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Complex geometry represents a fundamental ingredient in the formulation of the Dira equation

by the Cli�ord algebra. The hoie of appropriate omplex geometries is stritly related to the

geometri interpretation of the omplex imaginary unit i =

p

�1. We disuss two possibilities

whih appear in the multivetor algebra approah: the �

123

and �

21

omplex geometries. Our

formalism permits to perform a set of rules whih allows an immediate translation between the

omplex standard Dira theory and its version within geometri algebra. The problem onerning

a double geometri interpretation for the omplex imaginary unit i =

p

�1 is also disussed.

I. INTRODUCTION

In this paper we present a set of rules for passing bak and forth between the standard (omplex) matrix-based

approah to spinors in 4 dimensions and the geometri algebra formalism. This \translation" is only partial, onsistent

with the fat that the Hestenes formalism [1℄ provides additional geometrial interpretations. In a pure translation

nothing an be predited whih is not already in the original theory. In the new version of Dira's equation some

assumptions appear more natural, some alulations more rapid and new geometri interpretations for the omplex

imaginary unit i =

p

�1 appear in the translated version for the �rst time.

The matrix form of spinor alulus and the vetor alulus formulated by Gibbs an be replaed by a single

mathematial system, alled multivetor algebra, with whih the tasks of theoretial physis an be arried out more

eÆiently. The multivetor algebra derives its power from the fat that both the elements and the operations of the

algebra are subjet to diret geometri interpretation [2℄. The geometri algebra is surely the most powerful and

general language available for the development of mathematial physis [3,4℄. The entral result is a representation

of the Dira wave funtion whih reveals a geometri struture, hidden in the onventional formulation [5℄.

\The projetion of the Dira equation into the Pauli algebra eliminates redundanies, simplifying our task to solve

this equation, sine in the Pauli algebra we work in an eight dimensional spae over the real numbers, while in the

standard formulation we have to do with a 32-dimensional spae over the reals, the spae of 4 � 4 omplex matrix

C

(4)

". - Zeni [6℄.

\The imaginary unit appearing in the Dira equation and the energy-momentum operator represents the bivetor

generator of rotations in a spae-like plane orresponding to the diretion of the eletron spin". - Hestenes [7℄.

We wish to larify these statements. We agree with fat that in the Pauli algebra (isomorphi to the even part of

the spae/time algebra Cl

+

1;3

) we have only 8 real parameters in de�ning the Dira spinors, but in de�ning the most

general operator whih ats on them, how many real parameters do we need? The imaginary unit i is identi�ed by

the bivetor �

21

2 Cl

3;0

. Is this the only opportunity? What about the possibility to identify the omplex imaginary

unit by the pseudosalar �

123

2 Cl

3;0

?

In formulating the Dira equation by the Pauli algebra we an start from the standard matrix formulation and

use the ideal approah to spinors to make a lear translation to the Cli�ord algebra Cl

4;1

whih is isomorphi to

M

4

(C). The following step is to redue the formulation of the Dira equation to an algebra of smaller dimension, the

spae-time algebra, Cl

1;3

. Finally, we get a projetion of the Dira equation in the Pauli algebra Cl

3;0

[6℄.

In this paper we shall perform a di�erent approah. We give a set of rules whih allow to immediately write the Dira

equation by using the Pauli algebra. The fundamental ingredients of this translation are the diret identi�ation of the

�
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omplex imaginary unit i =

p

�1 by elements of the Pauli algebra and the introdution of the onept of \omplex"

geometry [8,9℄.

