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Abstract

A family of augmented Lagrangian algorithms for nonlinear programming is described.
The algorithms are implemented using trust-region box constraint optimization software
for solving the subproblems. In particular, an implementation of a modified exponential
multiplier method is introduced. Numerical experiments are presented.
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1 Introduction

We are concerned with the nonlinear programming problem
Minimize f(z)

subject to h(z) =0, g(z) <0, z €,

where f: IR" — IR, h : IR" — IR™, g : IR" — IRP are differentiable and € is a simple closed
and convex set. In general, @ = {x € R" | ¢ <z < u}. Although all the arguments in this
work apply to the general case, we will restrict ourselves, for the sake of simplicity, to the
case where no equality constraints are present:

Minimize f(z) (1)

subject to g(z) <0, z €. (2)

The main step of an augmented Lagrangian method for solving (1)-(2) is
Minimize (approximately) L(z,p,u) subject to z € Q, (3)

where p € IR, is a penalty parameter associated to the constraints g(z) < 0 and p € IRE is
a vector of Lagrange multiplier estimates.

(Throughout this work, Ry ={t€ IR | t >0}, R+ ={t € IR | t >0} and [v]; is the
i—th component of the vector v.)

The method can also be formulated with p different penalty parameters, one for each
component of g(z). The description for this situation is a straightforward variation of the
one that we are going to present here. However, it does not seem to have numerical advantages
in practical cases.

The objective function of (3) will be called an augmented Lagrangian if the following
properties take place:

P1. For all fixed p € IR’_’Ir (except, perhaps, p = 0) the method defined by repeated applica-
tions of (3) with p going to oo is a penalty method (see [1, 8, 9] among others). This implies
that, assuming that the feasible region of (1-2) is nonempty and that zj is an exact global
minimizer of L(z, pk,p), every limit point of {zy} is a global solution of (1-2).

P2. If z, is a regular stationary point of (1-2) and p, € IR is the vector of Lagrange
multipliers then, for all fixed p € IR, z, is a stationary point of

Minimize L(z, p, i) subject to z € €. (4)

An augmented Lagrangian algorithm consists of repeated applications of (3) followed by
the updating of the penalty parameter and the Lagrange multiplier estimates. Generally
speaking, the penalty parameters are increased between different iterations if the progress
measured in terms of gains of feasibility and complementarity (32, [u];[g(z)]; must be zero
at a solution) is not satisfactory.

The form of separable augmented Lagrangian functions is

p

=1



A general way in which suitable augmented Lagrangian schemes can be obtained (see [1])
is defining

1
R(p; pi 9i()) = ;9(pgi($),ui) (6)
where 0 : IR x IR, — IR is a function with the following properties:
1
lim — 6 = for all 0 0 7
pgrolop (pz,p) =00 forall z>0,u> (7)
li 10( )=0 for all <0,u>0 (8)
m — 0(pz,p) = r z
Jm = 6oz, Nt
0
— 6(0,u) =p forall p>0. (9)
0z
0
5 O(z,n) >0 forall zeIR,u>0. (10)

Many variations of this general scheme were introduced and exploited in the literature. In
particular, see [3]. Convergence properties of augmented Lagrangian algorithms for convex
problems were recently surveyed in [16]. Due to (7-8), property P1 holds for augmented
Lagrangians defined by (6). On the other hand, the identity (9) guarantees that property P2
takes place.

The most classical (Powell-Hestenes-Rockafellar) augmented Lagrangian method corre-

sponds to
(= + )
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The main drawback of the PHR augmented Lagrangian method is that second derivatives
of Opp R are discontinuous, so that methods for solving (3) based on quadratic approximations
of the objective function tend to be inefficient.

The exponential-multiplier form of the augmented Lagrangian (see [1]) overcomes this
difficulty defining

Opur(z,u) = for z > —pu , 0 otherwise.

O(z,p) =pe® forall p>0,z€ R.

In this paper we describe an implementation of the augmented Lagrangian method based
on (7-10), we propose a modification of the exponential Lagrangian method that enhances its
efficiency, we show numerical experiments and we suggest the main lines for future research.

