
On the implementation of augmented Lagrangian algorithms

Jos�e Mario Mart��nez

�

Marh 2, 1998

Abstrat

A family of augmented Lagrangian algorithms for nonlinear programming is desribed.
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multiplier method is introdued. Numerial experiments are presented.
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1 Introdution

We are onerned with the nonlinear programming problem

Minimize f(x)

subjet to h(x) = 0; g(x) � 0; x 2 
;

where f : IR

n

! IR, h : IR

n

! IR

m

, g : IR

n

! IR

p

are di�erentiable and 
 is a simple losed

and onvex set. In general, 
 = fx 2 IR

n

j ` � x � ug. Although all the arguments in this

work apply to the general ase, we will restrit ourselves, for the sake of simpliity, to the

ase where no equality onstraints are present:

Minimize f(x) (1)

subjet to g(x) � 0; x 2 
: (2)

The main step of an augmented Lagrangian method for solving (1)-(2) is

Minimize (approximately) L(x; �; �) subjet to x 2 
; (3)

where � 2 IR

++

is a penalty parameter assoiated to the onstraints g(x) � 0 and � 2 IR

p

+

is

a vetor of Lagrange multiplier estimates.

(Throughout this work, IR

+

= ft 2 IR j t � 0g, IR

++

= ft 2 IR j t > 0g and [v℄

i

is the

i�th omponent of the vetor v.)

The method an also be formulated with p di�erent penalty parameters, one for eah

omponent of g(x). The desription for this situation is a straightforward variation of the

one that we are going to present here. However, it does not seem to have numerial advantages

in pratial ases.

The objetive funtion of (3) will be alled an augmented Lagrangian if the following

properties take plae:

P1. For all �xed � 2 IR

p

+

(exept, perhaps, � = 0) the method de�ned by repeated applia-

tions of (3) with � going to 1 is a penalty method (see [1, 8, 9℄ among others). This implies

that, assuming that the feasible region of (1{2) is nonempty and that x

k

is an exat global

minimizer of L(x; �

k

; �), every limit point of fx

k

g is a global solution of (1{2).

P2. If x

�

is a regular stationary point of (1{2) and �

�

2 IR

p

+

is the vetor of Lagrange

multipliers then, for all �xed � 2 IR

++

, x

�

is a stationary point of

Minimize L(x; �; �

�

) subjet to x 2 
: (4)

An augmented Lagrangian algorithm onsists of repeated appliations of (3) followed by

the updating of the penalty parameter and the Lagrange multiplier estimates. Generally

speaking, the penalty parameters are inreased between di�erent iterations if the progress

measured in terms of gains of feasibility and omplementarity (

P

p

i=1

[�℄

i

[g(x)℄

i

must be zero

at a solution) is not satisfatory.

The form of separable augmented Lagrangian funtions is

L(x; �; �) = f(x) +

p

X

i=1

R(�; �

i

; g

i

(x)): (5)
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A general way in whih suitable augmented Lagrangian shemes an be obtained (see [1℄)

is de�ning

R(�; �

i

; g

i

(x)) =

1

�

�(�g

i

(x); �

i

) (6)

where � : IR� IR

+

! IR is a funtion with the following properties:

lim

�!1

1

�

�(�z; �) =1 for all z > 0; � > 0 (7)

lim

�!1

1

�

�(�z; �) = 0 for all z < 0; � > 0 (8)

�

�z

�(0; �) = � for all � > 0: (9)

�

�z

�(z; �) � 0 for all z 2 IR; � > 0: (10)

Many variations of this general sheme were introdued and exploited in the literature. In

partiular, see [3℄. Convergene properties of augmented Lagrangian algorithms for onvex

problems were reently surveyed in [16℄. Due to (7{8), property P1 holds for augmented

Lagrangians de�ned by (6). On the other hand, the identity (9) guarantees that property P2

takes plae.

