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Abstrat

With an intrinsi approah on semi-simple Lie groups we �nd a Fursten-

berg{Khasminskii type formula for the limit of the diagonal omponent in the

Iwasawa deomposition. It is an integral formula with respet to the invariant

measure in the maximal ag manifold of the group (i.e. the Furstenberg

boundary B = G=MAN). Its integrand involves the Borel type Riemannian

metri in the ag manifolds. When applied to linear stohasti systems whih

generate a semi-simple group the formula provides a diagonal matrix whose

entries are the Lyapunov spetrum. Some Brownian motions on homogeneous

spaes are disussed.
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1 Introdution

In this artile we onsider right invariant stohasti di�erential equations in a semi-

simple Lie group G with the purpose of studying the asymptoti time average of
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the logarithm of the A-part of the Iwasawa deomposition of the trajetories. After

onstruting a onvenient radial-spherial deomposition, we get an integral formula

by applying a Furstenberg-Khasminskii type argument. Interesting algebrai and

geometrial interpretations ome out of this formula when we onsider the Borel

type metri on the ag manifolds.

The motivation for having suh a formula is that, for many well known inter-

esting systems, that limit desribes the stability of the system sine it ontains the

Lyapunov spetrum. Among those systems, the linear ones have been quite well

studied by several authors who developed formulae in di�erent ontexts. We men-

tion, for instane, Khasminskii [16℄, Arnold, Kliemann and Oeljeklaus [1℄, Arnold,

Oeljeklaus and Pardoux [2℄ for linear systems, and Carverhill [7℄, [8℄, Arnold and

San Martin [24℄ for extensions to nonlinear systems.

Most of those formulae detet only the top Lyapunov exponent. A reative

method to alulate the whole Lyapunov spetrum was established by Baxendale

[5℄. He used the same kind of argument for the alulation of the top exponent

but applied to the indued system on the Grassmannian Gr

k

(n). Another approah

to �nd the whole spetrum is due to Arnold and Imkeller [3℄, who got formulae to

alulate these numbers via antiipative alulus, where eah exponent is given by

a Khasminskii type formula plus a orretion term whih are expressed in terms of

a Malliavin derivative of the orthogonal projetors on the Osseledets spaes.

Dealing with the Iwasawa deomposition of systems in Sl(n;R), Liao [19℄, in a

geometrial ontext analogous to [5℄, obtained the whole spetrum as an integral

formula with respet to an invariant measure for the indued system on the speial

orthogonal group. The intrinsi geometri approah of this paper allows to extend

the results in [19℄ to systems evolving in arbitrary semi-simple Lie groups. Here

however we work intrinsially in a general semi-simple Lie group. The link to lin-

ear systems is established either by taking linear representations of the group or by

starting with a linear system and assuming that the Lie algebra generated by its

oeÆients is semi-simple. The advantage of this intrinsi set up is that the assump-

tions regarding the non-degeneray of the systems are less demanding, in the sense

that it requires only that the Lie algebra generated by the system is semi-simple.

The intrinsi approah also allows appliations to other systems, like the geodesi

ow in symmetri spaes (see Malliavin and Malliavin [21℄ and Carverhill and El-

worthy [10℄) or geodesi systems and other kinds of Brownian motions.

This artile is organized as follows: in setion 2 we present some algebrai prelim-

inaries on semi-simple Lie algebra, ag manifolds and the Borel type metri. Setion

3 shows that the homogeneous spae G=MN is a trivial prinipal �bre bundle over

2



the maximal ag manifold with A as the strutural group suh that there exists a

spherial-radial deomposition of this spae. In setion 4 we study the asymptoti

behavior of solutions of stohasti di�erential equations in these radial �bres. Then,

we lose the argument in setion 5 where we show that for many interesting systems

(f. Guivar'h and Raugi [13℄) this asymptoti behavior, as limiting elements in a,

provides the Lyapunov spetrum of the system. Finally, in setion 6 we alulate

some geometrially interesting examples.

We mention that although we work in the semi-simple ontext, the results are

easily extended to a redutive Lie algebra, that is, whih deomposes as a sum of

a semi-simple Lie algebra plus the enter. At this regard reall that a Lie algebra

of matries whih is irreduible in the sense that it does not have invariant proper

subspaes, is redutive. This implies that this method applies also to linear systems

whih generate an irreduible Lie algebra of matries.

After the onlusion of this paper we beame aware of similar results of Liao

[20℄, whih also work in the general setting of semi-simple Lie groups. Contrary to

[20℄, here we write a formula for the Lyapunov exponent as an integral on the ag

manifolds, fatoring further the formula of [20℄.

2 Algebrai Preliminaries

The purpose of this setion is to present some known algebrai and geometrial fats

about semi-simple Lie groups, their algebras and assoiated ag manifolds. We refer

to Helgason [14℄ or Warner [27℄ for unexplained onepts.

Before starting we set the following notation: if G is a Lie group, a homogeneous

spae of G is a oset spae G=H with H a losed subgroup. By left translation, G

ats transitively on G=H. Let g be the Lie algebra of G and take X 2 g. Then X

indues the vetor �eld

~

X on G=H given by

~

X (x) =

d

dt

(exp tX) (x)

jt=0

whose ow is the ation of exp (tX), t 2 R, on G=H. When it is neessary

to emphasize the spei� homogenous spae G=H the indued vetor �eld will

be denoted by

~

X

�

�

�

G=H

. Sine the ation is transitive the tangent spae at x is

T

x

(G=H) = f

~

X (x) : X 2 gg.
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2.1 Semi-simple Lie algebras

Let g be a semi-simple Lie algebra. Given a Cartan deomposition g = k � s, let

� stand for the orresponding Cartan involution (� = id in k and � = �id in s).

Let � � a

�

stand for the set of roots of the pair (g; a); the eigenvalues of ad

g

(H),

H 2 a are 0 and � (H), � 2 �. The root spae

g

�

= fX 2 g : [H;X℄ = � (H)X for all H 2 ag

is the ommon eigenspae for ad

g

(H) assoiated with the eigenvalue � (H), � 2 �.

By �xing a lexiographi order in the dual a

�

of a we have � = �

+

[ �

�

where �

+

is the set of positive roots with respet to this order, and �

�

= ��

+

. The diret

sum

n

+

=

X

�2�

+

g

�

is a nilpotent subalgebra of g. We denote by a

+

the Weyl hamber assoiated with

�

+

:

a

+

= fH 2 a : � (H) > 0; � 2 �

+

g:

The hoie of one among �

+

, n

+

or a

+

determines the others. From the deompo-

sition of g into ad (a)-eigenspaes we have

g = n

�

�m� a� n

+

where

n

�

= �

�

n

+

�

=

X

�2�

�

g

�

is the subalgebra opposed to n

+

and m = fX 2 k : [X; a℄ = 0g is the entralizer of

a in k. A Weyl hamber a

+

determines the Iwasawa deomposition:

g = k� a� n

+

:

We shall denote by pr

i

the projetion of g onto the Iwasawa omponent i = k, a or n.

In the partiular ase of sl (n;R) with the anonial Iwasawa deomposition, k is the

algebra of skew-symmetri matries, a is the abelian algebra of diagonal matries

and n

+

the upper triangular matries with zeros on the main diagonal.

Denote by h�; �i the Cartan-Killing form of g. We reall the following fats (see

e.g. [14℄):

� � (g

�

) = g

��

.
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� hg

�

; g

�

i = 0 unless � = ��.

� The bilinear form in g de�ned by B

�

(X; Y ) = �hX; �Y i is an inner produt.

In partiular, the restrition of h�; �i to s is an inner produt and for every

0 6= X 2 g

�

, hX; �Xi 6= 0.

2.2 Flag Manifolds

Let G be a onneted and nonompat semi-simple Lie group with Lie algebra g.

