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Abstra
t

With an intrinsi
 approa
h on semi-simple Lie groups we �nd a Fursten-

berg{Khasminskii type formula for the limit of the diagonal 
omponent in the

Iwasawa de
omposition. It is an integral formula with respe
t to the invariant

measure in the maximal 
ag manifold of the group (i.e. the Furstenberg

boundary B = G=MAN). Its integrand involves the Borel type Riemannian

metri
 in the 
ag manifolds. When applied to linear sto
hasti
 systems whi
h

generate a semi-simple group the formula provides a diagonal matrix whose

entries are the Lyapunov spe
trum. Some Brownian motions on homogeneous

spa
es are dis
ussed.
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1 Introdu
tion

In this arti
le we 
onsider right invariant sto
hasti
 di�erential equations in a semi-

simple Lie group G with the purpose of studying the asymptoti
 time average of
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the logarithm of the A-part of the Iwasawa de
omposition of the traje
tories. After


onstru
ting a 
onvenient radial-spheri
al de
omposition, we get an integral formula

by applying a Furstenberg-Khasminskii type argument. Interesting algebrai
 and

geometri
al interpretations 
ome out of this formula when we 
onsider the Borel

type metri
 on the 
ag manifolds.

The motivation for having su
h a formula is that, for many well known inter-

esting systems, that limit des
ribes the stability of the system sin
e it 
ontains the

Lyapunov spe
trum. Among those systems, the linear ones have been quite well

studied by several authors who developed formulae in di�erent 
ontexts. We men-

tion, for instan
e, Khasminskii [16℄, Arnold, Kliemann and Oeljeklaus [1℄, Arnold,

Oeljeklaus and Pardoux [2℄ for linear systems, and Carverhill [7℄, [8℄, Arnold and

San Martin [24℄ for extensions to nonlinear systems.

Most of those formulae dete
t only the top Lyapunov exponent. A 
reative

method to 
al
ulate the whole Lyapunov spe
trum was established by Baxendale

[5℄. He used the same kind of argument for the 
al
ulation of the top exponent

but applied to the indu
ed system on the Grassmannian Gr

k

(n). Another approa
h

to �nd the whole spe
trum is due to Arnold and Imkeller [3℄, who got formulae to


al
ulate these numbers via anti
ipative 
al
ulus, where ea
h exponent is given by

a Khasminskii type formula plus a 
orre
tion term whi
h are expressed in terms of

a Malliavin derivative of the orthogonal proje
tors on the Osseledets spa
es.

Dealing with the Iwasawa de
omposition of systems in Sl(n;R), Liao [19℄, in a

geometri
al 
ontext analogous to [5℄, obtained the whole spe
trum as an integral

formula with respe
t to an invariant measure for the indu
ed system on the spe
ial

orthogonal group. The intrinsi
 geometri
 approa
h of this paper allows to extend

the results in [19℄ to systems evolving in arbitrary semi-simple Lie groups. Here

however we work intrinsi
ally in a general semi-simple Lie group. The link to lin-

ear systems is established either by taking linear representations of the group or by

starting with a linear system and assuming that the Lie algebra generated by its


oeÆ
ients is semi-simple. The advantage of this intrinsi
 set up is that the assump-

tions regarding the non-degenera
y of the systems are less demanding, in the sense

that it requires only that the Lie algebra generated by the system is semi-simple.

The intrinsi
 approa
h also allows appli
ations to other systems, like the geodesi



ow in symmetri
 spa
es (see Malliavin and Malliavin [21℄ and Carverhill and El-

worthy [10℄) or geodesi
 systems and other kinds of Brownian motions.

This arti
le is organized as follows: in se
tion 2 we present some algebrai
 prelim-

inaries on semi-simple Lie algebra, 
ag manifolds and the Borel type metri
. Se
tion

3 shows that the homogeneous spa
e G=MN is a trivial prin
ipal �bre bundle over
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the maximal 
ag manifold with A as the stru
tural group su
h that there exists a

spheri
al-radial de
omposition of this spa
e. In se
tion 4 we study the asymptoti


behavior of solutions of sto
hasti
 di�erential equations in these radial �bres. Then,

we 
lose the argument in se
tion 5 where we show that for many interesting systems

(
f. Guivar
'h and Raugi [13℄) this asymptoti
 behavior, as limiting elements in a,

provides the Lyapunov spe
trum of the system. Finally, in se
tion 6 we 
al
ulate

some geometri
ally interesting examples.

We mention that although we work in the semi-simple 
ontext, the results are

easily extended to a redu
tive Lie algebra, that is, whi
h de
omposes as a sum of

a semi-simple Lie algebra plus the 
enter. At this regard re
all that a Lie algebra

of matri
es whi
h is irredu
ible in the sense that it does not have invariant proper

subspa
es, is redu
tive. This implies that this method applies also to linear systems

whi
h generate an irredu
ible Lie algebra of matri
es.

After the 
on
lusion of this paper we be
ame aware of similar results of Liao

[20℄, whi
h also work in the general setting of semi-simple Lie groups. Contrary to

[20℄, here we write a formula for the Lyapunov exponent as an integral on the 
ag

manifolds, fa
toring further the formula of [20℄.

2 Algebrai
 Preliminaries

The purpose of this se
tion is to present some known algebrai
 and geometri
al fa
ts

about semi-simple Lie groups, their algebras and asso
iated 
ag manifolds. We refer

to Helgason [14℄ or Warner [27℄ for unexplained 
on
epts.

Before starting we set the following notation: if G is a Lie group, a homogeneous

spa
e of G is a 
oset spa
e G=H with H a 
losed subgroup. By left translation, G

a
ts transitively on G=H. Let g be the Lie algebra of G and take X 2 g. Then X

indu
es the ve
tor �eld

~

X on G=H given by

~

X (x) =

d

dt

(exp tX) (x)

jt=0

whose 
ow is the a
tion of exp (tX), t 2 R, on G=H. When it is ne
essary

to emphasize the spe
i�
 homogenous spa
e G=H the indu
ed ve
tor �eld will

be denoted by

~

X

�

�

�

G=H

. Sin
e the a
tion is transitive the tangent spa
e at x is

T

x

(G=H) = f

~

X (x) : X 2 gg.

3



2.1 Semi-simple Lie algebras

Let g be a semi-simple Lie algebra. Given a Cartan de
omposition g = k � s, let

� stand for the 
orresponding Cartan involution (� = id in k and � = �id in s).

Let � � a

�

stand for the set of roots of the pair (g; a); the eigenvalues of ad

g

(H),

H 2 a are 0 and � (H), � 2 �. The root spa
e

g

�

= fX 2 g : [H;X℄ = � (H)X for all H 2 ag

is the 
ommon eigenspa
e for ad

g

(H) asso
iated with the eigenvalue � (H), � 2 �.

By �xing a lexi
ographi
 order in the dual a

�

of a we have � = �

+

[ �

�

where �

+

is the set of positive roots with respe
t to this order, and �

�

= ��

+

. The dire
t

sum

n

+

=

X

�2�

+

g

�

is a nilpotent subalgebra of g. We denote by a

+

the Weyl 
hamber asso
iated with

�

+

:

a

+

= fH 2 a : � (H) > 0; � 2 �

+

g:

The 
hoi
e of one among �

+

, n

+

or a

+

determines the others. From the de
ompo-

sition of g into ad (a)-eigenspa
es we have

g = n

�

�m� a� n

+

where

n

�

= �

�

n

+

�

=

X

�2�

�

g

�

is the subalgebra opposed to n

+

and m = fX 2 k : [X; a℄ = 0g is the 
entralizer of

a in k. A Weyl 
hamber a

+

determines the Iwasawa de
omposition:

g = k� a� n

+

:

We shall denote by pr

i

the proje
tion of g onto the Iwasawa 
omponent i = k, a or n.

In the parti
ular 
ase of sl (n;R) with the 
anoni
al Iwasawa de
omposition, k is the

algebra of skew-symmetri
 matri
es, a is the abelian algebra of diagonal matri
es

and n

+

the upper triangular matri
es with zeros on the main diagonal.

Denote by h�; �i the Cartan-Killing form of g. We re
all the following fa
ts (see

e.g. [14℄):

� � (g

�

) = g

��

.
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� hg

�

; g

�

i = 0 unless � = ��.

� The bilinear form in g de�ned by B

�

(X; Y ) = �hX; �Y i is an inner produ
t.

In parti
ular, the restri
tion of h�; �i to s is an inner produ
t and for every

0 6= X 2 g

�

, hX; �Xi 6= 0.

2.2 Flag Manifolds

Let G be a 
onne
ted and non
ompa
t semi-simple Lie group with Lie algebra g.

An Iwasawa de
omposition g = k � a � n

+

extends to an Iwasawa de
omposition

G = KAN where the groups K, A and N are the exponentials of k, a and n

+

respe
tively.

