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Abstra
t

A family of augmented Lagrangian algorithms for nonlinear programming is des
ribed.

The algorithms are implemented using trust-region box 
onstraint optimization software

for solving the subproblems. In parti
ular, an implementation of a modi�ed exponential

multiplier method is introdu
ed. Numeri
al experiments are presented.
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1 Introdu
tion

We are 
on
erned with the nonlinear programming problem

Minimize f(x)

subje
t to h(x) = 0; g(x) � 0; x 2 
;

where f : IR

n

! IR, h : IR

n

! IR

m

, g : IR

n

! IR

p

are di�erentiable and 
 is a simple 
losed

and 
onvex set. In general, 
 = fx 2 IR

n

j ` � x � ug. Although all the arguments in this

work apply to the general 
ase, we will restri
t ourselves, for the sake of simpli
ity, to the


ase where no equality 
onstraints are present:

Minimize f(x) (1)

subje
t to g(x) � 0; x 2 
: (2)

The main step of an augmented Lagrangian method for solving (1)-(2) is

Minimize (approximately) L(x; �; �) subje
t to x 2 
; (3)

where � 2 IR

++

is a penalty parameter asso
iated to the 
onstraints g(x) � 0 and � 2 IR

p

+

is

a ve
tor of Lagrange multiplier estimates.

(Throughout this work, IR

+

= ft 2 IR j t � 0g, IR

++

= ft 2 IR j t > 0g and [v℄

i

is the

i�th 
omponent of the ve
tor v.)

The method 
an also be formulated with p di�erent penalty parameters, one for ea
h


omponent of g(x). The des
ription for this situation is a straightforward variation of the

one that we are going to present here. However, it does not seem to have numeri
al advantages

in pra
ti
al 
ases.

The obje
tive fun
tion of (3) will be 
alled an augmented Lagrangian if the following

properties take pla
e:

P1. For all �xed � 2 IR

p

+

(ex
ept, perhaps, � = 0) the method de�ned by repeated appli
a-

tions of (3) with � going to 1 is a penalty method (see [1, 8, 9℄ among others). This implies

that, assuming that the feasible region of (1{2) is nonempty and that x

k

is an exa
t global

minimizer of L(x; �

k

; �), every limit point of fx

k

g is a global solution of (1{2).

P2. If x

�

is a regular stationary point of (1{2) and �

�

2 IR

p

+

is the ve
tor of Lagrange

multipliers then, for all �xed � 2 IR

++

, x

�

is a stationary point of

Minimize L(x; �; �

�

) subje
t to x 2 
: (4)

An augmented Lagrangian algorithm 
onsists of repeated appli
ations of (3) followed by

the updating of the penalty parameter and the Lagrange multiplier estimates. Generally

speaking, the penalty parameters are in
reased between di�erent iterations if the progress

measured in terms of gains of feasibility and 
omplementarity (

P

p

i=1

[�℄

i

[g(x)℄

i

must be zero

at a solution) is not satisfa
tory.

The form of separable augmented Lagrangian fun
tions is

L(x; �; �) = f(x) +

p

X

i=1

R(�; �

i

; g

i

(x)): (5)
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A general way in whi
h suitable augmented Lagrangian s
hemes 
an be obtained (see [1℄)

is de�ning

R(�; �

i

; g

i

(x)) =

1

�

�(�g

i

(x); �

i

) (6)

where � : IR� IR

+

! IR is a fun
tion with the following properties:

lim

�!1

1

�

�(�z; �) =1 for all z > 0; � > 0 (7)

lim

�!1

1

�

�(�z; �) = 0 for all z < 0; � > 0 (8)

�

�z

�(0; �) = � for all � > 0: (9)

�

�z

�(z; �) � 0 for all z 2 IR; � > 0: (10)

Many variations of this general s
heme were introdu
ed and exploited in the literature. In

parti
ular, see [3℄. Convergen
e properties of augmented Lagrangian algorithms for 
onvex

problems were re
ently surveyed in [16℄. Due to (7{8), property P1 holds for augmented

Lagrangians de�ned by (6). On the other hand, the identity (9) guarantees that property P2

takes pla
e.