The standard (omplex) 4-dimensional spinor
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2 R; m = 1; 2; 3; 4 ; (1)

is haraterized by 8 real parameters, whih an be settled in the following 8-dimensional Cli�ord algebras

Cl

3;0

[� M

2

(C)℄ ; Cl

1;2

[�M

2

(C)℄ ; Cl

0;3

[� H �H℄ ; Cl

2;1

[� M

2

(R) �M

2

(R)℄ :

The natural hoie is Cl

3;0

[�M

2

(C)℄, the algebra of the three-dimensional spae. Suh algebra allows an immediate

geometri interpretation for the Pauli matries:

Cl

3;0

salar 1

vetors �

1

; �

2

; �

3

bivetors �

2

�

1

; �

2

�

3

; �

3

�

1

trivetor �

1

�

2

�

3

The Pauli algebra an be also represented by the omplexi�ed quaternioni ring [10,11℄:

H



1

�I; �J ; �K

I; J ; K

�

In the following, we prefer to use the vetors ~� 2 Cl

3;0

, in order to avoid onfusion in the identi�ation of the

standard (omplex) imaginary unit i =

p

�1 by elements of the Pauli algebra. By identifying the omplex imaginary

unit i =

p

�1 by elements of Cl

3;0

, we must reognize two possibilities

i =

p

�1 ! �

21

� �

2

�

1

(bivetor) or �

123

� �

1

�

2

�

3

(volume element) ;

in fat

�

2

21

= �

2

123

= �1 :

Consequently, '

m

+ i�

m

an be respetively translated by

'

m

+ �

21

�

m

or '

m

+ �

123

�

m

m = 1; :::; 4 :

We propose in this paper a disussion onerning these two di�erent possibilities of translation for the standard

omplex Dira theory. These two possibilities are stritly related to the use of two di�erent \omplex" geometries,

namely

the �

123

and �

21

omplex geometries .

In our formalism the standard physial results are soon reprodued. The possibility of hoosing two di�erent \omplex"

geometries in performing our translations will give an embarrassing situation: two di�erent geometri interpretations

for the omplex imaginary unit i =

p

�1, namely

bivetor or volume element .
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II. PROBABILITY AMPLITUDES AND COMPLEX GEOMETRY

The nonommutativity of the element of Cl

3;0

algebra requires to speify whether our Hilbert spae, V

Cl

3;0

, is to be

performed by right or left multipliation of vetors by salars. We will follow the usual hoie and work with a linear

vetor spae under right multipliation by salars [10,12{17℄. In quantum mehanis, probability amplitudes, rather

than probabilities, superimpose, so we must determine what kinds of number system an be used for the probability

amplitudes A. We need a real modulus funtion N(A) suh that

Probability = [N(A)℄

2

:

The �rst four assumptions on the modulus funtion are basially tehnial in nature

N(0) = 0 ;

N(A) > 0 if A 6= 0 ;

N(rA) = jrjN(A) ; r real ;

N(A

1

+A

2

) � N(A

1

) +N(A

2

) :

A �nal assumption about N(A) is physially motived by imposing the orrespondene priniple in the following form:

We require that in the absene of quantum interferene e�ets, probability amplitude super-imposition should redue

to probability super-imposition. So we have an additional ondition on N(A):

N(A

1

A

2

) = N(A

1

)N(A

2

) :

A remarkable theorem of Albert shows that the only algebras over the reals, admitting a modulus funtions with

the previous properties are the reals R, the omplex C, the (real) quaternions H and the otonions O. The previous

properties of the modulus funtion seem to onstrain us to work with division algebras (whih are �nite dimensional

algebras for whih a 6= 0, b 6= 0 imply ab 6= 0), in fat

A

1

6= 0 ; A

2

6= 0

implies

N(A

1

A

2

) = N(A

1

)N(A

2

) 6= 0

whih gives

A

1

A

2

6= 0 :

A simple example of non-division algebra is provided by the algebra Cl

3;0

sine

(1 + �

3

) (1� �

3

) = 0

guarantees that there are nonzero divisors of zero. So, if the probability amplitudes are assumed to be element of

Cl

3;0

, we annot give a satisfatory probability interpretation. Nevertheless, we know that probability amplitudes are

onneted to inner produts, thus, we an overome the above diÆulty by de�ning an appropriate salar produt.