Let M be the 
entralizer of A in K. The Lie algebra of M is the 
entralizer

m of a in k. The produ
t P = MAN is a 
losed subgroup of G with Lie algebra

p = m � a � n

+

. The subgroup P is the normalizer of p in G. It is a minimal

paraboli
 subgroup and the quotient B = G=P is a 
ompa
t homogeneous spa
e

of G known as the maximal 
ag manifold or the Furstenberg boundary of G. The

subgroup K also a
ts transitively on B. Through the transitive a
tion of K we have

B = K=M . We remark that B is the same, regardless the spe
i�
 G having Lie

algebra g. This is due to the fa
t thatM 
ontains the 
enter of G so that the a
tion

of G on B fa
tors through the group of inner automorphisms of gwhi
h is 
enterless.

For the 
onstru
tion of the non maximal 
ag manifolds we need the simple system

of roots � asso
iated to �

+

. This is a basis of a

�

su
h that every � 2 �

+

is a linear


ombination of � with nonnegative integers as 
oeÆ
ients.

Given � � � let h�i be the subset of positive roots generated by �. Denote by

n

�

(�) the subalgebra spanned by the root spa
es g

��

, � 2 h�i and let p

�

be the

paraboli
 subalgebra de�ned by

p

�

= n

�

(�)� p:

Its normalizer P

�

in G is a paraboli
 subgroup whose Lie algebra is p

�

. We put

B

�

= G=P

�

for the 
orresponding 
ag manifold. IfM

�

= P

�

\K then B

�

= K=M

�

,

that is, K is transitive in B

�

. It turns out that M

�

is the 
entralizer in K of any

H in the \sub
hamber"

fH 2 
l

�

a

+

�

: � (H) = 0 if � 2 h�i and � (H) > 0 if � 2 �

+

� h�ig:

By this transitivity of K, B

�

identi�es with the Ad (K)-orbit of H in s. In this 
ase

the notation B

H

and M

H

are also used instead of B

�

and M

�

respe
tively. The Lie
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algebra of M

H

is the 
entralizer m

H

of H in k:

m

H

= fX 2 k : [X;H℄ = 0g:

A relation between the Iwasawa and Cartan 
omponents is provided by the fol-

lowing simple algebrai
 lemma, whi
h generalizes the symmetrization and skew-

symmetrization of matri
es.

Lemma 2.1 Let a

+

, and hen
e n

+

be given.

1. De�ne k

a

+

= fY + � (Y ) : Y 2 n

+

g. Then k

a

+

� k and k = k

a

+

�m. Moreover,

the skew-symmetrization map

� : Y 2 n

+

7�! Y + � (Y ) 2 k

a

+

is an isomorphism of ve
tor spa
es.

2. De�ne s

a

+

= fY � � (Y ) : Y 2 n

+

g. Then s

a

+

� s and s = s

a

+

� a. Moreover,

the symmetrization map

� : Y 2 n

+

7�! Y � � (Y ) 2 s

a

+

is an isomorphism of ve
tor spa
es.

Proof: To see item (1) note that k is the subspa
e of points �xed by � so that k

a

+

� k.

We have k � n

�

� m � n

+

. Hen
e X 2 k is written uniquely as X = Z + A + Y ,

with Z 2 n

�

, A 2 m and Z 2 n

+

. Then

X = � (X) = � (Z) + A+ � (Y )

with � (Z) 2 n

+

and � (Y ) 2 n

�

. Therefore � (Y ) = Z so that X = (Y + � (Y ))+A 2

k

a

+

�m. The isomorphism is a 
onsequen
e of the fa
t that for Y 2 n

+

, Y +� (Y ) = 0

if and only if Y = 0.

Item (2) follows in the same way: s � n

�

�a�n

+

and 
onsider Y �� (Y ) instead

of Y + � (Y ).

With the isomorphisms � and � of this lemma we 
onstru
t the isomorphism

� = � Æ �

�1

: k

a

+

! s

a

+

;
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whi
h extends to k by de
laring it to be zero at m.

For H 2 a the 
ag manifold B

H

is the Ad (K)-orbit of H so that its tangent

spa
e at H is

T

H

B

H

= f

~

X (H) = [X;H℄ : X 2 kg � s:

Clearly [m

H

; H℄ = 0. Hen
e T

H

B

H

is the subspa
e of tangent ve
tors

~

X (H) with

X running through the subspa
e � (n

H

) where

n

H

=

X

fg

�

: � 2 �

+

; � (H) 6= 0g: (1)

An easy 
omputation shows that T

H

B

H

, as a subspa
e of s, 
oin
ides with � (n

H

)

so that it is the orthogonal 
omplement of � (m

H

).

Later on we will use the following fa
ts relating the isomorphism � : n

+

! s

a

+

with the Cartan-Killing form: If Y 2 g

�

, � > 0 then �Y = Y � �Y , and sin
e

hY; Y i = 0,

h�Y; �Y i = hY � �Y; Y � �Y i = 2B

�

(Y; Y ) :

Also, if Z 2 g

�

, with � 6= � > 0 then hY; Zi = hY; �Zi = h�Y; �Zi = 0 so that

h�Y; �Zi = 0. From this fa
t we 
an 
onstru
t orthonormal bases of s as follows:

take a basis fY

1

; : : : ; Y

m

g of n

+

whi
h is the union of bases of the root spa
es g

�

,

� > 0. Then f�Y

1

; : : : ; �Y

m

g is a basis of s

a

+

whi
h 
an be 
omplemented with

a basis of a to get a basis of s. Any su
h basis will be 
alled adapted to a

+

. In

parti
ular, if fY

1

; : : : ; Y

m

g is orthonormal with respe
t to the inner produ
t B

�

then

f

p

2

2

�Y

1

; : : : ;

p

2

2

�Y

m

g (2)

is orthonormal in s

a

+

whi
h 
an be 
omplemented to an orthonormal basis of s.

2.3 Borel metri


It is possible to endow a 
ag manifold with a spe
ial Riemannian metri
 whi
h

depends on its realization as an Ad (K)-orbit, namely the Borel (B) metri
 (see

Borel [6℄ and Duistermmat, Kolk and Varadarajan [11℄). For the de�nition of the B

metri
 take H 2 
l (a

+

). Then at the tangent spa
e T

H

B

H

the B metri
 is given by

�

~

X (H) ;

~

Y (H)

�

H

= hH; [X; � (Y )℄i (3)

for X; Y 2 k. This expression a
tually de�nes an inner produ
t in T

H

B

H

whi
h

is invariant under M

H

so that it extends to a K-invariant Riemannian metri
 in
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B

H

. This metri
 will play an essential role in the sequel for the 
omputation of the

Lyapunov exponents.

A 
ru
ial fa
t about the B metri
 is that the ve
tor �elds indu
ed by s are

gradient. More pre
isely, for X 2 s let

~

X be the ve
tor �eld it indu
es in B

H

through the G-a
tion in this 
ag manifold. Sin
e B

H

is embedded in s, it makes

sense to de�ne the fun
tion f

X

: B

H

! R by f

X

(Y ) = hX; Y i.

Lemma 2.2 For any X 2 s,

~

X = gradf

X

where the gradient is taken with respe
t

to B, that is, d (f

X

) =

�

~

X; �

�

.

Proof: See Proposition 3.3 in [11℄.

The right hand side of equation (3) is linear in H showing that the B metri



hanges linearly with H. The exa
t meaning of this linear dependen
e is as follows:

�x t > 0 and put H

1

= tH. The 
entralizers of H and H

1

in K 
oin
ide so that

B

H

1

= B

H

, that is, both orbits Ad (K)H

1

and Ad (K)H identify with the same

homogeneous spa
e of K. Under these identi�
ations H

1

and H give the same base

point. The ve
tor �eld

~

X is de�ned by means of the K-a
tion and it is independent

of the spe
i�
 realization. From (3) we see that the B metri
 de�ned by H

1

is t

times the metri
 de�ned by H.

Another aspe
t about the B metri
 whi
h needs to be dis
ussed 
on
erns its

values on the ve
tors of s whi
h are tangent to Ad (K)H at H. Any su
h ve
tor is

of the form � (A) with A 2 n

H

, de�ned in (1). We have,

Lemma 2.3 Let � > 0 be a root su
h that � (H) 6= 0. Let A 2 g

�

and view

� (A) 2 s as a tangent ve
tor to Ad (K)H at H. Then

(� (A) ; � (A))

H

=

1

� (H)

h� (A) ; � (A)i:

Moreover, if � 6= � is another positive root and B 2 g

�

then (� (B) ; � (A))

H

= 0.

Proof: Let � be the isomorphism of Lemma 2.1 and put X = �

1

�(H)

� (A). Dire
t


omputations show that

(� (A) ; � (A))

H

=

�

~

X;

~

X

�

H

= hH; [X; �X℄i

= h[H;X℄; �Xi = h�� (A) ; �Xi

=

1

�(H)

h� (A) ; � (A)i
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The orthogonality between � (A) and � (B) follows if we perform the 
omputations

with �Y instead of �X where Y = �

1

�(H)

� (B).

