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Complex geometry represents a fundamental ingredient in the formulation of the Dira
 equation

by the Cli�ord algebra. The 
hoi
e of appropriate 
omplex geometries is stri
tly related to the

geometri
 interpretation of the 
omplex imaginary unit i =

p

�1. We dis
uss two possibilities

whi
h appear in the multive
tor algebra approa
h: the �

123

and �

21


omplex geometries. Our

formalism permits to perform a set of rules whi
h allows an immediate translation between the


omplex standard Dira
 theory and its version within geometri
 algebra. The problem 
on
erning

a double geometri
 interpretation for the 
omplex imaginary unit i =

p

�1 is also dis
ussed.

I. INTRODUCTION

In this paper we present a set of rules for passing ba
k and forth between the standard (
omplex) matrix-based

approa
h to spinors in 4 dimensions and the geometri
 algebra formalism. This \translation" is only partial, 
onsistent

with the fa
t that the Hestenes formalism [1℄ provides additional geometri
al interpretations. In a pure translation

nothing 
an be predi
ted whi
h is not already in the original theory. In the new version of Dira
's equation some

assumptions appear more natural, some 
al
ulations more rapid and new geometri
 interpretations for the 
omplex

imaginary unit i =

p

�1 appear in the translated version for the �rst time.

The matrix form of spinor 
al
ulus and the ve
tor 
al
ulus formulated by Gibbs 
an be repla
ed by a single

mathemati
al system, 
alled multive
tor algebra, with whi
h the tasks of theoreti
al physi
s 
an be 
arried out more

eÆ
iently. The multive
tor algebra derives its power from the fa
t that both the elements and the operations of the

algebra are subje
t to dire
t geometri
 interpretation [2℄. The geometri
 algebra is surely the most powerful and

general language available for the development of mathemati
al physi
s [3,4℄. The 
entral result is a representation

of the Dira
 wave fun
tion whi
h reveals a geometri
 stru
ture, hidden in the 
onventional formulation [5℄.

\The proje
tion of the Dira
 equation into the Pauli algebra eliminates redundan
ies, simplifying our task to solve

this equation, sin
e in the Pauli algebra we work in an eight dimensional spa
e over the real numbers, while in the

standard formulation we have to do with a 32-dimensional spa
e over the reals, the spa
e of 4 � 4 
omplex matrix

C

(4)

". - Zeni [6℄.

\The imaginary unit appearing in the Dira
 equation and the energy-momentum operator represents the bive
tor

generator of rotations in a spa
e-like plane 
orresponding to the dire
tion of the ele
tron spin". - Hestenes [7℄.

We wish to 
larify these statements. We agree with fa
t that in the Pauli algebra (isomorphi
 to the even part of

the spa
e/time algebra Cl

+

1;3

) we have only 8 real parameters in de�ning the Dira
 spinors, but in de�ning the most

general operator whi
h a
ts on them, how many real parameters do we need? The imaginary unit i is identi�ed by

the bive
tor �

21

2 Cl

3;0

. Is this the only opportunity? What about the possibility to identify the 
omplex imaginary

unit by the pseudos
alar �

123

2 Cl

3;0

?

In formulating the Dira
 equation by the Pauli algebra we 
an start from the standard matrix formulation and

use the ideal approa
h to spinors to make a 
lear translation to the Cli�ord algebra Cl

4;1

whi
h is isomorphi
 to

M

4

(C). The following step is to redu
e the formulation of the Dira
 equation to an algebra of smaller dimension, the

spa
e-time algebra, Cl

1;3

. Finally, we get a proje
tion of the Dira
 equation in the Pauli algebra Cl

3;0

[6℄.

In this paper we shall perform a di�erent approa
h. We give a set of rules whi
h allow to immediately write the Dira


equation by using the Pauli algebra. The fundamental ingredients of this translation are the dire
t identi�
ation of the

�
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omplex imaginary unit i =

p

�1 by elements of the Pauli algebra and the introdu
tion of the 
on
ept of \
omplex"

geometry [8,9℄.