An Iwasawa deomposition g = k � a � n

+

extends to an Iwasawa deomposition

G = KAN where the groups K, A and N are the exponentials of k, a and n

+

respetively.

Let M be the entralizer of A in K. The Lie algebra of M is the entralizer

m of a in k. The produt P = MAN is a losed subgroup of G with Lie algebra

p = m � a � n

+

. The subgroup P is the normalizer of p in G. It is a minimal

paraboli subgroup and the quotient B = G=P is a ompat homogeneous spae

of G known as the maximal ag manifold or the Furstenberg boundary of G. The

subgroup K also ats transitively on B. Through the transitive ation of K we have

B = K=M . We remark that B is the same, regardless the spei� G having Lie

algebra g. This is due to the fat thatM ontains the enter of G so that the ation

of G on B fators through the group of inner automorphisms of gwhih is enterless.

For the onstrution of the non maximal ag manifolds we need the simple system

of roots � assoiated to �

+

. This is a basis of a

�

suh that every � 2 �

+

is a linear

ombination of � with nonnegative integers as oeÆients.

Given � � � let h�i be the subset of positive roots generated by �. Denote by

n

�

(�) the subalgebra spanned by the root spaes g

��

, � 2 h�i and let p

�

be the

paraboli subalgebra de�ned by

p

�

= n

�

(�)� p:

Its normalizer P

�

in G is a paraboli subgroup whose Lie algebra is p

�

. We put

B

�

= G=P

�

for the orresponding ag manifold. IfM

�

= P

�

\K then B

�

= K=M

�

,

that is, K is transitive in B

�

. It turns out that M

�

is the entralizer in K of any

H in the \subhamber"

fH 2 l

�

a

+

�

: � (H) = 0 if � 2 h�i and � (H) > 0 if � 2 �

+

� h�ig:

By this transitivity of K, B

�

identi�es with the Ad (K)-orbit of H in s. In this ase

the notation B

H

and M

H

are also used instead of B

�

and M

�

respetively. The Lie
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algebra of M

H

is the entralizer m

H

of H in k:

m

H

= fX 2 k : [X;H℄ = 0g:

A relation between the Iwasawa and Cartan omponents is provided by the fol-

lowing simple algebrai lemma, whih generalizes the symmetrization and skew-

symmetrization of matries.

Lemma 2.1 Let a

+

, and hene n

+

be given.

1. De�ne k

a

+

= fY + � (Y ) : Y 2 n

+

g. Then k

a

+

� k and k = k

a

+

�m. Moreover,

the skew-symmetrization map

� : Y 2 n

+

7�! Y + � (Y ) 2 k

a

+

is an isomorphism of vetor spaes.

2. De�ne s

a

+

= fY � � (Y ) : Y 2 n

+

g. Then s

a

+

� s and s = s

a

+

� a. Moreover,

the symmetrization map

� : Y 2 n

+

7�! Y � � (Y ) 2 s

a

+

is an isomorphism of vetor spaes.

Proof: To see item (1) note that k is the subspae of points �xed by � so that k

a

+

� k.

We have k � n

�

� m � n

+

. Hene X 2 k is written uniquely as X = Z + A + Y ,

with Z 2 n

�

, A 2 m and Z 2 n

+

. Then

X = � (X) = � (Z) + A+ � (Y )

with � (Z) 2 n

+

and � (Y ) 2 n

�

. Therefore � (Y ) = Z so that X = (Y + � (Y ))+A 2

k

a

+

�m. The isomorphism is a onsequene of the fat that for Y 2 n

+

, Y +� (Y ) = 0

if and only if Y = 0.

Item (2) follows in the same way: s � n

�

�a�n

+

and onsider Y �� (Y ) instead

of Y + � (Y ).

With the isomorphisms � and � of this lemma we onstrut the isomorphism

� = � Æ �

�1

: k

a

+

! s

a

+

;
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whih extends to k by delaring it to be zero at m.

For H 2 a the ag manifold B

H

is the Ad (K)-orbit of H so that its tangent

spae at H is

T

H

B

H

= f

~

X (H) = [X;H℄ : X 2 kg � s:

Clearly [m

H

; H℄ = 0. Hene T

H

B

H

is the subspae of tangent vetors

~

X (H) with

X running through the subspae � (n

H

) where

n

H

=

X

fg

�

: � 2 �

+

; � (H) 6= 0g: (1)

An easy omputation shows that T

H

B

H

, as a subspae of s, oinides with � (n

H

)

so that it is the orthogonal omplement of � (m

H

).

Later on we will use the following fats relating the isomorphism � : n

+

! s

a

+

with the Cartan-Killing form: If Y 2 g

�

, � > 0 then �Y = Y � �Y , and sine

hY; Y i = 0,

h�Y; �Y i = hY � �Y; Y � �Y i = 2B

�

(Y; Y ) :

Also, if Z 2 g

�

, with � 6= � > 0 then hY; Zi = hY; �Zi = h�Y; �Zi = 0 so that

h�Y; �Zi = 0. From this fat we an onstrut orthonormal bases of s as follows:

take a basis fY

1

; : : : ; Y

m

g of n

+

whih is the union of bases of the root spaes g

�

,

� > 0. Then f�Y

1

; : : : ; �Y

m

g is a basis of s

a

+

whih an be omplemented with

a basis of a to get a basis of s. Any suh basis will be alled adapted to a

+

. In

partiular, if fY

1

; : : : ; Y

m

g is orthonormal with respet to the inner produt B

�

then

f

p

2

2

�Y

1

; : : : ;

p

2

2

�Y

m

g (2)

is orthonormal in s

a

+

whih an be omplemented to an orthonormal basis of s.

2.3 Borel metri

It is possible to endow a ag manifold with a speial Riemannian metri whih

depends on its realization as an Ad (K)-orbit, namely the Borel (B) metri (see

Borel [6℄ and Duistermmat, Kolk and Varadarajan [11℄). For the de�nition of the B

metri take H 2 l (a

+

). Then at the tangent spae T

H

B

H

the B metri is given by

�

~

X (H) ;

~

Y (H)

�

H

= hH; [X; � (Y )℄i (3)

for X; Y 2 k. This expression atually de�nes an inner produt in T

H

B

H

whih

is invariant under M

H

so that it extends to a K-invariant Riemannian metri in
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B

H

. This metri will play an essential role in the sequel for the omputation of the

Lyapunov exponents.

A ruial fat about the B metri is that the vetor �elds indued by s are

gradient. More preisely, for X 2 s let

~

X be the vetor �eld it indues in B

H

through the G-ation in this ag manifold. Sine B

H

is embedded in s, it makes

sense to de�ne the funtion f

X

: B

H

! R by f

X

(Y ) = hX; Y i.

Lemma 2.2 For any X 2 s,

~

X = gradf

X

where the gradient is taken with respet

to B, that is, d (f

X

) =

�

~

X; �

�

.

Proof: See Proposition 3.3 in [11℄.

The right hand side of equation (3) is linear in H showing that the B metri

hanges linearly with H. The exat meaning of this linear dependene is as follows:

�x t > 0 and put H

1

= tH. The entralizers of H and H

1

in K oinide so that

B

H

1

= B

H

, that is, both orbits Ad (K)H

1

and Ad (K)H identify with the same

homogeneous spae of K. Under these identi�ations H

1

and H give the same base

point. The vetor �eld

~

X is de�ned by means of the K-ation and it is independent

of the spei� realization. From (3) we see that the B metri de�ned by H

1

is t

times the metri de�ned by H.