2 Updating the penalty parameters and the multipliers

Assume that problem (3) has been solved for some pu; € ]Rﬂ’_,pk € IR, and call x, the
approximate solution obtained. By Property P2, if we fixed py and let pp — oo, the sequence
of solutions {xy } would tend to a minimizer of (1-2). This means that, when we solve problem
(3) we expect some progress in relation to the previous approximation, both in terms of
feasibility and optimality. If this progress is not satisfactory, the penalty parameter should
be increased, in general by multiplication by a fixed positive factor .



Now, after the resolution of (3) we have enough information to define a new approximation
for the vector of Lagrange multipliers. In fact, at a regular solution z, of (1-2) we have that

(Vf(xs)+ i[,u*]ngi(:r*),x —z,) >0 forall ze€Q, (11)
i=1

while, at a solution of (3) we have that, approximately,

p

(Vf(zg)+ ZG'(gi(:L‘k), (ili)Vgi(xg),z —zg) >0 forall z € Q. (12)
i=1

Comparison between (11) and (12) suggests that a suitable new estimate for the Lagrange
multiplier [p,]; is
[ 1) = 0'(gi(=*), [1a]i)- (13)
(So, according to (10), pgy1 > 0.) Therefore, by (12), we have that

p

(Vf(l‘k) + Z[ukﬂ]ngi(:rk),x - Ik> Z 0 forall zef. (14)
i=1

is satisfied, approximately, after each outer iteration of an augmented Lagrangian method.
Assume, for a moment, that (14) holds up to a user-given small precision ¢ > 0. If, in
addition, we have that
gi(zg) <e forall i=1,...,p (15)

and
[r11]i <€ whenever g;(zy) < —¢ (16)

we say that xgy; is an approximate solution of the original problem. (In fact, it is an
approximate stationary point of (1-2).)
In order that, eventually, approximate stationary points can be reached, we require that
the precision €5 > 0 that define (3) be such that e, = ¢ after a finite number of iterations.
Taking into account to the observations above, a practical augmented Lagrangian algo-
rithm can be defined by:

Augmented Lagrangian algorithm

Step 1 Initialization
Choose 7 € (0,1),y>1, p1 >0, [u1]; >0 forall i=1,...,p,e1 >0, 09 = 0.
Step 2 Solve the subproblem
Solve (3) up to precision e.
Step 3 Update Lagrange multipliers
Compute p141 according to (13).
Step 4 Stopping criterion
If &, = € and, in addition, (15) and (16) hold, declare “convergence” and terminate the
execution of the algorithm.
Step 5 Update penalty parameter and precision



Define €41 and

o = max {| min {[p]i, —gi(zr)}, i =1,...,p}

If o, < TOK—1, define pi1 = pi. Else, define px+1 = vpi.
Step 6 Increase iteration number
Replace k£ by k£ + 1 and go to Step 2.

In our experiments we used 7 = 0.1,y = 10, p; = 10, [p1]; = 1 for the exponential
Lagrangian method and [p1]; = 0 for PHR.

3 Solving the subproblems
Assume that 2 is an n-dimensional box, given by
Q={reR" | { <z <u}
So, (3) consists on finding an approximate solution of
Minimize, L(z,p,u) subject to £ < z < u. (17)

Augmented Lagrangian algorithms with approximate solutions of the subproblems were
analyzed in [4, 7, 14, 15].

Subproblem (17) is solved, at each outer iteration, using the method introduced in [11],
called BOX from here on. This is an iterative method which, at each iteration, approxi-
mates the objective function by a quadratic and minimizes this quadratic model in the box
determined by the natural constraints ¢ < z < w and an auxiliary box that represents the
region where the quadratic approximation is reliable (trust region). If the objective function
is sufficiently reduced at the (approximate) minimizer of the quadratic, the corresponding
trial point is accepted as new iterate. Otherwise, the trust region is reduced. The main algo-
rithmic difference between BOX and the method LANCELOT (used in [4]) is that in [11] the
quadratic is explored on the whole intersection of the natural box and the trust region, while
in [4] only the face determined by an “approximate Cauchy point” is explored. A comparison
between these two methods for box-constrained minimization can be found in [6].