The standard (
omplex) 4-dimensional spinor
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; �
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2 R; m = 1; 2; 3; 4 ; (1)

is 
hara
terized by 8 real parameters, whi
h 
an be settled in the following 8-dimensional Cli�ord algebras

Cl

3;0

[� M

2

(C)℄ ; Cl

1;2

[�M

2

(C)℄ ; Cl

0;3

[� H �H℄ ; Cl

2;1

[� M

2

(R) �M

2

(R)℄ :

The natural 
hoi
e is Cl

3;0

[�M

2

(C)℄, the algebra of the three-dimensional spa
e. Su
h algebra allows an immediate

geometri
 interpretation for the Pauli matri
es:

Cl

3;0

s
alar 1

ve
tors �

1

; �

2

; �

3

bive
tors �

2

�

1

; �

2

�

3

; �

3

�

1

trive
tor �

1

�

2

�

3

The Pauli algebra 
an be also represented by the 
omplexi�ed quaternioni
 ring [10,11℄:

H




1

�I; �J ; �K

I; J ; K

�

In the following, we prefer to use the ve
tors ~� 2 Cl

3;0

, in order to avoid 
onfusion in the identi�
ation of the

standard (
omplex) imaginary unit i =

p

�1 by elements of the Pauli algebra. By identifying the 
omplex imaginary

unit i =

p

�1 by elements of Cl

3;0

, we must re
ognize two possibilities

i =

p

�1 ! �

21

� �

2

�

1

(bive
tor) or �

123

� �

1

�

2

�

3

(volume element) ;

in fa
t

�

2

21

= �

2

123

= �1 :

Consequently, '

m

+ i�

m


an be respe
tively translated by

'

m

+ �

21

�

m

or '

m

+ �

123

�

m

m = 1; :::; 4 :

We propose in this paper a dis
ussion 
on
erning these two di�erent possibilities of translation for the standard


omplex Dira
 theory. These two possibilities are stri
tly related to the use of two di�erent \
omplex" geometries,

namely

the �

123

and �

21


omplex geometries .

In our formalism the standard physi
al results are soon reprodu
ed. The possibility of 
hoosing two di�erent \
omplex"

geometries in performing our translations will give an embarrassing situation: two di�erent geometri
 interpretations

for the 
omplex imaginary unit i =

p

�1, namely

bive
tor or volume element .
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II. PROBABILITY AMPLITUDES AND COMPLEX GEOMETRY

The non
ommutativity of the element of Cl

3;0

algebra requires to spe
ify whether our Hilbert spa
e, V

Cl

3;0

, is to be

performed by right or left multipli
ation of ve
tors by s
alars. We will follow the usual 
hoi
e and work with a linear

ve
tor spa
e under right multipli
ation by s
alars [10,12{17℄. In quantum me
hani
s, probability amplitudes, rather

than probabilities, superimpose, so we must determine what kinds of number system 
an be used for the probability

amplitudes A. We need a real modulus fun
tion N(A) su
h that

Probability = [N(A)℄

2

:

The �rst four assumptions on the modulus fun
tion are basi
ally te
hni
al in nature

N(0) = 0 ;

N(A) > 0 if A 6= 0 ;

N(rA) = jrjN(A) ; r real ;

N(A

1

+A

2

) � N(A

1

) +N(A

2

) :

A �nal assumption about N(A) is physi
ally motived by imposing the 
orresponden
e prin
iple in the following form:

We require that in the absen
e of quantum interferen
e e�e
ts, probability amplitude super-imposition should redu
e

to probability super-imposition. So we have an additional 
ondition on N(A):

N(A

1

A

2

) = N(A

1

)N(A

2

) :

A remarkable theorem of Albert shows that the only algebras over the reals, admitting a modulus fun
tions with

the previous properties are the reals R, the 
omplex C, the (real) quaternions H and the o
tonions O. The previous

properties of the modulus fun
tion seem to 
onstrain us to work with division algebras (whi
h are �nite dimensional

algebras for whi
h a 6= 0, b 6= 0 imply ab 6= 0), in fa
t

A

1

6= 0 ; A

2

6= 0

implies

N(A

1

A

2

) = N(A

1

)N(A

2

) 6= 0

whi
h gives

A

1

A

2

6= 0 :

A simple example of non-division algebra is provided by the algebra Cl

3;0

sin
e

(1 + �

3

) (1� �

3

) = 0

guarantees that there are nonzero divisors of zero. So, if the probability amplitudes are assumed to be element of

Cl

3;0

, we 
annot give a satisfa
tory probability interpretation. Nevertheless, we know that probability amplitudes are


onne
ted to inner produ
ts, thus, we 
an over
ome the above diÆ
ulty by de�ning an appropriate s
alar produ
t.