We have four possibilities:

We an de�ne a binary mapping h	 j �i of V

Cl

3;0

� V

Cl

3;0

into the salar(S)/bivetorial(BV) part of Cl

3;0

, we reall

that V

Cl

3;0

represents the Hilbert spae with elements de�ned in the Pauli algebra,

h	 j �i

(S;BV )

=

�

Z

d

3

x	

y

�

�

(S;BV )

:

Note that the algebra (1; �

21

; �

23

; �

31

) is isomorphi to the quaternioni algebra. Thus, we have the mapping

V

Cl

3;0

� V

Cl

3;0

! Cl

0;2

� H :

We an also adopt the more restritive \salar" projetion h	 j �i

S

:

V

Cl

3;0

� V

Cl

3;0

! Cl

0;0

� R :
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The last two possibilities are represented by the so-alled \omplex" geometries

h	 j �i

(1;�

21

)

and h	 j �i

(1;�

123

)

:

In these ase we de�ne the following binary mappings

V

Cl

3;0

� V

Cl

3;0

! Cl

i!�

21

0;1

� C(1; �

21

) ;

V

Cl

3;0

� V

Cl

3;0

! Cl

i!�

123

0;1

� C(1; �

123

) :

In the standard de�nition of inner produt we �nd the operation of transpose onjugation, 	

y

. How an we translate

the transpose onjugation in the geometri algebra formalism?

The Cli�ord algebra Cl

3;0

has three involutions similar to omplex onjugation. Take an arbitrary element

E = E

0

+ E

1

+ E

2

+ E

3

in Cl

3;0

;

written as a sum of a salar E

0

, a vetor E

1

, a bivetor E

2

and a volume element E

3

. We introdue the following

involutions

E

�

= E

0

�E

1

+E

2

�E

3

grade involution ;

E

?

= E

0

�E

1

�E

2

+E

3

onjugation ;

E

y

= E

0

+E

1

�E

2

�E

3

reversion :

The grade involution is an automorphism

(E

a

E

b

)

�

= E

�

a

E

�

b

;

while the reversion and the onjugation are anti-automorphism, that is,

(E

a

E

b

)

?

= E

?

b

E

?

a

;

(E

a

E

b

)

y

= E

y

b

E

y

a

;

E

y

� E

�?

� E

?�

. We shall show that the reversion an be used to represent the hermitian onjugation.

Let us analyze the following produts: 	

�

	, 	

?

	, 	

y

	, whih involve the three involutions de�ned within the

Cli�ord algebra Cl

3;0

. We must onsider the two possibilities due to the identi�ation of the omplex imaginary unit

i =

p

�1 by �

21

and �

123

. Let us perform a real projetion of these produts,
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+ �
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+ �
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+ �

21
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23
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4

+ �

13
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S
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� '
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� '

2

4

� �

2

1

� �

2

2

� �

2

3

� �

2
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=

(i��

123

)

f[('

1

+ �

21

'

2

+ �

23

'

3

+ �

13

'

4

)� �

123

(�

1

+ �

21

�

2

+ �

23

�

3

+ �

13

�

4

)℄�

[('

1

+ �

21

'

2

+ �

23

'

3

+ �

13

'

4

) + �

123

(�

1

+ �

21

�

2

+ �

23

�

3

+ �

13

�

4

)℄g

S

= '

2

1

� '

2

2

� '

2

3

� '

2

4

+ �

2

1

� �

2

2

� �

2

3

� �

2

4

;

(	

?

	)

S

=

(i��

21

)

f[('

1

� �

21

�

1

� �

23

'

2

� �

13

�

2

) + �

123
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21
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3

� �

23
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� �

13
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+ �
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+ �
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The �rst onlusion should be the use of the involution y and the assumption of a \real" geometry. Thus, we should

translate

( 

�

1

 

�

1

 

�

1

 

�

1

)

0

B

�

 

1

 

2

 

3

 

4

1

C

A

�

4

X

m=1

�

'

2

m

+ �

2

m

�

by

�

	

y

	

�

S

:

Nevertheless, this real projetion of inner produts gives an undesired orthogonality between 1, �

21

and �

123

. We

know that the omplex imaginary unit, i =

p

�1, represents a phase in the standard quantum mehanis, thus if we

wish to adopt the identi�ations

i =

p

�1 ! �

21

or �

123

;

we must abandon the \real" geometry. We have another possibility. Let us rewrite 	 as follows

	 = h

1

+ �

123

h

2

h

1;2

2 H(1; �

21

; �

23

; �

31

) ;

the full 	

y

	 produt is given by

	

y

	 =

�

h

y

1

� �

123

h

y

2

�

(h

1

+ �

123

h

2

) = jh

1

j

2

+ jh

2

j

2

+ �

123

�

h

y

1

h

2

� h..

