T —— " .

ey

RELATORIO DE PESQUISA

Julho

, RT-IMECC

[ IM/4063

CHARACTERIZATIONS OF RADON SPACES

D. Ledo Jr.. M.D. Fragoso
and

P.R.C. Ruffino

RP 52/97

INSTITUTO DE MATEMATICA

ESTATISTICA E COMPUTAGAO CIENTIFICA

UNIVER

UNICAMP

SIDADE ESTADUAL DE CAMPINAS




ABSTRACT - Assuming hypothesis only on the a-algebra F, we characterize (via Radon
spaces) the class of measurable spaces (§2.F) that admirs regular conditional probability
for all probabilities on F.

IMECC - UNICAMP

Universidade Estadual de Campinas
C'P 6065

13083-970 Campinas SP

Brasil

O conteiido do presente Relatdrio de Pesquisa é de unica responsabilidade do(s) autor(es).

Julho — 1997



Characterizations of Radon Spaces

D. Leao Jr., M.D. Fragoso' and P.R.C. Ruffino?

July 10, 1997

Abstract

Assuming hypothesis only on the o-algebra F. we characterize (via Radon spaces)
the class of measurable spaces ({2, F) that admits regular conditional probability for
all probabilities on F.

Key words: Regular conditional probability property, perfect probability, compact prob-

ability, Marczewski characteristic function. Radon space.

1 Introduction

Since the seminal paper of Kolmogorov (1933) a myriad of papers discussing several
aspects of the delicate concept of conditional probability has appeared in the specialized
literature (see, for instance, Pachl (1978), Faden (1885) and the references therein). Of
particular interest in this scenario is the notion of regular conditional probability. Let
(2, 7, P) be a probability space and (E,£) a measurable space, a transition probability
from E to (2, F)is a function v : ExF — [0, 1] which satisfies the following two conditions:

i. v(z,-) is a probability on F, for all z € E;
ii. ¥(-, A)is a measurable function on (E,£), forall A € F.

Given a measurable function T : (2, F) — (E,£).a regular conditional probability
(RCP) with respect to T (when it exisis) is a transition probability » such that

! National Laboratory for Scientific Computing - LNCC/CNPq, Rua Lauro Miller 433, 22290- 160, Rio
de Janeiro, Brazil

?Departamento de Matemaitica - IMECC, Universidade Estadual de Campinas, 13081-970 Campinas -
SP, Brazil



planT-i(m)| = ]u(:.,\) T.P(dx) : A€F and BEE (1)
B

where T. P is the image probability of P under T.

It is well known at least since Halmos (1950, pp. 210) that it is not always possible to
construct a RCP. even if the probability space (2, F, P) is countably generated. Despite
the difficulty. progress has been made and sufficient conditions has been obtained. One of
the simplest of those conditions is the following: assume that is a lausdor(T topological
space, T is a separable -algebra in 1, and P a regular probability on F, i.c., for all

A€EF,
P(A) = sup {P(K): N compact, K C A, k' € F};

under this hvpothesis there exists the RCP for all measurable function T.

By eliminating non-essential topological aspects of the definition of regular probabil-
ity, Marezewski (1951) introduced the concept of compact probability. He applied this
concept to obtain an abstract formulation for the Kolmogorov's Extension Theorem. In
the same year Jirina established the existence of RCP using compact probability and sep-
arable (countably generated) o-algebras. Pachl (1978) proved that a probability space is
compact if and only if it admits countably additive disintegration (a weaker property than
RCP). Another important concepl in this scenario. which was devised by Gnedenko and
Kolmogorov (1949). is the ane of perfect probability, it was applied to establish the exis-
tence of RCP by Sazonov (1965). Furthermore, Faden (1985) proved that if F is separable,
perfect probability is equivalent to the existence of RCP.

In all these papers, in order to guarantee the existence of RCP hypothesis on the prob-
ability space are imposed. Here, we shall concentrate on hypothesis concerning exclusively
the measurable space (§1, F ), in such a way that the desired result holds for any probability
P defined on F.

