R. 3292

RELATÓRIO DE PESQUISA

SOME REMARKS ON A SYSTEM OF QUASILINEAR ELLIPTIC EQUATIONS

Lucio Boccardo

and

Djairo Guedes de Figueiredo

Julho

1 1 .

RP 51/97

INSTITUTO DE MATEMÁTICA ESTATÍSTICA E COMPUTAÇÃO CIENTÍFICA

UNICAMP

UNIVERSIDADE ESTADUAL DE CAMPINAS

ABSTRACT - In this paper we study the functional

$$\Phi(u,v) = \frac{1}{p} \int |\nabla u|^p + \frac{1}{q} \int |\nabla v|^q - \int F(x,u,v)$$

where the function F satisfies sets of conditions that imply that Φ is either coercive, or has a saddle point. Resonant cases are studied.

IMECC - UNICAMP Universidade Estadual de Campinas CP 6065 13083-970 Campinas SP Brasil

O conteúdo do presente Relatório de Pesquisa é de única responsabilidade do(s) autor(es).

Julho - 1997

I.M E.C C. BIBLIOTECA

Alegan Hara

Some remarks on a system of quasilinear elliptic equations

Lucio Boccardo Università di Roma I Dipartimento di Matematica Piazza A. Moro 2 00185 Roma - Italia Djairo Guedes de Figueiredo IMECC-UNICAMP Caixa Postal 6065 13081-970 - Campinas-SP Brasil

1. Introduction. In this paper we study the functional

$$\Phi(u,v) = \frac{1}{p} \int_{\Omega} |\nabla u|^p + \frac{1}{q} \int_{\Omega} |\nabla v|^q - \int_{\Omega} F(x,u,v).$$

where p and q are real numbers larger than $1,\Omega$ is some bounded domain in R^N,u and v are real-valued functions defined in $\overline{\Omega}$ and belonging to appropriate spaces of functions and F (sometimes referred as a potential) is a real-valued differentiable function with domain $\overline{\Omega} \times R \times R$. Our aim is to study the geometry of this functional viewing to determining its critical points. Such critical points are the solutions of associated Euler-Lagrange equations, which in the present case is the system of quasilinear elliptic equations below

(1.2)
$$\begin{aligned} -\Delta_p u &= F_u(x, u, v) \\ -\Delta_q v &= F_v(x, u, v) \end{aligned}$$

where F_u designates the partial derivative of F with respect to u and Δ_p is the so-called p-Laplacian operator

$$\Delta_p u = div(|\nabla u|^{p-2}\nabla u).$$

The geometry of Φ is sort of similar to the one of the functional

$$\frac{1}{p}\int |\nabla u|^p - \int F(x,u),$$

which corresponds to a single quasilinear equation. However, some interesting features appear due to the coupling in the equations (1.2). Our theorems include

and unify some previous results by Boccardo - Fleckinger de Thelin [BFT] and de Thélin-Vélin [VT].

Let us introduce the precise assumptions under which our problem is studied. Our functional Φ is to be defined in the Cartesian product of Sobolev spaces $W_0^{1,p}(\Omega) \times W_0^{1,q}(\Omega)$. For that matter, the following assumption on F has to be made, although stronger restriction will come timely:

$$(F_1) F: \overline{\Omega} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \text{ is } C^1 \text{ and}$$

$$|F(x, u, v)| \le c(1 + |u|^{p^*} + |v|^{q^*}),$$

where $p^* = pN/(N-p)$ and c is some positive constant. Similarly q^* .

In this work, we assume that both p and q are less than N. If this is so, we have the continuous imbeddings $W_0^{1,p}(\Omega) \subset L^{p^*}(\Omega)$ and $W_0^{1,q}(\Omega) \subset L^{q^*}(\Omega)$, which then tell us that Φ is well defined. In order to have it of class C^1 , we require a stronger condition than (F_1) , namely: F is C^1 and

$$\begin{split} |F_u(x,u,v)| &\leq C \left(1 + |u|^{p^*-1} + |v|^{\frac{q^*(p^*-1)}{p^*}}\right) \\ |F_v(x,u,v)| &\leq C \left(1 + |v|^{q^*-1} + |u|^{\frac{p^*(q^*-1)}{q^*}}\right). \end{split}$$

It is easy to prove that, if (F_2) is satisfied, then also is (F_1) . Under (F_2) , it follows that the critical points of Φ are the weak solutions of system (1.2), subject to Dirichlet boundary conditions. For easy reference, we summarize the aforesaid as follows: \bullet under hypothesis (F_2) , with $E = W_0^{1,p}(\Omega) \times W_0^{1,q}(\Omega)$, we have

$$\Phi: E \to \mathbb{R}$$
 is a C^1 -functional.

The geometry of Φ depends strongly on the values of r and s in the estimate below

$$|F(x,u,v)| \le c(1+|u|^r+|v|^s),$$

where c is some positive constant, and $r \leq p^*$, $s \leq q^*$. We discuss three distinct cases

2

- (I) r < p and s < q. ("sublinear-like")
- (II) r > p or s > q, and $r < p^*$, $s < q^*$, ("superlinear-like")
- (III) r = p and s = q. ("of resonant-type").

