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Abstract

Kirchho�-type, isochrone-stack demigration is the natural asymptotic inverse to classical

Kirchho� or di�raction-stack migration. Both stacking operations can be performed in true am-

plitude by an appropriate selection of weight functions. Isochrone-stack demigration can be also

used for seismic modeling purposes, i.e., for the computation of synthetic seismograms. The idea is

to attach to each reector in the model an appropriately stretched (i.e., frequency shifted) spatial

wavelet with an amplitude proportional to the reection coe�cient, so that the reector model

is transformed into an arti�cially constructed true-amplitude depth-migrated section. The seis-

mic modeling is then realized by a true-amplitude demigration operation applied to this arti�cial

migrated section. Two simple but typical synthetic data examples indicate that modeling by dem-

igration yields superior results as compared to conventional zero-order ray theory or even classical

Kirchho� modeling. Modeling by demigration turns out to be particularly advantageous when re-

peated seismic modeling, as in time-lapse seismic reservoir modeling, or modeling for nonsmooth

reectors is required. Moreover, modeling by demigration links the theory of seismic modeling to

that of seismic reection imaging. Any software developed for true-amplitude Kirchho� migration

can be easily modi�ed to construct synthetic seismograms with the help of true-amplitude modeling

by demigration.

Introduction

True-amplitude Kirchho�-type depth migration is a most desirable seismic imaging tool. It

transforms a given time section into a depth-migrated section, in which the migrated seismic pulses

along the reectors are free from geometrical-spreading losses (see, e.g., Bleistein, 1987; Schleicher

et al., 1993; Sun and Gajewski, 1997). Neglecting all other factors that a�ect amplitudes as, e.g.,

transmission and attenuation losses (for other amplitude factors see Sheri�, 1975) and ignoring

multiple arrivals present in the original seismic time section, the true-amplitude depth migration

output at each point of a reector is a measure of the reection coe�cient. This coe�cient pertains

to the primary-reection ray joining the source to the receiver position in the given measurement

con�guration. The considered point on the reector is the specular reection point of this ray.

Each reector in the depth-migrated section appears as a certain strip of spatial wavelets of

varying width. The form of this spatial wavelet strip is determined by the input temporal pulse
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(i.e., the source pulse), as well as by the so-called stretch factor. The latter describes the distortion,

also called the frequency shift, of the pulse due to the migration process (Brown, 1994; Tygel et

al., 1994b).

The di�raction-stack or Kirchho� migration integral is often understood, in an asymptotic

sense, as the inverse operation to forward modeling with the classical Kirchho� integral (Frazer and

Sen, 1985). As it is well known, the Kirchho� integral can be used to propagate a given incident

wave�eld (e.g., an elementary compressional wave) from the reector to the receiver point by

superposing \Huygens' secondary sources." In the same way , the Kirchho� migration integral serves

to reconstruct the same Huygens' secondary sources along the reector (in position and strength)

from the measured elementary-wave�eld reections at several receiver positions along the seismic

line. Note, however, that the Kirchho� migration integral only inverts the propagation e�ects of the

Kirchho� integral (Tygel et al., 1994a). To reconstruct the physical model, an additional process

(usually called inversion) is needed.

As discussed by Hubral et al. (1996) and mathematically shown by Tygel et al. (1996),

there exists another inverse to the Kirchho� migration integral (also in an asymptotic sense). This

inverse has the same integral structure as Kirchho� migration. It is given by an stacking process

which is applied to the depth-migrated section. To better understand the process, we �rst recall

that the Kirchho� depth-migrated section is constructed by stacking the original seismic time-

domain data along certain stacking surfaces (or lines in two dimensions). These are constructed on

a given macrovelocity model without the need to determine (nor to identify) the location of the

reection traveltime surfaces in the seismic section. The inverse process can be formulated by a

similar stack along related surfaces. These are also constructed on the given macrovelocity model

without knowing the location of the reectors in the migrated section. The stacking surfaces are

simply the isochrones, i.e, the surfaces of equal reection time between a given source and receiver.

These isochrones (ellipsoids in the constant-velocity case) are de�ned by the same traveltimes as

the Kirchho�-type di�raction traveltime surfaces (hyperboloids in the constant-velocity case) that

de�ne the stacking surfaces for migration. Thus, all that is to be known to actually perform the

inverse stacking-based reection imaging process is the same macrovelocity model as previously

used for the Kirchho� migration. Because of its fundamental similarity to Kirchho� migration, the

can be called an isochrone stack or simply Kirchho� demigration.
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Although being a very recent development, seismic demigration is, however, not a process

unknown to the seismic world (Whitcombe, 1991; Kaculini, 1994). It has already found several

di�erent types of practical applications.

One of the �rst seismic methods to be suggested that are based on the cascaded application

of migration and demigration is the so-called \seismic migration aided reection tomography" or

briey SMART (Faye and Jeannot, 1986; Lailly and Sinoquet, 1996). Here, seismic reection data

are migrated to depth using a simple, albeit probably wrong, macrovelocity model. In the depth

domain, the migrated primary reection events, although erroneous, are usually more coherent

and can, thus, be better identi�ed and picked. The resulting picked \reector maps" are then

kinematically demigrated back into the time domain using the same macrovelocity model. The

demigrated reector images can then help to identify and pick the traveltime surfaces in the original

seismic data. A similar concept was independently described by Fagin (1994).

The same cascade of migration and demigration is also used in a non-layer-stripping approach

for depth-conversion purposes. As described by Whitcombe (1991; 1994), the combination of demi-

gration with single-step ray migration can be used to fastly improve a layered macrovelocity model.

In this procedure, demigration is used to back out the e�ect of time migration prior to a ray-based

depth migration (i.e., map migration) and to enable the lateral shift between the time migrated

image and a depth-migrated image. The needed velocity model is obtained from a conventional

vertical depth conversion of time-migrated data.