The most 
lassi
al (Powell-Hestenes-Ro
kafellar) augmented Lagrangian method 
orre-

sponds to

�

PHR

(z; �) =

(z + �)

2

2

for z � �� ; 0 otherwise:

The main drawba
k of the PHR augmented Lagrangian method is that se
ond derivatives

of �

PHR

are dis
ontinuous, so that methods for solving (3) based on quadrati
 approximations

of the obje
tive fun
tion tend to be ineÆ
ient.

The exponential-multiplier form of the augmented Lagrangian (see [1℄) over
omes this

diÆ
ulty de�ning

�(z; �) = � e

z

for all � > 0; z 2 IR:

In this paper we des
ribe an implementation of the augmented Lagrangian method based

on (7{10), we propose a modi�
ation of the exponential Lagrangian method that enhan
es its

eÆ
ien
y, we show numeri
al experiments and we suggest the main lines for future resear
h.

2 Updating the penalty parameters and the multipliers

Assume that problem (3) has been solved for some �

k

2 IR

p

+

; �

k

2 IR

++

and 
all x

k

the

approximate solution obtained. By Property P2, if we �xed �

k

and let �

k

!1, the sequen
e

of solutions fx

k

g would tend to a minimizer of (1-2). This means that, when we solve problem

(3) we expe
t some progress in relation to the previous approximation, both in terms of

feasibility and optimality. If this progress is not satisfa
tory, the penalty parameter should

be in
reased, in general by multipli
ation by a �xed positive fa
tor 
.
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Now, after the resolution of (3) we have enough information to de�ne a new approximation

for the ve
tor of Lagrange multipliers. In fa
t, at a regular solution x

�

of (1{2) we have that

hrf(x

�

) +

p

X

i=1

[�

�

℄

i

rg

i

(x

�

); x� x

�

i � 0 for all x 2 
; (11)

while, at a solution of (3) we have that, approximately,

hrf(x

k

) +

p

X

i=1

�

0

(g

i

(x

k

); [�

k

℄

i

)rg

i

(x

k

); x� x

k

i � 0 for all x 2 
: (12)

Comparison between (11) and (12) suggests that a suitable new estimate for the Lagrange

multiplier [�

�

℄

i

is

[�

k+1

℄

i

= �

0

(g

i

(x

k

); [�

k

℄

i

): (13)

(So, a

ording to (10), �

k+1

� 0.) Therefore, by (12), we have that

hrf(x

k

) +

p

X

i=1

[�

k+1

℄

i

rg

i

(x

k

); x� x

k

i � 0 for all x 2 
: (14)

is satis�ed, approximately, after ea
h outer iteration of an augmented Lagrangian method.

Assume, for a moment, that (14) holds up to a user-given small pre
ision " > 0. If, in

addition, we have that

g

i

(x

k

) � " for all i = 1; : : : ; p (15)

and

[�

k+1

℄

i

� " whenever g

i

(x

k

) < �" (16)

we say that x

k+1

is an approximate solution of the original problem. (In fa
t, it is an

approximate stationary point of (1{2).)

In order that, eventually, approximate stationary points 
an be rea
hed, we require that

the pre
ision "

k

> 0 that de�ne (3) be su
h that "

k

= " after a �nite number of iterations.

Taking into a

ount to the observations above, a pra
ti
al augmented Lagrangian algo-

rithm 
an be de�ned by:

Augmented Lagrangian algorithm

Step 1 Initialization

Choose � 2 (0; 1); 
 > 1, �

1

> 0, [�

1

℄

i

> 0 for all i = 1; : : : ; p, "

1

> 0, �

0

=1.

Step 2 Solve the subproblem

Solve (3) up to pre
ision "

k

.

Step 3 Update Lagrange multipliers

Compute �

k+1

a

ording to (13).

Step 4 Stopping 
riterion

If "

k

= " and, in addition, (15) and (16) hold, de
lare \
onvergen
e" and terminate the

exe
ution of the algorithm.

Step 5 Update penalty parameter and pre
ision

4



De�ne "

k+1

and

�

k

= max fj min f[�

k

℄

i

;�g

i

(x

k

)gj; i = 1; : : : ; pg:

If �

k

� ��

k�1

, de�ne �

k+1

= �

k

. Else, de�ne �

k+1

= 
�

k

.

Step 6 In
rease iteration number

Repla
e k by k + 1 and go to Step 2.

In our experiments we used � = 0:1; 
 = 10, �

1

= 10, [�

1

℄

i

= 1 for the exponential

Lagrangian method and [�

1

℄

i

= 0 for PHR.