This lemma has the following interesting 
onsequen
e: suppose that H is su
h

that � (H) = 1 for every positive root � su
h that � (H) 6= 0. Then the B metri


in B

H

is just the metri
 indu
ed by its immersion in s. When this happens we say

that B

H

is an immersed 
ag manifold.

For later referen
e we in
lude here the 
omputation of the B metri
 in the ve
tor

�elds indu
ed by the elements in s.

Lemma 2.4 Take H 2 
l (a

+

) and denote by x

0

the origin of B

H

. Let � be a

positive root. For X 2 g

�

put S = � (X). Then

�

�

�

~

S (x

0

)

�

�

�

2

= � (H) h� (X) ; � (X)i:

Moreover, if � 6= � is another positive root and Y 2 g

�

then

�

^

� (X);

℄

� (Y )

�

H

= 0.

Proof: At H the ve
tor �eld

^

� (X) is equal to (pr

k

� (X))

�

. We have

� (X) = X � � (X) = (�X � � (X)) + 2X:

The right hand side of this equality is the Iwasawa de
omposition of � (X) be
ause

�X � � (X) 2 k and 2X 2 n

+

. Hen
e pr

k

� (X) = � (X + � (X)). Sin
e � (� (X)) =

X � � (X), a similar formula for Y yields

�

^

� (X);

℄

� (Y )

�

H

= hH; [X + � (X) ; Y � � (Y )℄i:

Now the Cartan-Killing form is invariant under the adjoint representation so that

�

℄

� (Y );

℄

� (Y )

�

H

= h[H;X + � (X)℄; Y � � (Y )i:

But [H;X℄ = � (H)X and [H; � (X)℄ = �� (H)X be
ause X 2 g

�

and � (X) 2 g

��

.

Sin
e g

�

+g

��

is orthogonal to g

�

+g

��

if � 6= �, this implies the se
ond statement.

On the other hand,

�

�

�

^

� (X) (x

0

)

�

�

�

2

= � (H) hX � � (X) ; X � � (X)i

as 
laimed.
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3 De
omposition of G=MN

In this se
tion we show that the homogeneous spa
e G=MN is a trivial prin
ipal �ber

bundle over the maximal 
ag manifold B su
h that the stru
tural group is the A

part of the Iwasawa de
omposition G = KAN , i.e., there exists a kind of spheri
al-

radial de
omposition of this spa
e. In the next subse
tions we study the asymptoti


behavior of the traje
tories in the �bers, so we �nd the Lyapunov spe
trum in the

entries of limiting elements in A.

The produ
t L = MN � P is a 
losed subgroup whi
h is normal in P be
ause

A normalizes N and M . Consider the 
anoni
al �bration

� : gL 2 G=L 7�! gP 2 G=P

whose �ber is A = P=L. Sin
e L is normal in P it turns out that G=L is a prin
ipal

bundle over G=P with A as stru
tural group. The right a
tion of A on G=L is given

by R

h

(gL) = gLh = ghL, h 2 A. It is 
lear that for any g 2 G, gR

h

= R

h

g. Also,

� is equivariant with respe
t to the a
tions of G on G=L and G=P in the sense that

�g = g�. The next proposition shows that the above prin
ipal bundle is trivial:

Proposition 3.1 The map

� : (uM; h) 2 (K=M)� A 7�! uhL 2 G=L: (4)

is a di�eomorphism between G=L and B � A. Its inverse �

�1

maps gL 2 G=L in

(uM; h) 2 K=M � A where g = uhn is the Iwasawa de
omposition of g. Moreover,

� is a bundle map in the sense that � (b; R

a

1

(a)) = R

a

1

� (b; a) for all (b; a) 2 B�A

and a

1

2 A.

Proof: Note that, by (4), � does not depend on the representative u 2 K be
ause if

m 2M and h 2 A then umhL = uhmL = uhL. Let  be the map uhL 7! (uM; h);

we 
laim that  is the inverse of �. Firstly we 
he
k that  is also well de�ned: let

g = uhn and suppose that g

1

= u

1

h

1

n

1

is in the 
oset gL, i.e.

n

�1

h

�1

u

�1

u

1

h

1

n

1

2 L:

Sin
e N � L it follows that h

�1

u

�1

u

1

h

1

2 L � P . Hen
e u

�1

u

1

2 P \ K = M .

So that u

�1

u

1


ommutes with h

�1

and hen
e u

�1

u

1

h

�1

h

1

2 L whi
h implies that

h

�1

h

1

2 L \ A = f1g. Therefore h

1

= h and uM = u

1

M showing that  is well

de�ned. The 
omposition � is the identity be
ause if g = uhn then gL = uhL.

10



On the other hand,  � (uM; h) = (uM; h) be
ause uh is already written in Iwasawa

de
omposition. Sin
e � and  are di�erentiable we 
on
lude that � is a di�eomor-

phism between G=L and B � A. It is a bundle map be
ause A normalizes L:

This de
omposition has an evident meaning as a polar de
omposition with B

playing the role of the spheri
al 
omponent while A is the radial 
omponent. Also,

by identifying G=L with B � A through �, the A-
omponent of gL be
omes the

A-
omponent of the Iwasawa de
omposition of g.

3.1 Ve
tor Fields

We look now at the behavior of ve
tor �elds in G=L under the above de
omposition.

Re
all that the g-translation of

~

X is given by the adjoint in g:

g

�

~

X = (Ad (g)X)

�

: (5)

The ve
tor �eld indu
ed byX onG=L is right invariant under h 2 A, i.e., R

h�

X = X

be
ause the a
tion of G on G=L 
ommutes with the right a
tion of A. Also, taking

the de
omposition G=L = B � A and 
onsidering the trivial 
onne
tion on this

bundle, X de
omposes as

X (b; h) = X

H

(b; h) +X

V

(b; h)

where X

H

is the horizontal 
omponent (in the dire
tion of B) while X

V

stands for

the verti
al 
omponent (in the dire
tion of A). We shall �nd expli
it expressions for

these 
omponents.

The horizontal 
omponent is just the ve
tor �eld indu
ed by X on B. In fa
t,

the proje
tion

� : G=L �! G=P

is equivariant whi
h implies that �

�

~

X

�

�

�

G=L

=

~

X

�

�

�

G=P

. Sin
e �

�

X

V

= 0 it follows

that �

�

~

X

�

�

�

G=L

= X

H

. Therefore X

H

(b; h) = X

H

(b) is independent of h 2 A and


oin
ides with the ve
tor �eld indu
ed by X on B.

In order to get the verti
al 
omponent we denote by H

�

the verti
al ve
tor �eld

indu
ed in B�A by H 2 a as an element of the Lie algebra of the stru
tural group,

hen
e, now the a
tion is on the right. For every verti
al ve
tor v at (b; h) there

11



exists H 2 a su
h that v = H

�

(b; h). Hen
e with a given X 2 g we have de�ned a

map b 2 B 7! H

X;b

2 a su
h that

X (b; 1) = X

H

(b) +H

�

X;b

(b; 1) :

From this equality we 
an obtain the verti
al 
omponent. In fa
t, X is right invari-

ant, i.e., X (b; h) = R

h�

X (b; 1). Now

R

h�

�

X

H

(b) +H

�

X;b

(b; 1)

�

= X

H

(b) +R

h�

�

H

�

X;b

(b; 1)

�

= X

H

(b) + (Ad (h

�1

)H

X;b

)

�

(b; h) :

Sin
e A is abelian Ad (h

�1

)H = H, hen
e

X (b; h) = X

H

+H

�

X;b

(b; h)

i.e. the verti
al 
omponent is determined by H

X;b

2 a whi
h depends only on X

and on b. We will �nd an expli
it expression for this map. Consider the Iwasawa

de
omposition g = k�a�n and let b

0

= P be the origin of B. Sin
e N is 
ontained

in the isotropy subgroup at (b

0

; 1), the n-
omponent of X be
omes zero at this

point. Under the di�eomorphism � the horizontal 
omponent

~

X

�

�

�

G=P

(b

0

) is given

by (pr

k

)

~

�

�

�

G=P

and the verti
al 
omponent is given by (pr

a

)

~

�

�

�

A

. Hen
e, sin
e a is

abelian, H

X;b

0

= pr

a

X.

For the values of H

X;b

at other points of B, take u 2 K and put b = ub

0

. Then,

by equation (5) and the fa
t that u

�

H

�

= H

�

we have:

~

X (b; 1) = u

�

((Ad (u

�1

)X)

�

(b

0

; 1))

= u

�

�

(Ad (u

�1

)X)

�

j

G=P

(b

0

)

�

+ u

�

H

�

Ad(u

�1

)X;b

0

(b

0

; 1)

= X

H

(b

0

) +H

�

Ad(u

�1

)X;b

0

(b; 1) :

So, X

V

(b; 1) = H

�

Ad(u

�1

)X;b

0

(b; 1), and we get for b = ub

0

, u 2 K the desired

expression of H

X;b

:

H

X;b

= H

Ad(u

�1

)X;b

0

= pr

a

�

Ad

�

u

�1

�

X

�

:

The group A is di�eomorphi
 to its Lie algebra a through the exponential map.