Another important �eld, where demigration has already found a practical application is

velocity analysis (Ferber, 1994). The procedure is similar to a conventional migration velocity

analysis. Conventionally, image gathers are formed after prestack depth migration in the migrated

domain. Of course, all so-obtained migrated seismic image gathers to be compared depend on the

macrovelocity model, which will be generally incorrect. Thus, an interpretation of the image gathers

may be di�cult. Demigration can be used to avoid this problem by enabling a comparison directly

between seismic time sections. All that has to be done is to demigrate the migrated sections obtained

from di�erent common-o�set sections using the original macrovelocity model. However, instead of

demigrating them back to their original o�set, demigration is applied to all of them using a given,

�xed o�set that was actually used in the data acquisition geometry. After demigration, all so-

obtained sections can be compared with a real common-o�set section that was actually measured

in the �eld. The advantage is that the latter obviously does not depend on the macrovelocity
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model. Of course, if the macrovelocity model was correct, all constructed o�set sections should be

identical to each other and to the section actually measured. Deviations between the constructed

and measured sections can therefore be directly attributed to errors in the macrovelocity model.

These deviations can be determined, interpreted, and used to update the velocity model in the

same way as in migration velocity analysis.

Moreover, the processing sequence of migration and demigration has the potential of being

utilized in data regularization. Seismic reection data that were acquired on an irregular grid can

be migrated to depth (using a macrovelocity model as accurate as possible) and then demigrated

with the same model back into the time-domain data space onto a regular grid. Although expensive,

this is the best data interpolation (and even extrapolation) technique as it correctly accounts for

the propagation e�ects in the reector overburden.

The fact that the familiar Kirchho� migration integral seems to have \two inverse integrals"

(in an asymptotic sense) leads inevitable to the question whether the two processes described by

these integrals are identical. The answer is that these are, although closely related, in fact di�erent

processes. Their close relationship, however, implies the conclusion that it should be possible to

use Kirchho� demigration to achieve the goals of the forward Kirchho� modeling. In this paper,

we elaborate on how this can be done.

Although the two integrals describing Kirchho� forward modeling and Kirchho� demigration

both appear to be inverses to Kirchho� migration in an asymptotic sense, they do not exactly

coincide. Their relationship was recently investigated by Jaramillo and Bleistein (1997). Considering

only the leading order contributions, they have shown that the Kirchho� modeling integral can be

modi�ed in such a way that the Kirchho� demigration integral results. As the main contributions

to the integration stem from the specular reection point, this modi�cation should not cause major

di�erences. We may, thus, interpret the demigration integral as a \reorganized Kirchho� modeling

integral," which should give similar if not identical results. The physical interpretation of this new

integral is, however, di�erent. Unlike the Huygens' secondary source contributions in the Kirchho�

integral, it is now the individual Fresnel zone contributions to each primary reection that are

summed up by the integration (Schleicher et al., 1997).

What are, then, the advantages of implementing a seismic modeling scheme using the Kirch-

ho� demigration integral instead of the conventional Kirchho� modeling integral? Well, in fact,
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there exist several reasons:

� The actual process of true-amplitude Kirchho� demigration is so similar to true-amplitude

Kirchho� migration that existing migration programs (which are nowadays, of course, highly

developed and very e�ective) can be readily modi�ed to include the demigration and also the

seismic modeling part.

� Demigration is a process that becomes more and more important in the seismic processing

sequence in the pursuit to verify and improve the macrovelocity model. In this way, seismic

modeling can be done with a software that is also useful for reection-imaging purposes and

thus already available. No additional seismic forward modeling program is necessary.

� The Green's functions needed for migration and demigration are actually the same. So, when

applying demigration (either for seismic modeling or imaging purposes), using a velocity

model for which some time-domain data have been previously migrated, the Green's functions

are already available thus turning the demigration less expensive.

� Modeling by demigration turns out to be a particularly advantageous process when the e�ects

of reservoir changes are to be modeled as is the case in 4-D or time-lapse imaging. As only

the reector properties change but not the overburden with its propagation e�ects, the same

Green's functions can be used several times for subsequent modeling thus making modeling

by demigration superior in comparison with other schemes that have to start all over again.

� As demigration is a stacking process, it \smoothes" the simulated reection responses (in

contrary to, e.g., standard ray theory that computes arrival times and amplitudes along

specular rays only). Thus, there is no need for constructing smooth reectors (e.g., by applying

splines) or explicit two-point ray tracing. Modeling by demigration can be directly applied to

the conventionally picked reectors that are usually a sequence of planar reector elements.

This will not cause any damage to the simulated reection response.

� Whereas Kirchho� modeling needs an integration along the reector and, thus, has to be

applied to each reector independently, demigration uses as its input a depth-migrated section.

It thus needs to be applied only once to model primary reections for a whole set of di�erent

subsurface reectors.
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� Because the demigration integral sums only contributions from the actual Fresnel zone sur-

rounding each specular reection point, the stacking aperture can be even further reduced.

However, it should be kept in mind that Kirchho� demigration is a process as expensive as Kirchho�

migration. It may, thus, be disadvantageous in comparison to other seismic modeling schemes,

particularly when applied only once for a given velocity model, for a few reectors only, or for the

purpose of including multiples, etc.

Modeling, migration, and demigration

Before introducing seismic modeling by demigration as a tool for the construction of synthetic

seismograms, let us �rstly comment on the basic characteristics of the two processes of modeling

and demigration themselves, so as to appreciate their similarities and di�erences.

Basic model assumptions

Throughout this paper, we assume that primary elementary wave propagation is to be mod-

eled in a layered, isotropic, inhomogeneous earth model with smoothly curved interfaces (see Fig-

ure 1). Within the layers, the medium parameters vary smoothly such that a high-frequency ap-

proximation is justi�ed.

To better explain the principles underlying modeling by demigration, we arbitrarily choose

one of the many reecting interfaces as the target reector. Of course, the process described below

for one reector and its primary elementary reection simultaneously applies to all interfaces for

which elementary primary reection responses are to be modeled.