Another aspet about the B metri whih needs to be disussed onerns its

values on the vetors of s whih are tangent to Ad (K)H at H. Any suh vetor is

of the form � (A) with A 2 n

H

, de�ned in (1). We have,

Lemma 2.3 Let � > 0 be a root suh that � (H) 6= 0. Let A 2 g

�

and view

� (A) 2 s as a tangent vetor to Ad (K)H at H. Then

(� (A) ; � (A))

H

=

1

� (H)

h� (A) ; � (A)i:

Moreover, if � 6= � is another positive root and B 2 g

�

then (� (B) ; � (A))

H

= 0.

Proof: Let � be the isomorphism of Lemma 2.1 and put X = �

1

�(H)

� (A). Diret

omputations show that

(� (A) ; � (A))

H

=

�

~

X;

~

X

�

H

= hH; [X; �X℄i

= h[H;X℄; �Xi = h�� (A) ; �Xi

=

1

�(H)

h� (A) ; � (A)i
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The orthogonality between � (A) and � (B) follows if we perform the omputations

with �Y instead of �X where Y = �

1

�(H)

� (B).

This lemma has the following interesting onsequene: suppose that H is suh

that � (H) = 1 for every positive root � suh that � (H) 6= 0. Then the B metri

in B

H

is just the metri indued by its immersion in s. When this happens we say

that B

H

is an immersed ag manifold.

For later referene we inlude here the omputation of the B metri in the vetor

�elds indued by the elements in s.

Lemma 2.4 Take H 2 l (a

+

) and denote by x

0

the origin of B

H

. Let � be a

positive root. For X 2 g

�

put S = � (X). Then

�

�

�

~

S (x

0

)

�

�

�

2

= � (H) h� (X) ; � (X)i:

Moreover, if � 6= � is another positive root and Y 2 g

�

then

�

^

� (X);

℄

� (Y )

�

H

= 0.

Proof: At H the vetor �eld

^

� (X) is equal to (pr

k

� (X))

�

. We have

� (X) = X � � (X) = (�X � � (X)) + 2X:

The right hand side of this equality is the Iwasawa deomposition of � (X) beause

�X � � (X) 2 k and 2X 2 n

+

. Hene pr

k

� (X) = � (X + � (X)). Sine � (� (X)) =

X � � (X), a similar formula for Y yields

�

^

� (X);

℄

� (Y )

�

H

= hH; [X + � (X) ; Y � � (Y )℄i:

Now the Cartan-Killing form is invariant under the adjoint representation so that

�

℄

� (Y );

℄

� (Y )

�

H

= h[H;X + � (X)℄; Y � � (Y )i:

But [H;X℄ = � (H)X and [H; � (X)℄ = �� (H)X beause X 2 g

�

and � (X) 2 g

��

.

Sine g

�

+g

��

is orthogonal to g

�

+g

��

if � 6= �, this implies the seond statement.

On the other hand,

�

�

�

^

� (X) (x

0

)

�

�

�

2

= � (H) hX � � (X) ; X � � (X)i

as laimed.
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3 Deomposition of G=MN

In this setion we show that the homogeneous spae G=MN is a trivial prinipal �ber

bundle over the maximal ag manifold B suh that the strutural group is the A

part of the Iwasawa deomposition G = KAN , i.e., there exists a kind of spherial-

radial deomposition of this spae. In the next subsetions we study the asymptoti

behavior of the trajetories in the �bers, so we �nd the Lyapunov spetrum in the

entries of limiting elements in A.

The produt L = MN � P is a losed subgroup whih is normal in P beause

A normalizes N and M . Consider the anonial �bration

� : gL 2 G=L 7�! gP 2 G=P

whose �ber is A = P=L. Sine L is normal in P it turns out that G=L is a prinipal

bundle over G=P with A as strutural group. The right ation of A on G=L is given

by R

h

(gL) = gLh = ghL, h 2 A. It is lear that for any g 2 G, gR

h

= R

h

g. Also,

� is equivariant with respet to the ations of G on G=L and G=P in the sense that

�g = g�. The next proposition shows that the above prinipal bundle is trivial:

Proposition 3.1 The map

� : (uM; h) 2 (K=M)� A 7�! uhL 2 G=L: (4)

is a di�eomorphism between G=L and B � A. Its inverse �

�1

maps gL 2 G=L in

(uM; h) 2 K=M � A where g = uhn is the Iwasawa deomposition of g. Moreover,

� is a bundle map in the sense that � (b; R

a

1

(a)) = R

a

1

� (b; a) for all (b; a) 2 B�A

and a

1

2 A.

Proof: Note that, by (4), � does not depend on the representative u 2 K beause if

m 2M and h 2 A then umhL = uhmL = uhL. Let  be the map uhL 7! (uM; h);

we laim that  is the inverse of �. Firstly we hek that  is also well de�ned: let

g = uhn and suppose that g

1

= u

1

h

1

n

1

is in the oset gL, i.e.

n

�1

h

�1

u

�1

u

1

h

1

n

1

2 L:

Sine N � L it follows that h

�1

u

�1

u

1

h

1

2 L � P . Hene u

�1

u

1

2 P \ K = M .

So that u

�1

u

1

ommutes with h

�1

and hene u

�1

u

1

h

�1

h

1

2 L whih implies that

h

�1

h

1

2 L \ A = f1g. Therefore h

1

= h and uM = u

1

M showing that  is well

de�ned. The omposition � is the identity beause if g = uhn then gL = uhL.

10



On the other hand,  � (uM; h) = (uM; h) beause uh is already written in Iwasawa

deomposition. Sine � and  are di�erentiable we onlude that � is a di�eomor-

phism between G=L and B � A. It is a bundle map beause A normalizes L:

This deomposition has an evident meaning as a polar deomposition with B

playing the role of the spherial omponent while A is the radial omponent. Also,

by identifying G=L with B � A through �, the A-omponent of gL beomes the

A-omponent of the Iwasawa deomposition of g.

3.1 Vetor Fields

We look now at the behavior of vetor �elds in G=L under the above deomposition.

Reall that the g-translation of

~

X is given by the adjoint in g:

g

�

~

X = (Ad (g)X)

�

: (5)

The vetor �eld indued byX onG=L is right invariant under h 2 A, i.e., R

h�

X = X

beause the ation of G on G=L ommutes with the right ation of A. Also, taking

the deomposition G=L = B � A and onsidering the trivial onnetion on this

bundle, X deomposes as

X (b; h) = X

H

(b; h) +X

V

(b; h)

where X

H

is the horizontal omponent (in the diretion of B) while X

V

stands for

the vertial omponent (in the diretion of A). We shall �nd expliit expressions for

these omponents.

The horizontal omponent is just the vetor �eld indued by X on B. In fat,

the projetion

� : G=L �! G=P

is equivariant whih implies that �

�

~

X

�

�

�

G=L

=

~

X

�

�

�

G=P

. Sine �

�

X

V

= 0 it follows

that �

�

~

X

�

�

�

G=L

= X

H

. Therefore X

H

(b; h) = X

H

(b) is independent of h 2 A and

oinides with the vetor �eld indued by X on B.

In order to get the vertial omponent we denote by H

�

the vertial vetor �eld

indued in B�A by H 2 a as an element of the Lie algebra of the strutural group,

hene, now the ation is on the right. For every vertial vetor v at (b; h) there

11



exists H 2 a suh that v = H

�

(b; h). Hene with a given X 2 g we have de�ned a

map b 2 B 7! H

X;b

2 a suh that

X (b; 1) = X

H

(b) +H

�

X;b

(b; 1) :

From this equality we an obtain the vertial omponent. In fat, X is right invari-

ant, i.e., X (b; h) = R

h�

X (b; 1). Now

R

h�

�

X

H

(b) +H

�

X;b

(b; 1)

�

= X

H

(b) +R

h�

�

H

�

X;b

(b; 1)

�

= X

H

(b) + (Ad (h

�1

)H

X;b

)

�

(b; h) :

Sine A is abelian Ad (h

�1

)H = H, hene

X (b; h) = X

H

+H

�

X;b

(b; h)

i.e. the vertial omponent is determined by H

X;b

2 a whih depends only on X

and on b. We will �nd an expliit expression for this map. Consider the Iwasawa

deomposition g = k�a�n and let b

0

= P be the origin of B. Sine N is ontained

in the isotropy subgroup at (b

0

; 1), the n-omponent of X beomes zero at this

point. Under the di�eomorphism � the horizontal omponent

~

X

�

�

�

G=P

(b

0

) is given

by (pr

k

)

~

�

�

�

G=P

and the vertial omponent is given by (pr

a

)

~

�

�

�

A

. Hene, sine a is

abelian, H

X;b

0

= pr

a

X.