The most lassial (Powell-Hestenes-Rokafellar) augmented Lagrangian method orre-

sponds to

�

PHR

(z; �) =

(z + �)

2

2

for z � �� ; 0 otherwise:

The main drawbak of the PHR augmented Lagrangian method is that seond derivatives

of �

PHR

are disontinuous, so that methods for solving (3) based on quadrati approximations

of the objetive funtion tend to be ineÆient.

The exponential-multiplier form of the augmented Lagrangian (see [1℄) overomes this

diÆulty de�ning

�(z; �) = � e

z

for all � > 0; z 2 IR:

In this paper we desribe an implementation of the augmented Lagrangian method based

on (7{10), we propose a modi�ation of the exponential Lagrangian method that enhanes its

eÆieny, we show numerial experiments and we suggest the main lines for future researh.

2 Updating the penalty parameters and the multipliers

Assume that problem (3) has been solved for some �

k

2 IR

p

+

; �

k

2 IR

++

and all x

k

the

approximate solution obtained. By Property P2, if we �xed �

k

and let �

k

!1, the sequene

of solutions fx

k

g would tend to a minimizer of (1-2). This means that, when we solve problem

(3) we expet some progress in relation to the previous approximation, both in terms of

feasibility and optimality. If this progress is not satisfatory, the penalty parameter should

be inreased, in general by multipliation by a �xed positive fator .
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Now, after the resolution of (3) we have enough information to de�ne a new approximation

for the vetor of Lagrange multipliers. In fat, at a regular solution x

�

of (1{2) we have that

hrf(x

�

) +

p

X

i=1

[�

�

℄

i

rg

i

(x

�

); x� x

�

i � 0 for all x 2 
; (11)

while, at a solution of (3) we have that, approximately,

hrf(x

k

) +

p

X

i=1

�

0

(g

i

(x

k

); [�

k

℄

i

)rg

i

(x

k

); x� x

k

i � 0 for all x 2 
: (12)

Comparison between (11) and (12) suggests that a suitable new estimate for the Lagrange

multiplier [�

�

℄

i

is

[�

k+1

℄

i

= �

0

(g

i

(x

k

); [�

k

℄

i

): (13)

(So, aording to (10), �

k+1

� 0.) Therefore, by (12), we have that

hrf(x

k

) +

p

X

i=1

[�

k+1

℄

i

rg

i

(x

k

); x� x

k

i � 0 for all x 2 
: (14)

is satis�ed, approximately, after eah outer iteration of an augmented Lagrangian method.

Assume, for a moment, that (14) holds up to a user-given small preision " > 0. If, in

addition, we have that

g

i

(x

k

) � " for all i = 1; : : : ; p (15)

and

[�

k+1

℄

i

� " whenever g

i

(x

k

) < �" (16)

we say that x

k+1

is an approximate solution of the original problem. (In fat, it is an

approximate stationary point of (1{2).)

In order that, eventually, approximate stationary points an be reahed, we require that

the preision "

k

> 0 that de�ne (3) be suh that "

k

= " after a �nite number of iterations.

Taking into aount to the observations above, a pratial augmented Lagrangian algo-

rithm an be de�ned by:

Augmented Lagrangian algorithm

Step 1 Initialization

Choose � 2 (0; 1);  > 1, �

1

> 0, [�

1

℄

i

> 0 for all i = 1; : : : ; p, "

1

> 0, �

0

=1.

Step 2 Solve the subproblem

Solve (3) up to preision "

k

.

Step 3 Update Lagrange multipliers

Compute �

k+1

aording to (13).

Step 4 Stopping riterion

If "

k

= " and, in addition, (15) and (16) hold, delare \onvergene" and terminate the

exeution of the algorithm.

Step 5 Update penalty parameter and preision
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De�ne "

k+1

and

�

k

= max fj min f[�

k

℄

i

;�g

i

(x

k

)gj; i = 1; : : : ; pg:

If �

k

� ��

k�1

, de�ne �

k+1

= �

k

. Else, de�ne �

k+1

= �

k

.

Step 6 Inrease iteration number

Replae k by k + 1 and go to Step 2.