In the next section we present some definitions and basic results which include the well
known Marczewski characteristic function that provides, for a suitable class of measurable
spaces, a measurable isomorphism between ({2, F)and a subset U of the [0, 1) endowed with
the Borel a-algebra 3, Marczewski (1938). In Section 3 we establish that all probability
P on (R, F) is compact if and only if U is a universally measurable set. Using this fact,
we characterize a class of measurable spaces which has the regular conditional probability
property via Radon spaces (measurable spaces isomorphic to a universally measurable
subset of a compact metrizable space endowed with its Borel o-algebra).

2 Definitions and Notations

Let (92, F) be a measurable space. The atoms of F are the equivalence classes in 9 for
the equivalence relation given by w ~w’ if and only if

Lg(w) = Da(w') ; YAEF

The measurable space (22, F) is called HausdorfT if the atoms of F are the points of {2.
If there exists a sequence of elements of F which generates F, we say that (f,F) is
separable. Two measurable spaces are said to be isomorphic if there exists a bijection
between them. which is measurable and has measurable inverse. Such a bijection is a
measurable isomorphism. Let (2, F) be a separable Hausdorfl measurable space and
{E.) a sequence of measurable sets which generates F. Marczewski (1938) established
that the characteristic function of the sequence of measurable sets { £}, defined by

= (g, (w
oo = 2 £ (502)
n=1
is a measurable isomorphism from (2, F) to a measurable space (U, Gy), where

U=%®) clol] ; Ar={AnU:AE€Sg)

and Ig, denotes the characteristic function of the set E, and 3 stands for the Borel
o-algebra on [0,1].

Given an abstract space  with a class of subsets C which contains the empty set
and 9 itself, we say that C is a compact class if for every sequence {C, : #» > 1} in C
with intersection N,»;Cy = @ there exists an integer ng such that Npgn,Ca = 0. Jo a
probability space (2, F, P), we say that P is compact if there exists a compact class
C C F, such that

P(4) = sup{P(C):CC A,C€C)

for each A € F. For example, if P is a regular probability on a topological space then P
is compact.

We say that a probability P on the measurable space (£, F) is perfect if for any
measurable function f :  — R there exists a Borel set B such that B C f(f?) and
P(f~'(B)) = 1. If the o-algebra F is separable, it is well known that perfectness and
compactness are equivalent, see Tortrat (1977, Prop. 3).

Given another measurable space (E,£), we denote by &£, the completion of £ with
respect to a probability measure A on this space; the universal o-algebra £ is defined
by:



T =&
A

where the intersection is taken over all probabilities Xon (E,€). The relevancy of the
universal a-algebra is going to be pointed out in the sequel.

Let ¥ be a compact metrizable space endowed with its Borel a-field By . We say that
(2, F)is a Radon space if there exists a measurable isomorphism ¢ : (2, F) — (U, Bu),
where U € Oy and gy = {ANU : A € By}, the trace of Ay on U. It is easy to see that
By is the Borel o-field on U7, then, it follows that
Bu = {B NnU:Be ,Tj\—,}

Once U € [dy. we have that Bu C By.
Remark: Radon spaces defined in a similar way has been used by several authors, see
¢.g. the appendix in Sharpe (1988) and the references therein.

The following lemma is useful in the proof of the main theorem of this paper.

Lemma 2.1 (Sazonov (1965), Lemma 3) If X C R, every probability on (X,8x) is
perfeet if and only if X' is universally measurable.

We say that the measurable space (©2. F) has the regular conditional probabil-
ity property (RCP property). if for all probability P on (92, F) and any measurable
space (E.£) with a measurable function T from (9, F) to (E,£). there exists a transition
probability » from (£.£) to (9, F) satisfying equation (1).

Finally we introduce another concept which is closely related to the RCP property: the
probability space (Q, F, P) has the product regular conditional probability prop-
erty if for any probability space of the form ({1 x E.F x £,)), with (E,£) a measurable
space and (7). A = P, there exists a transition probability » from (E.£)to (02, F) which
satisfies: .

A(Ax B) = ‘[Eu(z,,«n (va). A(dz),
with A € F, B € £ . Note that if A is a product probability then the equation above is
easily verified.