We have four possibilities:

We 
an de�ne a binary mapping h	 j �i of V

Cl

3;0

� V

Cl

3;0

into the s
alar(S)/bive
torial(BV) part of Cl

3;0

, we re
all

that V

Cl

3;0

represents the Hilbert spa
e with elements de�ned in the Pauli algebra,

h	 j �i

(S;BV )

=

�

Z

d

3

x	

y

�

�

(S;BV )

:

Note that the algebra (1; �

21

; �

23

; �

31

) is isomorphi
 to the quaternioni
 algebra. Thus, we have the mapping

V

Cl

3;0

� V

Cl

3;0

! Cl

0;2

� H :

We 
an also adopt the more restri
tive \s
alar" proje
tion h	 j �i

S

:

V

Cl

3;0

� V

Cl

3;0

! Cl

0;0

� R :

3



The last two possibilities are represented by the so-
alled \
omplex" geometries

h	 j �i

(1;�

21

)

and h	 j �i

(1;�

123

)

:

In these 
ase we de�ne the following binary mappings

V

Cl

3;0

� V

Cl

3;0

! Cl

i!�

21

0;1

� C(1; �

21

) ;

V

Cl

3;0

� V

Cl

3;0

! Cl

i!�

123

0;1

� C(1; �

123

) :

In the standard de�nition of inner produ
t we �nd the operation of transpose 
onjugation, 	

y

. How 
an we translate

the transpose 
onjugation in the geometri
 algebra formalism?

The Cli�ord algebra Cl

3;0

has three involutions similar to 
omplex 
onjugation. Take an arbitrary element

E = E

0

+ E

1

+ E

2

+ E

3

in Cl

3;0

;

written as a sum of a s
alar E

0

, a ve
tor E

1

, a bive
tor E

2

and a volume element E

3

. We introdu
e the following

involutions

E

�

= E

0

�E

1

+E

2

�E

3

grade involution ;

E

?

= E

0

�E

1

�E

2

+E

3


onjugation ;

E

y

= E

0

+E

1

�E

2

�E

3

reversion :

The grade involution is an automorphism

(E

a

E

b

)

�

= E

�

a

E

�

b

;

while the reversion and the 
onjugation are anti-automorphism, that is,

(E

a

E

b

)

?

= E

?

b

E

?

a

;

(E

a

E

b

)

y

= E

y

b

E

y

a

;

E

y

� E

�?

� E

?�

. We shall show that the reversion 
an be used to represent the hermitian 
onjugation.

Let us analyze the following produ
ts: 	

�

	, 	

?

	, 	

y

	, whi
h involve the three involutions de�ned within the

Cli�ord algebra Cl

3;0

. We must 
onsider the two possibilities due to the identi�
ation of the 
omplex imaginary unit

i =

p

�1 by �

21

and �

123

. Let us perform a real proje
tion of these produ
ts,

(	

�

	)

S

=

(i��

21

)

f[('

1

+ �

21

�

1

+ �

23

'

2

+ �

13

�

2

)� �

123

('

3

+ �

21

�

3

+ �

23

'

4

+ �

13

�

4

)℄�

[('

1

+ �

21

�

1

+ �

23

'

2

+ �

13

�

2

) + �

123

('

3

+ �

21

�

3

+ �

23

'

4

+ �

13

�

4

)℄g

S

= '

2

1

� '

2

2

+ '

2

3

� '

2

4

� �

2

1

� �

2

2

� �

2

3

� �

2

4

;

=

(i��

123

)

f[('

1

+ �

21

'

2

+ �

23

'

3

+ �

13

'

4

)� �

123

(�

1

+ �

21

�

2

+ �

23

�

3

+ �

13

�

4

)℄�

[('

1

+ �

21

'

2

+ �

23

'

3

+ �

13

'

4

) + �

123

(�

1

+ �

21

�

2

+ �

23

�

3

+ �

13

�

4

)℄g

S

= '

2

1

� '

2

2

� '

2

3

� '

2

4

+ �

2

1

� �

2

2

� �

2

3

� �

2

4

;

(	

?