In our experiments we used � = 0:1;  = 10, �

1

= 10, [�

1

℄

i

= 1 for the exponential

Lagrangian method and [�

1

℄

i

= 0 for PHR.

3 Solving the subproblems

Assume that 
 is an n-dimensional box, given by


 = fx 2 IR

n

j ` � x � ug:

So, (3) onsists on �nding an approximate solution of

Minimize

x

L(x; �; �) subjet to ` � x � u: (17)

Augmented Lagrangian algorithms with approximate solutions of the subproblems were

analyzed in [4, 7, 14, 15℄.

Subproblem (17) is solved, at eah outer iteration, using the method introdued in [11℄,

alled BOX from here on. This is an iterative method whih, at eah iteration, approxi-

mates the objetive funtion by a quadrati and minimizes this quadrati model in the box

determined by the natural onstraints ` � x � u and an auxiliary box that represents the

region where the quadrati approximation is reliable (trust region). If the objetive funtion

is suÆiently redued at the (approximate) minimizer of the quadrati, the orresponding

trial point is aepted as new iterate. Otherwise, the trust region is redued. The main algo-

rithmi di�erene between BOX and the method LANCELOT (used in [4℄) is that in [11℄ the

quadrati is explored on the whole intersetion of the natural box and the trust region, while

in [4℄ only the fae determined by an \approximate Cauhy point" is explored. A omparison

between these two methods for box-onstrained minimization an be found in [6℄.

The augmented Lagrangian algorithm is designed in order to ope large-sale problems.

For this reason, no fatorization of matries are used at any stage. The quadrati solver used

to deal with the subproblems of the box-onstraint algorithm (alled QUACAN from now

on) visits the di�erent faes of its domain using onjugate gradients on the interior of eah

fae and \hopped gradients" as searh diretions to leave the faes. See [10℄, [11℄ and [2℄ for

a desription of the 1998 implementation of QUACAN. At eah iteration of this quadrati

solver, a matrix-vetor produt of the Hessian approximation and a vetor is needed. Sine

Hessian approximations are usually umbersome to ompute, we use the \Trunated Newton"

approah, so that eah Hessian � vetor produt is replaed by an inremental quotient of

rL along the diretion given by the vetor.

The augmented Lagrangian subroutine has many parameters that inuentiate its pratial

performane. In this study we adjusted the most sensitive parameters using a typial problem
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with 103 variables and 78 nonlinear onstraints, alled \the Iosahedron problem". (This

is problem 1 (3, 12) desribed below, with the inequality onstraints replaed by equality

onstraints by means of the introdution of slak variables.) Below we omment the deision

taken on the main sensitive parameters based on this problem.

3.1 Termination riteria for the box-onstraint solver

Eah outer iteration �nishes when some stopping riterion for the algorithm that solves (17),

is ful�lled. We onsider that the box-onstraint algorithm BOX onverges when

kg

P

(x)k

2

� "

k

;

where g

P

(x) is the \ontinuous projeted gradient" of the objetive funtion of (17) at the

point x. This vetor is de�ned as the di�erene between the projetion of x�rL(x; �; �) on

the box and the point x. The tolerane "

k

may hange at eah outer iteration. In fat, we

tested (with the Iosahedron problem) a strategy that de�nes dynamially "

k

depending of

the degree of feasibility of the urrent iterate against a onstant hoie " = 10

�5

. Although

not onlusive, the results for onstant " in the typial problem were better. So, we adopted

this hoie in the experiments. The box-onstraint ode admits other stopping riteria. For

example, the exeution also stops when the radius of the trust region beomes too small (less

than 10

�8

in our experiments) or when the number of iterations exeed a user-given value

(300 in our experiments). Moreover, exeution an stop if the progress between di�erent

iterations is not good during some onseutive steps. However, best results were obtained

inhibiting this alternative stopping riterion.