For the values of H

X;b

at other points of B, take u 2 K and put b = ub

0

. Then,

by equation (5) and the fat that u

�

H

�

= H

�

we have:

~

X (b; 1) = u

�

((Ad (u

�1

)X)

�

(b

0

; 1))

= u

�

�

(Ad (u

�1

)X)

�

j

G=P

(b

0

)

�

+ u

�

H

�

Ad(u

�1

)X;b

0

(b

0

; 1)

= X

H

(b

0

) +H

�

Ad(u

�1

)X;b

0

(b; 1) :

So, X

V

(b; 1) = H

�

Ad(u

�1

)X;b

0

(b; 1), and we get for b = ub

0

, u 2 K the desired

expression of H

X;b

:

H

X;b

= H

Ad(u

�1

)X;b

0

= pr

a

�

Ad

�

u

�1

�

X

�

:

The group A is di�eomorphi to its Lie algebra a through the exponential map.

Hene G=L is also di�eomorphi to B�a and there is a deomposition of the vetor

�elds at this level too. We have then:

12



Proposition 3.2 The di�erential equation indued in G=L = B � a by X 2 g

deomposes into the equations

8

>

<

>

:

db

dt

=

~

X

�

�

�

G=P

(b) , with b 2 B and

dH

dt

= pr

a

(Ad (u

�1

)X) where b = ub

0

and H 2 a

Proof: We only remark that the seond equation means that if a

t

= expH(t) 2 A

then _a

t

= pr

a

(Ad (u

�1

)X) a

t

.

In the following setions it will be onvenient to use the notation

q

X

(b) = pr

a

�

Ad

�

u

�1

�

X

�

2 a (6)

with X 2 g, b = ub

0

where u 2 K. Note that (6) does not depend on the represen-

tative u 2 K whih satis�es ub

0

= b. In fat, if u

1

b

0

= b then u

1

= um for some

m 2M , and pr

a

ÆAd (m) = pr

a

beause m entralizes a.

4 Stohasti Di�erential Equations

Consider the stohasti di�erential equation on the semi-simple Lie group G:

dg = X (g) dt+

m

X

i=1

Y

i

(g) Æ dW

i

: (7)

We shall assume the aessibility property of this system whih means that X and

Y

1

; : : : ; Y

m

generate the Lie algebra g of G. As in the ase of vetor �elds this

equation indues stohasti equations in the homogeneous spaes of G, in partiular

inG=L. By the preeding setion, there is a deomposition of the proess inG=L into

radial and spherial omponents. In fat, using Itô's formula the indued equation

in B� a has the omponents

db = X

H

(b) dt+

m

X

i=1

Y

i

H

(b) Æ dW

i

(8)

in the diretion of B and

dH = q

X

(b) dt+

m

X

i=1

q

Y

i
(b) Æ dW

i

(9)

13



in the diretion of a. Let g

t

be the solution of (7) starting at the identity 1 2 G.

Write g

t

= u

t

h

t

n

t

for its Iwasawa deomposition and put H

t

= logh

t

. Then H

t

is

driven by equation (9). In order to desribe the asymptoti behavior of H

t

it will

be onvenient to onvert the Stratonovih equation (9) in Itô form:

dH = q

X

(b) dt+

1

2

m

X

i=1

r

Y

i
(b) dt+

m

X

i=1

q

Y

i
(b) dW

i

(10)

where r

Z

for Z 2 g stands for the diretional derivative:

r

Z

(b) = (Z

H

� q

Z

) (b) :

We will �nd an expression for r

Z

by reduing the omputation of the derivative

at the origin b

0

2 B. Given b 2 B let u 2 K be suh that b = ub

0

. Then

r

Z

(b) = d (q

Z

)

b

(Z

H

(b))

= d (q

Z

)

b

Æ du

b

0

Æ du

�1

b

(Z

H

(b))

with u viewed as a di�eomorphism u : B! B. Hene:

r

Z

(b) = d (q

Z

Æ u)

b

0

�

du

�1

b

(Z

H

(b))

�

:

Now, from (5), du

�1

b

(Z

H

(b)) is the vetor �eld indued on B by Ad (u

�1

)Z at b

0

,

i.e.,

r

Z

(b) = d (q

Z

Æ u)

b

0

��

Ad

�

u

�1

�

Z

�

�

(b

0

)

�

: (11)

We reall from the previous setion that at the origin b

0

of B, given X 2 g,

e

X (b

0

) =

(pr

k

X)

~

(b

0

) (beause a+ n is ontained in the isotropy subalgebra at b

0

). Hene, if

we denote

W (u) = pr

k

Ad

�

u

�1

�

Z;

then

r

Z

(b) =

d

dt

(q

Z

Æ u)

�

e

tW (u)

b

0

�

jt=0

;

whih by the de�nition of q

Z

beomes:

r

Z

(b) =

d

dt

pr

a

�

Ad

�

e

�tW (u)

u

�1

�

Z

�

jt=0

:

A diret alulation shows that

r

Z

(b) = pr

a

[Ad

�

u

�1

�

Z;W (u)℄:

Summarizing, we have the following formula:

Proposition 4.1 If Z 2 g and b = ub

0

2 B with u 2 K then

r

Z

(b) = pr

a

[Ad

�

u

�1

�

Z; pr

k

Ad

�

u

�1

�

Z℄
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4.1 The Integral Formula

The assumption that fX; Y

1

; : : : ; Y

m

g generates g guarantees that in eah om-

pat homogeneous spae of G there exists a unique (ergodi) invariant probability

measure for the di�usion proess whih is the solution of the indued stohasti dif-

ferential equation. In partiular there exists a unique invariant probability measure

� on the maximal ag manifold for the proess in this spae. Applying the ergodi

theorem to the skew-symmetri ow (see e.g. Arnold, Kliemann and Oeljeklaus [1℄

or Carverhill [7℄) we have the following well known speial ase of the Law of Large

Numbers:

lim

t!1

1

t

log a

t

= lim

t!1

1

t

Z

t

0

Q(b

s

) ds =

Z

B

Q(b)� (db) for � 
 P-almost every (b; !)

where the funtion Q : B! a is given by:

Q (b) = q

X

+

m

X

i=1

r

Y

i

(b) (12)

with q

X

(b) = pr

a

(Ad (u

�1

)X) and r

Y

i
(b) = pr

a

[Ad (u

�1

)Y

i

; pr

k

Ad (u

�1

)Y

i

℄ where

b = ub

0

.

4.2 The Integrand

We shall �nd an expression for the quadrati part r

Z

(b), Z 2 g, of the integrand in

terms of the B metri.

The restrition of the Cartan-Killing form h�; �i to a is an inner produt so that

we determine r

Z

(b) if we ompute hH; r

Z

(b)i for every H in a basis of a. In other

words, we must alulate

hH; r

Z

(b)i = hH; pr

a

[Ad

�

u

�1

�

Z; pr

k

Ad

�

u

�1

�

Z℄i

for generi H 2 a. Under the Cartan-Killing form k and n

+

are orthogonal to a so

that

hH; r

Z

(b)i = hH; [Ad

�

u

�1

�

Z; pr

k

Ad

�

u

�1

�

Z℄i: (13)

Note �rst that if Z 2 k then Ad (u

�1

)Z 2 k. Hene pr

k

Ad (u

�1

)Z oinides with

Ad (u

�1

)Z so that (13) vanishes trivially.