	)

S

=

(i��

21

)

f[('

1

� �

21

�

1

� �

23

'

2

� �

13

�

2

) + �

123

('

3

� �

21

�

3

� �

23

'

4

� �

13

�

4

)℄�

[('

1

+ �

21

�

1

+ �

23

'

2

+ �

13

�

2

) + �

123

('

3

+ �

21

�

3

+ �

23

'

4

+ �

13

�

4

)℄g

S

= '

2

1

+ '

2

2

� '

2

3

� '

2

4

+ �

2

1

+ �

2

2

� �

2

3

� �

2

4

;

=

(i��

123

)

f[('

1

� �

21

'

2

� �

23

'

3

� �

13

'

4

) + �

123

(�

1

� �

21

�

2

� �

23

�

3

� �

13

�

4

)℄�

[('

1

+ �

21

'

2

+ �

23

'

3

+ �

13

'

4

) + �

123

(�

1

+ �

21

�

2

+ �

23

�

3

+ �

13

�

4

)℄g

S

= '

2

1

+ '

2

2

+ '

2

3

+ '

2

4

� �

2

1

� �

2

2

� �

2

3

� �

2

4

;

�

	

y

	

�

S

=

(i��

21

)

f[('

1

� �

21

�

1

� �

23

'

2

� �

13

�

2

)� �

123

('

3

� �

21

�

3

� �

23

'

4

� �

13

�

4

)℄�

[('

1

+ �

21

�

1

+ �

23

'

2

+ �

13

�

2

) + �

123

('

3

+ �

21

�

3

+ �

23

'

4

+ �

13

�

4

)℄g

S

= '

2

1

+ '

2

2

+ '

2

3

+ '

2

4

+ �

2

1

+ �

2

2

+ �

2

3

+ �

2

4

;

=

(i��

123

)

f[('

1

� �

21

'

2

� �

23

'

3

� �

13

'

4

)� �

123

(�

1

� �

21

�

2

� �

23

�

3

� �

13

�

4

)℄�

[('

1

+ �

21

'

2

+ �

23

'

3

+ �

13

'

4

) + �

123

(�

1

+ �

21

�

2

+ �

23

�

3

+ �

13

�

4

)℄g

S

= '

2

1

+ '

2

2

+ '

2

3

+ '

2

4

+ �

2

1

+ �

2

2

+ �

2

3

+ �

2

4

:
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The �rst 
on
lusion should be the use of the involution y and the assumption of a \real" geometry. Thus, we should

translate

( 

�

1

 

�

1

 

�

1

 

�

1

)

0

B

�

 

1

 

2

 

3

 

4

1

C

A

�

4

X

m=1

�

'

2

m

+ �

2

m

�

by

�

	

y

	

�

S

:

Nevertheless, this real proje
tion of inner produ
ts gives an undesired orthogonality between 1, �

21

and �

123

. We

know that the 
omplex imaginary unit, i =

p

�1, represents a phase in the standard quantum me
hani
s, thus if we

wish to adopt the identi�
ations

i =

p

�1 ! �

21

or �

123

;

we must abandon the \real" geometry. We have another possibility. Let us rewrite 	 as follows

	 = h

1

+ �

123

h

2

h

1;2

2 H(1; �

21

; �

23

; �

31

) ;

the full 	

y

	 produ
t is given by

	

y

	 =

�

h

y

1

� �

123

h

y

2

�

(h

1

+ �

123

h

2

) = jh

1

j

2

+ jh

2

j

2

+ �

123

�

h

y

1

h

2

� h.
.