3.2 Parameters for the Quadrati Solver

The algorithm QUACAN, whih minimizes a (not neessarily onvex) quadrati with bounds

on the variables, plays a ruial role in the overall behavior of the augmented Lagrangian

method. Therefore, its main parameters must be arefully hosen. A very important one

is the parameter used to delare onvergene of the algorithm. If the projeted gradient of

the quadrati is null, the orresponding point is stationary. Aording to this, onvergene

is delared if the norm of this projeted gradient is less than a fration of the orresponding

norm at the initial point. Here we use \non-ontinuous projeted gradients", in whih the

projetions are not omputed on the feasible box but on the aÆne subspae de�ned by the

ative onstraints. After testing the frations 1=10, 1=100 and 1=100000 on the Iosahedron

Problem, we observed that the �rst was the best one, so it was the one employed in the

numerial experiments. The number of iterations allowed to the quadrati solver is also

important beause, sometimes, a lot e�ort is invested in solving subproblems without a lose

relation to the original problem. We found that 100 is a suitable value for \maximum of

iterations" in this ase. Other non-onvergene stopping riteria were inhibited in the the

resolution of the quadrati subproblem.

The radius of the trust region determines the size of the domain of the auxiliary box used

in QUACAN. The nonlinear programming algorithm is sensitive to the hoie of Æ, the �rst

trust region radius. In the experiments presented in this paper we used Æ = 10.
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A very important parameter of the quadrati solver is � 2 (0; 1). Aording to this

parameter, it is deided whether the next iterate must belong to the same fae as the urrent

one, or not. Roughly speaking, if � is small the algorithm tends to leave the urrent fae

when a mild derease of the quadrati is deteted. On the other hand, if � � 1, the algorithm

only abandons the urrent fae when the urrent point is lose to a stationary point of the

quadrati on that fae. A rather surprising result was that the onservative value � = 0:95

was better than smaller values of � for the Iosahedron Problem.

When the quadrati solver hits the boundary of its feasible region a extrapolation step

an be tried, aording to the value of an extrapolation parameter � � 1. If � is large new

points will be tried at whih the number of ative onstraints an be onsiderably inreased.

On the other hand, if � = 1, no extrapolation is intended. Here, we �nished up deiding that

� = 10 is suitable for the Iosahedron problem.

4 Modi�ation of the exponential Lagrangian method

One of the omputational diÆulties assoiated to the exponential penalty funtion is related

to the rapid growth of this funtion, whih an ause overow and numerial instability.

Sometimes stopping by overow an be avoided without further onsequenes if the om-

piler has the apability of replaing the undesirable quantity by the largest possible mahine

number. This is the ase of the problem orresponding to Table 4 below. In these ases

the quantities assoiated to overow orrespond to trial points that are going to be rejeted

and the deision on the trust region size taken by BOX is independent of the magnitude of

the objetive funtion value at rejeted trial points. Therefore, nothing hanges if the large

quantity is replaed by 1. However, as we are going to see in other examples, the inuene

of large quantities on the behavior of the algorithm is more subtle.

Roughly speaking, the level sets of the funtion e

x

1

+:::+x

n

are similar to those of max fx

1

; : : : ; x

n

g

when one omponent is dominant. Moreover, when many omponents are similar and large

the exponential tends to assume a typial \nearly-nonsmooth" shape. In fat, for any smooth

funtion f(x

1

; : : : ; x

n

), given a point z where the gradient is not null, the probability of ob-

taining a point x suh that f(x) < f(z) in a neighborhood of radius Æ > 0 tends to

1

2

when

Æ ! 0. But taking n = 100, z = (100; : : : ; 100) and Æ = 1 we obtain that the probability

of obtaining e

x

1

+:::+x

n

< e

z

1

+:::+z

n

with kx � zk

1

< 1 is around 0:006. On the other hand,

the probability of having kxk

2

< kzk

2

with kx � zk

1

< 1 is around 0:49 and, of ourse, the

probability of having kxk

1

< kzk

1

with kx� zk

1

< 1 is 2

�100

.