3 Solving the subproblems

Assume that 
 is an n-dimensional box, given by


 = fx 2 IR

n

j ` � x � ug:

So, (3) 
onsists on �nding an approximate solution of

Minimize

x

L(x; �; �) subje
t to ` � x � u: (17)

Augmented Lagrangian algorithms with approximate solutions of the subproblems were

analyzed in [4, 7, 14, 15℄.

Subproblem (17) is solved, at ea
h outer iteration, using the method introdu
ed in [11℄,


alled BOX from here on. This is an iterative method whi
h, at ea
h iteration, approxi-

mates the obje
tive fun
tion by a quadrati
 and minimizes this quadrati
 model in the box

determined by the natural 
onstraints ` � x � u and an auxiliary box that represents the

region where the quadrati
 approximation is reliable (trust region). If the obje
tive fun
tion

is suÆ
iently redu
ed at the (approximate) minimizer of the quadrati
, the 
orresponding

trial point is a

epted as new iterate. Otherwise, the trust region is redu
ed. The main algo-

rithmi
 di�eren
e between BOX and the method LANCELOT (used in [4℄) is that in [11℄ the

quadrati
 is explored on the whole interse
tion of the natural box and the trust region, while

in [4℄ only the fa
e determined by an \approximate Cau
hy point" is explored. A 
omparison

between these two methods for box-
onstrained minimization 
an be found in [6℄.

The augmented Lagrangian algorithm is designed in order to 
ope large-s
ale problems.

For this reason, no fa
torization of matri
es are used at any stage. The quadrati
 solver used

to deal with the subproblems of the box-
onstraint algorithm (
alled QUACAN from now

on) visits the di�erent fa
es of its domain using 
onjugate gradients on the interior of ea
h

fa
e and \
hopped gradients" as sear
h dire
tions to leave the fa
es. See [10℄, [11℄ and [2℄ for

a des
ription of the 1998 implementation of QUACAN. At ea
h iteration of this quadrati


solver, a matrix-ve
tor produ
t of the Hessian approximation and a ve
tor is needed. Sin
e

Hessian approximations are usually 
umbersome to 
ompute, we use the \Trun
ated Newton"

approa
h, so that ea
h Hessian � ve
tor produ
t is repla
ed by an in
remental quotient of

rL along the dire
tion given by the ve
tor.

The augmented Lagrangian subroutine has many parameters that in
uentiate its pra
ti
al

performan
e. In this study we adjusted the most sensitive parameters using a typi
al problem
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with 103 variables and 78 nonlinear 
onstraints, 
alled \the I
osahedron problem". (This

is problem 1 (3, 12) des
ribed below, with the inequality 
onstraints repla
ed by equality


onstraints by means of the introdu
tion of sla
k variables.) Below we 
omment the de
ision

taken on the main sensitive parameters based on this problem.

3.1 Termination 
riteria for the box-
onstraint solver

Ea
h outer iteration �nishes when some stopping 
riterion for the algorithm that solves (17),

is ful�lled. We 
onsider that the box-
onstraint algorithm BOX 
onverges when

kg

P

(x)k

2

� "

k

;

where g

P

(x) is the \
ontinuous proje
ted gradient" of the obje
tive fun
tion of (17) at the

point x. This ve
tor is de�ned as the di�eren
e between the proje
tion of x�rL(x; �; �) on

the box and the point x. The toleran
e "

k

may 
hange at ea
h outer iteration. In fa
t, we

tested (with the I
osahedron problem) a strategy that de�nes dynami
ally "

k

depending of

the degree of feasibility of the 
urrent iterate against a 
onstant 
hoi
e " = 10

�5

. Although

not 
on
lusive, the results for 
onstant " in the typi
al problem were better. So, we adopted

this 
hoi
e in the experiments. The box-
onstraint 
ode admits other stopping 
riteria. For

example, the exe
ution also stops when the radius of the trust region be
omes too small (less

than 10

�8

in our experiments) or when the number of iterations ex
eed a user-given value

(300 in our experiments). Moreover, exe
ution 
an stop if the progress between di�erent

iterations is not good during some 
onse
utive steps. However, best results were obtained

inhibiting this alternative stopping 
riterion.

