(
) � H

1

0

(
) � J(
). The estimates are

diretly dedued from the estimates (3.9)-(3-11) and the lower semiontinuity of the

norm.

4. Proof of Theorem of Existene

From estimates given in Lemma, we get by using the Rellih's ompatness

theorem and the diagonal argument, that there exist subsequenes whih we again

denote by (u

k

; w

k

; h

k

) and elements u; h 2 J(
) and w 2 H

1

0

(
) suh that

u

k

! u

h

k

! h

)

weakly in J(
) and strongly in L

2

lo

(
); (4.1)

w

k

! w weakly in H

1

0

(
) and strongly in L

2

lo

(
): (4.2)

One we obtain these onvergenes and limits we an show that (u; w; h) is a

desirable stationary weak solution for (P). In fat, let ('; �;  ) be an arbitrary given

tests funtions, then we �nd a bounded domain 


0

and k

0

suh that supp ', supp

�, supp  � 


0

� 


k

0

� 


k

for all k � k

0

. Then,

j((u

k

� r)';w

k

)




� ((u � r)';w)




j

� j((u

k

� u)r';w)




0

j+ j((u

k

� r)';w � w

k

)




0

j

� 3ku

k

� uk

L

2

(


0

)

kr'k

L

3

(


0

)

kwk

L

6

(


0

)

+3ku

k

k

L

6

(


0

kr'k

L

3

(


0

)

kw � w

k

k

L

2

(


0

)

� 3C

q

`

2

ku

k

� uk

L

2

(


0

)

kr'k

L

3

(


0

)

+ 3C

q

`

1

kw � w

k

k

L

2

(


0

)

kr'k

L

3

(


0

)

thanks you to Lemmas 2.1 and 3.2 and the onvergenes (4.1) and (4.2) show that

j((u

k

:r)';w

k

)




� ((u:r)';w)




j ! 0

as k ! 1. The other onvergenes are analogously established. Thus, we see

11



(u; w; h) is a stationary weak solution for (P).

5.Proof of Theorem of Uniqueness

Let (u

1

; w

1

; h

1

); (u

2

; w

2

; h

2

) be a weak solutions of (1.1), (1.2), (1.3). Put u =

u

1

� u

2

; w = w

1

� w

2

; h = h

1

� h

2

. Then, they satisfy

(�+ �) (ru;r') + (u � ru

1

; ') + (u

2

� ru; ') = �(rotw; ') + r(h � rh

1

; ')

+(h � rh; ');

(rw;r�) + (� + �)(divw; div�) + 2�(w; �) + j(u � rw

1

; �) + j(u

2

� rw; �)

= �(rotu; �);

�(rh;r ) + (u � rh

1

;  ) + (h

2

� rh;  )� (h � ru

1

;  )� (h

2

� ru;  ) = 0:

We take ' = u; � = w and  = rh in these last inequalities, thus obtaining

(�+ �)kruk

2

= �(rotw; u)� (u � ru

1

; u) + r(h � rh

1

; u)

+r(h

2

� rh; u); (5.1)

krwk

2

+ (� + �)kdivwk

2

+ 2�kwk

2

= �(rotu; w)� j(u � rw

1

; w); (5.2)

r�krhk

2

= r(h � ru

1

; h) + r(h

2

� ru; h)� r(u � rh

1

; h): (5.3)

By using the Lemma 2.1, we get

j(u � ru

1

; u)j = j(u � ru; u

1

)j � 3kuk

6

kruk ku

1

k

3

� 3C

L

kruk

2

ku

1

k

3

;

jr(h � rh

1

; u)j = jr(h � ru; h

1

)j � 3rkhk

6

kruk kh

1

k

3

� 3C

L

krhk kruk kh

1

k

3

;

j�(rotw; u)j = j�(w; rotu)j � �kwk kruk � �kwk

2

+ �kruk

2

j(u � rw

1

; w)j = j+ (u � rw;w

1

)j � 3kuk

6

krwk kw

1

k

3

� 3C

L

kruk krwk kw

1

k

3

jr(h � ru

1

; h)j = jr(h � rh; u

1

)j � 3rkhk

6

krhk ku

1

k

3

� 3rC

L

krhk

2

ku

1

k

3

jr(u � rh

1

; h)j = jr(u � rh; h

1

)j � 3rkuk

6

krhk kh

1

k

3

� 3rC

L

kruk krhk h

1

k

3

:
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Consequently, adding the equalities (5.1)-(5.3) and using the above estimates, we

obtain

�kruk

2

+ krwk

2

+ (�+ �)kdivwk

2

+ r�krhk

2

+ �kwk

2

�

3

2

C

L

(ku

1

k

3

+ kw

1

k

3

+ (1 + r) kh

1

k

3

)kruk

2

+

3C

L

2

(ku

1

k

3

+ (1 + r) kh

1

k

3

)krhk

2

+

3C

L

2

kw

1

k

3

krwk

2

=

3C

L

2�

(ku

1

k

3

+ kw

1

k

3

+ (1 + r) kh

1

k

3

)�kruk

2

+

3C

L

2r�

(ku

1

k

3

+ (1 + r) kh

1

k

3

) r�krhk

2

+

3C

L

2

kw

1

k

3

krwk

2

:

Thus, by hypotheses, we obtain

kruk = 0; krwk = 0; krhk = 0:

Therefore, we �nd u = onst., w = onst. and h = onst. But uj

�


= wj

�


= hj

�


=

0, hene u = 0; w = 0 and h = 0. Thus we have prove the uniqueness theorem.
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