For reasons of simplicity, we refrain from including transmission losses within the overburden

of the chosen target reector into the following discussions. However, please keep in mind that all

overburden e�ects can be appropriately accounted for by including them into the necessary Green's

functions computations. This is true for Kirchho� modeling as well as for Kirchho� migration and

demigration.
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Modeling versus demigration

Modeling, as we understand it, implies the analytical or numerical simulation of a physical

process given all the equations and parameters for its complete description. In our case, the physical

process to be simulated is seismic wave propagation. It is described, e.g., by the elastic or acoustic

wave equation and the parameters are the velocity and density distributions within the medium,

the source and receiver locations, and the source wavelet together with appropriate boundary and

initial conditions. Seismic modeling is, then, realized by an implementation of the wave equation

(e.g., using �nite di�erences or the Born or Kirchho� representation integrals) or its approximate

solutions (like asymptotic ray theory) to obtain a synthetic-seismogram equivalent of the seismic

data that would have been recorded if the same experiment had been actually carried out in the

�eld. For the meaningful case of a layered Earth model, we need, in particular, the precise location

and description of the interfaces, as well as the appropriate boundary conditions on them.

Demigration, on the other hand, although it envisages to provide very similar results, uses a

conceptually di�erent approach. Its aim is to reconstruct a seismic time section from a corresponding

depth-migrated section. In other words, demigration aims to invert the imaging process of migration.

Of course, as migration aims at inverting the wave propagation e�ects, it is related in some way

to the wave equation. Correspondingly, also demigration, as the inverse process to migration, must

have some relationship to that equation. As opposed to direct forward modeling, however, we do

not have to implement or even know this wave equation. Moreover, we do not have to precisely

know all the true model parameters to actually perform the demigration process. Neither the true

velocity distribution in the earth, nor the source wavelet nor, above all, the position of the reecting

interfaces have to be known in order to apply a demigration. All that is needed, apart from the

seismic depth-migrated image section to be demigrated, is the macrovelocity model that has been

used for the migration process which produced this section. In fact, a table with all the Green's

functions as used in migration (i.e., from all sources and receivers to all subsurface points on an

appropriate grid) would already be su�cient. Of course, the better the macrovelocity model is,

the better will be the corresponding migrated section. This is, however, a problem of migration

and not of demigration. Even if the velocity model used for the original migration was very poor

and thus the depth-migrated image of very bad quality, a subsequent demigration will correctly

reconstruct the original time section. The only condition is that the same macrovelocity model has

to be used for demigration as previously used for migration. In other words, the chain of migration
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and demigration is a process that recovers the original time-domain data (in a high-frequency sense)

with very little sensitivity to the macrovelocity model.

After having qualitatively clari�ed the terms modeling and demigration, let us now mathe-

matically describe them in order to better understand their relationship.

Modeling

For reasons of comparison, we choose the well-known Kirchho� integral to represent a seismic

forward modeling scheme. It can be written as (Frazer and Sen, 1985; Tygel et al., 1994a)

IK(�; t) =

1

2�

ZZ

�

dS W (�; P

�

) @

t

F [t� �(�; P

�

)] ; (1)

where IK(�; t) denotes the modeled synthetic seismogram and z = �(x) is the reector along which

we have to integrate. We remind that for many reectors, an integral of this type has to be solved

along each of them. Also, W (�; P

�

) is a kernel or weight function consisting of an obliquity factor,

the specular plane-wave reection coe�cient R(P

�

) of the incident wave at the reector, and two

Green's function amplitudes. The latter pertain to the wave propagation along the two paths from

the source S(�) to the point P

�

= (x; z = �(x)) on the reector, and from there to the receiver

G(�) (see Figure 1). Here, � denotes a parameter that describes the measurement con�guration.

Moreover, F [t] is the analytic pulse that is chosen to represent the source signature and

�(�; P

�

) = T (S(�); P

�

) + T (G(�); P

�

) (2)

is the sum of traveltimes along the two paths of propagation SP

�

and GP

�

, where S(�) and G(�)

are �xed and P

�

varies along the reector.

The subsequent discussion is by no means restricted to a certain number of dimensions. We

choose to discuss the situation in three dimensions with x and � being 2-D vectors representing

the two horizontal coordinates. However, those readers who prefer to think in two dimensions need

only to think of x and � as scalars in the in-line direction and all integrals as being line integrals

instead of surface integrals.

As it is well-known, the integral (1) can be asymptotically evaluated as the sum of con-

tributions of its stationary points. To leading order, these are the specular reection points

P

R

(�) = P

�

j

x

�

(�)

on the reector that pertain to the given source-receiver pair S(�) and G(�)
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speci�ed by �. Assuming, for simplicity, a unique specular reection P

R

(see Figure 1), the asymp-

totic evaluation yields the zero-order ray approximation

IK(�; t) �

R(�)

L(�)

F [t� T (�)] ; (3)

where R(�) = R(P

R

) is the reection coe�cient, L(�) is the geometrical-spreading factor, and

T (�) = �(�; P

R

) is the reection traveltime. All of these quantities pertain to the specular ray SP

R

G.

Of course, for many reectors, the modeled synthetic seismogram section will be a superposition of

elementary primary reections of type (3).

We stress again that here as well as in the following, additional amplitude e�ects as, e.g.,

due to transmission losses at overburden interfaces, absorption, etc, are, for simplicity, neglected.

These e�ects can be included independently into each of the methods to be discussed in this paper.

Migration

Kirchho� migration is based on the idea of stacking the time-domain data in such a way

that any reection possibly pertaining to a certain, arbitrarily chosen depth point P = (x; z) is

summed up. Kirchho� migration can be represented by the following stacking integral (Bleistein,

1987; Schleicher et al., 1993)

IM(x; z) = �

1

2�

ZZ

A

d

2

� W

M

(�; P ) @

t

D(�; t)j

t=�(�;P )

; (4)

where IM(x; z) denotes the depth-migrated data, W

M

(�; P ) is the true-amplitude weight function

that guarantees a correct amplitude treatment, and D(�; t) are the seismic time-domain data to be

migrated. Also, A is the migration aperture. In correspondence to equation (2),

�(�; P ) = T (S(�); P ) + T (G(�); P ) (5)

is the sum of traveltimes along the two paths of propagation SP and PG, where now, however, P is

an arbitrary, �xed point in the subsurface and S(�) and G(�) vary along the measurement surface

(see again Figure 1).