�

:

and so

	

y

	 = Real Part + Vetorial Part :

Consequently,

�

	

y

	

�

S

�

�

	

y

	

�

(1;�

21

)

�

21

-omplex geometry ;

�

	

y

	

�

S

�

�

	

y

	

�

(1;�

123

)

�

123

-omplex geometry :

Now, (1; �

21

) and (1; �

123

) do not represent orthogonal states, and our spinor 	 have four omplex orthogonal

states, the omplex orthogonality freedom degrees needed to onnet a general element of the Pauli algebra to the

4-dimensional Dira spinor

�

21

-omplex geometry : 1 ; �

1

; �

23

; �

123

orthogonal states ,

�

123

-omplex geometry : 1 ; �

21

; �

23

; �

31

orthogonal states .

III. BARRED OPERATORS

We justify the hoie of a omplex geometry by noting that although there is the possibility to de�ne an anti-self-

adjoint operator,

~

�, with all the properties of a translation operator, imposing a non-omplex geometry, there is no

orresponding self-adjoint operator with all the properties expeted for a momentum operator. We an overome suh

a diÆulty by using a omplex salar produt and de�ning as the appropriate momentum operator

�

21

-omplex geometry ~p � �

~

� j �

21

;

�

123

-omplex geometry ~p � ��

123

~

� ;

where 1 j �

21

indiates the right ation of the bivetor �

21

. For �

123

, it is not important to distinguish between left

and right ation beause �

123

ommutes with all the elements in Cl

3;0

. Note that the hoie ~p � ��

21

~

� still gives a

self-adjoint operator with the standard ommutation relations with the oordinates, but suh an operator does not

ommute with the Hamiltonian, whih will, in general, be an element of Cl

3;0

. Obviously, in order to write equations

that are relativistially ovariant, we must treat the spae omponents and time in the same way, hene we are obliged

to modify the standard \omplex" equations by the following substitutions
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�

21

-omplex geometry i�

�

! �

�

j �

21

;

�

123

-omplex geometry i�

�

! �

123

�

�

:

Let us now introdue the omplex/linear barred operators. Due to the non-ommutative nature of the elements of

Cl

3;0

, we must distinguish between left and right ation of �

21

, �

23

, �

31

. Expliitly, we write

1 j �

21

; 1 j �

23

; 1 j �

31

; (2)

to identify the right multipliation of �

21

, �

23

, �

31

,

(1 j �

21

)	 � 	�

21

; (1 j �

23

)	 � 	�

23

; (1 j �

31

)	 � 	�

31

:

Note that the right ation of �

1

, �

2

, �

3

an be immediately obtained form the operators in (2) by �

123

multipliation.

In rewriting the Dira equation, we need to work with \omplex" linear barred operators. Here, we must distinguish

between �

21

and �

123

omplex geometry. In fat, by working with a �

123

-omplex geometry it is immediate to prove

that

1 j �

21

; 1 j �

23

; 1 j �

31

;

represent �

123

-omplex/linear operators. On the ontrary, by working with a �

21

-omplex geometry we have only one

permitted right ation, that is

1 j �

21

;

whih represents a �

21

-omplex/linear operator. Why this ounting of parameters? It is simple. In Cl

3;0

we work

with 8 real parameters, but the most general linear transformation whih an be performed on an element of Cl

3;0

,

adopting a �

123

-omplex geometry, is

A + B j �

21

+ C j �

23

+D j �

31

A;B;C;D 2 Cl

3;0

;

whih ontains 32 real parameters, the same number of M

4

(C). This explains the possibility of a diret translation

between 4� 4 omplex matries and the Pauli algebra with �

123

-omplex geometry

0

B

�

 