�

:

and so

	

y

	 = Real Part + Ve
torial Part :

Consequently,

�

	

y

	

�

S

�

�

	

y

	

�

(1;�

21

)

�

21

-
omplex geometry ;

�

	

y

	

�

S

�

�

	

y

	

�

(1;�

123

)

�

123

-
omplex geometry :

Now, (1; �

21

) and (1; �

123

) do not represent orthogonal states, and our spinor 	 have four 
omplex orthogonal

states, the 
omplex orthogonality freedom degrees needed to 
onne
t a general element of the Pauli algebra to the

4-dimensional Dira
 spinor

�

21

-
omplex geometry : 1 ; �

1

; �

23

; �

123

orthogonal states ,

�

123

-
omplex geometry : 1 ; �

21

; �

23

; �

31

orthogonal states .

III. BARRED OPERATORS

We justify the 
hoi
e of a 
omplex geometry by noting that although there is the possibility to de�ne an anti-self-

adjoint operator,

~

�, with all the properties of a translation operator, imposing a non-
omplex geometry, there is no


orresponding self-adjoint operator with all the properties expe
ted for a momentum operator. We 
an over
ome su
h

a diÆ
ulty by using a 
omplex s
alar produ
t and de�ning as the appropriate momentum operator

�

21

-
omplex geometry ~p � �

~

� j �

21

;

�

123

-
omplex geometry ~p � ��

123

~

� ;

where 1 j �

21

indi
ates the right a
tion of the bive
tor �

21

. For �

123

, it is not important to distinguish between left

and right a
tion be
ause �

123


ommutes with all the elements in Cl

3;0

. Note that the 
hoi
e ~p � ��

21

~

� still gives a

self-adjoint operator with the standard 
ommutation relations with the 
oordinates, but su
h an operator does not


ommute with the Hamiltonian, whi
h will, in general, be an element of Cl

3;0

. Obviously, in order to write equations

that are relativisti
ally 
ovariant, we must treat the spa
e 
omponents and time in the same way, hen
e we are obliged

to modify the standard \
omplex" equations by the following substitutions

5



�

21

-
omplex geometry i�

�

! �

�

j �

21

;

�

123

-
omplex geometry i�

�

! �

123

�

�

:

Let us now introdu
e the 
omplex/linear barred operators. Due to the non-
ommutative nature of the elements of

Cl

3;0

, we must distinguish between left and right a
tion of �

21

, �

23

, �

31

. Expli
itly, we write

1 j �

21

; 1 j �

23

; 1 j �

31

; (2)

to identify the right multipli
ation of �

21

, �

23

, �

31

,

(1 j �

21

)	 � 	�

21

; (1 j �

23

)	 � 	�

23

; (1 j �

31

)	 � 	�

31

:

Note that the right a
tion of �

1

, �

2

, �

3


an be immediately obtained form the operators in (2) by �

123

multipli
ation.

In rewriting the Dira
 equation, we need to work with \
omplex" linear barred operators. Here, we must distinguish

between �

21

and �

123


omplex geometry. In fa
t, by working with a �

123

-
omplex geometry it is immediate to prove

that

1 j �

21

; 1 j �

23

; 1 j �

31

;

represent �

123

-
omplex/linear operators. On the 
ontrary, by working with a �

21

-
omplex geometry we have only one

permitted right a
tion, that is

1 j �

21

;

whi
h represents a �

21

-
omplex/linear operator. Why this 
ounting of parameters? It is simple. In Cl

3;0

we work

with 8 real parameters, but the most general linear transformation whi
h 
an be performed on an element of Cl

3;0

,

adopting a �

123

-
omplex geometry, is

A + B j �

21

+ C j �

23

+D j �

31

A;B;C;D 2 Cl

3;0

;

whi
h 
ontains 32 real parameters, the same number of M

4

(C). This explains the possibility of a dire
t translation

between 4� 4 
omplex matri
es and the Pauli algebra with �

123

-
omplex geometry

0

B

�

 

1

 

2

 

3

 

4

1

C

A

$ 	 =  

1

+ �

21

 

2

+ �

23

 

3

+ �

31

 

4

M

4

(C) $ A+B j �

21

+ C j �

23

+D j �

31

:

A. �

123

-
omplex geometry and Dira
 equation

We have now all the tools to reprodu
e the Dira
 equation within the algebra Cl

3;0

. It is suÆ
ient to translate the

standard equation

i�

�

�

�

	 = m	 ;

by using the identi�
ation of i =

p

�1 by �

123

and �nding a representation of the Dira
 matri
es, �

�

, by elements of

the Pauli algebra. We observe that the �

�

's 
an be rewritten in terms of elements of Cl

3;0

, by adopting pseudos
alar

and left/right a
tion of bive
tors. To reprodu
e the right anti
ommutation relation whi
h 
hara
terize the Dira


algebra, we perform the following identi�
ation

~

� � (�

23

; �

31

; �

12

) :

To satisfy the anti
ommutation relation between �

0

and

~

�, we introdu
e right a
tions

�

0

� 1 j �

32

and �

1;2;3

� 1 j �

31

:

Finally, the hermiti
ity 
onditions give

6



�

0

� �

123

j �

32

;

�

1

� �

123

�

23

j �

31

;

�

2

� �

123

�

31

j �

31

;

�

3

� �

123

�

12

j �

31

:

The Dira
 equation reads

�

t

	�

23

+ �

23

�

x

	�

13

+ �

31

�

y

	�

13

+ �

12

�

x

	�

13

= m	 : (3)

Let us multiply the previous equation by the barred operator �

123

j �

23

,

�

123

�

t

	�

23

�

23

+ �

123

�

23

�

x

	�

13

�

23

+ �

123

�

31

�

y

	�

13

�

23

+ �

123

�

12

�

x

	�

13

= m�

123

	�

23

:

By observing that

�

2

23

= �1 ; �

13

�

23

= �

21

; �

123

(�

23

; �

13

; �

12

) = � (�

1

; �

2

; �

3

) ;

we �nd

�

123

�

t

	+ �

1

�

x

	�

21

+ �

2

�

y

	�

21

+ �

3

�

x

	�

21

= m	�

1

; (4)

whi
h represents the Dira
 equation in the Pauli algebra with �

123

-
omplex geometry. This equation is obtained

by simple translation, so it reprodu
es the standard physi
al 
ontents. We are now ready to perform the desired

translation rules:

	 �

0

B

�

'

1

+ i�

1

'

1

+ i�

2

'

1

+ i�

3

'

1

+ i�

4

1

C

A

$ ('

1

+ �

123

�

1

) + �

21

('

2

+ �

123

�

2

) + �

23

('

3

+ �

123

�

3

) + �

31

('

4

+ �

123

�

4

) ;

�

y

	 $

�

�

y

	

�

(1;�

123

)

:

To give the 
orresponden
e rules between 4�4 
omplex matri
es and barred operators, we need to list only the matrix

representations for the following barred operators

1 ; �

21

; �

23

; �

123

; 1 j �

12

; 1 j �

23

;

all the other operators 
an be qui
kly obtained by suitable multipli
ations of the previous ones. The translation of 1

and �

123

is very simple:

1 $ 11

4�4

and �

123

$ i11

4�4

:

The remaining four operators are represented by

�

21

$

0

B

�

0 -1 0 0

1 0 0 0

0 0 0 -1

0 0 1 0

1

C

A

1 j �

21

$

0

B

�

0 -1 0 0

1 0 0 0

0 0 0 1

0 0 -1 0

1

C

A

;

�

23

$

0

B

�

0 0 -1 0

0 0 0 1

1 0 0 0

0 -1 0 0

1

C

A

1 j �

23

$

0

B

�

0 0 -1 0

0 0 0 -1

1 0 0 0

0 1 0 0

1

C

A

:

B. �

21

-
omplex geometry and Dira
 equation

Let us now dis
uss the possibility to write down the Dira
 equation in the Pauli algebra with a �

21

-
omplex

geometry. At �rst glan
e a problem appears. We have not the needed parameters in the barred operators to perform

a translation. In fa
t, the most general �

21

-
omplex/linear operator is

7



A + B j �

21

A;B 2 Cl

3;0

;

and 
onsequently we 
ount only 16 real parameters. We have no hope to settle down the 32 real parameters 
hara
-

terizing a generi
 4�4 
omplex matrix. Nevertheless, we must observe the possibility to perform the grade involution,

whi
h represents a �

21

-
omplex/linear operation

[	 (�+ �

21

�)℄

�

= 	

�

(�+ �

21

�) �; � 2 R :