3.2 Parameters for the Quadrati
 Solver

The algorithm QUACAN, whi
h minimizes a (not ne
essarily 
onvex) quadrati
 with bounds

on the variables, plays a 
ru
ial role in the overall behavior of the augmented Lagrangian

method. Therefore, its main parameters must be 
arefully 
hosen. A very important one

is the parameter used to de
lare 
onvergen
e of the algorithm. If the proje
ted gradient of

the quadrati
 is null, the 
orresponding point is stationary. A

ording to this, 
onvergen
e

is de
lared if the norm of this proje
ted gradient is less than a fra
tion of the 
orresponding

norm at the initial point. Here we use \non-
ontinuous proje
ted gradients", in whi
h the

proje
tions are not 
omputed on the feasible box but on the aÆne subspa
e de�ned by the

a
tive 
onstraints. After testing the fra
tions 1=10, 1=100 and 1=100000 on the I
osahedron

Problem, we observed that the �rst was the best one, so it was the one employed in the

numeri
al experiments. The number of iterations allowed to the quadrati
 solver is also

important be
ause, sometimes, a lot e�ort is invested in solving subproblems without a 
lose

relation to the original problem. We found that 100 is a suitable value for \maximum of

iterations" in this 
ase. Other non-
onvergen
e stopping 
riteria were inhibited in the the

resolution of the quadrati
 subproblem.

The radius of the trust region determines the size of the domain of the auxiliary box used

in QUACAN. The nonlinear programming algorithm is sensitive to the 
hoi
e of Æ, the �rst

trust region radius. In the experiments presented in this paper we used Æ = 10.
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A very important parameter of the quadrati
 solver is � 2 (0; 1). A

ording to this

parameter, it is de
ided whether the next iterate must belong to the same fa
e as the 
urrent

one, or not. Roughly speaking, if � is small the algorithm tends to leave the 
urrent fa
e

when a mild de
rease of the quadrati
 is dete
ted. On the other hand, if � � 1, the algorithm

only abandons the 
urrent fa
e when the 
urrent point is 
lose to a stationary point of the

quadrati
 on that fa
e. A rather surprising result was that the 
onservative value � = 0:95

was better than smaller values of � for the I
osahedron Problem.

When the quadrati
 solver hits the boundary of its feasible region a extrapolation step


an be tried, a

ording to the value of an extrapolation parameter � � 1. If � is large new

points will be tried at whi
h the number of a
tive 
onstraints 
an be 
onsiderably in
reased.

On the other hand, if � = 1, no extrapolation is intended. Here, we �nished up de
iding that

� = 10 is suitable for the I
osahedron problem.

4 Modi�
ation of the exponential Lagrangian method

One of the 
omputational diÆ
ulties asso
iated to the exponential penalty fun
tion is related

to the rapid growth of this fun
tion, whi
h 
an 
ause over
ow and numeri
al instability.

Sometimes stopping by over
ow 
an be avoided without further 
onsequen
es if the 
om-

piler has the 
apability of repla
ing the undesirable quantity by the largest possible ma
hine

number. This is the 
ase of the problem 
orresponding to Table 4 below. In these 
ases

the quantities asso
iated to over
ow 
orrespond to trial points that are going to be reje
ted

and the de
ision on the trust region size taken by BOX is independent of the magnitude of

the obje
tive fun
tion value at reje
ted trial points. Therefore, nothing 
hanges if the large

quantity is repla
ed by 1. However, as we are going to see in other examples, the in
uen
e

of large quantities on the behavior of the algorithm is more subtle.

Roughly speaking, the level sets of the fun
tion e

x

1

+:::+x

n

are similar to those of max fx

1

; : : : ; x

n

g

when one 
omponent is dominant. Moreover, when many 
omponents are similar and large

the exponential tends to assume a typi
al \nearly-nonsmooth" shape. In fa
t, for any smooth

fun
tion f(x

1

; : : : ; x

n

), given a point z where the gradient is not null, the probability of ob-

taining a point x su
h that f(x) < f(z) in a neighborhood of radius Æ > 0 tends to

1

2

when

Æ ! 0. But taking n = 100, z = (100; : : : ; 100) and Æ = 1 we obtain that the probability

of obtaining e

x

1

+:::+x

n

< e

z

1

+:::+z

n

with kx � zk

1

< 1 is around 0:006. On the other hand,

the probability of having kxk

2

< kzk

2

with kx � zk

1

< 1 is around 0:49 and, of 
ourse, the

probability of having kxk

1

< kzk

1

with kx� zk

1

< 1 is 2

�100

.