Hen
e G=L is also di�eomorphi
 to B�a and there is a de
omposition of the ve
tor

�elds at this level too. We have then:

12



Proposition 3.2 The di�erential equation indu
ed in G=L = B � a by X 2 g

de
omposes into the equations

8

>

<

>

:

db

dt

=

~

X

�

�

�

G=P

(b) , with b 2 B and

dH

dt

= pr

a

(Ad (u

�1

)X) where b = ub

0

and H 2 a

Proof: We only remark that the se
ond equation means that if a

t

= expH(t) 2 A

then _a

t

= pr

a

(Ad (u

�1

)X) a

t

.

In the following se
tions it will be 
onvenient to use the notation

q

X

(b) = pr

a

�

Ad

�

u

�1

�

X

�

2 a (6)

with X 2 g, b = ub

0

where u 2 K. Note that (6) does not depend on the represen-

tative u 2 K whi
h satis�es ub

0

= b. In fa
t, if u

1

b

0

= b then u

1

= um for some

m 2M , and pr

a

ÆAd (m) = pr

a

be
ause m 
entralizes a.

4 Sto
hasti
 Di�erential Equations

Consider the sto
hasti
 di�erential equation on the semi-simple Lie group G:

dg = X (g) dt+

m

X

i=1

Y

i

(g) Æ dW

i

: (7)

We shall assume the a

essibility property of this system whi
h means that X and

Y

1

; : : : ; Y

m

generate the Lie algebra g of G. As in the 
ase of ve
tor �elds this

equation indu
es sto
hasti
 equations in the homogeneous spa
es of G, in parti
ular

inG=L. By the pre
eding se
tion, there is a de
omposition of the pro
ess inG=L into

radial and spheri
al 
omponents. In fa
t, using Itô's formula the indu
ed equation

in B� a has the 
omponents

db = X

H

(b) dt+

m

X

i=1

Y

i

H

(b) Æ dW

i

(8)

in the dire
tion of B and

dH = q

X

(b) dt+

m

X

i=1

q

Y

i
(b) Æ dW

i

(9)

13



in the dire
tion of a. Let g

t

be the solution of (7) starting at the identity 1 2 G.

Write g

t

= u

t

h

t

n

t

for its Iwasawa de
omposition and put H

t

= logh

t

. Then H

t

is

driven by equation (9). In order to des
ribe the asymptoti
 behavior of H

t

it will

be 
onvenient to 
onvert the Stratonovi
h equation (9) in Itô form:

dH = q

X

(b) dt+

1

2

m

X

i=1

r

Y

i
(b) dt+

m

X

i=1

q

Y

i
(b) dW

i

(10)

where r

Z

for Z 2 g stands for the dire
tional derivative:

r

Z

(b) = (Z

H

� q

Z

) (b) :

We will �nd an expression for r

Z

by redu
ing the 
omputation of the derivative

at the origin b

0

2 B. Given b 2 B let u 2 K be su
h that b = ub

0

. Then

r

Z

(b) = d (q

Z

)

b

(Z

H

(b))

= d (q

Z

)

b

Æ du

b

0

Æ du

�1

b

(Z

H

(b))

with u viewed as a di�eomorphism u : B! B. Hen
e:

r

Z

(b) = d (q

Z

Æ u)

b

0

�

du

�1

b

(Z

H

(b))

�

:

Now, from (5), du

�1

b

(Z

H

(b)) is the ve
tor �eld indu
ed on B by Ad (u

�1

)Z at b

0

,

i.e.,

r

Z

(b) = d (q

Z

Æ u)

b

0

��

Ad

�

u

�1

�

Z

�

�

(b

0

)

�

: (11)

We re
all from the previous se
tion that at the origin b

0

of B, given X 2 g,

e

X (b

0

) =

(pr

k

X)

~

(b

0

) (be
ause a+ n is 
ontained in the isotropy subalgebra at b

0

). Hen
e, if

we denote

W (u) = pr

k

Ad

�

u

�1

�

Z;

then

r

Z

(b) =

d

dt

(q

Z

Æ u)

�

e

tW (u)

b

0

�

jt=0

;

whi
h by the de�nition of q

Z

be
omes:

r

Z

(b) =

d

dt

pr

a

�

Ad

�

e

�tW (u)

u

�1

�

Z

�

jt=0

:

A dire
t 
al
ulation shows that

r

Z

(b) = pr

a

[Ad

�

u

�1

�

Z;W (u)℄:

Summarizing, we have the following formula:

Proposition 4.1 If Z 2 g and b = ub

0

2 B with u 2 K then

r

Z

(b) = pr

a

[Ad

�

u

�1

�

Z; pr

k

Ad

�

u

�1

�

Z℄

14



4.1 The Integral Formula

The assumption that fX; Y

1

; : : : ; Y

m

g generates g guarantees that in ea
h 
om-

pa
t homogeneous spa
e of G there exists a unique (ergodi
) invariant probability

measure for the di�usion pro
ess whi
h is the solution of the indu
ed sto
hasti
 dif-

ferential equation. In parti
ular there exists a unique invariant probability measure

� on the maximal 
ag manifold for the pro
ess in this spa
e. Applying the ergodi


theorem to the skew-symmetri
 
ow (see e.g. Arnold, Kliemann and Oeljeklaus [1℄

or Carverhill [7℄) we have the following well known spe
ial 
ase of the Law of Large

Numbers:

lim

t!1

1

t

log a

t

= lim

t!1

1

t

Z

t

0

Q(b

s

) ds =

Z

B

Q(b)� (db) for � 
 P-almost every (b; !)

where the fun
tion Q : B! a is given by:

Q (b) = q

X

+

m

X

i=1

r

Y

i

(b) (12)

with q

X

(b) = pr

a

(Ad (u

�1

)X) and r

Y

i
(b) = pr

a

[Ad (u

�1

)Y

i

; pr

k

Ad (u

�1

)Y

i

℄ where

b = ub

0

.

4.2 The Integrand

We shall �nd an expression for the quadrati
 part r

Z

(b), Z 2 g, of the integrand in

terms of the B metri
.

The restri
tion of the Cartan-Killing form h�; �i to a is an inner produ
t so that

we determine r

Z

(b) if we 
ompute hH; r

Z

(b)i for every H in a basis of a. In other

words, we must 
al
ulate

hH; r

Z

(b)i = hH; pr

a

[Ad

�

u

�1

�

Z; pr

k

Ad

�

u

�1

�

Z℄i

for generi
 H 2 a. Under the Cartan-Killing form k and n

+

are orthogonal to a so

that

hH; r

Z

(b)i = hH; [Ad

�

u

�1

�

Z; pr

k

Ad

�

u

�1

�

Z℄i: (13)

Note �rst that if Z 2 k then Ad (u

�1

)Z 2 k. Hen
e pr

k

Ad (u

�1

)Z 
oin
ides with

Ad (u

�1

)Z so that (13) vanishes trivially.

On the other hand for Z 2 s we 
an relate hH; r

Z

(b)i with the B metri
 (�; �) in

B

H

.
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Lemma 4.2 If Z 2 s then

hH; [Z; pr

k

Z℄i = ((pr

k

Z)

�

; (pr

k

Z)

�

)

H

(14)

where (pr

k

Z)

�

means the ve
tor �eld on B

H

indu
ed by pr

k

Z.

Proof: By Lemma 2.1 there are Y 2 n

+

and H

0

2 a su
h that

Z = Y � � (Y ) +H

0

= (�Y � � (Y )) +H

0

+ 2Y:

The right hand side of this equality is the Iwasawa de
omposition of Z be
ause

�Y � � (Y ) 2 k, H

0

2 a and Y 2 n

+

. Hen
e

pr

k

Z = �Y � � (Y ) ;

and

[Z; pr

k

Z℄ = [Y � � (Y ) ; pr

k

Z℄ + [H

0

; pr

k

Z℄: (15)

The term [H

0

; pr

k

Z℄ is orthogonal to H so that it does not 
ontribute to (14). In

fa
t, pr

k

Z = �Y � � (Y ) belongs to n

�

+ n

+

and this subspa
e is orthogonal to a

and invariant under ad (a). On the other hand, the �rst term in the right hand side

of (15) is �[� (pr

k

Z) ; pr

k

Z℄. The Cartan-Killing produ
t of this term with H is by

de�nition ((pr

k

Z)

�

; (pr

k

Z)

�

)

H

, proving the lemma.