The augmented Lagrangian algorithm is designed in order to cope large-scale problems.
For this reason, no factorization of matrices are used at any stage. The quadratic solver used
to deal with the subproblems of the box-constraint algorithm (called QUACAN from now
on) visits the different faces of its domain using conjugate gradients on the interior of each
face and “chopped gradients” as search directions to leave the faces. See [10], [11] and [2] for
a description of the 1998 implementation of QUACAN. At each iteration of this quadratic
solver, a matrix-vector product of the Hessian approximation and a vector is needed. Since
Hessian approximations are usually cumbersome to compute, we use the “Truncated Newton”
approach, so that each Hessian X wvector product is replaced by an incremental quotient of
VL along the direction given by the vector.

The augmented Lagrangian subroutine has many parameters that influentiate its practical
performance. In this study we adjusted the most sensitive parameters using a typical problem



with 103 variables and 78 nonlinear constraints, called “the Icosahedron problem”. (This
is problem 1 (3, 12) described below, with the inequality constraints replaced by equality
constraints by means of the introduction of slack variables.) Below we comment the decision
taken on the main sensitive parameters based on this problem.

3.1 Termination criteria for the box-constraint solver

Each outer iteration finishes when some stopping criterion for the algorithm that solves (17),
is fulfilled. We consider that the box-constraint algorithm BOX converges when

lgp ()ll2 < ek,

where gp(z) is the “continuous projected gradient” of the objective function of (17) at the
point z. This vector is defined as the difference between the projection of z — VL(z, p, 1) on
the box and the point z. The tolerance £; may change at each outer iteration. In fact, we
tested (with the Icosahedron problem) a strategy that defines dynamically ¢ depending of
the degree of feasibility of the current iterate against a constant choice ¢ = 10~°. Although
not conclusive, the results for constant € in the typical problem were better. So, we adopted
this choice in the experiments. The box-constraint code admits other stopping criteria. For
example, the execution also stops when the radius of the trust region becomes too small (less
than 10~% in our experiments) or when the number of iterations exceed a user-given value
(300 in our experiments). Moreover, execution can stop if the progress between different
iterations is not good during some consecutive steps. However, best results were obtained
inhibiting this alternative stopping criterion.

3.2 Parameters for the Quadratic Solver

The algorithm QUACAN, which minimizes a (not necessarily convex) quadratic with bounds
on the variables, plays a crucial role in the overall behavior of the augmented Lagrangian
method. Therefore, its main parameters must be carefully chosen. A very important one
is the parameter used to declare convergence of the algorithm. If the projected gradient of
the quadratic is null, the corresponding point is stationary. According to this, convergence
is declared if the norm of this projected gradient is less than a fraction of the corresponding
norm at the initial point. Here we use “non-continuous projected gradients”, in which the
projections are not computed on the feasible box but on the affine subspace defined by the
active constraints. After testing the fractions 1/10, 1/100 and 1/100000 on the Icosahedron
Problem, we observed that the first was the best one, so it was the one employed in the
numerical experiments. The number of iterations allowed to the quadratic solver is also
important because, sometimes, a lot effort is invested in solving subproblems without a close
relation to the original problem. We found that 100 is a suitable value for “maximum of
iterations” in this case. Other non-convergence stopping criteria were inhibited in the the
resolution of the quadratic subproblem.

The radius of the trust region determines the size of the domain of the auxiliary box used
in QUACAN. The nonlinear programming algorithm is sensitive to the choice of §, the first
trust region radius. In the experiments presented in this paper we used ¢ = 10.



A very important parameter of the quadratic solver is n € (0,1). According to this
parameter, it is decided whether the next iterate must belong to the same face as the current
one, or not. Roughly speaking, if n is small the algorithm tends to leave the current face
when a mild decrease of the quadratic is detected. On the other hand, if n = 1, the algorithm
only abandons the current face when the current point is close to a stationary point of the
quadratic on that face. A rather surprising result was that the conservative value n = 0.95
was better than smaller values of 7 for the Icosahedron Problem.

When the quadratic solver hits the boundary of its feasible region a extrapolation step
can be tried, according to the value of an extrapolation parameter k > 1. If k is large new
points will be tried at which the number of active constraints can be considerably increased.
On the other hand, if K = 1, no extrapolation is intended. Here, we finished up deciding that
x = 10 is suitable for the Icosahedron problem.

4 Modification of the exponential Lagrangian method

One of the computational difficulties associated to the exponential penalty function is related
to the rapid growth of this function, which can cause overflow and numerical instability.