Correspondingly to the above, also integral (4) can be evaluated asymptotically. For all

primary reections described in zero-order ray theoretical approximation according to equation

(3), an evaluation of the Kirchho� migration integral (4) in the vicinity of a specular reection
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point P

R

on an actual reector z = �(x) (see Figure 1) yields the reector image (Tygel et al.,

1996)

IM(x; z) � R(

�

�

�

)F [S(x)(z � �(x))] : (6)

In other words, Kirchho� migration (4) reconstructs the source wavelet in the vicinity of point P

R

on the reector z = �(x). The point P

R

determines the stationary point

�

�

�

of integral (4) which,

in turn, de�nes the specularly reected ray S(

�

�

�

)P

R

G(

�

�

�

). The peak amplitude of the migrated

pulse is given by the reection coe�cient R(

�

�

�

). Thus, Kirchho� migration (4) frees the primary

reection event D(

�

�

�

; t) from its geometrical-spreading loss, however stretching the wavelet by the

factor (Tygel et al., 1994b)

S(x) =

2 cos�

R

cos �

R

v

R

; (7)

where �

R

is the reection angle, �

R

is the local (in-plane) reector dip angle, and v

R

is the velocity

at the specular reection point P

R

. Further away from the reector, the stack (4) yields a negligible

value.

The main advantage of Kirchho� migration (4) is that neither the primary reections nor

the reector positions need to be identi�ed. The same integration (or stacking) process is applied,

independently of the number and location of the primary reection events and reecting interfaces.

All reector images will be represented by an expression of type (6).

Note that although often referred to as such, migration is not a complete inverse process to

modeling, not even in an approximate sense. Migration does not reconstruct the original Earth

model with all its physical parameters that are needed as the input to forward modeling. This is

done by an additional process called inversion. It is usually applied in a chain with migration which

is then referred to as migration/inversion. Without the inversion step, a migrated section cannot

be used as an input to modeling. It can, however, be used directly as an input to demigration.

Demigration

From corresponding arguments as for Kirchho� migration, a structurally equivalent integral

can be set up for its inverse operation (Hubral et al., 1996; Tygel et al., 1996). The idea is to stack

along a certain surface in the depth-migrated data volume in such a way that any migrated event

that possibly pertains to a certain, �xed data point N = (�; t) in the unmigrated section is summed
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up. This process is represented by the Kirchho� demigration integral

ID(�; t) =

1

2�

ZZ

E

d

2

x W

D

(x; �; t) @

z

M(x; z)j

z=�(x;�;t)

; (8)

where ID(�; t) denotes the demigrated data, W

D

(x; �; t) is again a true-amplitude weight function

to treat amplitudes correctly, and M(x; z) is the migrated image obtained from a previous migra-

tion, although not necessarily from a Kirchho� migration. Moreover, E is the spatial aperture of

demigration. The stacking surface, z = �(x; �; t), is implicitly given by

t = �(�; x; z = �(x; �; t)) = T (S(�); P ) + T (G(�); P ) ; (9)

i.e., again by the very same sum of traveltimes (2) as used in Kirchho� forward modeling (1) and

Kirchho� migration (4). As in Kirchho� modeling, S(�) and G(�) are the �xed source and receiver

points. Other than in that case, however, P = (x; z) does not vary along the reector z = �(x) but

along the surface z = �(x; �; t) that de�ned by equation (9) under the condition that t is constant.

In other words, z = �(x; �; t) describes the surface of equal reection time or isochrone pertaining

to the �xed source-receiver pair S and G and a given time t (see again Figure 1). This isochrone

plays the same role in Kirchho� demigration (8) as the di�raction-time surface plays in Kirchho�

migration (4). In both cases, the stacks sum up all contributions that come from the Fresnel zones

surrounding the specular reection points.

Let us assume that the original time-domain data were migrated using some migration scheme

of which the amplitude and stretching properties are unknown. Then, the resulting reector images

can still be represented, correspondingly to equation (6), by an expression of the type

M(x; z) = A(x)F [P(x)(z � �(x))] ; (10)

where A describes the amplitude of the migrated reections and P is a certain \prestretch factor"

produced by the migration operation. Application of the above demigration integral (8) to the

reector image (10) yields, after asymptotic evaluation as before,

ID(�; t) �

A(x

�

)

L(�)

F [S(x

�

)

�1

P(x

�

)(t� T (�))] ; (11)

where x

�

= x

�

(�) is the stationary point describing the specular reection ray S(�)P

R

G(�). Note

that the amplitude after true-amplitude demigration becomes a fraction in which the numerator

A(x

�

) is the original amplitude of the input migrated section evaluated at the stationary point. The

denominator is the geometrical-spreading factor L(�) along the reection ray S(�)P

R

G(�). This is
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to be contrasted with true-amplitude migration where the geometrical-spreading factor has been

removed from the input amplitudes [see equation (6)].

It was shown by Tygel et al. (1995) that the pulse stretch caused by demigration is the inverse

to that introduced by migration. It is given by equation (7). In other words, Kirchho� demigration

\unstretches" the seismic signal by the same factor S by which Kirchho� migration stretches it.

Hence, after Kirchho� migration and demigration, no overall stretch factor remains in formula (11).

Like Kirchho� migration, also Kirchho� demigration does not depend on the number and

locations of primary reections or reector images. The demigrated section will thus be a super-

position of all demigrated reector images (i.e., primary reection events) of the type of equation

(11).

Asymptotic inverses

If we apply Kirchho� forward modeling (1) to a certain model containing a target reector

z = �(x), and, afterwards, Kirchho� migration (4) to the resulting synthetic reection data IK(�; t)

using the same velocity model for both operations, then the migration result IM(x; z) will approxi-

mate the reector image (6). Ideally, we would like to have Kirchho� migration (4) reconstruct the

original model, i.e., we would like migration to be an (asymptotic) inverse to forward modeling.

However, this is not the case. To actually reconstruct the physical model, we need to add another

process, inversion, to extract the model parameters and the reector locations from the migrated

sections. We may then say that only the combined process of migration/inversion is a complete

(asymptotic) inverse to modeling.