Thanks to this involution we double our real parameters. Let us show the desired translation rules

	 �

0

B

�

'

1

+ i�

1

'

1

+ i�

2

'

1

+ i�

3

'

1

+ i�

4

1

C

A

$ ('

1

+ �

21

�

1

) + �

23

('

2

+ �

21

�

2

) + �

123

('

3

+ �

21

�

3

) + �

123

�

23

('

4

+ �

21

�

4

) ;

�

y

	 $

�

�

y

	

�

(1;�

21

)

:

To give the 
orresponden
e rules between 4�4 
omplex matri
es and barred operators, we need to list only the matrix

representations for the following barred operators

1 ; �

21

; �

23

; �

123

; 1 j �

21

;

and give the matrix version of the grade involution. All the other operators 
an be qui
kly obtained by suitable


ombinations of the previous operations. The translation of 1 and 1 j �

21

is soon obtained:

1 $ 11

4�4

and 1 j �

21

$ i11

4�4

:

The remaining rules are

�

21

$ i

0

B

�

1 0 0 0

0 -1 0 0

0 0 1 0

0 0 0 -1

1

C

A

; �

23

$

0

B

�

0 -1 0 0

1 0 0 0

0 0 0 -1

0 0 1 0

1

C

A

; �

123

$

0

B

�

0 0 1 0

0 0 0 1

-1 0 0 0

0 -1 0 0

1

C

A

;

and �nally the grade involution is represented by the following matrix

�-involution $

0

B

�

1 0 0 0

0 1 0 0

0 0 -1 0

0 0 0 -1

1

C

A

:

Let us examine how to translate the Dira
 equation

i�

�

�

�

	 = m	 ;

by working with a �

21

-
omplex geometry. Firstly, we modify the previous equation by multiplying it by �

0

on the left

i�

t

	 + i�

0

~

� �

~

�	 = m�

0

	 :

We observe that (by using the standard representation [18,19℄ for the Dira
 matri
es)

�

0

	 �

0

B

�

1 0 0 0

0 1 0 0

0 0 -1 0

0 0 0 -1

1

C

A

0

B

�

'

1

+ i�

1

'

2

+ i�

2

'

3

+ i�

3

'

4

+ i�

4

1

C

A

$ ('

1

+ �

21

�

1

) + �

23

('

2

+ �

21

�

2

)� �

123

('

3

+ �

21

�

3

)� �

123

�

23

('

4

+ �

21

�

4

)

$ [('

1

+ �

21

�

1

) + �

23

('

2

+ �

21

�

2

) + �

123

('

3

+ �

21

�

3

) + �

123

�

23

('

4

+ �

21

�

4

)℄

�

;

and

�

0

~

� $ (�

1

; �

2

; �

3

) ; i11

4�4

$ 1 j �

21

:

Thus, the translated Dira
 equation reads:

�

t

	�

21

+ �

1

�

x

	�

21

+ �

2

�

y

	�

21

+ �

3

�

z

	�

21

= m	

�

: (5)
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IV. COMPLEX GEOMETRIES EQUIVALENCE

In the previous se
tions, we have performed two translated versions of the Dira
 equation. Expli
itly,

�

123

-
omplex geometry (�

123

�

t

+r j �

21

) 	 = m	�

1

; (6)

and

�

21

-
omplex geometry (�

t

+r)	�

21

= m	

�

; (7)

where

r � �

1

�

x

+ �

2

�

y

+ �

3

�

z

:

We dis
uss in this se
tion the possibility to relate the two equations obtained by imposing di�erent geometries. Let

us start by taking the �-involution of Eq. (6)

�

123

�

t

	

�

+r	

�

�

21

= m	

�

�

1

: (8)