On the other hand for Z 2 s we an relate hH; r

Z

(b)i with the B metri (�; �) in

B

H

.
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Lemma 4.2 If Z 2 s then

hH; [Z; pr

k

Z℄i = ((pr

k

Z)

�

; (pr

k

Z)

�

)

H

(14)

where (pr

k

Z)

�

means the vetor �eld on B

H

indued by pr

k

Z.

Proof: By Lemma 2.1 there are Y 2 n

+

and H

0

2 a suh that

Z = Y � � (Y ) +H

0

= (�Y � � (Y )) +H

0

+ 2Y:

The right hand side of this equality is the Iwasawa deomposition of Z beause

�Y � � (Y ) 2 k, H

0

2 a and Y 2 n

+

. Hene

pr

k

Z = �Y � � (Y ) ;

and

[Z; pr

k

Z℄ = [Y � � (Y ) ; pr

k

Z℄ + [H

0

; pr

k

Z℄: (15)

The term [H

0

; pr

k

Z℄ is orthogonal to H so that it does not ontribute to (14). In

fat, pr

k

Z = �Y � � (Y ) belongs to n

�

+ n

+

and this subspae is orthogonal to a

and invariant under ad (a). On the other hand, the �rst term in the right hand side

of (15) is �[� (pr

k

Z) ; pr

k

Z℄. The Cartan-Killing produt of this term with H is by

de�nition ((pr

k

Z)

�

; (pr

k

Z)

�

)

H

, proving the lemma.

The right hand side of (14) an be given an interpretation in terms of the G-

ation on B

H

: For X 2 g let as before

~

X stand for the vetor �eld indued by

X on B

H

. If x

0

2 B

H

orresponds to H then a + n

+

is ontained in the isotropy

subalgebra at x

0

. Hene for X 2 g,

~

X (x

0

) = (pr

k

X)

�

(x

0

) :

Therefore we have

Corollary 4.3 For Z 2 s it holds

hH; [Z; pr

k

Z℄i = (

~

Z;

~

Z)

x

0

=

�

�

�

~

Z (x

0

)

�

�

�

2

:

Using K-invariane we an transport this formula to every point of B

H

.
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Corollary 4.4 If Z 2 s then

hH; r

Z

(b)i = (

~

Z;

~

Z)

ux

0

where (�; �) is the B metri in B

H

. Here u and b are related by b = ux

0

and x

0

is

the origin of B

H

.

Proof: Put U = Ad (u

�1

)Z. By de�nition of r

Z

and the above lemma,

hH; r

Z

(b)i =

�

�

�

~

U (x

0

)

�

�

�

2

with the norm given by the B metri in B

H

. However,

~

U (x

0

) =

�

Ad

�

u

�1

�

Z

�

�

(x

0

) = u

�1

�

(Z (ux

0

)) :

Sine the metri is K-invariant it follows that

�

�

�

~

U (x

0

)

�

�

�

2

=

�

�

�

u

�1

�

�

~

Z (ux

0

)

�

�

�

�

2

=

�

�

�

~

Z (ux

0

)

�

�

�

2

as laimed.

In general, let Z = A + S with A 2 k and S 2 s and for u 2 K put Z

u

=

Ad (u

�1

)Z, A

u

= Ad (u

�1

)A and S

u

= Ad (u

�1

)S. Then Z

u

= A

u

+ S

u

. Plugging

this into formula (13) and taking into aount that [k; k℄ � k is orthogonal to H we

get

hH; r

Z

(b)i = hH; [S

u

; A

u

℄i+

�

�

�

~

S (ux

0

)

�

�

�

2

where b = ub

0

. Now,

S

u

=

Z

u

� �Z

u

2

; A

u

=

Z

u

+ �Z

u

2

and Ad (u) ommutes with �. Hene there is the following expression for hH; r

Z

(b)i,

whih holds for arbitrary Z.

Proposition 4.5 If Z 2 g and H 2 a then

hH; r

Z

(b)i =

1

2

hH; [Ad (u)Z;Ad (u) (�Z)℄i+

�

�

�

~

S (ux

0

)

�

�

�

2

where b = ub

0

and b

0

and x

0

are the origins in the ag manifolds B and B

H

respe-

tively.
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5 Lyapunov Exponents

The right invariant stohasti di�erential equation (7) on G indues a stohasti

di�erential

dx =

~

X (x) +

m

X

i=1

~

Y

i

(x) Æ dW

i

on eah spae endowed with a G ation. For many of the indued systems their Lya-

punov exponents are desribed by the asymptoti of the A-part in the Iwasawa de-

omposition. We present below two lassial situations overed by this onstrution,

namely the linear systems indued by representations of the group and, seondly,

Brownian motions in ag manifolds and symmetri spaes.

5.1 Linear Systems

Let � : G! Gl (d;R) be a representation of G in R

d

. It indues a representation of

g (also denoted by �) so that the right invariant vetor �elds in G are mapped into

linear vetor �elds in R

d

. Therefore, under the representation, the system given by

equation (7) is mapped into the linear di�erential equation:

dx = � (X)xdt +

m

X

i=1

�

�

Y

i

�

x Æ dW

i

x 2 R

d

: (16)

The relation between the systems (7) and (16) is that if x

t

is the solution of (16)

starting at x

0

then x

t

= � (g

t

)x

0

where g

t

is the solution of (7) starting at the

identity. Clearly, � (g

t

) is the solution of a right invariant di�erential equation in

the Lie group � (G), image of (7) under �. Every data about (16) is ontained in

this image system and not in G itself. Sine we are primarily interested in (16) we

assume from now on that � is a faithful representation. This amounts to assume

that G is a linear group and � is just the inlusion of G into the general linear group.

Alternatively we may start with a linear system and make the assumption that the

Lie algebra generated by the oeÆients is a semi-simple subalgebra of matries.

Our purpose here is to sketh a proof of the easily suspeted fat that the A-

part in the Iwasawa deomposition gives, through the representation, the Lyapunov

exponents of (16)

lim

t!+1

1

t

log jjx

t

jj : (17)

There are ertainly di�erent ways to prove this fat. All of them require some

regularity property of the system. For our systems the regularity omes from the
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aessibility property, i.e., the assumption that the oeÆients of the system gener-

ate g.

To �nd the Lyapunov exponents of equation (16) we use the theory of Guivar'h

and Raugi [13℄. The �rst thing to do is to hange our ontinuous-time system into

a disrete-time one. This is easily ahieved by taking the solution g

t

of (7) starting

at the identity at time 1. Let � be the law of g

1

. Then the law of g

k

is the k-th

onvolution power �

?k

. Also, the ow property of g

t

implies that for a random

element

g

k

(!) = g

1

(�

k�1

(!)) � � �g

1

(� (!)) � g

1

(!) (18)

where � is the shift in probability spae. Therefore, in a onvenient probability

spae, g

k

an be regarded as a produt of an i.i.d. sequene of random elements in

G. On the other hand the limit in (17) an be disretized with the same results, that

is, the Lyapunov exponents of the sequene � (g

n

) of random matries oinides with

the Lyapunov exponents of the system (16) (see Carverhill [7℄ for further disussions

about the ontinuous vs. disrete-time stohasti systems).