Finally, our algorithm, as many other algorithms for nonlinear programming, is based

on quadrati approximations. Unfortunately, the quadrati (Taylor) model of e

x

is a poor

approximation of this funtion if x > 0 is large. If z = 10 and Æ = 1 the error of replaing e

x

by its seond order approximation in jx � zj � Æ is around 3600, but for z = 50, Æ = 1 this

error exeeds 10

20

. This probably indiates that methods based on quadrati models annot

be very eÆient when the objetive funtion involves several exponentials with not very small

arguments.

These observations lead us to suggest a modi�ation of the exponential Lagrangian

method whih onsists on replaing the exponential by a quadrati, if the argument ex-
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eeds a given value, in suh a way that the funtion, the �rst and seond derivatives are

ontinuous.

Therefore, the modi�ation onsists on de�ning

�(z; �) = � axp(z);

where

axp(z) = e

z

if z � �;

axp(z) = e

�

+ e

�

(z � �) + e

�

(z � �)

2

=2 if z > �:

It is easy to see that Properties P1 and P2 hold for this de�nition.

5 Numerial experiments

We tested the lassial PHR augmented Lagrangian method and the exponential Lagrangian

method with the modi�ation suggested in the previous setion using some typial nonlinear

programming problems:

Problem 1: Find npun points on the unitary sphere of IR

ndim

suh that maximum salar

produts between them is minimum. (This is equivalent to say that the minimum distane

is maximum.) The nonlinear programming problem has been de�ned as

Minimize z

subjet to

kx

k

k

2

2

= 1; k = 1; npun;

z � hx

i

; x

j

i for all i 6= j:

x

k

2 IR

ndim

; k = 1; : : : ; npun:

The solution of this problem is the set of verties of the polyhedron showed in Piture 1.

As initial approximation we took [x

k

℄

i

and z randomly in [�1; 1℄. In Tables 1, 2 and

3 we show the performane of the augmented Lagrangian PHR method and the modi�ed

exponential Lagrangian method for (ndim; npun) = (3; 24); (3; 30) and (4; 25) respetively

and for di�erent hoies of �. The on�guration of the tables for all the problems is similar:

\Outer" is the number of augmented Lagrangian iterations (number of times in whih (3)

is solved;

\Inner" is the number of iterations performed by BOX;

\Evaluations" is the number of times in whih the augmented Lagrangian was evaluated;

\Q.It." is the number of iterations of QUACAN;

\MVP" is the number of \matrix vetor produts", whih in this ase involve an additional

augmented Lagrangian gradient evaluation;

\Time" is the CPU time (seonds) of the exeution using Mirosoft double preision

Fortran 77 in a Pentium with 90 MHz.
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�

�

Piture 1: Solution of Problem 1 (3, 24)

For this problem, the last olumn \dist" is the minimum distane between points at the

solution obtained. (In fat, to prevent small violations of equality onstraints, the solution

omputed by the algorithm was �rst normalized so that all the points \really" belong to

the unitary sphere.) This problem has npun equality onstraints. Sine for this lass of

onstraints the lassial PHR augmented Lagrangian sheme does not present disontinuity

problems, we dealt with them using that standard proedure.

Problem 2: We took 132 points in the lassial map of Ameria (taken from the New York

Times) with 17 ountries and we formulated the problem of �nding the losest possible 132

points in the plane suh that the area of eah ountry is the true one with a 1 perent

preision. Therefore, if the 132 data points are y

1

; : : : ; y

132

2 IR

2

, the objetive funtion is

1

2

P

132

k=1

kx

k

� y

k

k

2

2

while the 34 onstraints of the problem are of the form

0:99 � True area � Computed area � 1:01 � True area :

for eah one of the 17 ountries onsidered. The solution of this problem is the map of

Ameria drawn in Piture 2.

As initial approximation we took x

k

= y

k

; k = 1; : : : ; npun. The �nal olumn of Table 4

represents the objetive funtion value at the solution obtained.