On the other hand, we may apply Kirchho� migration (4) to some given �eld data D(�; t),

and then Kirchho� demigration (8) to the resulting migrated section IM(x; z), using the same

macrovelocity model in both operations. Then, the demigration result ID(x; t) can be expected to

closely reconstruct the original �eld data: ID(�; t) � D(�; t). Thus, Kirchho� demigration (8) can

be conceived as an (asymptotic) inverse to Kirchho� migration (4).

From the above observations and speaking in an asymptotic sense, we conclude that Kirchho�

modeling and demigration are two processes that are closely related but not identical. Whereas

Kirchho� demigration is the inverse process to Kirchho� migration, Kirchho� modeling is the
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inverse operation to Kirchho� migration/inversion. Nevertheless, the Kirchho� demigration integral

(8) can be employed for modeling purposes. In order to use Kirchho� demigration in a process

equivalent to Kirchho� modeling, we obviously have to add another process, which has to be the

\inverse operation to inversion." How this can be done is investigated in detail in the next section.

Even apart from the mentioned inverse operation to inversion, the integrals (1) and (8) are

not identical but account for the wave�eld contributions to a specular reection in a di�erent way.

Motivated by the work of Tygel et al. (1996), Jaramillo and Bleistein (1997) have shown that the

Kirchho� modeling and demigration integrals (1) and (8) are asymptotically (i.e., considering the

leading order contributions only) equivalent to each other.

Modeling using demigration

After having stated the similarities and di�erences of modeling and demigration, let us address

the basic question of this paper: How can we make use of the demigration for seismic modeling pur-

poses? Well, for each given subsurface reector, we have to appropriately simulate its corresponding

true-amplitude depth-migrated reector image as if obtained from a Kirchho� migration applied

to the primary reection to be modeled. In other words, given the source and receiver positions,

S(�) and G(�), respectively, as well as the reector z = �(x) within the velocity model and the

analytic source signal F [t], we have to arti�cially construct the true-amplitude reector image

M(x; z) = A(x)F [P(x)(z � �(x))] : (12)

This is obtained by placing the correctly scaled and stretched source pulse F [t] along the reector.

Here, the amplitude factor A(x) and the prestretch factor P(x) have yet to be chosen in such a way

that at the stationary point, x

�

= x

�

(�), they equal the correct (plane-wave) reection coe�cient

R(�) and the correct pulse stretch factor S(x

�

(�)), respectively, viz.

A(x

�

) � R(�) (13)

and

P(x

�

) � S(x

�

) : (14)

This construction of an arti�cial migrated section is, in fact, the process that was referred to above

as the \inverse operation to inversion."
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A natural choice for A and P is to use the actual functions R and S of Kirchho� migration.

Unfortunately, this might be di�cult as these functions are correctly known only after the specular

reection rays are determined. Note, however, that any other pair of smooth functions A and P

that satisfy conditions (13) and (14) at the stationary point will also work. This is an important

observation as, for each reector point, it allows to directly use the stationary value of the two

functions without the need to compute them for other, more distant points.

Application of the demigration integral (8) to an arti�cial migrated section containing a su-

perposition of reector images of the type (12) with amplitude A and prestretch factor P such that,

at the stationary point, they satisfy equations (13) and (14), respectively, leads, correspondingly

to equation (11), to a \demigrated" or synthetic seismogram section where all specular primary

reections are of the type

ID(�; t) �

R(�)

L(�)

F [t� T (�)] : (15)

A comparison to equation (3) shows that this is exactly the result of zero-order ray theory or of

the high-frequency evaluation of the Kirchho� modeling integral (1). In other words, for specular

reections the synthetic time section obtained by demigration of this arti�cially constructed depth-

migrated section will then be equivalent to the one directly obtained as a result of conventional

elementary primary-wave forward modeling applied to the given subsurface reectors. In addition to

the correctly modeled specular reections (15), modeling by demigration turns out to also provide

good estimates of nonspecular events like di�ractions or the wave�eld near a caustic, as we will see

below in the numerical examples.

The construction of the arti�cial migrated section has, in principle, to be done with the

very same parameters that are needed for forward modeling. Of course, it is a natural choice

to assume the true velocity distribution for this purpose. However, it is important to note that

this is not the only possibility. We have already noted above that the sequence of migration and

demigration is rather insensitive to changes in the velocity model. This has the following important

consequence. When forward modeling by demigration is applied to a reector model derived from a

depth migration, the quality of that model is not very crucial in order to get synthetic seismograms

that represent the observed �eld data very well. This implies, of course, that a good agreement of

the synthetic seismograms with the observed �eld data does not necessarily mean that the involved

macrovelocity model is a good one.
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Implementational aspects

Kirchho� demigration is a process that is completely parallel to Kirchho� migration. Accord-

ingly, it is implemented e�ciently in the same way as the latter. Tables of Green's functions from

all source and receiver points to all subsurface points within a target region have to be computed.

These provide not only the information about the isochrone stacking surfaces but also about the

necessary weight functions along them. However, modeling by demigration includes an additional

step, namely the construction of the true-amplitude reector images in an arti�cial migrated sec-

tion. This process was called above the \inverse operation to inversion." In this section, we comment

on how this part of the modeling process can be realized.

We have already observed that the stationary values (i.e., those pertaining to the specular

ray) of the reection coe�cient R and of the stretch factor S are needed for the construction of

the arti�cial migrated section. These are, of course, unknown before the specular ray is available.

Although this seems to be a problem that can be solved by a preceding explicit two-point ray

tracing only, it can, in fact, be circumvented.