With this in mind we observe that the support supp� of � has nonempty inte-

rior in G. In fat, by the support theorem supp� = l (A (1)), where A (1) is the

attainable set from the identity in G, at time 1, of the right invariant ontrol system

in G obtained from (7):

_g = X (g) +

m

X

i=1

u

i

(t)Y

i

(g)

with u

i

(t) pieewise onstant ontrols (see e.g. Ikeda and Watanabe [15℄). A gen-

eral result of Sussmann and Jurdjevi [25℄ says that the attainable set of an analyti

ontrol system at a �xed time has nonvoid interior inside the leaf of a ertain inte-

grable distribution of odimension zero or one in the state spae. An appliation of

this result to a right invariant ontrol system on a Lie group proves that A (1) has

nonvoid interior in a oset of a onneted normal subgroup H � G with odimension

zero or one. Sine we are working with a semi-simple Lie group, there are no normal

subgroup of odimension one. Hene H = G and supp� has nonvoid interior in G.

This fat ensures that the probability measure � and the orresponding random

produt are under the basi assumptions of [13℄, namely that the semigroup T

�

generated by supp� is ontrating and strongly irreduible.

Consider now the Iwasawa deomposition of the produt (18)

g

k

(!) = u

n

(!)h

k

(!)n

k

(!) 2 KAN:
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Write also the polar deomposition

g

k

(!) = x

k

(!) a

k

(!) y

k

(!) 2 K

�

A

+

K; (19)

where

�

A

+

stands for the exponential of the losure of a Weyl hamber in a. By [13,

Cor. 2.8℄ h

k

(!) a

�1

k

(!) onverges almost surely so that

lim

1

k

log h

k

= lim

1

k

log a

k

:

At this point we need the following well known fat about Cartan deompositions

of Lie algebras and subalgebras (see e.g. [14℄, [27℄):

Lemma 5.1 Let g �

e

g be nonompat semi-simple Lie algebras and onsider a

Cartan deomposition g = k � s of g. Then there exists a Cartan deomposition

e

g =

e

k �

e

s suh that k �

e

k and s �

e

s. Also, if a � s is maximal abelian then there

exists a maximal abelian

e

a �

e

s suh that a �

e

a.

The ompatible Cartan deompositions extend to the group level: Let G �

~

G be

semi-simple Lie groups with Lie algebras g �

e

g. A Cartan deomposition G = KS

omes from a Cartan deomposition of g, through the exponential mapping. Hene

there exists a Cartan deomposition

~

G =

~

K

~

S suh that K �

~

K and S �

~

S. We

an apply this fat to our linear group G. Sine G is semi-simple it is ontained in

Sl (d;R) so that a Cartan deompositionG = KS extends to a Cartan deomposition

of Sl (d;R). This means that there is an inner produt of R

d

suh that with respet

to it the elements of K are orthogonal matries and those of S are symmetri and

positive de�nite. The same way for a polar deomposition G = K

�

A

+

K there is a

group

~

A of diagonal matries in Sl (d;R) ontaining A. We remark that it is not

true in general that

�

A

+

is ontained in a unique Weyl hamber of

~

A. Given the

deomposition (19) of g

k

(!), the eigenvalues of

� = lim

1

2k

log (g

k

(!) g

k

(!)

�

)

are exatly the eigenvalues of lim

1

k

log a

k

(!), whih oinides with our previously

de�ned Lyapunov exponent matrix. By the approah in Ruelle [23℄, the eigenvalues

of � are the Lyapunov exponents of our system (16).

We state now these fats using the language of representation theory. Let � :

g ! gl (V ) be a representation of the semi-simple Lie algebra in the real vetor

20



spae V . If a � g has the same meaning as before, a linear funtional � : a ! R is

said to be a weight of the representation if the weight spae

V

�

= fv 2 V : � (H) v = � (H) v for all H 2 ag

is not zero. If H 2 a then � (H) is diagonalizable and its eigenvalues are � (H) with

� running through the set of weights. With this terminology we have the formula:

Theorem 5.2 Assume that the right invariant system (7) in G satis�es the a-

essibility property. Consider the linear di�erential equation (16) indued by the

representation �. Then the Lyapunov exponents of (16) are the entries of

�

�

Z

Q (b) � (db)

�

;

whih are �

�
R

Q (b) � (db)

�

with � running through the weights of the representation.

Here Q is given by (12) and � is the unique invariant probability measure in the

maximal ag manifold of G.

5.2 Systems with Symmetri Vetor Fields

Consider a system

dg =

m

X

i=1

Y

i

(g) Æ dW

i

(20)

without drift suh that fY

1

; : : : ; Y

m

g is an orthonormal basis of s. Under the inverse

mapping of G the right invariant vetor �eld Y

i

is mapped into the left invariant

vetor �eld whose value at the identity is �Y

i

. It was proved by Malliavin and

Malliavin [21℄ that the left invariant system thus obtained is the horizontal di�usion

in the symmetri spaeG=K (see also Liao [18℄ and Taylor [26℄). In our omputations

below we shall reover a result of [21℄ on the limit behavior of the A-part of the

Iwasawa deomposition of the horizontal di�usion.

For the system (20) the integrand in the formula (12) beomes

Q (b) =

1

2

m

X

i=1

r

Y

i
(b) :

By Corollary 4.4 if H 2 a then

hH;Q (b)i =

m

X

i=1

�

�

�

~

Y

i

(ux

0

)

�

�

�

2

(21)

21



with b = ub

0

and the norm is with respet to B metri in B

H

. We shall ompute this

expression expliitly. Firstly note that the right hand side of (21) is independent of

the orthonormal basis, in fat:

Lemma 5.3 Let (Y

i

)

i=1;:::;m

and (Z

i

)

i=1;:::;m

be orthonormal bases of s. Then

m

X

i=1

�

�

�

~

Y

i

(ux

0

)

�

�

�

2

=

m

X

i=1

�

�

�

~

Z

i

(ux

0

)

�

�

�

2

for all u 2 K.

Proof: Let a

i

j

2 R, i; j = 1; : : : ; m, be suh that

Z

i

=

X

a

i

j

Y

j

:

Sine the restrition to s of the Cartan-Killing form is an inner produt, the m�m

matrix

�

a

i

j

�

i;j

is orthogonal. Hene

m

X

i=1

�

�

�

~

Z

i

(ux

0

)

�

�

�

2

=

m

X

i;j=1

�

a

i

j

�

2

�

�

�

~

Y

j

(ux

0

)

�

�

�

2

+

m

X

i

m

X

j 6=k

a

i

j

a

i

k

�

~

Y

j

(ux

0

) ;

~

Y

k

(ux

0

)

�

shows the lemma.

Corollary 5.4 If (Y

i

)

i=1;:::;m

is an orthonormal basis of s then

P

m

i=1

�

�

�

~

Y

i

(ux

0

)

�

�

�

2

is

independent of u 2 K.

Proof: The translation formula for vetor �elds in a homogeneous spaes yields

~

Y (ux

0

) = u

�

�

Ad

�

u

�1

�

Y

i

�

�

(x

0

) :

Hene

m

X

i=1

�

�

�

~

Y

i

(ux

0

)

�

�

�

2

=

m

X

i=1

�

�

�

Ad

�

u

�1

�

Y

i

�

�

(x

0

)

�

�

2

:

By the previous lemma the right hand side is equal to

P

m

i=1

�

�

�

~

Y

i

(x

0

)

�

�

�

2

beause

Ad (u

�1

)Y

i

, i = 1; : : : ; m form an orthonormal basis.
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In the light of this orollary we write



H

=

m

X

i=1

�

�

�

~

Y

i

(ux

0

)

�

�

�

2

:

This is a onstant independent of u 2 K and the orthonormal basis (Y

i

)

i=1;:::;m

of s.

In order to ompute this onstant we put u = 1 and hoose an orthonormal adapted

basis, whih omplements

fS

1

; : : : ; S

m

g = f

p

2

2

�Y

1

; : : : ;

p

2

2

�Y

m

g

where fY

1

; : : : ; Y

m

g is a basis of n

+

, as the onstrution in (2). By Lemma 2.4

f

~

S

1

(x

0

) ; : : : ;

~

S

m

(x

0

)g is an orthogonal basis of T

x

0

B

H

with respet to the B metri.