Problem 3: This problem has been suggested by C. Gonzaga [13℄ to test sensitivity with

respet to almost oinident onstraints. It is a very simple problem whih, on purpose, is not

9



formulated in the best possible way. (Bound onstraints are treated as expliit onstraints

g

i

(x) � 0 instead of being inluded in 
.) The problem is

Minimize

n

X

i=1

[x℄

i

i

subjet to [x℄

i

� 0; [x℄

i

� 0:001; i = 1; : : : ; n:

Clearly, its solution is (0:001; : : : ; 0:001). We used n = 1000 (so p = 2000). The oordinates

of the initial approximation were taken randomly between -10 and 10. The last olumn in

Table 5 is the logarithm of the 1�norm of the error.

Problem 4: This problem onsists on �nding npun points in IR

3

suh that the distane

between any pair of them is not less than 1 and the maximum distane is as lose to 1 as

possible:

Minimize z

subjet to

1 � kx

i

� x

j

k

2

2

� 1 + z

for all i 6= j, i; j = 1; : : : ; npun. The oordinates of the initial approximation were taken

randomly between -10 and 10. After solving the problem using the augmented Lagrangian

method, we omputed the e�etive distanes kx

i

� x

j

k. If any of them is (of ourse, slightly)

smaller than 1, we replaed eah x

k

by \ fator �x

k

" in suh a way that the smallest distane

is exatly equal to 1. For this normalized points we omputed the maximum deviation of the

distanes with respet to 1. This number is the one of the last olumn of Tables 6 and 7 and

reets the quality of the solution obtained in pratie.

10



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�����
������
�����
����
�����
������
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

���
���
���
��
����

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��
�
��
��
�
��
�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
������

�����
����

�����
������

�����
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�
�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

������
����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�
�
�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
�
�

�

�

�

�

��

�

�

�

�

�

������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��
�
��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

Piture 2: Solution of Problem 2
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Table 1: Problem 1 (3, 24) (n = 72, m = 24, p = 276)

Method Outer Inner Evaluations Q.It. MVP Time dist

PHR 7 503 5069 15742 43976 316.0 .743830

� = 0: 6 48 78 1115 1396 69.5 .74 4206

� = 0:1 5 51 78 1125 1419 70.7 .744 206

� = 1: 5 55 85 1336 1703 84.6 .74 4206

� � 10 5 61 94 1453 1843 92.0 .744206

Table 2: Problem 1 (3, 30) (n = 90, m = 30, p = 435)

Method Outer Inner Evaluations Q.It. MVP Time dist

PHR 8 434 3945 26990 47418 420.8 .657374

� = 0: 5 125 193 6057 6995 489.8 .660981

� = 0:1 5 124 187 5558 6446 456.9 .660981

� = 1: 5 138 216 5999 6770 479.0 .66 0981

� = 10: 5 160 242 6621 7593 532.9 .660981

� = 20: 5 157 233 6206 7202 507.0 .6 60981

� = 100: 5 157 233 6206 7202 507.0 . 660981

Table 3: Problem 1 (4, 25) (n = 100, m = 25, p = 600)

Method Outer Inner Evaluations Q.It. MVP Time dist

PHR 7 635 4726 34528 64374 658.4 .957825

� = 0: 9 2451 5406 132620 156111 8927.8 .78 7241

� = 0:1 10 2762 6496 107417 128496 7416.5 .6 63185

� = 1: 6 202 314 14404 15561 952.5 .96 1487

� = 10: 6 237 380 15609 17192 1067.5 .9 61489

� = 20: 6 258 398 15772 17291 1074.0 .9 61487

� = 100: 6 258 398 15772 17291 1073.6 . 961487

� = 500: 6 258 398 15772 17291 1073.5 . 961487
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Table 4: Problem 2 (n = 264 , p = 34)

Method Outer Inner Evaluations Q.It. MVP Time f

PHR 7 110 931 3508 8505 162.4 3.050771

� = 0: 6 56 87 1493 2083 79.9 3.049630

� = 0:1 6 57 88 1367 1910 74.3 3.049630

� = 1: 6 64 98 1485 2183 85.1 3.049630

� = 10: 6 72 109 1287 1880 74.0 3.049630

� = 20: 6 80 115 1227 1717 68.5 3.049630

� 2 [100:; 696:℄ 6 109 139 973 1451 59.0 3.04 9630

� � 697: overow

Table 5: Problem 3 (n = 1000 , p = 2000)