Finally, our algorithm, as many other algorithms for nonlinear programming, is based

on quadrati
 approximations. Unfortunately, the quadrati
 (Taylor) model of e

x

is a poor

approximation of this fun
tion if x > 0 is large. If z = 10 and Æ = 1 the error of repla
ing e

x

by its se
ond order approximation in jx � zj � Æ is around 3600, but for z = 50, Æ = 1 this

error ex
eeds 10

20

. This probably indi
ates that methods based on quadrati
 models 
annot

be very eÆ
ient when the obje
tive fun
tion involves several exponentials with not very small

arguments.

These observations lead us to suggest a modi�
ation of the exponential Lagrangian

method whi
h 
onsists on repla
ing the exponential by a quadrati
, if the argument ex-
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eeds a given value, in su
h a way that the fun
tion, the �rst and se
ond derivatives are


ontinuous.

Therefore, the modi�
ation 
onsists on de�ning

�(z; �) = � axp(z);

where

axp(z) = e

z

if z � �;

axp(z) = e

�

+ e

�

(z � �) + e

�

(z � �)

2

=2 if z > �:

It is easy to see that Properties P1 and P2 hold for this de�nition.

5 Numeri
al experiments

We tested the 
lassi
al PHR augmented Lagrangian method and the exponential Lagrangian

method with the modi�
ation suggested in the previous se
tion using some typi
al nonlinear

programming problems:

Problem 1: Find npun points on the unitary sphere of IR

ndim

su
h that maximum s
alar

produ
ts between them is minimum. (This is equivalent to say that the minimum distan
e

is maximum.) The nonlinear programming problem has been de�ned as

Minimize z

subje
t to

kx

k

k

2

2

= 1; k = 1; npun;

z � hx

i

; x

j

i for all i 6= j:

x

k

2 IR

ndim

; k = 1; : : : ; npun:

The solution of this problem is the set of verti
es of the polyhedron showed in Pi
ture 1.

As initial approximation we took [x

k

℄

i

and z randomly in [�1; 1℄. In Tables 1, 2 and

3 we show the performan
e of the augmented Lagrangian PHR method and the modi�ed

exponential Lagrangian method for (ndim; npun) = (3; 24); (3; 30) and (4; 25) respe
tively

and for di�erent 
hoi
es of �. The 
on�guration of the tables for all the problems is similar:

\Outer" is the number of augmented Lagrangian iterations (number of times in whi
h (3)

is solved;

\Inner" is the number of iterations performed by BOX;

\Evaluations" is the number of times in whi
h the augmented Lagrangian was evaluated;

\Q.It." is the number of iterations of QUACAN;

\MVP" is the number of \matrix ve
tor produ
ts", whi
h in this 
ase involve an additional

augmented Lagrangian gradient evaluation;

\Time" is the CPU time (se
onds) of the exe
ution using Mi
rosoft double pre
ision

Fortran 77 in a Pentium with 90 MHz.
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�

Pi
ture 1: Solution of Problem 1 (3, 24)

For this problem, the last 
olumn \dist" is the minimum distan
e between points at the

solution obtained. (In fa
t, to prevent small violations of equality 
onstraints, the solution


omputed by the algorithm was �rst normalized so that all the points \really" belong to

the unitary sphere.) This problem has npun equality 
onstraints. Sin
e for this 
lass of


onstraints the 
lassi
al PHR augmented Lagrangian s
heme does not present dis
ontinuity

problems, we dealt with them using that standard pro
edure.

Problem 2: We took 132 points in the 
lassi
al map of Ameri
a (taken from the New York

Times) with 17 
ountries and we formulated the problem of �nding the 
losest possible 132

points in the plane su
h that the area of ea
h 
ountry is the true one with a 1 per
ent

pre
ision. Therefore, if the 132 data points are y

1

; : : : ; y

132

2 IR

2

, the obje
tive fun
tion is

1

2

P

132

k=1

kx

k

� y

k

k

2

2

while the 34 
onstraints of the problem are of the form

0:99 � True area � Computed area � 1:01 � True area :

for ea
h one of the 17 
ountries 
onsidered. The solution of this problem is the map of

Ameri
a drawn in Pi
ture 2.