Lemma 2.2 (Faden (1885), Thm. 6) Given a probability space (2, F, P) with F sep-
arable, the following are eguivalents:

1. (9, F, P) has the product regular conditional probability property;

2, (1, F, P) has a regular conditional probability for any real valued measurable function
T on (1, F);

8. P is perfect.

3 Main Results

First. we shall characterize Radon spaces via compact probabilities on Hausdorff separable

measurable spaces.
+

Theorem 3.1 The measurable space (. F) is Radon if and only if it is separable, Haus-
dorff measurable space such that every probability on (R, F) is compact.

Remark: By the result of Tortrat (1977) mentioned above. compactness in this case is

equivalent to perfectness.
Proof: Firstly assume that (2. F) is a Radon space. There exists a measurable iso-

morphism & : (. F) — (U,Bu), where U € By. Since (U,Bu) is a separable Haasdorff
measurable space, (9, F) is also separable and Hausdorfl. We only have to prove that ev-
ery probability P on (f2.F)is compact. Let P be a probability on rQ.F_)_and A= (o_]. P
the corresponding image probability on (U.3cr). We can extend A on (U, 37). where Jyr is
the universally measurable g-field on U. Then,

Q(A) = NANU) ; A€Br
defines a probability on (Y, By ) which is compact. Since,

Bu € Br

the restriction of Q on By , i.c., the probability A, is compact {see Pachl (1978). Prop.
4.1). By the isomorphism ¢ the probability P is also compact.

Now let (§2, F) be a separable Hausdorff measurable space such that every probability
P is compact. The Marczewski characteristic function defines a measurable isomorphism
¥ from (9, F) to (U,Bu), U C [0,1] with du = {AnU : A e 3). We have to
prove that I/ € 3. From the measurable isomorphism ¥ all probabilities on (U, 3y) are
compacts. Since compactness and perfectness are equivalent in this case it follows that U
is universally measurable by Lemma 2.1.

C

In the course of the proof of the theorem above, we have also proved the following

corollary.

Corollary 3.1 The measurable space (R, F) is Radon if and only if the Marczewsks char-
acteristic Function is a measurable isomorphism from (0, F) to (U,5v). where U isa
universally measurable subset of [0, 1].

The next theorem gives another characterization in terms of regular conditional prob-
ability property, the proof is a direct consequence of Theorem 3.1 and Lemma 2.2.
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Theorem 3.2 The measurable space (@, F) is Raden if and only if it is a separable Haus-
dorfj measurable space which has the regular conditional probability property.

Proof: Suppose Lhat (f2,F) is a Radon space. Given an arbitrary probability P on
F, P is compact {Theorem 3.1) hence it is perfect. For any measurable space (E, £) and
measurable function T : (2, F) — (E, £),let A be the probability induced on (OxE,FxE)
by the mapping 1 — {w, T(w)), such that

MAxB) = P[AnT™Y(B)] ; AeF and Bef.

By Lemma 2.2 there exists a transition probability v : E x F — [0,1], such that
PIANT-'(B)] = AAx B) = ] Wz, A) (rE).Adz) ; A€F and BEE.
B

It follows by definition that v is a regular conditional probability. Since P is arbitrary,
(2. F) has the regular conditional probability property.

Reciprocally. let (R, F) be a separable Hausdorfl measurable space which has the reg-
ular conditional probability property. Then, given a probability P on F and a mea-
surable function T : (,F) — (R,BR), there exists a regular conditional probability
v:Rx F —[0,1], such that

PlanT-'(B)] = /Bu(z,,;) T.P(dz) ; A€ F and BEE.

Again, from Lemma 2.2 it follows that P is perfect. Since P is arbitrary, the measurable

space (2, F)is Radon.
o

Dellacherie and Meyer (1978) used subclasses of Radon spaces (Lusin, Souslin and
Co-Souslin spaces) to present some topics concerning the general theory of stochastic
processes. We are particularly interested in showing the adequacy of Radon space to deal
with regularity of trajectories of stochastic processes. a paper in this direction is under
preparation.
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