Sometimes stopping by overflow can be avoided without further consequences if the com-
piler has the capability of replacing the undesirable quantity by the largest possible machine
number. This is the case of the problem corresponding to Table 4 below. In these cases
the quantities associated to overflow correspond to trial points that are going to be rejected
and the decision on the trust region size taken by BOX is independent of the magnitude of
the objective function value at rejected trial points. Therefore, nothing changes if the large
quantity is replaced by co. However, as we are going to see in other examples, the influence
of large quantities on the behavior of the algorithm is more subtle.

Roughly speaking, the level sets of the function €% are similar to those of max {z1,...

when one component is dominant. Moreover, when many components are similar and large
the exponential tends to assume a typical “nearly-nonsmooth” shape. In fact, for any smooth
function f(z1,...,z,), given a point z where the gradient is not null, the probability of ob-
taining a point = such that f(z) < f(z) in a neighborhood of radius § > 0 tends to & when
d — 0. But taking n = 100, z = (100,...,100) and § = 1 we obtain that the probability
of obtaining e*1*on < o1t +2n with ||z — 2|l < 1 is around 0.006. On the other hand,
the probability of having ||z||2 < ||z||2 with ||z — 2]l < 1 is around 0.49 and, of course, the
probability of having [|z]|e < [|2]lec With ||z — z[|eo < 1 is 27100,

Finally, our algorithm, as many other algorithms for nonlinear programming, is based
on quadratic approximations. Unfortunately, the quadratic (Taylor) model of €” is a poor
approximation of this function if z > 0 is large. If z = 10 and § = 1 the error of replacing e*
by its second order approximation in |z — z| < § is around 3600, but for z = 50, § = 1 this
error exceeds 10?2, This probably indicates that methods based on quadratic models cannot
be very efficient when the objective function involves several exponentials with not very small
arguments.

These observations lead us to suggest a modification of the exponential Lagrangian

method which consists on replacing the exponential by a quadratic, if the argument ex-
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ceeds a given value, in such a way that the function, the first and second derivatives are
continuous.
Therefore, the modification consists on defining

0(z, 1) = p axp(z),

where
axp(z) =e® if z < 3,

axp(z) = ¢’ +eP(z — B) + P (z — B)?/2 if z > 6.
It is easy to see that Properties P1 and P2 hold for this definition.

5 Numerical experiments

We tested the classical PHR augmented Lagrangian method and the exponential Lagrangian
method with the modification suggested in the previous section using some typical nonlinear
programming problems:

Problem 1: Find npun points on the unitary sphere of IR"*™ such that maximum scalar
products between them is minimum. (This is equivalent to say that the minimum distance
is maximum.) The nonlinear programming problem has been defined as

Minimize z
subject to
lzll3 = 1,k = 1, npun,
z > (x5, ;) for all @ # j.
zp € R™™ k=1,... npun.

The solution of this problem is the set of vertices of the polyhedron showed in Picture 1.

As initial approximation we took [zg]; and z randomly in [—1,1]. In Tables 1, 2 and
3 we show the performance of the augmented Lagrangian PHR method and the modified
exponential Lagrangian method for (ndim,npun) = (3,24),(3,30) and (4,25) respectively
and for different choices of 5. The configuration of the tables for all the problems is similar:

“Outer” is the number of augmented Lagrangian iterations (number of times in which (3)
is solved;

“Inner” is the number of iterations performed by BOX;

“KEvaluations” is the number of times in which the augmented Lagrangian was evaluated;

“Q.It.” is the number of iterations of QUACAN;

“MVP?” is the number of “matrix vector products”, which in this case involve an additional
augmented Lagrangian gradient evaluation;

“Time” is the CPU time (seconds) of the execution using Microsoft double precision
Fortran 77 in a Pentium with 90 MHz.



Picture 1: Solution of Problem 1 (3, 24)

For this problem, the last column “dist” is the minimum distance between points at the
solution obtained. (In fact, to prevent small violations of equality constraints, the solution
computed by the algorithm was first normalized so that all the points “really” belong to
the unitary sphere.) This problem has npun equality constraints. Since for this class of
constraints the classical PHR augmented Lagrangian scheme does not present discontinuity
problems, we dealt with them using that standard procedure.