Moreover, for j = 1; : : : ; m,

hS

j

; S

j

i =

1

2

hY

j

� �Y

j

; Y

j

� �Y

j

i = B

�

(Y

j

; Y

j

) = 1

so that

�

�

�

~

S

j

(x

0

)

�

�

�

2

= � (H)

if Y

j

2 g

�

. Therefore, summing up over � > 0 gives the value of 

H

:

Proposition 5.5 

H

=

P

�>0

d

�

� (H) where d

�

= dim g

�

.

From this proposition we get easily an expression for the Lyapunov exponent

matrix for the symmetri system. For a root � de�ne H

�

by � (�) = hH

�

; �i. Let

Q 2 a be the onstant funtion Q (b). Then Q is the only element of a satisfying

hQ;Hi =



H

2

=

1

2

X

�>0

d

�

� (H) :

for every H 2 a. Hene

Q =

1

2

X

�>0

d

�

H

�

:

After integrating this onstant with respet to the invariant probability measure on

B we get
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Theorem 5.6 For the symmetri system (20) the Lyapunov exponent matrix is

� =

1

2

X

�>0

d

�

H

�

(22)

This result agrees with Theorem 8.2 in Malliavin and Malliavin [21℄ (see also

Taylor [26, Cor. 5.2℄). The fator 1=2 appearing in (22) is due to our normalization

of (20) whih is given by an orthonormal basis of s. Also, in [21℄ appears a minus

sign whih is due to the fat that the horizontal di�usion is given by g

�1

t

where g

t

is the solution of (20) and the Iwasawa deomposition onsidered in [21℄ is NAK so

that the two A-parts are inverse to eah other.

The symmetri stohasti di�erential equation (20) also indues Brownian mo-

tions in the immersed ag manifolds. Indeed, by Lemma 2.3 and the remarks after-

wards, ifH 2 a

+

is suh that � (H) = 1 for every positive root � suh that � (H) 6= 0

then the B metri inB

H

is indued by its immersion in s. On the other hand Lemma

2.2 ensures that if Z 2 s then the vetor �eld

~

Z indued on B

H

is the gradient of

the height funtion X 7! hZ;Xi. Sine (20) is made up from an orthonormal basis

of s, it follows that the di�usion generated by the indued di�erential equation on

B

H

is a gradient Brownian system with respet to the B metri. More generally,

Liao [18, Thm. 1℄ shows that in eah ag manifold there is a anonial K-invariant

Riemannian metri for whih our symmetri system indues a Brownian motion.

Like in the ase of linear systems, here, the A-part of the Iwasawa deomposition

gives the Lyapunov spetrum of the indued system. Hene, if � stands for the

Lyapunov exponent matrix then the eigenvalues of ad (�) in the tangent spae at

the origin of the ag manifold are the Lyapunov exponents, given by:

f�� (�) : � 2 �

+

; � (H) 6= 0g

(see [18, Setion 5℄ for a detailed disussion of these Lyapunov exponents).

6 Examples

We will desribe here some of the semi-simple Lie groups together with their ag

manifolds, emphasizing the B metri whih by Proposition 4.5 enters in the formula

for the Lyapunov exponent matrix.
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6.1 Real rank 1 groups

The real rank of g (or G) is the dimension of the subalgebra a. For a rank one Lie

group there is just one ag manifold, whih is di�eomorphi to a sphere S

n

with

dimension n = dim s� 1. There is just one simple root � and the positive roots are

� and possibly 2�. Hene for a symmetri system the Lyapunov exponent matrix is

� = d

�

H

�

+ d

2�

H

2�

= (d

�

+ 2d

2�

)H

�

with d

2�

= 0 if 2� is not a root. Sine Ad (K) is transitive on the spheres of s, modulo

onstant multiples there is just one B metri. It is given by the isometri immersion

of S

n

into s when d

2�

= 0, hene in this ase it is the anonial Riemannian metri

in S

n

.

The simple rank one Lie algebras are omposed of three series of algebras and

an exeptional one (see [14, Ch. X, Table V℄). Below we list them with the orre-

sponding dimensions of the root spaes and of s.

� so (1; n); d

�

= n � 1, d

2�

= 0; dim s = n. (This lass inludes sl (2;R) �

sp (1;R) � so (1; 2) and su

�

(4) � so (1; 5))

� su (1; n); d

�

= 2 (n� 1), d

2�

= 1; dim s = 2n. (This lass inludes so

�

(6) �

su (1; 3))

� sp (1; n); d

�

= 4 (n� 1), d

2�

= 3; dim s = 4n.

� A real form of the exeptional Lie algebra F

4

; d

�

= 8, d

2�

= 7; dim s = 16.

Symmetri systems in so (1; n) were studied by Baxendale [4℄. This is the Lie

algebra of real matries of the form

�

0 



t

B

�

(23)

with B skew-symmetri and  a 1� n-matrix. For a Cartan deomposition we an

take s to be the subspae of matries in (23) with B = 0 and

a = fH () =

�

0 



t

0

�

:  = (x; 0; : : : ; 0) ; x 2 Rg: (24)

The omputation of adjoints and the Cartan-Killing form gives, for the simple root

�,

H

�

=

1

2 (n� 1)

H ()
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where  = (1; 0; : : : ; 0). Hene the matrix Lyapunov exponent is � =

1

4

H (). The

eigenvalues of this matrix are the Lyapunov exponents omputed in [4, Thm. 2.6℄,

with � =

p

1= (2 (n� 1)) (the notation is as in [4℄). This normalization of the system

of [4℄ omes from the fat that we onsider systems made up of an orthonormal basis

in s. In fat, with H () and  as in (23), hH () ; H ()i = 2 (n� 1) jj

2

with jj

given by the anonial inner produt in R

n

.

The Lie algebra su (1; n) is the algebra of the skew-Hermitian matries with

respet to a Hermitian form of signature (1; n). It is realized as the algebra of

omplex matries of the form

�

it z

z

�

B

�

(25)

where t 2 R, z 2 C

n

is a 1 � n omplex matrix and B + B

�

= 0. We denote the

matrix in (25) by (t; z; B) 2 R � C

n

� u (n). There are the following data:

k = f(t; 0; B) : trB = �itg; s = f(0; z; 0) : z 2 C

n

g � C

n

and a = span

R

H

0

with H

0

= (0; 1; 0; : : : ; 0; 0) is a maximal abelian subalgebra of

s. The eigenvalues of ad (H

0

) are 0;�1;�2, so that the roots are ��;�2� with

� (H

0

) = 1. Sine dim g

��

= 2 (n� 1) and dim g

�2�

= 1,

hH

0

; H

0

i = 4 (n� 1) + 8 = 4 (n + 1) :

Hene the Cartan-Killing form is hC;Di = 2 (n + 1) tr (CD) for C;D 2 su (1; n).

If z 2 C

n

is suh that its �rst omponent is purely imaginary we denote by [z℄

the n � n skew-Hermitian matrix B = (b

jk

) whose �rst row is z and b

jk

= 0 if

j; k � 2. By omputing the eigenspaes of ad (H

0

), it follows that n

+

= g

�

+ g

2�

is

the subalgebra whose elements are of the form (t; z; [z℄) with z = (�it; z

2

; : : : ; z

n

).

If Y = (t; z; [z℄) 2 n

+

then Y + � (Y ) = 2 (t; 0; [z℄) beause � �xes k and hanges the

sign in s. This implies that

� :

�

it 0

0 [z℄

�

7�!