Method Outer Inner Evaluations Q.It. MVP Time log(Error)

PHR 6 331 964 9193 21446 1333.0 0.83

� = 0: 6 94 139 9578 13087 1400.1 -8

� = 0:1 6 104 158 10935 14969 1609.2 -8

� = 1: 6 113 171 11523 16329 1736.9 -8

� = 10: 6 136 198 10430 15071 1634.8 -8

� = 20: 6 149 217 11318 16325 1754.4 -8

� = 100: 6 224 287 12236 17646 1899.8 -8

Table 6: Problem 4 (3, 10) (n = 31 , p = 90)

Method Outer Inner Evaluations Q.It. MVP Time deviation

PHR 9 143 369 1910 4070 19.7 .776874

� = 0: 3 48 70 565 722 31.4 .77 3190

� = 0:1 3 52 79 692 905 38.9 .773 183

� = 1: 2 45 68 500 683 29.8 .76 2397

� = 10: 3 67 96 743 961 41.9 .7 73175

� = 20: 3 132 195 1741 2151 92.4 .8 03061

� = 100: 3 161 248 994 1459 65.6 . 773175
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Table 7: Problem 4 (3, 20) (n = 61 , p = 380)

Method Outer Inner Evaluations Q.It. MVP Time deviation

PHR 6 314 844 5035 11532 120.1 1.537385

� = 0: 4 75 112 2020 2409 711.1 1.44 6678

� = 0:1 4 63 89 1498 1733 512.7 1.4 46662

� = 1: 4 95 138 2416 2875 857.4 1.44 6650

� = 10: 4 88 132 2399 2725 811.3 1.4 46650

� = 20: 4 108 161 2161 2598 781.6 1.4 46650

� = 100: 4 175 268 2249 2718 839.0 1. 446650

6 Conlusions

A qualitative analysis of the numerial results presented in the tables 1{8 shows that:

1. The exponential Lagrangian method with � = 0 is the best method in Problem 1 (3,24).

The di�erene with � = 0:1 is, however, marginal. The performane of PHR is muh

poorer in this problem.

2. In Problem 1 (3,30) the best performane is the one of the exponential Lagrangian

method with � = 0:1. PHR uses less omputer time but the quality of the solution

is worse. In spite of using less omputer time, the number of matrix-vetor produts

and the other quantitative indiators is muh larger in the ase of PHR than in expo-

nential Lagrangian methods. This phenomenon is due, partially, to the higher ost of

exponentials with respet to quadratis. However, more inuent in the omputer time

is the fat that, in PHR, it is not neessary to evaluate the gradient of a onstraint at a

point where it is strongly satis�ed, while in exponential Lagrangian algorithms all the

onstraint gradients must be evaluated independently of their degree of ful�llment.

3. In Problem 1 (4, 25), the exponential Lagrangian method with � = 1 is the best one.

PHR uses less omputer time, but the solution is worse and the number of MVP is four

times larger than the one of the winner. In this ase � = 0 and � = 0:1 give low-quality

solutions while the solution for � > 1 has the same quality as that of � = 1.

4. In Problem 2, the solution has the same quality for all the exponential Lagrangian

methods but is marginally worse in PHR. In this problem the omputer time dereases

as � inreases, but the number of inner iterations goes in the opposite diretion. This

means that, when � grows, the quadrati subproblems beome easier. That is to say,

less MVP are neessary to ahieve the required preision by QUACAN. As a result,

more BOX iterations are neessary, but savings on MVP turn these alternatives more

eonomi.