Problem 2: We took 132 points in the classical map of America (taken from the New York
Times) with 17 countries and we formulated the problem of finding the closest possible 132
points in the plane such that the area of each country is the true one with a 1 percent
precision. Therefore, if the 132 data points are y1,...,%132 € IR?, the objective function is
: S84 |zk — yi||3 while the 34 constraints of the problem are of the form

0.99 x True area < Computed area < 1.01 x True area .

for each one of the 17 countries considered. The solution of this problem is the map of
America drawn in Picture 2.

As initial approximation we took zp = yi, k = 1,...,npun. The final column of Table 4
represents the objective function value at the solution obtained.

Problem 3: This problem has been suggested by C. Gonzaga [13] to test sensitivity with
respect to almost coincident constraints. It is a very simple problem which, on purpose, is not



formulated in the best possible way. (Bound constraints are treated as explicit constraints
gi(z) <0 instead of being included in €.) The problem is
— [i .
Minimize » =" subject to [2]; >0, []; > 0.001,i =1,...,n.
1

=1

Clearly, its solution is (0.001,...,0.001). We used n = 1000 (so p = 2000). The coordinates
of the initial approximation were taken randomly between -10 and 10. The last column in
Table 5 is the logarithm of the oo—norm of the error.

Problem 4: This problem consists on finding npun points in IR such that the distance
between any pair of them is not less than 1 and the maximum distance is as close to 1 as
possible:

Minimize z

subject to

1< log —zl3 <1+2

for all ¢ # 7, 4,5 = 1,...,npun. The coordinates of the initial approximation were taken
randomly between -10 and 10. After solving the problem using the augmented Lagrangian
method, we computed the effective distances |z; —z;||. If any of them is (of course, slightly)
smaller than 1, we replaced each z by “ factor xz;” in such a way that the smallest distance
is exactly equal to 1. For this normalized points we computed the maximum deviation of the
distances with respect to 1. This number is the one of the last column of Tables 6 and 7 and
reflects the quality of the solution obtained in practice.
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Picture 2: Solution of Problem 2
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Table 1: Problem 1 (3, 24) (n = 72, m = 24, p = 276)

Method | Outer | Inner | Evaluations | Q.It. | MVP | Time dist
PHR 7 503 5069 15742 | 43976 | 316.0 | .743830
B =0. 6 48 78 1115 | 1396 | 69.5 | .74 4206

Bg=0.1 5 51 78 1125 | 1419 | 70.7 | .744 206
g =1. 5 55 85 1336 | 1703 | 84.6 | .74 4206
8 >10 5 61 94 1453 | 1843 | 92.0 | .744206

Table 2: Problem 1 (3, 30) (n = 90, m = 30, p = 435)

Method | Outer | Inner | Evaluations | Q.It. | MVP | Time dist
PHR 8 434 3945 26990 | 47418 | 420.8 | .657374
6 =0. 5 125 193 6057 | 6995 | 489.8 | .660981

6=0.1 5 124 187 55568 | 6446 | 456.9 | .660981
6 =1 5 138 216 5999 | 6770 | 479.0 | .66 0981

8 =10. 5 160 242 6621 | 7593 | 532.9 | .660981

6 = 20. 5 157 233 6206 | 7202 | 507.0 | .6 60981

£ = 100. 5 157 233 6206 | 7202 | 507.0 | . 660981

Table 3: Problem 1 (4, 25) (n = 100, m = 25, p = 600)

Method | Outer | Inner | Evaluations | Q.Lt. MVP | Time dist
PHR 7 635 4726 34528 | 64374 | 658.4 | .957825
B =0. 9 2451 5406 132620 | 156111 | 8927.8 | .78 7241

8 =0.1 10 2762 6496 107417 | 128496 | 7416.5 | .6 63185
6 =1 6 202 314 14404 | 15561 | 952.5 | .96 1487

6 = 10. 6 237 380 15609 | 17192 | 1067.5 | .9 61489

8 = 20. 6 258 398 15772 | 17291 | 1074.0 | .9 61487

B = 100. 6 258 398 15772 | 17291 | 1073.6 | . 961487

B = 500. 6 258 398 15772 | 17291 | 1073.5 | . 961487
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Table 4: Problem 2 (n = 264 , p = 34)