Zero o�set.|For zero-o�set modeling, the above-explained idea of modeling by demigration can

be directly applied. All necessary quantities to construct the migrated image for each reector are

physical parameters directly available from the a-priori speci�ed Earth model. For any arbitrary

zero-o�set reection, the stretch factor at the stationary point on the reector is given by (Tygel

et al., 1994b)

S =

2 cos �

v

1

(16)

and the normal-incidence reection coe�cient by

R =

�

1

v

2

� �

2

v

1

�

1

v

2

+ �

2

v

1

(17)

where � is the local reector dip, and v

1

;

2

and �

1

;

2

are the velocities and densities above and below

the considered target reector at the reection point. Therefore, S and R can be directly computed

for any given reector point. As all quantities are readily available from the speci�ed Earth model,

the construction of the arti�cial migrated section with true-amplitude reector images of type (12)

presents no problem.
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Finite o�set.|For nonzero o�sets, modeling by demigration is a little more di�cult. Before being

attached to the reectors in order to construct the arti�cial migrated section, the wavelet has to be

multiplied by an amplitude factor A that satis�es equation (13). It also needs to be stretched by a

factor P that satis�es equation (14). We recall that demigration will then \unstretch" the spatial

wavelets of the reector image (12), because it is the inverse process to migration. Therefore, the

primary-reection pulses (15) in the resulting synthetic-seismogram section become correct and do

not su�er from any stretch.

In this case, the computational problem with equations (13) and (14) is that the stretch

factor as well as the reection coe�cient at the specular reection point depend on the reection

angle �

R

of the specular reected ray between S(�) and G(�) (see again Figure 1). This means, of

course, that for each di�erent source-receiver pair in the considered measurement con�guration, a

di�erently scaled and stretched wavelet is to be used because the reection angle di�ers. As this

angle is not available without previously determining the reection ray between S(�) and G(�), a

two-point ray tracing is, in principle, necessary to construct the arti�cial migrated section.

Below we will show that the arti�cial migrated section need not be constructed explicitly

but only implicitly during the demigration procedure. Thus, the reection angle �

R

need not be

known a priori, which means that a preceding two-point ray tracing is not necessary. This is, of

course, important for reasons of e�ciency. If one wanted to construct the arti�cial migrated section

explicitly (as it has been done in this paper for didactical reasons), one would have to determine

�rstly the correct angle-dependent plane-wave reection coe�cient and the stretch factor (7) for

each reection point P

R

on the reector (see Figure 1). As in the zero-o�set case, one would need

the local in-plane dip angle �

R

of the reector and the velocities and densities above and below each

considered reector point. Moreover one would also need to know the true specular reection angle

�

R

for the considered source-receiver pair S(�); G(�) at each reector point P

R

. This knowledge

could be obtained by two-point ray tracing from all sources S(�) to all receivers G(�). This would

be an expensive process, even though it can be realized by searching the already computed Green's

functions tables for specular reected rays. In this way, the arti�cial migrated section would be, in

fact, constructed explicitly before the actual demigration is carried out. This is, however, a manner

of solving the problem that is useful for didactical reasons only. It is very easy to do this for a

constant-velocity medium, where the specular quantities can be directly computed using analytic

expressions. In inhomogeneous media however, it would be too tedious and expensive to explicitly
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construct the reector images in the arti�cial migrated section.

For practical implementations, there exists a way of economizing on modeling by demigra-

tion. It is possible to use the information about the location and form of the true-amplitude target

reector image only implicitly. In this way, the amplitude and stretch factors are computed cor-

rectly during the modeling-by-demigration process. The arti�cial migrated section is actually never

constructed explicitly. Its construction is realized only implicitly by the use of the reector location

and the source wavelet during the stack at each point on the isochrone.

The basic observation is that for each primary reection to be modeled, equations (13) and

(14) have to be satis�ed only at the stationary point, i.e., at the specular reection point P

R

in

Figure 1. Thus, the specular reection angle �

R

, which is the crucial and problematic quantity in

the process, can be replaced at each \potential reection point P" on the isochrone by the half-

angle � between the ray branches from the source S(�) and the receiver G(�) to this point. If a

certain depth point on the isochrone is an actual specular reection point P

R

for the considered

source-receiver pair S(�); G(�), then this half-angle is equal to the specular reection angle �

R

.

Therefore, conditions (13) and (14) are satis�ed. Of course, the contributions from other reector

points that are not specular reection points for the considered source-receiver pair are altered

by this substitution. However, to the leading asymptotic order, the resulting alterations in the

stacking sum are negligible. The computation of the half-angle � requires no additional e�ort as

the Green's functions from all source and receiver points to all subsurface points P have to be

computed anyway to determine the isochrone stacking surfaces and weight functions. In this way,

the pulse-stretch factor and the reection coe�cient can be determined and made use of implicitly

during the demigration process (8). Only then, the vertical distance of P to the nearest reector is

stretched locally and the correspondingly computed source pulse is ampli�ed to contribute correctly

to the demigration stack.

Approximate solution.|If one would insist on the explicit construction of the arti�cial migrated

section as the �rst step, the problem of �nding the unknown specular reection angle �

R

can still be

avoided using one of the following approximations. The �rst is a small-o�set approximation where

the reection coe�cients and the stretch factors are replaced by the corresponding quantities for

zero o�set given by equations (16) and (17). As an alternative, assuming a weak contrast at the

reector, the reection coe�cient can be replaced by a linearized scattering coe�cient. If seismic
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reection events with correct �rst-arrival traveltimes but incorrect pulses are acceptable, the stretch

factor can even be omitted. In other words, the reector images in the arti�cial migrated section

can then be represented in the form

M(x; z) = A(x)F [z � �(x)] ; (18)

with A being some scattering coe�cient, e.g., according to the Born approximation. Application of

the true-amplitude demigration stack (8) to the reector image (18) will then result in the seismic

reection response

ID(�; t) �

A(x

�

(�))

L(�)

F [S(x

�

(�))

�1

(t� T (�))] ; (19)

the traveltimes of which are correct within the validity limits of zero-order ray theory. The ampli-

tudes are, however, correct within the limits of the considered approximation only. In this sense,

the seismic forward modeling has been successfully done.

Numerical examples

To illustrate the above described method called modeling by demigration, we consider two

simple earth models. The �rst is the one-reector earth model depicted in Figure 2. The velocities

in the half-spaces above and below the reector were v

1

=2500 m/s and v

2

=3000 m/s, respectively.