5. The most remarkable fat in Problem 3 is the poor quality of the solution obtained by

PHR. All the exponential Lagrangian methods behaved similarly, with some advantage

for � = 0. In fat, although the exponential Lagrangian methods were able to �nd the

solution, their behavior in terms of quantitative indiators was far from being satisfa-

tory. Although this problem has been introdued with the aim of testing the inuene
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of almost oinident onstraints ([x℄

i

� 0 and [x℄

i

� 0:001) additional experiments using

only [x℄

i

� 0 gave similar results. The key point seems to be the large number of ative

onstraints at the solution, ombined with the very di�erent inuene of the variables

on the variation of the objetive funtion. Both features make quadrati models inade-

quate. On the other hand, if the problem is saled so that the variable [x℄

i

is replaed by

[x℄

i

=i all the algorithms behave very well. Moreover, the algorithms (espeially PHR)

also behave very well if the initial approximation belongs to [�20;�10℄

n

beause in this

ase all the inner iterates tend to lie in a region that is infeasible with respet to all the

onstraints, where there exists a well onditioned quadrati model that represents well

the true objetive funtion of the subproblems. Reall that other obvious situation in

whih the problem is trivial is when the bounds are inluded in 
, so that QUACAN

deals with them.

As a matter of fat, it seems that the minimization of

P

1000

i=1

[x℄

i

=i subjet to x � 0 is

a very simple and surprisingly hallenging problem for testing augmented Lagrangian

methods.

6. In Problem 4 (3,10) the best solution is obtained by the exponential Lagrangian method

with � = 1, whih also uses the lowest omputer time among exponential Lagrangians.

PHR uses less omputer time (although more MVP) but the quality of its solution is

marginally worse.

7. Finally, in Problem 4 (3,20) PHR is the method that uses less omputer time, but its

solution is worse than all the solutions obtained by exponential Lagrangians. Among

these, � = 1 is the best in terms of omputer time, its solution being very marginally

worse than that of � > 1.

Summing up, it appears from the numerial experiments that the solutions obtained by

PHR are, in general, worse than those obtained by the exponential Lagrangian algorithms.

This deÆieny is related to lak of ontinuity in seond derivatives. In fat, when seond

derivatives hange abruptly, the model approximation eases to be seond-order, fast onver-

gene rate is lost and BOX tends to stop with diagnostis of \small trust region", instead of

\small projeted gradient". The onsequene is that a really small projeted gradient and

thus a good solution sometimes fails to be reahed.

The expensiveness of exponential Lagrangian inner iterations and matrix-vetor produts

with respet to the same indiators of PHR is also very impressive. As we mentioned above,

the main reason is that one MVP in the ase of the exponential Lagrangian involves neessarily

all the onstraints, while in PHR it involves only those whih are not strongly satis�ed.

The experiments presented in the previous setion also reveal that the modi�ation sug-

gested here for the exponential Lagrangian method has advantages over the original algo-

rithm. Although we annot determine aurately the best possible value for �, it seems that

for reasonably saled problems some value around the unity is the best one.

In the next table, we show the number of matrix-vetor produts (so, auxiliary gradient

evaluations) per inner iteration for the best hoie of � at eah problem. We also show the

quotient of this number over the number of variables.
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Table 8: Gradient evaluations

Table MVP Inner MVP/Inner MVP/Inner/n

1 1396 48 29 0.40

2 6995 25 56 0.62

3 15561 202 77 0.77

4 1451 109 13 0.05

5 13087 94 139 0.14

6 683 45 15 0.48

7 1733 63 28 0.46

This table shows that a onsiderable number of gradient evaluations per iteration is used

in the trunated Newton approah for all the problems, exept for the problem of Table 4, in

whih this number is very moderate. In one ase (Table 3) the number of gradient evaluations

per iteration is 77 perent of the number that should be used by a disrete Newton method.

The observation above shows that there is a lot of plae for the development of quasi-

Newton methods for problems with the desribed struture sine, essentially these methods

use only one gradient evaluation per iteration. Of ourse, we do not expet to reprodue the

number of inner iterations of a trunated Newton method using quasi-Newton but it seems

that even losing in terms of number of iterations, a quasi-Newton method ould be more

eÆient in terms of overall performane. A little bit disappointing is the fat that we have

tested the use of lassial BFGS and Symmetri Rank-One orretions for these problems

with results muh poorer than the ones of the trunated Newton method.
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