The right hand side of (14) 
an be given an interpretation in terms of the G-

a
tion on B

H

: For X 2 g let as before

~

X stand for the ve
tor �eld indu
ed by

X on B

H

. If x

0

2 B

H


orresponds to H then a + n

+

is 
ontained in the isotropy

subalgebra at x

0

. Hen
e for X 2 g,

~

X (x

0

) = (pr

k

X)

�

(x

0

) :

Therefore we have

Corollary 4.3 For Z 2 s it holds

hH; [Z; pr

k

Z℄i = (

~

Z;

~

Z)

x

0

=

�

�

�

~

Z (x

0

)

�

�

�

2

:

Using K-invarian
e we 
an transport this formula to every point of B

H

.
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Corollary 4.4 If Z 2 s then

hH; r

Z

(b)i = (

~

Z;

~

Z)

ux

0

where (�; �) is the B metri
 in B

H

. Here u and b are related by b = ux

0

and x

0

is

the origin of B

H

.

Proof: Put U = Ad (u

�1

)Z. By de�nition of r

Z

and the above lemma,

hH; r

Z

(b)i =

�

�

�

~

U (x

0

)

�

�

�

2

with the norm given by the B metri
 in B

H

. However,

~

U (x

0

) =

�

Ad

�

u

�1

�

Z

�

�

(x

0

) = u

�1

�

(Z (ux

0

)) :

Sin
e the metri
 is K-invariant it follows that

�

�

�

~

U (x

0

)

�

�

�

2

=

�

�

�

u

�1

�

�

~

Z (ux

0

)

�

�

�

�

2

=

�

�

�

~

Z (ux

0

)

�

�

�

2

as 
laimed.

In general, let Z = A + S with A 2 k and S 2 s and for u 2 K put Z

u

=

Ad (u

�1

)Z, A

u

= Ad (u

�1

)A and S

u

= Ad (u

�1

)S. Then Z

u

= A

u

+ S

u

. Plugging

this into formula (13) and taking into a

ount that [k; k℄ � k is orthogonal to H we

get

hH; r

Z

(b)i = hH; [S

u

; A

u

℄i+

�

�

�

~

S (ux

0

)

�

�

�

2

where b = ub

0

. Now,

S

u

=

Z

u

� �Z

u

2

; A

u

=

Z

u

+ �Z

u

2

and Ad (u) 
ommutes with �. Hen
e there is the following expression for hH; r

Z

(b)i,

whi
h holds for arbitrary Z.

Proposition 4.5 If Z 2 g and H 2 a then

hH; r

Z

(b)i =

1

2

hH; [Ad (u)Z;Ad (u) (�Z)℄i+

�

�

�

~

S (ux

0

)

�

�

�

2

where b = ub

0

and b

0

and x

0

are the origins in the 
ag manifolds B and B

H

respe
-

tively.
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5 Lyapunov Exponents

The right invariant sto
hasti
 di�erential equation (7) on G indu
es a sto
hasti


di�erential

dx =

~

X (x) +

m

X

i=1

~

Y

i

(x) Æ dW

i

on ea
h spa
e endowed with a G a
tion. For many of the indu
ed systems their Lya-

punov exponents are des
ribed by the asymptoti
 of the A-part in the Iwasawa de-


omposition. We present below two 
lassi
al situations 
overed by this 
onstru
tion,

namely the linear systems indu
ed by representations of the group and, se
ondly,

Brownian motions in 
ag manifolds and symmetri
 spa
es.

5.1 Linear Systems

Let � : G! Gl (d;R) be a representation of G in R

d

. It indu
es a representation of

g (also denoted by �) so that the right invariant ve
tor �elds in G are mapped into

linear ve
tor �elds in R

d

. Therefore, under the representation, the system given by

equation (7) is mapped into the linear di�erential equation:

dx = � (X)xdt +

m

X

i=1

�

�

Y

i

�

x Æ dW

i

x 2 R

d

: (16)

The relation between the systems (7) and (16) is that if x

t

is the solution of (16)

starting at x

0

then x

t

= � (g

t

)x

0

where g

t

is the solution of (7) starting at the

identity. Clearly, � (g

t

) is the solution of a right invariant di�erential equation in

the Lie group � (G), image of (7) under �. Every data about (16) is 
ontained in

this image system and not in G itself. Sin
e we are primarily interested in (16) we

assume from now on that � is a faithful representation. This amounts to assume

that G is a linear group and � is just the in
lusion of G into the general linear group.

Alternatively we may start with a linear system and make the assumption that the

Lie algebra generated by the 
oeÆ
ients is a semi-simple subalgebra of matri
es.

Our purpose here is to sket
h a proof of the easily suspe
ted fa
t that the A-

part in the Iwasawa de
omposition gives, through the representation, the Lyapunov

exponents of (16)

lim

t!+1

1

t

log jjx

t

jj : (17)

There are 
ertainly di�erent ways to prove this fa
t. All of them require some

regularity property of the system. For our systems the regularity 
omes from the
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a

essibility property, i.e., the assumption that the 
oeÆ
ients of the system gener-

ate g.

To �nd the Lyapunov exponents of equation (16) we use the theory of Guivar
'h

and Raugi [13℄. The �rst thing to do is to 
hange our 
ontinuous-time system into

a dis
rete-time one. This is easily a
hieved by taking the solution g

t

of (7) starting

at the identity at time 1. Let � be the law of g

1

. Then the law of g

k

is the k-th


onvolution power �

?k

. Also, the 
ow property of g

t

implies that for a random

element

g

k

(!) = g

1

(�

k�1

(!)) � � �g

1

(� (!)) � g

1

(!) (18)

where � is the shift in probability spa
e. Therefore, in a 
onvenient probability

spa
e, g

k


an be regarded as a produ
t of an i.i.d. sequen
e of random elements in

G. On the other hand the limit in (17) 
an be dis
retized with the same results, that

is, the Lyapunov exponents of the sequen
e � (g

n

) of random matri
es 
oin
ides with

the Lyapunov exponents of the system (16) (see Carverhill [7℄ for further dis
ussions

about the 
ontinuous vs. dis
rete-time sto
hasti
 systems).

With this in mind we observe that the support supp� of � has nonempty inte-

rior in G. In fa
t, by the support theorem supp� = 
l (A (1)), where A (1) is the

attainable set from the identity in G, at time 1, of the right invariant 
ontrol system

in G obtained from (7):

_g = X (g) +

m

X

i=1

u

i

(t)Y

i

(g)

with u

i

(t) pie
ewise 
onstant 
ontrols (see e.g. Ikeda and Watanabe [15℄). A gen-

eral result of Sussmann and Jurdjevi
 [25℄ says that the attainable set of an analyti



ontrol system at a �xed time has nonvoid interior inside the leaf of a 
ertain inte-

grable distribution of 
odimension zero or one in the state spa
e. An appli
ation of

this result to a right invariant 
ontrol system on a Lie group proves that A (1) has

nonvoid interior in a 
oset of a 
onne
ted normal subgroup H � G with 
odimension

zero or one. Sin
e we are working with a semi-simple Lie group, there are no normal

subgroup of 
odimension one. Hen
e H = G and supp� has nonvoid interior in G.

This fa
t ensures that the probability measure � and the 
orresponding random

produ
t are under the basi
 assumptions of [13℄, namely that the semigroup T

�

generated by supp� is 
ontra
ting and strongly irredu
ible.

Consider now the Iwasawa de
omposition of the produ
t (18)

g

k

(!) = u

n

(!)h

k

(!)n

k

(!) 2 KAN:
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Write also the polar de
omposition

g

k

(!) = x

k

(!) a

k

(!) y

k

(!) 2 K

�

A

+

K; (19)

where

�

A

+

stands for the exponential of the 
losure of a Weyl 
hamber in a. By [13,

Cor. 2.8℄ h

k

(!) a

�1

k

(!) 
onverges almost surely so that

lim

1

k

log h

k

= lim

1

k

log a

k

:

At this point we need the following well known fa
t about Cartan de
ompositions

of Lie algebras and subalgebras (see e.g. [14℄, [27℄):

Lemma 5.1 Let g �

e

g be non
ompa
t semi-simple Lie algebras and 
onsider a

Cartan de
omposition g = k � s of g. Then there exists a Cartan de
omposition

e

g =

e

k �

e

s su
h that k �

e

k and s �

e

s. Also, if a � s is maximal abelian then there

exists a maximal abelian

e

a �

e

s su
h that a �

e

a.

The 
ompatible Cartan de
ompositions extend to the group level: Let G �

~

G be

semi-simple Lie groups with Lie algebras g �

e

g. A Cartan de
omposition G = KS


omes from a Cartan de
omposition of g, through the exponential mapping. Hen
e

there exists a Cartan de
omposition

~

G =

~

K

~

S su
h that K �

~

K and S �

~

S. We


an apply this fa
t to our linear group G. Sin
e G is semi-simple it is 
ontained in

Sl (d;R) so that a Cartan de
ompositionG = KS extends to a Cartan de
omposition

of Sl (d;R). This means that there is an inner produ
t of R

d

su
h that with respe
t

to it the elements of K are orthogonal matri
es and those of S are symmetri
 and

positive de�nite. The same way for a polar de
omposition G = K

�

A

+

K there is a

group

~

A of diagonal matri
es in Sl (d;R) 
ontaining A. We remark that it is not

true in general that

�

A

+

is 
ontained in a unique Weyl 
hamber of

~

A. Given the

de
omposition (19) of g

k

(!), the eigenvalues of

� = lim

1

2k

log (g

k

(!) g

k

(!)