The density was chosen to be constant and equal to unity. For this model, we have simulated a

common-o�set experiment with a half-o�set of h =500 m. The ray family for the experiment is

also shown in Figure 2. A particular reason for the choice of this model is the presence of a caustic

clearly revealed in the �gure.

In Figure 3, we see the arti�cially constructed migrated reector image obtained from the

model parameters. Also indicated are �ve isochrones for a certain �xed source-receiver pair. Along

these and many other isochrones, the amplitudes found in the arti�cial migrated section are stacked

like in a Kirchho� migration. For each of these stacks, the resulting stack value is placed in the

demigrated section into the point determined by the midpoint coordinate of the source-receiver

pair and the �xed traveltime de�ning the isochrone. Note that one of the shown isochrones touches

the reector. It pertains to a primary reection. The true-amplitude stack along this isochrone

will yield the correct amplitude of the corresponding reection event whereas the stacks along the

other isochrones will yield approximately zero. This �gure also indicates the Fresnel zone on the

reector, which determines the primary common-o�set reection. The Fresnel zone of a certain
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primary reection is that part of the reector where its image contributes to the isochrone stack,

i.e., where the isochrone cuts the spatial wavelets attached to the reector (Schleicher et al., 1997).

The common-o�set section resulting from modeling by demigration has been compared in

Figure 4 with the corresponding sections obtained by conventional seismic modeling schemes. Fig-

ure 4a shows the synthetic common-o�set seismogram section as obtained by classical zero-order ray

theory, and Figure 4b contains the corresponding section resulting from an implementation of the

Kirchho� forward modeling integral (1). Figure 4c shows the new modeling-by-demigration result.

Note that in both integration techniques, the aperture was chosen su�ciently large so as to avoid

boundary e�ects. As expected, we observe most fundamental di�erences between the zero-order

ray-synthetic seismograms (Figure 4a) and the ones obtained by both the summation processes. As

a main feature, the di�racted events, i.e., the caustic tails in the bow-tie structure are not present

in the former. This is due to the well-known fact that standard ray theory does only compute spec-

ular reections and cannot handle nonspecular events. Note that modeling by demigration in this

respect is more accurate than zero-order ray theory because it includes di�racted wave branches.

This has to be so because, corresponding to Kirchho� migration, also demigration sums up all

possible contributions to a given point in the time section to be constructed. It is hard to see any

di�erences between the Kirchho� synthetic seismogram section and the one obtained from modeling

by demigration.

A closer inspection of the above seismic forward modeling results is provided in Figure 5,

where speci�c single traces are compared. Figure 5a shows the very �rst trace of the three seismo-

grams of Figure 4 at the midpoint position of 250 m. We clearly see that, for the specular reection

event, modeling by demigration (solid line) yields practically the same pulse as standard zero-order

ray theory (dotted line) and Kirchho� forward modeling (dashed line). The di�racted event that

arrives later is quite similar to the one obtained from Kirchho� modeling. This event is not present

in the ray-theoretical seismogram trace. Note, however, that a third, erroneous event is present in

the Kirchho� modeling trace only. It can be explained as a numerical artifact due to insu�cient

destructive interference of the Kirchho� summation process. This di�culty is not produced by

modeling by demigration, even though the spatial sampling and apertures for both summations

were chosen identical. We may say that modeling by demigration at this place is more accurate

than Kirchho� modeling. In Figure 5b, we see the computation results of the three algorithms for

the seismic trace at midpoint position 340 m, that is, the fourth trace of Figure 4. For this trace,
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the wave propagation involves a caustic. The three methods produce almost identical pulses for

the �rst (specular) reection, the rays of which pass fairly far away from the caustic. The second

(also specularly reected) event consists of an overlap of two reections that pass the caustic. The

modeling-by-demigration result and the one from Kirchho� modeling do not show signi�cant dif-

ferences. The amplitudes of the caustic events di�er slightly, but we do not have a criterion on

which one is a better approximation of the correct amplitude. Note the wrongly large amplitudes

provided by ray theory for this caustic situation. This is due to the known phenomenon that ray

theory overestimates amplitudes when the receiver is too close to a caustic. Figure 5c depicts the

results of the three methods for the construction of the trace at 430 m, i.e., the seventh trace of

Figure 4. This trace is interesting because it is exactly in the center of the bow tie structure, where

there is an overlap between all three specularly reected pulses. Of the three corresponding reected

rays, two of them pass through the caustic point, the third one does not. Ray amplitudes should be

correct here, because the receiver position is su�ciently far away from the caustic location. We see

that modeling by demigration in this case seems to give a better result than Kirchho� modeling.

The pulse obtained by modeling by demigration �ts the ray traced pulse quite well but there is a

certain amplitude loss in the Kirchho� result. Figure 5d con�rms this observation. It depicts the

seismic trace from the very left of the model, i.e., with a midpoint coordinate of 850 m, where

there is no inuence of the caustic. Again, ray theory should give an exact result. We see that

the pulse obtained from modeling by demigration �ts again the ray-theoretical pulse very well in

amplitude and pulse shape. The amplitude obtained by Kirchho� modeling is also more or less the

same. However, whereas the pulse form of modeling by demigration and ray theory are practically

identical, we see that the Kirchho� modeling counterpart pulse has su�ered some distortion. Is is

longer than the original source wavelet, and its second leg is less deep than the correct one.

As a �nal comparison for this model, we address in Figure 6 the amplitudes along the whole

seismic sections obtained from the three di�erent methods. We have picked the peak amplitudes of

the two distinguishable events in the three sections. Note that for the amplitudes of the �rst event

(see Figure 6a), modeling by demigration (solid line) reconstructs the same amplitude values as ray

theory (dotted line) until a midpoint coordinate of about 400 m. Kirchho� modeling (dashed line),

however, su�ers from a certain amplitude loss. Between about 400 m and 500 m, ray tracing su�ers

from incorrect amplitudes because the receiver falls into the near vicinity of the caustic point and

the two arrivals overlap. Here, we see that the amplitudes of modeling by demigration follow more

closely the ones obtained from Kirchho� modeling. Beyond 500 m, all three approximations yield
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comparable results. Observe that Kirchho� modeling systematically yields the lowest amplitudes.