Method Outer | Inner | Evaluations | Q.It. | MVP | Time f
PHR 7 110 931 3508 | 8505 | 162.4 | 3.050771
B =0. 6 56 87 1493 | 2083 | 79.9 | 3.049630
B=0.1 6 57 88 1367 | 1910 | 74.3 | 3.049630
g=1. 6 64 98 1485 | 2183 | 85.1 | 3.049630
g = 10. 6 72 109 1287 | 1880 | 74.0 | 3.049630
B = 20. 6 80 115 1227 | 1717 | 68.5 | 3.049630
B € [100.,696.] 6 109 139 973 | 1451 | 59.0 | 3.04 9630
B > 697. overflow
Table 5: Problem 3 (n = 1000 , p = 2000)
Method | Outer | Inner | Evaluations | Q.It. | MVP | Time | log(Error)
PHR 6 331 964 9193 | 21446 | 1333.0 0.83
B =0. 6 94 139 9578 | 13087 | 1400.1 -8
g=0.1 6 104 158 10935 | 14969 | 1609.2 -8
g =1 6 113 171 11523 | 16329 | 1736.9 -8
6 = 10. 6 136 198 10430 | 15071 | 1634.8 -8
8 = 20. 6 149 217 11318 | 16325 | 1754.4 -8
8 = 100. 6 224 287 12236 | 17646 | 1899.8 -8
Table 6: Problem 4 (3, 10) (n = 31, p = 90)
Method | Outer | Inner | Evaluations | Q.It. | MVP | Time | deviation
PHR 9 143 369 1910 | 4070 | 19.7 | .776874
B =0. 3 48 70 565 722 31.4 | .77 3190
6=0.1 3 52 79 692 905 38.9 | .773 183
=1 2 45 68 500 683 29.8 | .76 2397
6 = 10. 3 67 96 743 961 419 | .7 73175
8 = 20. 3 132 195 1741 | 2151 | 92.4 | .8 03061
B8 = 100. 3 161 248 994 | 1459 | 65.6 | . 773175
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Table 7: Problem 4 (3, 20) (n = 61 , p = 380)

Method | Outer | Inner | Evaluations | Q.It. | MVP | Time | deviation
PHR 6 314 844 5035 | 11532 | 120.1 | 1.537385
6 =0. 4 75 112 2020 | 2409 | 711.1 | 1.44 6678

=01 4 63 89 1498 | 1733 | 512.7 | 1.4 46662
=1 4 95 138 2416 | 2875 | 857.4 | 1.44 6650

6 = 10. 4 88 132 2399 | 2725 | 811.3 | 1.4 46650

6 = 20. 4 108 161 2161 | 2598 | 781.6 | 1.4 46650

£ = 100. 4 175 268 2249 | 2718 | 839.0 | 1. 446650

6 Conclusions

A qualitative analysis of the numerical results presented in the tables 1-8 shows that:

1.

The exponential Lagrangian method with § = 0 is the best method in Problem 1 (3,24).
The difference with § = 0.1 is, however, marginal. The performance of PHR is much
poorer in this problem.

In Problem 1 (3,30) the best performance is the one of the exponential Lagrangian
method with 8 = 0.1. PHR uses less computer time but the quality of the solution
is worse. In spite of using less computer time, the number of matrix-vector products
and the other quantitative indicators is much larger in the case of PHR than in expo-
nential Lagrangian methods. This phenomenon is due, partially, to the higher cost of
exponentials with respect to quadratics. However, more influent in the computer time
is the fact that, in PHR, it is not necessary to evaluate the gradient of a constraint at a
point where it is strongly satisfied, while in exponential Lagrangian algorithms all the
constraint gradients must be evaluated independently of their degree of fulfillment.

In Problem 1 (4, 25), the exponential Lagrangian method with 5 = 1 is the best one.
PHR uses less computer time, but the solution is worse and the number of MVP is four
times larger than the one of the winner. In this case 8 = 0 and # = 0.1 give low-quality
solutions while the solution for 8 > 1 has the same quality as that of = 1.

In Problem 2, the solution has the same quality for all the exponential Lagrangian
methods but is marginally worse in PHR. In this problem the computer time decreases
as [ increases, but the number of inner iterations goes in the opposite direction. This
means that, when 8 grows, the quadratic subproblems become easier. That is to say,
less MVP are necessary to achieve the required precision by QUACAN. As a result,
more BOX iterations are necessary, but savings on MVP turn these alternatives more
economic.