�

0 z

z

�

0

�

:

Now, let X = (t; 0; [z℄) and Y = (s; 0; [w℄) with z

1

= it and w

1

= is. Then

[H

0

; X℄ = (0; 2it; z

2

; : : : ; z

n

; 0) :

So that

�

~

X;

~

Y

�

H

0

= 4 (n+ 1) (2ts+Re (z

2

�w

2

+ � � �+ z

n

�w

n

)) :
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Through the identi�ation of s with C

n

,

~

X (H

0

) beomes the tangent vetor

� (2it; z

2

; : : : ; z

n

) :

Sine a similar expression holds for

~

Y , the B metri in the tangent spae to S

2n�1

at (1; 0; : : : ; 0) is

((it; z

2

; : : : ; z

n

) ; (is; w

2

; : : : ; w

n

)) = (n + 1) (2ts+Re (z

2

�w

2

+ � � �+ z

n

�w

n

)) :

Note that (it; 0; : : : ; 0) is in the diretion of the omplex line spanned by (1; 0; : : : ; 0).

This inner produt extends to the whole sphere through the ation of SU (n) whih

is ontained in K. Sine SU (n) maps omplex subspaes into omplex subspaes,

we have the following desription of the B metri at z 2 S

2n�1

: it is 2 (n + 1) times

the anonial inner produt in the diretion of the omplex line spanned by z and

(n+ 1) times the anonial inner produt in the subspae orthogonal to this omplex

line.

We refrain to write down the details for the algebra sp (1; n). The desription is

similar to su (1; n) with a quaternioni spae playing the role of C

n

.

6.2 Real Forms

Up to isomorphism eah omplex semi-simple Lie algebra g

C

has just one normal

real form g (see e.g. [14℄). For suh a real form a maximal abelian subalgebra

a � s is a Cartan subalgebra of g, the root spaes g

�

are one dimensional and the

subalgebra m � k redues to zero. We desribe below the normal real forms of the

simple omplex lassial Lie algebras, together with their ag manifolds. We use

the notation E

ij

for the matrix whose only nonzero entry is 1 in position i; j. Also,

�

i

: diagfa

1

; : : : ; a

n

g 7�! a

i

is a linear funtional in the spae of diagonal matries.

A

l

The Lie algebra sl (n;R) is the normal real form of sl (n; C ). We have k =

so (n;R), s the spae of trae zero symmetri n� n matries and a the subal-

gebra of diagonal matries in sl (n;R). The Cartan-Killing form is

hX; Y i = 2n tr (XY ) :
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The set of (g; a)-roots is � = f�

ij

= �

i

� �

j

: i 6= jg. The root spae g

�

ij

is

spanned by E

ij

, i 6= j. The o-root �

ij

with respet to the Cartan-Killing is

the matrix

H

�

ij

=

E

ii

� E

jj

2n

:

We an delare �

ij

> 0 if i < j. Hene for a symmetri system normalized by

the Cartan-Killing form its Lyapunov exponent matrix is

� =

1

2n

diagfn� 1; n� 3 : : : ;�n + 1g:

The ag manifolds of a group whose Lie algebra is sl (n;R) are the standard

ag manifolds: Given a sequene of positive integers r = (r

1

; : : : r

k

) with

r

1

+ � � � + r

k

= n let F (r) stand for the manifold of all ags (V

1

� � � � � V

k

)

where V

i

is a subspae of R

n

with dimV

i

= r

1

+ � � �+ r

i

. Let

H = diagfa

1

; : : : ; a

n

g a

1

+ � � �+ a

n

= 0

be suh that a

1

= � � � = a

r

1

> a

r

1

+1

= � � � = a

r

1

+r

2

> � � �. Then F (r) identi�es

with the orbit of H under onjugations by orthogonal matries. By varying

H we get di�erent embeddings of F (r) into s with orresponding B metri. In

ase H has only two eigenvalues with multipliities d and n � d, F (r) is the

Grassmannian Gr

d

(n) of d-dimensional subspaes of R

n

. In this ase the B

metri is just the metri indued by the embedding in s. It is a multiple of the

anonial metri in the Gr

d

(n) whih turns it into a loally symmetri spae

(see Kobayashi and Nomizu [17℄). The Grassmannians are the only immersed

ag manifolds.

C

l

The normal real form of the omplex simple Lie algebra sp (n; C ) is the Lie

algebra sp (n;R) of real sympleti matries. It is the Lie algebra of matries

whih are skew with respet to the anonial sympleti form

! (u; v) = u

t

�

0 �1

n�n

1

n�n

0

�

v u; v 2 R

2n

:

Hene it is given by the 2n� 2n real matries of the form

(A;B;C) =

�

A B

C �A

t

�
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with B and C symmetri n�n matries. A Cartan deomposition is given by

the symmetri and skew symmetri matries in sp (n;R), that is,

k = f

�

A;B;�B

t

�

: A+ A

t

= 0g � u (n) s = f

�

A;B;B

t

�

: A = A

t

g:

We an hoose

a = f(A; 0; 0) : A = diag (a

1

; : : : ; a

n

)g:

Then the roots are �

ij

= �

i

� �

j

, i 6= j and ��

ij

= � (�

i

+ �

j

) with �

+

=

f�

ij

; i < j; �

ij

g. Sine the Cartan-Killing form is hC;Di = 2ntr (CD), the

o-roots are

H

�

ij

=

1

2n

(E

ii

� E

jj

; 0; 0) H

�

ij

=

1

2n

(E

ii

+ E

jj

; 0; 0) :

Adding up the positive o-roots we get the Lyapunov exponent matrix for a

symmetri system

� =

1

2 (n + 1)

(diagf2n� 1; 2n� 3; : : : ; 1g; 0; 0) :

A subspae V � R

2n

is Lagrangian if the restrition of ! to V is identi-

ally zero. By fore dimV � n. Denote by L

d

(n), d = 1; : : : ; n the set of

all d-dimensional Lagrangian subspaes of R

2n

. Similarly, denote by FL (r)

the subset of F (r) onsisting of ags (V

1

� � � � � V

k

) whih are made up of

Lagrangian subspaes. Any ag manifold of sp (n;R) is some FL (r). In par-

tiular, the minimal ag manifolds are L

d

(n), d = 1; : : : ; n. For a sequene r

let

A

r

= diagfa

1

; : : : ; a

n

g

be suh that a

1

= � � � = a

r

1

> a

r

1

+1

= � � � = a

r

1

+r

2

> � � �, and put H

r

=

(A

r

; 0; 0). Then the Ad (K)-orbit of H identi�es with FL (r). Sine H

r

has

just one positive eigenvalue if and only if r = (n), L

n

(n) is the only ag

manifold of sp (n;R) whih is immersed.

B-D

l

The normal real form of so (n; C ) is so (l; n� l) the Lie algebra of the matri-

es whih are skew-symmetri with respet to a quadrati form of signature

(l; n� l). Here n = 2l or 2l + 1 aording if it is even or odd. The desrip-

tion here parallels that of the sympleti Lie algebra, with the quadrati form

instead of the sympleti one. We shall avoid it here, but reord that, in
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the anonial realization of the algebras, the Lyapunov exponent matrix for a

symmetri system is given by

� =

1

2 (l � 1)

�

A 0

0 �A

�

A = diagf2l � 2; 2l� 4; : : : ; 0g

for n = 2l even and

� =

1

2l � 1

0

�

0 0 0

0 A 0

0 0 �A

1

A

A = diagf2l � 1; 2l � 3; : : : ; 1g

for n = 2l + 1 odd.

Referenes

[1℄ Arnold, L., W. Kliemann and E. Oeljeklaus: Lyapunov exponents of linear

stohasti systems. In Lyapunov Exponents (Eds. L. Arnold and W. Wihstutz).

Leture Notes in Mathematis - Springer 1186 (1986), 85-128.

[2℄ Arnold, L., E. Oeljeklaus and Pardoux: Almost sure and moment stability for
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