From the amplitudes of the second event (see Figure 6b), we may again observe that modeling by

demigration and Kirchho� modeling provide quite similar results for the di�racted events and the

ones close to the caustic. As already indicated, ray theory yields wrong amplitudes in this region.

Again, Kirchho� modeling seems to slightly underestimate the amplitudes.

One might argue that the slightly lower amplitudes of Kircho� modeling in comparison to

modeling by demigration can be reduced with a smaller sampling interval in the numerical in-

tegration. However, it should be kept in mind that in the present example, both integrals were

numerically solved using the same sampling interval as well as the same numerical integration

technique and are thus directly comparable.

To demonstrate another advantage of modeling by demigration over the conventional mod-

eling schemes, we have chosen the second example. The velocities where chosen as before, and the

reector is now a nonsmooth interface consisting of linear segments (see Figure 7). This is typical

in practical situations in which the reectors have to be picked from a migrated seismic image.

Figure 8 shows the three modeling results as obtained from zero-order ray theory (Figure 8a),

Kirchho� modeling (Figure 8b), and modeling by demigration (Figure 8c). We see conicting dips

in the seismograms and a shadow zone where no specularly reected ray is observed (see also the

ray family in Figure 7). Correspondingly, the ray-theoretic section (Figure 8a) su�ers from a gap

in the reected event. Kirchho� modeling (Figure 8b) accounts for wavefront healing e�ects, but

produces a lot of spurious events. This is due to the problems with the nonsmoothness of the

interface and the ill-de�ned surface normal needed in the Kirchho� integral. Only the modeling-

by-demigration scheme (Figure 8c) shows a nice wavefront healing without producing additional,

nonphysical events. It smoothes over the edge points of the reector, thus resulting in the physically

most reasonable synthetic data section of the three computed ones.

Summary and Conclusions

We have proposed a new seismic forward modeling scheme that is based on a seismic imaging

process called demigration. The latter process has been introduced in the seismic literature as

the most natural inverse process to migration. For a given subsurface model, the newly proposed

seismic modeling process conceptually consists of two steps. These are (i) the transformation of the
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given subsurface model into a �ctitious, arti�cial true-amplitude depth-migrated section and (ii)

the application of a true-amplitude demigration to this arti�cially constructed migrated section.

The construction of the arti�cial migrated section can be done implicitly so that modeling by

demigration is, in fact, a one-step process.

For a single reector situation where a caustic point is present, and for a nonsmooth reector

consisting of linear segments, we have compared the results obtained by the proposed scheme

with their counterparts obtained from conventional classical ray-theoretical and Kirchho� forward

modeling. For these simple but typical examples that include di�ractions, conicting dips and even

a caustic, modeling by demigration has provided superior results than the conventional processes

of Kirchho� modeling and zero-order ray theory.

In particular, in regions where ray theory is expected to yield good results, modeling by

demigration has provided specular reection pulses that are almost identical to those of ray theory,

i.e., they have su�ered very little from pulse stretch, phase shifts, or amplitude losses. At the same

time, it has accounted for di�ractions in a very similar way as conventional Kirchho� modeling.

Thus, we may conclude that modeling by demigration combines the advantages of both conventional

methods.

Another advantage of modeling by demigration over both other methods is its little sensitivity

to nonsmooth reectors. Even in situations where synthetic data computed by zero-order ray theory

or the Kirchho� forward modeling integral are severely a�ected by the nonsmoothness of a reector,

modeling by demigration turned out to work reasonably well.

As a �nal remark, it is to be observed that modeling by demigration is especially well suited

to perform modeling in time-lapse applications, i.e., to model reservoir changes with time. As in

this case only the arti�cial migrated section has to be changed, the previously computed stacking

surfaces and weight functions can be used again without any modi�cations.
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Glossary

S Source position

G Receiver position

�

�

Coordinate of the source-receiver pair (S;G) (2-D vector) in the

original time section

�

�

�

Stationary point of the Kirchho� migration integral

t time coordinate

x

�

Horizontal coordinate (2-D vector)

x

�

�

Stationary point of both Kirchho� modeling and Kirchho� demi-

gration integrals

z Depth coordinate

P Point with coordinates (

x

�

; z) in depth

P

�

Point on the reector with coordinates (

x

�

;�(

x

�

))

P

R

Stationary point on the reector with coordinates (

x

�

�

;�(

x

�

�

))

� Reector surface de�ned as z = �(
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R angle-dependent reection coe�cient at the target reector

L 3-D geometrical-spreading factor of the reection ray from S to G

S Migration stretch factor

P Prestretch factor for modeling by demigration

A Amplitude factor for modeling by demigration

�

R

Reection angle at P

R

�
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Local in-plane reector dip angle at P

R

�

�

R

Density at P

R

above/below the reector

v

�

R

Acoustic wave velocity at P

R

above/below the reector

�
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Fig. 1: Inhomogeneous earth model with smooth interfaces. Also shown is one

isochrone for the indicated source-receiver pair.
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Fig. 2: One-layer model for the numerical experiment.

29



-1000 -500 0 500 1000 1500 2000

500

600

700

800

900

1000

1100

1200

1300

1400

1500

Distance (m)

D
ep

th
 (

m
)

Fig. 3: Arti�cial migrated section constructed from the model parameters

shown in Figure 2.
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Fig. 4a: Modeled common-o�set section as a result of zero-order ray theory.
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Fig. 4b: Modeled common-o�set section as a result of the Kirchho� integral.
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Fig. 4c: Modeled common-o�set section as a result of modeling by demigration.
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Fig. 5: Comparison of the modeling results of zero-order ray theory (dotted

line), Kirchho� modeling (dashed line), and modeling by demigration

(solid line). (a) Trace at midpoint 250 m. (b) Trace at midpoint 340 m.

(c) Trace at midpoint 430 m. (d) Trace at midpoint 850 m.
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Fig. 6: Comparison of the amplitude values along the reections in Figure 4 as

obtained from zero-order ray theory (dotted line), Kirchho� modeling

(dashed line), and modeling by demigration (solid line). (a) First arrival.

(b) Second arrival.
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