�

)

are exa
tly the eigenvalues of lim

1

k

log a

k

(!), whi
h 
oin
ides with our previously

de�ned Lyapunov exponent matrix. By the approa
h in Ruelle [23℄, the eigenvalues

of � are the Lyapunov exponents of our system (16).

We state now these fa
ts using the language of representation theory. Let � :

g ! gl (V ) be a representation of the semi-simple Lie algebra in the real ve
tor

20



spa
e V . If a � g has the same meaning as before, a linear fun
tional � : a ! R is

said to be a weight of the representation if the weight spa
e

V

�

= fv 2 V : � (H) v = � (H) v for all H 2 ag

is not zero. If H 2 a then � (H) is diagonalizable and its eigenvalues are � (H) with

� running through the set of weights. With this terminology we have the formula:

Theorem 5.2 Assume that the right invariant system (7) in G satis�es the a
-


essibility property. Consider the linear di�erential equation (16) indu
ed by the

representation �. Then the Lyapunov exponents of (16) are the entries of

�

�

Z

Q (b) � (db)

�

;

whi
h are �

�
R

Q (b) � (db)

�

with � running through the weights of the representation.

Here Q is given by (12) and � is the unique invariant probability measure in the

maximal 
ag manifold of G.

5.2 Systems with Symmetri
 Ve
tor Fields

Consider a system

dg =

m

X

i=1

Y

i

(g) Æ dW

i

(20)

without drift su
h that fY

1

; : : : ; Y

m

g is an orthonormal basis of s. Under the inverse

mapping of G the right invariant ve
tor �eld Y

i

is mapped into the left invariant

ve
tor �eld whose value at the identity is �Y

i

. It was proved by Malliavin and

Malliavin [21℄ that the left invariant system thus obtained is the horizontal di�usion

in the symmetri
 spa
eG=K (see also Liao [18℄ and Taylor [26℄). In our 
omputations

below we shall re
over a result of [21℄ on the limit behavior of the A-part of the

Iwasawa de
omposition of the horizontal di�usion.

For the system (20) the integrand in the formula (12) be
omes

Q (b) =

1

2

m

X

i=1

r

Y

i
(b) :

By Corollary 4.4 if H 2 a then

hH;Q (b)i =

m

X

i=1

�

�

�

~

Y

i

(ux

0

)

�

�

�

2

(21)
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with b = ub

0

and the norm is with respe
t to B metri
 in B

H

. We shall 
ompute this

expression expli
itly. Firstly note that the right hand side of (21) is independent of

the orthonormal basis, in fa
t:

Lemma 5.3 Let (Y

i

)

i=1;:::;m

and (Z

i

)

i=1;:::;m

be orthonormal bases of s. Then

m

X

i=1

�

�

�

~

Y

i

(ux

0

)

�

�

�

2

=

m

X

i=1

�

�

�

~

Z

i

(ux

0

)

�

�

�

2

for all u 2 K.

Proof: Let a

i

j

2 R, i; j = 1; : : : ; m, be su
h that

Z

i

=

X

a

i

j

Y

j

:

Sin
e the restri
tion to s of the Cartan-Killing form is an inner produ
t, the m�m

matrix

�

a

i

j

�

i;j

is orthogonal. Hen
e

m

X

i=1

�

�

�

~

Z

i

(ux

0

)

�

�

�

2

=

m

X

i;j=1

�

a

i

j

�

2

�

�

�

~

Y

j

(ux

0

)

�

�

�

2

+

m

X

i

m

X

j 6=k

a

i

j

a

i

k

�

~

Y

j

(ux

0

) ;

~

Y

k

(ux

0

)

�

shows the lemma.

Corollary 5.4 If (Y

i

)

i=1;:::;m

is an orthonormal basis of s then

P

m

i=1

�

�

�

~

Y

i

(ux

0

)

�

�

�

2

is

independent of u 2 K.

Proof: The translation formula for ve
tor �elds in a homogeneous spa
es yields

~

Y (ux

0

) = u

�

�

Ad

�

u

�1

�

Y

i

�

�

(x

0

) :

Hen
e

m

X

i=1

�

�

�

~

Y

i

(ux

0

)

�

�

�

2

=

m

X

i=1

�

�

�

Ad

�

u

�1

�

Y

i

�

�

(x

0

)

�

�

2

:

By the previous lemma the right hand side is equal to

P

m

i=1

�

�

�

~

Y

i

(x

0

)

�

�

�

2

be
ause

Ad (u

�1

)Y

i

, i = 1; : : : ; m form an orthonormal basis.
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In the light of this 
orollary we write




H

=

m

X

i=1

�

�

�

~

Y

i

(ux

0

)

�

�

�

2

:

This is a 
onstant independent of u 2 K and the orthonormal basis (Y

i

)

i=1;:::;m

of s.

In order to 
ompute this 
onstant we put u = 1 and 
hoose an orthonormal adapted

basis, whi
h 
omplements

fS

1

; : : : ; S

m

g = f

p

2

2

�Y

1

; : : : ;

p

2

2

�Y

m

g

where fY

1

; : : : ; Y

m

g is a basis of n

+

, as the 
onstru
tion in (2). By Lemma 2.4

f

~

S

1

(x

0

) ; : : : ;

~

S

m

(x

0

)g is an orthogonal basis of T

x

0

B

H

with respe
t to the B metri
.

Moreover, for j = 1; : : : ; m,

hS

j

; S

j

i =

1

2

hY

j

� �Y

j

; Y

j

� �Y

j

i = B

�

(Y

j

; Y

j

) = 1

so that

�

�

�

~

S

j

(x

0

)

�

�

�

2

= � (H)

if Y

j

2 g

�

. Therefore, summing up over � > 0 gives the value of 


H

:

Proposition 5.5 


H

=

P

�>0

d

�

� (H) where d

�

= dim g

�

.

From this proposition we get easily an expression for the Lyapunov exponent

matrix for the symmetri
 system. For a root � de�ne H

�

by � (�) = hH

�

; �i. Let

Q 2 a be the 
onstant fun
tion Q (b). Then Q is the only element of a satisfying

hQ;Hi =




H

2

=

1

2

X

�>0

d

�

� (H) :

for every H 2 a. Hen
e

Q =

1

2

X

�>0

d

�

H

�

:

After integrating this 
onstant with respe
t to the invariant probability measure on

B we get
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Theorem 5.6 For the symmetri
 system (20) the Lyapunov exponent matrix is

� =

1

2

X

�>0

d

�

H

�

(22)

This result agrees with Theorem 8.2 in Malliavin and Malliavin [21℄ (see also

Taylor [26, Cor. 5.2℄). The fa
tor 1=2 appearing in (22) is due to our normalization

of (20) whi
h is given by an orthonormal basis of s. Also, in [21℄ appears a minus

sign whi
h is due to the fa
t that the horizontal di�usion is given by g

�1

t

where g

t

is the solution of (20) and the Iwasawa de
omposition 
onsidered in [21℄ is NAK so

that the two A-parts are inverse to ea
h other.

The symmetri
 sto
hasti
 di�erential equation (20) also indu
es Brownian mo-

tions in the immersed 
ag manifolds. Indeed, by Lemma 2.3 and the remarks after-

wards, ifH 2 a

+

is su
h that � (H) = 1 for every positive root � su
h that � (H) 6= 0

then the B metri
 inB

H

is indu
ed by its immersion in s. On the other hand Lemma

2.2 ensures that if Z 2 s then the ve
tor �eld

~

Z indu
ed on B

H

is the gradient of

the height fun
tion X 7! hZ;Xi. Sin
e (20) is made up from an orthonormal basis

of s, it follows that the di�usion generated by the indu
ed di�erential equation on

B

H

is a gradient Brownian system with respe
t to the B metri
. More generally,

Liao [18, Thm. 1℄ shows that in ea
h 
ag manifold there is a 
anoni
al K-invariant

Riemannian metri
 for whi
h our symmetri
 system indu
es a Brownian motion.

Like in the 
ase of linear systems, here, the A-part of the Iwasawa de
omposition

gives the Lyapunov spe
trum of the indu
ed system. Hen
e, if � stands for the

Lyapunov exponent matrix then the eigenvalues of ad (�) in the tangent spa
e at

the origin of the 
ag manifold are the Lyapunov exponents, given by:

f�� (�) : � 2 �

+

; � (H) 6= 0g

(see [18, Se
tion 5℄ for a detailed dis
ussion of these Lyapunov exponents).