1

 

2

 

3

 

4

1

C

A

$ 	 =  

1

+ �

21

 

2

+ �

23

 

3

+ �

31

 

4

M

4

(C) $ A+B j �

21

+ C j �

23

+D j �

31

:

A. �

123

-omplex geometry and Dira equation

We have now all the tools to reprodue the Dira equation within the algebra Cl

3;0

. It is suÆient to translate the

standard equation

i�

�

�

�

	 = m	 ;

by using the identi�ation of i =

p

�1 by �

123

and �nding a representation of the Dira matries, �

�

, by elements of

the Pauli algebra. We observe that the �

�

's an be rewritten in terms of elements of Cl

3;0

, by adopting pseudosalar

and left/right ation of bivetors. To reprodue the right antiommutation relation whih haraterize the Dira

algebra, we perform the following identi�ation

~

� � (�

23

; �

31

; �

12

) :

To satisfy the antiommutation relation between �

0

and

~

�, we introdue right ations

�

0

� 1 j �

32

and �

1;2;3

� 1 j �

31

:

Finally, the hermitiity onditions give
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�

0

� �

123

j �

32

;

�

1

� �

123

�

23

j �

31

;

�

2

� �

123

�

31

j �

31

;

�

3

� �

123

�

12

j �

31

:

The Dira equation reads

�

t

	�

23

+ �

23

�

x

	�

13

+ �

31

�

y

	�

13

+ �

12

�

x

	�

13

= m	 : (3)

Let us multiply the previous equation by the barred operator �

123

j �

23

,

�

123

�

t

	�

23

�

23

+ �

123

�

23

�

x

	�

13

�

23

+ �

123

�

31

�

y

	�

13

�

23

+ �

123

�

12

�

x

	�

13

= m�

123

	�

23

:

By observing that

�

2

23

= �1 ; �

13

�

23

= �

21

; �

123

(�

23

; �

13

; �

12

) = � (�

1

; �

2

; �

3

) ;

we �nd

�

123

�

t

	+ �

1

�

x

	�

21

+ �

2

�

y

	�

21

+ �

3

�

x

	�

21

= m	�

1

; (4)

whih represents the Dira equation in the Pauli algebra with �

123

-omplex geometry. This equation is obtained

by simple translation, so it reprodues the standard physial ontents. We are now ready to perform the desired

translation rules:

	 �

0

B

�

'

1

+ i�

1

'

1

+ i�

2

'

1

+ i�

3

'

1

+ i�

4

1

C

A

$ ('

1

+ �

123

�

1

) + �

21

('

2

+ �

123

�

2

) + �

23

('

3

+ �

123

�

3

) + �

31

('

4

+ �

123

�

4

) ;

�

y

	 $

�

�

y

	

�

(1;�

123

)

:

To give the orrespondene rules between 4�4 omplex matries and barred operators, we need to list only the matrix

representations for the following barred operators

1 ; �

21

; �

23

; �

123

; 1 j �

12

; 1 j �

23

;

all the other operators an be quikly obtained by suitable multipliations of the previous ones. The translation of 1

and �

123

is very simple:

1 $ 11

4�4

and �

123

$ i11

4�4

:

The remaining four operators are represented by

�

21

$

0

B

�

0 -1 0 0

1 0 0 0

0 0 0 -1

0 0 1 0

1

C

A

1 j �

21

$

0

B

�

0 -1 0 0

1 0 0 0

0 0 0 1

0 0 -1 0

1

C

A

;

�

23

$

0

B

�

0 0 -1 0

0 0 0 1

1 0 0 0

0 -1 0 0

1

C

A

1 j �

23

$

0

B

�

0 0 -1 0

0 0 0 -1

1 0 0 0

0 1 0 0

1

C

A

:

B. �

21

-omplex geometry and Dira equation

Let us now disuss the possibility to write down the Dira equation in the Pauli algebra with a �

21

-omplex

geometry. At �rst glane a problem appears. We have not the needed parameters in the barred operators to perform

a translation. In fat, the most general �

21

-omplex/linear operator is

7



A + B j �

21

A;B 2 Cl

3;0

;

and onsequently we ount only 16 real parameters. We have no hope to settle down the 32 real parameters hara-

terizing a generi 4�4 omplex matrix. Nevertheless, we must observe the possibility to perform the grade involution,

whih represents a �

21

-omplex/linear operation

[	 (�+ �

21

�)℄

�

= 	

�

(�+ �

21

�) �; � 2 R :

Thanks to this involution we double our real parameters. Let us show the desired translation rules

	 �

0

B

�

'

1

+ i�

1

'

1

+ i�

2

'

1

+ i�

3

'

1

+ i�

4

1

C

A

$ ('

1

+ �

21

�

1

) + �

23

('

2

+ �

21

�

2

) + �

123

('

3

+ �

21

�

3

) + �

123

�

23

('

4

+ �

21

�

4

) ;

�

y

	 $

�

�

y

	

�

(1;�

21

)

:

To give the orrespondene rules between 4�4 omplex matries and barred operators, we need to list only the matrix

representations for the following barred operators

1 ; �

21

; �

23

; �

123

; 1 j �

21

;

and give the matrix version of the grade involution. All the other operators an be quikly obtained by suitable

ombinations of the previous operations. The translation of 1 and 1 j �

21

is soon obtained:

1 $ 11

4�4

and 1 j �

21

$ i11

4�4

:

The remaining rules are

�

21

$ i

0

B

�

1 0 0 0

0 -1 0 0

0 0 1 0

0 0 0 -1

1

C

A

; �

23

$

0

B

�

0 -1 0 0

1 0 0 0

0 0 0 -1

0 0 1 0

1

C

A

; �

123

$

0

B

�

0 0 1 0

0 0 0 1

-1 0 0 0

0 -1 0 0

1

C

A

;

and �nally the grade involution is represented by the following matrix

�-involution $

0

B

�

1 0 0 0

0 1 0 0

0 0 -1 0

0 0 0 -1

1

C

A

:

Let us examine how to translate the Dira equation

i�

�

�

�

	 = m	 ;

by working with a �

21

-omplex geometry. Firstly, we modify the previous equation by multiplying it by �

0

on the left

i�

t

	 + i�

0

~

� �

~

�	 = m�

0

	 :

We observe that (by using the standard representation [18,19℄ for the Dira matries)

�

0

	 �

0

B

�

1 0 0 0

0 1 0 0

0 0 -1 0

0 0 0 -1

1

C

A

0

B

�

'

1

+ i�

1

'

2

+ i�

2

'

3

+ i�

3

'

4

+ i�

4

1

C

A

$ ('

1

+ �

21

�

1

) + �

23

('

2

+ �

21

�

2

)� �

123

('

3

+ �

21

�

3

)� �

123

�

23

('

4

+ �

21

�

4

)

$ [('

1

+ �

21

�

1

) + �

23

('

2

+ �

21

�

2

) + �

123

('

3

+ �

21

�

3

) + �

123

�

23

('

4

+ �

21

�

4

)℄

�

;

and

�

0

~

� $ (�

1

; �

2

; �

3

) ; i11

4�4

$ 1 j �

21

:

Thus, the translated Dira equation reads:

�

t

	�

21

+ �

1

�

x

	�

21

+ �

2

�

y

	�

21

+ �

3

�

z

	�

21

= m	

�

: (5)
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IV. COMPLEX GEOMETRIES EQUIVALENCE

In the previous setions, we have performed two translated versions of the Dira equation. Expliitly,

�

123

-omplex geometry (�

123

�

t

+r j �

21

) 	 = m	�

1

; (6)

and

�

21

-omplex geometry (�

t

+r)	�

21

= m	

�

; (7)

where

r � �

1

�

x

+ �

2

�

y

+ �

3

�

z

:

We disuss in this setion the possibility to relate the two equations obtained by imposing di�erent geometries. Let

us start by taking the �-involution of Eq. (6)