By working with Eqs. (6,8) we 
an reobtain Eq. (7). To do it, we introdu
e the idempotents

e

�

=

1

2

(1� �

3

) ;

and give some relations whi
h will be useful in the following

[e

�

; �

21

℄ = 0 ; �

1

e

�

= e

�

�

1

;

and

�

123

e

�

= e

�

�

21

; �

123

e

+

= �e

+

�

21

: (9)

Let us multiply Eqs. (6) and (8) from the right respe
tively by e

�

and �

1

e

+

,

�

123

�

t

	e

�

+r	e

�

�

21

= m	e

+

�

1

;

�

123

�

t

	

�

�

1

e

+

�r	

�

�

1

e

+

�

21

= m	

�

e

+

:

By using the relations in Eq. (9), we 
an rewrite the previous equations as follows

(�

t

+r)	e

�

�

21

= m	e

+

�

1

; (10)

and

(�

t

+r)	

�

�

1

e

+

�

21

= �m	

�

e

+

: (11)

By taking the \di�eren
e" between these last two equations, we have

(�

t

+r) [	e

�

�	

�

�

1

e

+

℄�

21

= m [	e

+

�

1

+	

�

e

+

℄ :

By rede�ning

� � 	e

�

�	

�

�

1

e

+

; (12)

and noting that

�

�

= 	

�

e

+

+	�

1

e

�

= 	

�

e

+

+	e

+

�

1

;

we �nd

(�

t

+r) ��

21

= m�

�

; (13)

as anti
ipated.
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We 
on
lude this se
tion by dis
ussing the phase transformations 
hara
terizing our equations. It is immediate to

show that the phase transformation

	 ! 	e

�

123

�

� 2 R ;

implies the following transformation on �

� ! �e

�

21

�

:

In fa
t,

�

0

= 	e

�

123

�

e

�

�	

�

e

��

123

�

�

1

e

+

= 	e

�

e

�

21

�

�	

�

�

1

e

+

e

�

21

�

= �e

�

21

�

:

At this stage, there is not di�eren
e in the using a �

123

or �

21


omplex geometry. So, we have an equivalen
e between

�

123

and �

21


omplex geometry within the Pauli algebra.

V. CONCLUSION

The possibility of using Cli�ord algebra to des
ribe standard quantum me
hani
s re
eives a major thrust with the

adoption of a 
omplex s
alar produ
t (
omplex geometry). A se
ond important step in this obje
tive of translation

is a
hieved with the introdu
tion of the so-
alled barred operators, whi
h permit to write down few translation rules

whi
h allow to qui
kly reprodu
e in the Cl

3;0

formalism the standard results of the Dira
 theory. All the relations


an be manipulated without introdu
ing a matrix representation, greatly simplifying the algebra involved.

In this paper we worked with the Pauli algebra but we wish to remark that our 
onsiderations 
an be immediately

generalized to the spa
etime algebra, whi
h represents the natural language for relativisti
 quantum me
hani
s.

In the standard literature, the unit s
alar imaginary of quantum me
hani
s is repla
ed by a bive
tor. We showed

that another possibility is also available, namely the identi�
ation of the unit s
alar imaginary i =

p

�1 by the

pseudos
alar 


0123

of the spa
etime algebra (�

123

in the Pauli algebra). These two geometri
 interpretations re
e
t

the two possible 
hoi
es in de�ning a 
omplex geometry within the multive
tor formalism. At the free-parti
le level,

there is an equivalen
e in using these two 
omplex s
alar produ
ts.

We 
on
lude by observing that a possible di�eren
e between the �

21

and �

123


omplex geometries 
ould appear in

the formulation of the Salam-Weinberg model, where the ele
tromagneti
 group is obtained by symmetry breaking

from the Glashow group SU(2)� U(1). It appears natural to use

�

21

; �

23

; �

31

and 1 j �

21

;

as generators of the ele
troweak group. In this 
ase the right 
hoi
e should be the adoption of a �

21


omplex

geometry. After symmetry breaking the remaining ele
tromagneti
 group will be identi�ed by the left/right a
tion

of the generator �

21

. A 
omplete dis
ussion of the Salam-Weinberg model within the multive
tor formalism will be

given in a forth
oming paper [20℄.
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