As initial approximation we took x

k

= y

k

; k = 1; : : : ; npun. The �nal 
olumn of Table 4

represents the obje
tive fun
tion value at the solution obtained.

Problem 3: This problem has been suggested by C. Gonzaga [13℄ to test sensitivity with

respe
t to almost 
oin
ident 
onstraints. It is a very simple problem whi
h, on purpose, is not

9



formulated in the best possible way. (Bound 
onstraints are treated as expli
it 
onstraints

g

i

(x) � 0 instead of being in
luded in 
.) The problem is

Minimize

n

X

i=1

[x℄

i

i

subje
t to [x℄

i

� 0; [x℄

i

� 0:001; i = 1; : : : ; n:

Clearly, its solution is (0:001; : : : ; 0:001). We used n = 1000 (so p = 2000). The 
oordinates

of the initial approximation were taken randomly between -10 and 10. The last 
olumn in

Table 5 is the logarithm of the 1�norm of the error.

Problem 4: This problem 
onsists on �nding npun points in IR

3

su
h that the distan
e

between any pair of them is not less than 1 and the maximum distan
e is as 
lose to 1 as

possible:

Minimize z

subje
t to

1 � kx

i

� x

j

k

2

2

� 1 + z

for all i 6= j, i; j = 1; : : : ; npun. The 
oordinates of the initial approximation were taken

randomly between -10 and 10. After solving the problem using the augmented Lagrangian

method, we 
omputed the e�e
tive distan
es kx

i

� x

j

k. If any of them is (of 
ourse, slightly)

smaller than 1, we repla
ed ea
h x

k

by \ fa
tor �x

k

" in su
h a way that the smallest distan
e

is exa
tly equal to 1. For this normalized points we 
omputed the maximum deviation of the

distan
es with respe
t to 1. This number is the one of the last 
olumn of Tables 6 and 7 and

re
e
ts the quality of the solution obtained in pra
ti
e.

10
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ture 2: Solution of Problem 2
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Table 1: Problem 1 (3, 24) (n = 72, m = 24, p = 276)

Method Outer Inner Evaluations Q.It. MVP Time dist

PHR 7 503 5069 15742 43976 316.0 .743830

� = 0: 6 48 78 1115 1396 69.5 .74 4206

� = 0:1 5 51 78 1125 1419 70.7 .744 206

� = 1: 5 55 85 1336 1703 84.6 .74 4206

� � 10 5 61 94 1453 1843 92.0 .744206

Table 2: Problem 1 (3, 30) (n = 90, m = 30, p = 435)

Method Outer Inner Evaluations Q.It. MVP Time dist

PHR 8 434 3945 26990 47418 420.8 .657374

� = 0: 5 125 193 6057 6995 489.8 .660981

� = 0:1 5 124 187 5558 6446 456.9 .660981

� = 1: 5 138 216 5999 6770 479.0 .66 0981

� = 10: 5 160 242 6621 7593 532.9 .660981

� = 20: 5 157 233 6206 7202 507.0 .6 60981

� = 100: 5 157 233 6206 7202 507.0 . 660981

Table 3: Problem 1 (4, 25) (n = 100, m = 25, p = 600)

Method Outer Inner Evaluations Q.It. MVP Time dist

PHR 7 635 4726 34528 64374 658.4 .957825

� = 0: 9 2451 5406 132620 156111 8927.8 .78 7241

� = 0:1 10 2762 6496 107417 128496 7416.5 .6 63185

� = 1: 6 202 314 14404 15561 952.5 .96 1487

� = 10: 6 237 380 15609 17192 1067.5 .9 61489

� = 20: 6 258 398 15772 17291 1074.0 .9 61487

� = 100: 6 258 398 15772 17291 1073.6 . 961487

� = 500: 6 258 398 15772 17291 1073.5 . 961487
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Table 4: Problem 2 (n = 264 , p = 34)

Method Outer Inner Evaluations Q.It. MVP Time f

PHR 7 110 931 3508 8505 162.4 3.050771

� = 0: 6 56 87 1493 2083 79.9 3.049630

� = 0:1 6 57 88 1367 1910 74.3 3.049630

� = 1: 6 64 98 1485 2183 85.1 3.049630

� = 10: 6 72 109 1287 1880 74.0 3.049630

� = 20: 6 80 115 1227 1717 68.5 3.049630

� 2 [100:; 696:℄ 6 109 139 973 1451 59.0 3.04 9630

� � 697: over
ow

Table 5: Problem 3 (n = 1000 , p = 2000)