�

123

�

t

	

�

+r	

�

�

21

= m	

�

�

1

: (8)

By working with Eqs. (6,8) we an reobtain Eq. (7). To do it, we introdue the idempotents

e

�

=

1

2

(1� �

3

) ;

and give some relations whih will be useful in the following

[e

�

; �

21

℄ = 0 ; �

1

e

�

= e

�

�

1

;

and

�

123

e

�

= e

�

�

21

; �

123

e

+

= �e

+

�

21

: (9)

Let us multiply Eqs. (6) and (8) from the right respetively by e

�

and �

1

e

+

,

�

123

�

t

	e

�

+r	e

�

�

21

= m	e

+

�

1

;

�

123

�

t

	

�

�

1

e

+

�r	

�

�

1

e

+

�

21

= m	

�

e

+

:

By using the relations in Eq. (9), we an rewrite the previous equations as follows

(�

t

+r)	e

�

�

21

= m	e

+

�

1

; (10)

and

(�

t

+r)	

�

�

1

e

+

�

21

= �m	

�

e

+

: (11)

By taking the \di�erene" between these last two equations, we have

(�

t

+r) [	e

�

�	

�

�

1

e

+

℄�

21

= m [	e

+

�

1

+	

�

e

+

℄ :

By rede�ning

� � 	e

�

�	

�

�

1

e

+

; (12)

and noting that

�

�

= 	

�

e

+

+	�

1

e

�

= 	

�

e

+

+	e

+

�

1

;

we �nd

(�

t

+r) ��

21

= m�

�

; (13)

as antiipated.
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We onlude this setion by disussing the phase transformations haraterizing our equations. It is immediate to

show that the phase transformation

	 ! 	e

�

123

�

� 2 R ;

implies the following transformation on �

� ! �e

�

21

�

:

In fat,

�

0

= 	e

�

123

�

e

�

�	

�

e

��

123

�

�

1

e

+

= 	e

�

e

�

21

�

�	

�

�

1

e

+

e

�

21

�

= �e

�

21

�

:

At this stage, there is not di�erene in the using a �

123

or �

21

omplex geometry. So, we have an equivalene between

�

123

and �

21

omplex geometry within the Pauli algebra.

V. CONCLUSION

The possibility of using Cli�ord algebra to desribe standard quantum mehanis reeives a major thrust with the

adoption of a omplex salar produt (omplex geometry). A seond important step in this objetive of translation

is ahieved with the introdution of the so-alled barred operators, whih permit to write down few translation rules

whih allow to quikly reprodue in the Cl

3;0

formalism the standard results of the Dira theory. All the relations

an be manipulated without introduing a matrix representation, greatly simplifying the algebra involved.

In this paper we worked with the Pauli algebra but we wish to remark that our onsiderations an be immediately

generalized to the spaetime algebra, whih represents the natural language for relativisti quantum mehanis.

In the standard literature, the unit salar imaginary of quantum mehanis is replaed by a bivetor. We showed

that another possibility is also available, namely the identi�ation of the unit salar imaginary i =

p

�1 by the

pseudosalar 

0123

of the spaetime algebra (�

123

in the Pauli algebra). These two geometri interpretations reet

the two possible hoies in de�ning a omplex geometry within the multivetor formalism. At the free-partile level,

there is an equivalene in using these two omplex salar produts.

We onlude by observing that a possible di�erene between the �

21

and �

123

omplex geometries ould appear in

the formulation of the Salam-Weinberg model, where the eletromagneti group is obtained by symmetry breaking

from the Glashow group SU(2)� U(1). It appears natural to use

�

21

; �

23

; �

31

and 1 j �

21

;

as generators of the eletroweak group. In this ase the right hoie should be the adoption of a �

21

omplex

geometry. After symmetry breaking the remaining eletromagneti group will be identi�ed by the left/right ation

of the generator �

21

. A omplete disussion of the Salam-Weinberg model within the multivetor formalism will be

given in a forthoming paper [20℄.
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