The most remarkable fact in Problem 3 is the poor quality of the solution obtained by
PHR. All the exponential Lagrangian methods behaved similarly, with some advantage
for g = 0. In fact, although the exponential Lagrangian methods were able to find the
solution, their behavior in terms of quantitative indicators was far from being satisfac-
tory. Although this problem has been introduced with the aim of testing the influence
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of almost coincident constraints ([z]; > 0 and [z]; > 0.001) additional experiments using
only [z]; > 0 gave similar results. The key point seems to be the large number of active
constraints at the solution, combined with the very different influence of the variables
on the variation of the objective function. Both features make quadratic models inade-
quate. On the other hand, if the problem is scaled so that the variable [z]; is replaced by
[x];/% all the algorithms behave very well. Moreover, the algorithms (especially PHR)
also behave very well if the initial approximation belongs to [—20, —10]" because in this
case all the inner iterates tend to lie in a region that is infeasible with respect to all the
constraints, where there exists a well conditioned quadratic model that represents well
the true objective function of the subproblems. Recall that other obvious situation in
which the problem is trivial is when the bounds are included in €2, so that QUACAN
deals with them.

As a matter of fact, it seems that the minimization of 1°\°[x];/i subject to z > 0 is

a very simple and surprisingly challenging problem for testing augmented Lagrangian
methods.

6. In Problem 4 (3,10) the best solution is obtained by the exponential Lagrangian method
with 3 = 1, which also uses the lowest computer time among exponential Lagrangians.
PHR uses less computer time (although more MVP) but the quality of its solution is
marginally worse.

7. Finally, in Problem 4 (3,20) PHR is the method that uses less computer time, but its
solution is worse than all the solutions obtained by exponential Lagrangians. Among
these, B = 1 is the best in terms of computer time, its solution being very marginally
worse than that of g > 1.

Summing up, it appears from the numerical experiments that the solutions obtained by
PHR are, in general, worse than those obtained by the exponential Lagrangian algorithms.
This defficiency is related to lack of continuity in second derivatives. In fact, when second
derivatives change abruptly, the model approximation ceases to be second-order, fast conver-
gence rate is lost and BOX tends to stop with diagnostics of “small trust region”, instead of
“small projected gradient”. The consequence is that a really small projected gradient and
thus a good solution sometimes fails to be reached.

The expensiveness of exponential Lagrangian inner iterations and matrix-vector products
with respect to the same indicators of PHR is also very impressive. As we mentioned above,
the main reason is that one MVP in the case of the exponential Lagrangian involves necessarily
all the constraints, while in PHR it involves only those which are not strongly satisfied.

The experiments presented in the previous section also reveal that the modification sug-
gested here for the exponential Lagrangian method has advantages over the original algo-
rithm. Although we cannot determine accurately the best possible value for 3, it seems that
for reasonably scaled problems some value around the unity is the best one.

In the next table, we show the number of matrix-vector products (so, auxiliary gradient
evaluations) per inner iteration for the best choice of § at each problem. We also show the
quotient of this number over the number of variables.
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Table 8: Gradient evaluations
Table | MVP | Inner | MVP/Inner | MVP /Inner/n
1 1396 48 29 0.40
2 6995 25 o6 0.62
3 15561 | 202 77 0.77
4 1451 109 13 0.05
5 13087 | 94 139 0.14
6 683 45 15 0.48
7 1733 63 28 0.46

This table shows that a considerable number of gradient evaluations per iteration is used
in the truncated Newton approach for all the problems, except for the problem of Table 4, in
which this number is very moderate. In one case (Table 3) the number of gradient evaluations
per iteration is 77 percent of the number that should be used by a discrete Newton method.

The observation above shows that there is a lot of place for the development of quasi-
Newton methods for problems with the described structure since, essentially these methods
use only one gradient evaluation per iteration. Of course, we do not expect to reproduce the
number of inner iterations of a truncated Newton method using quasi-Newton but it seems
that even losing in terms of number of iterations, a quasi-Newton method could be more
efficient in terms of overall performance. A little bit disappointing is the fact that we have
tested the use of classical BFGS and Symmetric Rank-One corrections for these problems
with results much poorer than the ones of the truncated Newton method.
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