6 Examples

We will des
ribe here some of the semi-simple Lie groups together with their 
ag

manifolds, emphasizing the B metri
 whi
h by Proposition 4.5 enters in the formula

for the Lyapunov exponent matrix.
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6.1 Real rank 1 groups

The real rank of g (or G) is the dimension of the subalgebra a. For a rank one Lie

group there is just one 
ag manifold, whi
h is di�eomorphi
 to a sphere S

n

with

dimension n = dim s� 1. There is just one simple root � and the positive roots are

� and possibly 2�. Hen
e for a symmetri
 system the Lyapunov exponent matrix is

� = d

�

H

�

+ d

2�

H

2�

= (d

�

+ 2d

2�

)H

�

with d

2�

= 0 if 2� is not a root. Sin
e Ad (K) is transitive on the spheres of s, modulo


onstant multiples there is just one B metri
. It is given by the isometri
 immersion

of S

n

into s when d

2�

= 0, hen
e in this 
ase it is the 
anoni
al Riemannian metri


in S

n

.

The simple rank one Lie algebras are 
omposed of three series of algebras and

an ex
eptional one (see [14, Ch. X, Table V℄). Below we list them with the 
orre-

sponding dimensions of the root spa
es and of s.

� so (1; n); d

�

= n � 1, d

2�

= 0; dim s = n. (This 
lass in
ludes sl (2;R) �

sp (1;R) � so (1; 2) and su

�

(4) � so (1; 5))

� su (1; n); d

�

= 2 (n� 1), d

2�

= 1; dim s = 2n. (This 
lass in
ludes so

�

(6) �

su (1; 3))

� sp (1; n); d

�

= 4 (n� 1), d

2�

= 3; dim s = 4n.

� A real form of the ex
eptional Lie algebra F

4

; d

�

= 8, d

2�

= 7; dim s = 16.

Symmetri
 systems in so (1; n) were studied by Baxendale [4℄. This is the Lie

algebra of real matri
es of the form

�

0 





t

B

�

(23)

with B skew-symmetri
 and 
 a 1� n-matrix. For a Cartan de
omposition we 
an

take s to be the subspa
e of matri
es in (23) with B = 0 and

a = fH (
) =

�

0 





t

0

�

: 
 = (x; 0; : : : ; 0) ; x 2 Rg: (24)

The 
omputation of adjoints and the Cartan-Killing form gives, for the simple root

�,

H

�

=

1

2 (n� 1)

H (
)
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where 
 = (1; 0; : : : ; 0). Hen
e the matrix Lyapunov exponent is � =

1

4

H (
). The

eigenvalues of this matrix are the Lyapunov exponents 
omputed in [4, Thm. 2.6℄,

with � =

p

1= (2 (n� 1)) (the notation is as in [4℄). This normalization of the system

of [4℄ 
omes from the fa
t that we 
onsider systems made up of an orthonormal basis

in s. In fa
t, with H (
) and 
 as in (23), hH (
) ; H (
)i = 2 (n� 1) j
j

2

with j
j

given by the 
anoni
al inner produ
t in R

n

.

The Lie algebra su (1; n) is the algebra of the skew-Hermitian matri
es with

respe
t to a Hermitian form of signature (1; n). It is realized as the algebra of


omplex matri
es of the form

�

it z

z

�

B

�

(25)

where t 2 R, z 2 C

n

is a 1 � n 
omplex matrix and B + B

�

= 0. We denote the

matrix in (25) by (t; z; B) 2 R � C

n

� u (n). There are the following data:

k = f(t; 0; B) : trB = �itg; s = f(0; z; 0) : z 2 C

n

g � C

n

and a = span

R

H

0

with H

0

= (0; 1; 0; : : : ; 0; 0) is a maximal abelian subalgebra of

s. The eigenvalues of ad (H

0

) are 0;�1;�2, so that the roots are ��;�2� with

� (H

0

) = 1. Sin
e dim g

��

= 2 (n� 1) and dim g

�2�

= 1,

hH

0

; H

0

i = 4 (n� 1) + 8 = 4 (n + 1) :

Hen
e the Cartan-Killing form is hC;Di = 2 (n + 1) tr (CD) for C;D 2 su (1; n).

If z 2 C

n

is su
h that its �rst 
omponent is purely imaginary we denote by [z℄

the n � n skew-Hermitian matrix B = (b

jk

) whose �rst row is z and b

jk

= 0 if

j; k � 2. By 
omputing the eigenspa
es of ad (H

0

), it follows that n

+

= g

�

+ g

2�

is

the subalgebra whose elements are of the form (t; z; [z℄) with z = (�it; z

2

; : : : ; z

n

).

If Y = (t; z; [z℄) 2 n

+

then Y + � (Y ) = 2 (t; 0; [z℄) be
ause � �xes k and 
hanges the

sign in s. This implies that

� :

�

it 0

0 [z℄

�

7�!

�

0 z

z

�

0

�

:

Now, let X = (t; 0; [z℄) and Y = (s; 0; [w℄) with z

1

= it and w

1

= is. Then

[H

0

; X℄ = (0; 2it; z

2

; : : : ; z

n

; 0) :

So that

�

~

X;

~

Y

�

H

0

= 4 (n+ 1) (2ts+Re (z

2

�w

2

+ � � �+ z

n

�w

n

)) :
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Through the identi�
ation of s with C

n

,

~

X (H

0

) be
omes the tangent ve
tor

� (2it; z

2

; : : : ; z

n

) :

Sin
e a similar expression holds for

~

Y , the B metri
 in the tangent spa
e to S

2n�1

at (1; 0; : : : ; 0) is

((it; z

2

; : : : ; z

n

) ; (is; w

2

; : : : ; w

n

)) = (n + 1) (2ts+Re (z

2

�w

2

+ � � �+ z

n

�w

n

)) :

Note that (it; 0; : : : ; 0) is in the dire
tion of the 
omplex line spanned by (1; 0; : : : ; 0).

This inner produ
t extends to the whole sphere through the a
tion of SU (n) whi
h

is 
ontained in K. Sin
e SU (n) maps 
omplex subspa
es into 
omplex subspa
es,

we have the following des
ription of the B metri
 at z 2 S

2n�1

: it is 2 (n + 1) times

the 
anoni
al inner produ
t in the dire
tion of the 
omplex line spanned by z and

(n+ 1) times the 
anoni
al inner produ
t in the subspa
e orthogonal to this 
omplex

line.

We refrain to write down the details for the algebra sp (1; n). The des
ription is

similar to su (1; n) with a quaternioni
 spa
e playing the role of C

n

.

6.2 Real Forms

Up to isomorphism ea
h 
omplex semi-simple Lie algebra g

C

has just one normal

real form g (see e.g. [14℄). For su
h a real form a maximal abelian subalgebra

a � s is a Cartan subalgebra of g, the root spa
es g

�

are one dimensional and the

subalgebra m � k redu
es to zero. We des
ribe below the normal real forms of the

simple 
omplex 
lassi
al Lie algebras, together with their 
ag manifolds. We use

the notation E

ij

for the matrix whose only nonzero entry is 1 in position i; j. Also,

�

i

: diagfa

1

; : : : ; a

n

g 7�! a

i

is a linear fun
tional in the spa
e of diagonal matri
es.

A

l

The Lie algebra sl (n;R) is the normal real form of sl (n; C ). We have k =

so (n;R), s the spa
e of tra
e zero symmetri
 n� n matri
es and a the subal-

gebra of diagonal matri
es in sl (n;R). The Cartan-Killing form is

hX; Y i = 2n tr (XY ) :
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The set of (g; a)-roots is � = f�

ij

= �

i

� �

j

: i 6= jg. The root spa
e g

�

ij

is

spanned by E

ij

, i 6= j. The 
o-root �

ij

with respe
t to the Cartan-Killing is

the matrix

H

�

ij

=

E

ii

� E

jj

2n

:

We 
an de
lare �

ij

> 0 if i < j. Hen
e for a symmetri
 system normalized by

the Cartan-Killing form its Lyapunov exponent matrix is

� =

1

2n

diagfn� 1; n� 3 : : : ;�n + 1g:

The 
ag manifolds of a group whose Lie algebra is sl (n;R) are the standard


ag manifolds: Given a sequen
e of positive integers r = (r

1

; : : : r

k

) with

r

1

+ � � � + r

k

= n let F (r) stand for the manifold of all 
ags (V

1

� � � � � V

k

)

where V

i

is a subspa
e of R

n

with dimV

i

= r

1

+ � � �+ r

i

. Let

H = diagfa

1

; : : : ; a

n

g a

1

+ � � �+ a

n

= 0

be su
h that a

1

= � � � = a

r

1

> a

r

1

+1

= � � � = a

r

1

+r

2

> � � �. Then F (r) identi�es

with the orbit of H under 
onjugations by orthogonal matri
es. By varying

H we get di�erent embeddings of F (r) into s with 
orresponding B metri
. In


ase H has only two eigenvalues with multipli
ities d and n � d, F (r) is the

Grassmannian Gr

d

(n) of d-dimensional subspa
es of R

n

. In this 
ase the B

metri
 is just the metri
 indu
ed by the embedding in s. It is a multiple of the


anoni
al metri
 in the Gr

d

(n) whi
h turns it into a lo
ally symmetri
 spa
e

(see Kobayashi and Nomizu [17℄). The Grassmannians are the only immersed


ag manifolds.