Method Outer Inner Evaluations Q.It. MVP Time log(Error)

PHR 6 331 964 9193 21446 1333.0 0.83

� = 0: 6 94 139 9578 13087 1400.1 -8

� = 0:1 6 104 158 10935 14969 1609.2 -8

� = 1: 6 113 171 11523 16329 1736.9 -8

� = 10: 6 136 198 10430 15071 1634.8 -8

� = 20: 6 149 217 11318 16325 1754.4 -8

� = 100: 6 224 287 12236 17646 1899.8 -8

Table 6: Problem 4 (3, 10) (n = 31 , p = 90)

Method Outer Inner Evaluations Q.It. MVP Time deviation

PHR 9 143 369 1910 4070 19.7 .776874

� = 0: 3 48 70 565 722 31.4 .77 3190

� = 0:1 3 52 79 692 905 38.9 .773 183

� = 1: 2 45 68 500 683 29.8 .76 2397

� = 10: 3 67 96 743 961 41.9 .7 73175

� = 20: 3 132 195 1741 2151 92.4 .8 03061

� = 100: 3 161 248 994 1459 65.6 . 773175
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Table 7: Problem 4 (3, 20) (n = 61 , p = 380)

Method Outer Inner Evaluations Q.It. MVP Time deviation

PHR 6 314 844 5035 11532 120.1 1.537385

� = 0: 4 75 112 2020 2409 711.1 1.44 6678

� = 0:1 4 63 89 1498 1733 512.7 1.4 46662

� = 1: 4 95 138 2416 2875 857.4 1.44 6650

� = 10: 4 88 132 2399 2725 811.3 1.4 46650

� = 20: 4 108 161 2161 2598 781.6 1.4 46650

� = 100: 4 175 268 2249 2718 839.0 1. 446650

6 Con
lusions

A qualitative analysis of the numeri
al results presented in the tables 1{8 shows that:

1. The exponential Lagrangian method with � = 0 is the best method in Problem 1 (3,24).

The di�eren
e with � = 0:1 is, however, marginal. The performan
e of PHR is mu
h

poorer in this problem.

2. In Problem 1 (3,30) the best performan
e is the one of the exponential Lagrangian

method with � = 0:1. PHR uses less 
omputer time but the quality of the solution

is worse. In spite of using less 
omputer time, the number of matrix-ve
tor produ
ts

and the other quantitative indi
ators is mu
h larger in the 
ase of PHR than in expo-

nential Lagrangian methods. This phenomenon is due, partially, to the higher 
ost of

exponentials with respe
t to quadrati
s. However, more in
uent in the 
omputer time

is the fa
t that, in PHR, it is not ne
essary to evaluate the gradient of a 
onstraint at a

point where it is strongly satis�ed, while in exponential Lagrangian algorithms all the


onstraint gradients must be evaluated independently of their degree of ful�llment.

3. In Problem 1 (4, 25), the exponential Lagrangian method with � = 1 is the best one.

PHR uses less 
omputer time, but the solution is worse and the number of MVP is four

times larger than the one of the winner. In this 
ase � = 0 and � = 0:1 give low-quality

solutions while the solution for � > 1 has the same quality as that of � = 1.

4. In Problem 2, the solution has the same quality for all the exponential Lagrangian

methods but is marginally worse in PHR. In this problem the 
omputer time de
reases

as � in
reases, but the number of inner iterations goes in the opposite dire
tion. This

means that, when � grows, the quadrati
 subproblems be
ome easier. That is to say,

less MVP are ne
essary to a
hieve the required pre
ision by QUACAN. As a result,

more BOX iterations are ne
essary, but savings on MVP turn these alternatives more

e
onomi
.