C

l

The normal real form of the 
omplex simple Lie algebra sp (n; C ) is the Lie

algebra sp (n;R) of real symple
ti
 matri
es. It is the Lie algebra of matri
es

whi
h are skew with respe
t to the 
anoni
al symple
ti
 form

! (u; v) = u

t

�

0 �1

n�n

1

n�n

0

�

v u; v 2 R

2n

:

Hen
e it is given by the 2n� 2n real matri
es of the form

(A;B;C) =

�

A B

C �A

t

�
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with B and C symmetri
 n�n matri
es. A Cartan de
omposition is given by

the symmetri
 and skew symmetri
 matri
es in sp (n;R), that is,

k = f

�

A;B;�B

t

�

: A+ A

t

= 0g � u (n) s = f

�

A;B;B

t

�

: A = A

t

g:

We 
an 
hoose

a = f(A; 0; 0) : A = diag (a

1

; : : : ; a

n

)g:

Then the roots are �

ij

= �

i

� �

j

, i 6= j and ��

ij

= � (�

i

+ �

j

) with �

+

=

f�

ij

; i < j; �

ij

g. Sin
e the Cartan-Killing form is hC;Di = 2ntr (CD), the


o-roots are

H

�

ij

=

1

2n

(E

ii

� E

jj

; 0; 0) H

�

ij

=

1

2n

(E

ii

+ E

jj

; 0; 0) :

Adding up the positive 
o-roots we get the Lyapunov exponent matrix for a

symmetri
 system

� =

1

2 (n + 1)

(diagf2n� 1; 2n� 3; : : : ; 1g; 0; 0) :

A subspa
e V � R

2n

is Lagrangian if the restri
tion of ! to V is identi-


ally zero. By for
e dimV � n. Denote by L

d

(n), d = 1; : : : ; n the set of

all d-dimensional Lagrangian subspa
es of R

2n

. Similarly, denote by FL (r)

the subset of F (r) 
onsisting of 
ags (V

1

� � � � � V

k

) whi
h are made up of

Lagrangian subspa
es. Any 
ag manifold of sp (n;R) is some FL (r). In par-

ti
ular, the minimal 
ag manifolds are L

d

(n), d = 1; : : : ; n. For a sequen
e r

let

A

r

= diagfa

1

; : : : ; a

n

g

be su
h that a

1

= � � � = a

r

1

> a

r

1

+1

= � � � = a

r

1

+r

2

> � � �, and put H

r

=

(A

r

; 0; 0). Then the Ad (K)-orbit of H identi�es with FL (r). Sin
e H

r

has

just one positive eigenvalue if and only if r = (n), L

n

(n) is the only 
ag

manifold of sp (n;R) whi
h is immersed.

B-D

l

The normal real form of so (n; C ) is so (l; n� l) the Lie algebra of the matri-


es whi
h are skew-symmetri
 with respe
t to a quadrati
 form of signature

(l; n� l). Here n = 2l or 2l + 1 a

ording if it is even or odd. The des
rip-

tion here parallels that of the symple
ti
 Lie algebra, with the quadrati
 form

instead of the symple
ti
 one. We shall avoid it here, but re
ord that, in
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the 
anoni
al realization of the algebras, the Lyapunov exponent matrix for a

symmetri
 system is given by

� =

1

2 (l � 1)

�

A 0

0 �A

�

A = diagf2l � 2; 2l� 4; : : : ; 0g

for n = 2l even and

� =

1

2l � 1

0

�

0 0 0

0 A 0

0 0 �A

1

A

A = diagf2l � 1; 2l � 3; : : : ; 1g

for n = 2l + 1 odd.
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linear Itô equations. In Lyapunov Exponents (Eds. L. Arnold and W. Wihstutz).

Le
ture Notes in Mathemati
s - Springer 1186 (1986), 129-159.

[3℄ Arnold, L. and P. Imkeller: Furstenberg-Khasminskii formulas for Lyapunov

exponents via ante
ipative 
al
ulus. Sto
hasti
s and Sto
hasti
s Reports, 54

(1+2) (1995), 127-168.

[4℄ Baxendale, P. H.: Asymptoti
 behavior of sto
hasti
 
ows of di�eomorphisms:

Two 
ase studies. Probab. Th. Rel. Fields, 73 (1986), 51-85.

[5℄ Baxendale, P. H.: The Lyapunov spe
trum of a sto
hasti
 
ow of di�eomor-

phisms. In Lyapunov Exponents (Eds. L. Arnold and W. Wihstutz). Le
ture

Notes in Mathemati
s - Springer 1186 (1986), 322-337.

[6℄ Borel, A.: K�ahlerian 
oset spa
es of semi-simple Lie groups. Pro
. Nat. A
ad.

of S
i. 40 (1954), 1147-1151.

30



[7℄ Carverhill, A. P.: Flows of sto
hasti
 dynami
al systems: Ergodi
 Theory.

Sto
hasti
s 14 (1985), 273-317.

[8℄ Carverhill, A. P.: A Formula for the Lyapunov numbers of a sto
hasti
 
ow.

Appli
ation to a perturbation theorem. Sto
hasti
s 14 (1985), 209-226.

[9℄ Carverhill, A. P.: A non-random Lyapunov spe
trum for non-linear sto
hasti


systems. Sto
hasti
s 17 (1986), 253-287.

[10℄ Carverhill, A. P. and K. D. Elworthy: Lyapunov exponents for a sto
hasti


analogue of the geodesi
 
ow. Trans. Amer. Math. So
. 295 (1986), 85-105.

[11℄ Duistermmat, J.J., J.A.C. Kolk and V. Varadarajan: Fon
tions, 
ows and

os
illatory integrals on 
ag manifolds and 
onjuga
y 
lasses in real semisimple

Lie groups. Compositio Math., 49 (1983), 309-398.

[12℄ Furstenberg, H. and H. Kesten : Produ
ts of random matri
es. Ann. Math.

Statist. 31 (1960), 457-469.

[13℄ Guivar
'h, Y. and A. Raugi: Fronti�ere de Furstenberg, propri�et�es de 
ontra
-

tion et th�eor�emes de 
onvergen
e. Z. Wahrs
heinlin
hkeitstheor. Verw. Geb. 69

(1985), 187-242.

[14℄ Helgason, S.: Di�erential geometry, Lie groups and symmetri
 spa
es. A
ademi


Press (1978).

[15℄ Ikeda and Watanabe: Sto
hasti
 di�erential equations and di�usion pro
esses.

North-Holland (1981).

[16℄ Khashminskii, R. Z.: Sto
hasti
 stability of di�erential equations. Sijtho� and

Noordho�, Alphen (1980).

[17℄ Kobayashi, S. and K. Nomizu: Foundations of di�erential geometry. Inter-

s
ien
e Publishers (1963 and 1969).

[18℄ Liao, M.: Sto
hasti
 
ows on the boundaries of Lie groups. Sto
hasti
s and

Sto
hasti
s Reports 39 (1992), 213-237.

[19℄ Liao, M.: Liapunov Exponents of Sto
hasti
 Flows. Ann. of Probability 25

(1997), 1241-1256.

31



[20℄ Liao, M.: Invariant di�usion pro
esses inLie groups and sto
hasti
 
ows. Pro
.

of Symposia in Pure Math. 57 (1995), 575-591.

[21℄ Malliavin, M.P. and P. Malliavin: Fa
torisations et lois limites de la di�usion

horizontale au-dessus d'un espa
e Riemannien symmetrique. Le
ture Notes in

Mathemati
s 404 (1974), 164-217.

[22℄ Oselede
, V. I.: A multipli
ative ergodi
 theorem. Lyapunov 
hara
teristi
 num-

bers for dynami
al systems. Trans. Mos
ow Math. So
. 19 (1968), 197-231.

[23℄ Ruelle, D.: Ergodi
 theory of di�erentiable dynami
al systems. I.H.E.S. { Publ.

Math. 50, (1979), 275-306.

[24℄ San Martin, L.A.B. and L. Arnold: A Control problem related to the Lyapunov

spe
trum of sto
hasti
 
ows. Mat. Apli
. Comp. 5 (1986), 31-64.

[25℄ Sussmann, H. and V. Jurdjevi
: Controllability of nonlinear systems. J. Di�.

Eq. 12 (1972), 95-116.

[26℄ Taylor, J.C.: The Iwasawa de
omposition and the limiting behavior of Brownian

motion on a symmetri
 spa
e of non-
ompa
t type. Contemp. Math. AMS 73

(1988), 303-302.

[27℄ Warner, G.: Harmoni
 Analysis on Semi-simple Lie Groups. Springer-Verlag

(1972).

32