5. The most remarkable fa
t in Problem 3 is the poor quality of the solution obtained by

PHR. All the exponential Lagrangian methods behaved similarly, with some advantage

for � = 0. In fa
t, although the exponential Lagrangian methods were able to �nd the

solution, their behavior in terms of quantitative indi
ators was far from being satisfa
-

tory. Although this problem has been introdu
ed with the aim of testing the in
uen
e
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of almost 
oin
ident 
onstraints ([x℄

i

� 0 and [x℄

i

� 0:001) additional experiments using

only [x℄

i

� 0 gave similar results. The key point seems to be the large number of a
tive


onstraints at the solution, 
ombined with the very di�erent in
uen
e of the variables

on the variation of the obje
tive fun
tion. Both features make quadrati
 models inade-

quate. On the other hand, if the problem is s
aled so that the variable [x℄

i

is repla
ed by

[x℄

i

=i all the algorithms behave very well. Moreover, the algorithms (espe
ially PHR)

also behave very well if the initial approximation belongs to [�20;�10℄

n

be
ause in this


ase all the inner iterates tend to lie in a region that is infeasible with respe
t to all the


onstraints, where there exists a well 
onditioned quadrati
 model that represents well

the true obje
tive fun
tion of the subproblems. Re
all that other obvious situation in

whi
h the problem is trivial is when the bounds are in
luded in 
, so that QUACAN

deals with them.

As a matter of fa
t, it seems that the minimization of

P

1000

i=1

[x℄

i

=i subje
t to x � 0 is

a very simple and surprisingly 
hallenging problem for testing augmented Lagrangian

methods.

6. In Problem 4 (3,10) the best solution is obtained by the exponential Lagrangian method

with � = 1, whi
h also uses the lowest 
omputer time among exponential Lagrangians.

PHR uses less 
omputer time (although more MVP) but the quality of its solution is

marginally worse.

7. Finally, in Problem 4 (3,20) PHR is the method that uses less 
omputer time, but its

solution is worse than all the solutions obtained by exponential Lagrangians. Among

these, � = 1 is the best in terms of 
omputer time, its solution being very marginally

worse than that of � > 1.

Summing up, it appears from the numeri
al experiments that the solutions obtained by

PHR are, in general, worse than those obtained by the exponential Lagrangian algorithms.

This deÆ
ien
y is related to la
k of 
ontinuity in se
ond derivatives. In fa
t, when se
ond

derivatives 
hange abruptly, the model approximation 
eases to be se
ond-order, fast 
onver-

gen
e rate is lost and BOX tends to stop with diagnosti
s of \small trust region", instead of

\small proje
ted gradient". The 
onsequen
e is that a really small proje
ted gradient and

thus a good solution sometimes fails to be rea
hed.

The expensiveness of exponential Lagrangian inner iterations and matrix-ve
tor produ
ts

with respe
t to the same indi
ators of PHR is also very impressive. As we mentioned above,

the main reason is that one MVP in the 
ase of the exponential Lagrangian involves ne
essarily

all the 
onstraints, while in PHR it involves only those whi
h are not strongly satis�ed.

The experiments presented in the previous se
tion also reveal that the modi�
ation sug-

gested here for the exponential Lagrangian method has advantages over the original algo-

rithm. Although we 
annot determine a

urately the best possible value for �, it seems that

for reasonably s
aled problems some value around the unity is the best one.

In the next table, we show the number of matrix-ve
tor produ
ts (so, auxiliary gradient

evaluations) per inner iteration for the best 
hoi
e of � at ea
h problem. We also show the

quotient of this number over the number of variables.
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Table 8: Gradient evaluations

Table MVP Inner MVP/Inner MVP/Inner/n

1 1396 48 29 0.40

2 6995 25 56 0.62

3 15561 202 77 0.77

4 1451 109 13 0.05

5 13087 94 139 0.14

6 683 45 15 0.48

7 1733 63 28 0.46

This table shows that a 
onsiderable number of gradient evaluations per iteration is used

in the trun
ated Newton approa
h for all the problems, ex
ept for the problem of Table 4, in

whi
h this number is very moderate. In one 
ase (Table 3) the number of gradient evaluations

per iteration is 77 per
ent of the number that should be used by a dis
rete Newton method.

The observation above shows that there is a lot of pla
e for the development of quasi-

Newton methods for problems with the des
ribed stru
ture sin
e, essentially these methods

use only one gradient evaluation per iteration. Of 
ourse, we do not expe
t to reprodu
e the

number of inner iterations of a trun
ated Newton method using quasi-Newton but it seems

that even losing in terms of number of iterations, a quasi-Newton method 
ould be more

eÆ
ient in terms of overall performan
e. A little bit disappointing is the fa
t that we have

tested the use of 
lassi
al BFGS and Symmetri
 Rank-One 
orre
tions for these problems

with results mu
h poorer than the ones of the trun
ated Newton method.
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