The expressions in parenthesis are to remind us of similar terminology in the case p=q=2. Of course, there are several other situations, which could be of interest to consider. Observe that we are considering only subcritical cases. The cases where either $r=p^*$ or $s=q^*$ or both equalities hold lead to a loss of compactness, and to problems which should be investigated.

Next we state the main results of this paper.

Theorem 1 (The coercive case). Assume (F_2) and (F_3) with r and s as in (I). Then Φ achieves a global minimum at some $(u_0, v_0) \in E$, which is then a weak solution of system (1.2).

If we are in the situation that

$$F(x,0,0) = F_u(x,0,0) = F_v(x,0,0), \text{ for all } x \in \overline{\Omega}.$$

then $u \equiv 0$ and $v \equiv 0$ are a trivial solution of system (1.2). In this case the relevant question is obtaining a non-trivial solution of (1.2). This will be possible under appropriate assumptions on the function F, as it is stated in the next results.

Theorem 2 (The coercive case, non-trivial solution). Assume (F_2) , (F_4) and (F_3) with r and s as in (I). Then Φ achieves a global minimum at a point $(u_0, v_0) \neq (0, 0)$, provided there exist positive constant R and $\theta < 1$, and a continuous function $K: \overline{\Omega} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that

$$(F_5) F(x, t^{\frac{1}{2}}u, t^{\frac{1}{2}}v) \ge t^{\theta}K(x, u, v), \text{ for } x \in \overline{\Omega}, |u|, |v| \le R, \text{ and small } t > 0.$$

In this case a Palais-Smale condition holds (see Lemma 4.1) if we assume that there are numbers R > 0. θ_n and θ_n with

$$\frac{1}{p^*} < \theta_r < \frac{1}{p} \qquad \frac{1}{q^*} < \theta_q < \frac{1}{q}$$

such that

$$(F_6) \qquad 0 < F(x, u, v) \le \theta_p u F_n(x, u, v) + \theta_p v F_v(x, u, v)$$

for all $x \in \overline{\Omega}$ and $|u|, |v| \ge R$.

Theorem 3. Assume (F_2) , (F_4) , (F_6) and (F_3) with r and s as in (11). Assume also that there are constants c > 0 and $\varepsilon > 0$ and numbers $\overline{r} > p$, $\overline{s} > q$, such that

$$|F(x,u,v)| \le c(|u|^{\overline{r}} + |v|^{\overline{s}}), \text{ for } |u|, |v| \le \varepsilon, x \in \overline{\Omega}.$$

Then Φ has a non-trivial critical point.

Remark. Without loss of generality we may assume $\overline{r} < p^*$ and $\overline{s} < q^*$.

Next we study the situation when (F3) holds with r and s as in (III), the case we called "of resonant type". In this case, it is quite adequate to assume a condition on F that implies that the functional Φ satisfies the so-called Cerami condition (see Section 4 for the definition). The assumption on F is: there are positive numbers c, R, μ and ν such that

(F₈)
$$\frac{1}{p}uF_{u} + \frac{1}{q}vF_{v} - F \ge c(|u|^{\mu} + |v|^{\nu})$$

for |u|, |v| > R.

This type of condition has been introduced by Costa-Magalhães [CM1], [CM2]. In order to avoid resonance we shall assume a condition on F involving an eigenvalue problem, which we introduce next. Let $G: \mathbb{R}^2 \to [0, \infty)$ be a C^1 even function such that

$$G(t^{\frac{1}{p}}u, t^{\frac{1}{q}}v) = tG(u, v)$$

(G₂)
$$G(u,v) \le k(|u|^p + |v|^q).$$

.

Examples of such functions are

(i)
$$G(u,v) = c_1|u|^p + c_2|v|^q$$

(ii)
$$G(u, v) = c|u|^{\beta}|v|^{\gamma}$$
, with $\frac{\beta}{p} + \frac{\gamma}{q} = 1$, where c_1, c_2 and c are positive constants.

We shall prove in Section 3 that the eigenvalue problem

$$-\Delta_p u - aG_u = \lambda |u|^{p-2} u$$

$$-\Delta_q v - aG_v = \lambda |v|^{q-2} v$$

subject to Dirichlet boundary conditions, with $a \in L^{\infty}(\Omega)$, has an eingenvalue $\lambda_1(a)$, characterized variationally by

$$\frac{1}{p}\int |\nabla u|^p + \frac{1}{q}\int |\nabla v|^q - \int aG(u,v) \ge \lambda_1(a)\left(\frac{1}{p}\int |u|^p + \frac{1}{q}\int |v|^q\right)$$

for all $(u, v) \in E$.

Now we introduce the following assumption:

$$(F_9) \hspace{1cm} \lambda_1(a) > 0, \text{ where } \limsup_{|u|,|v| \to \infty} \frac{F(x,u,v)}{G(u,v)} \leq a(x) \in L^\infty(\Omega)$$

and state the next results.

Theorem 4. Assume (F_2) , (F_8) , (F_9) and (F_3) with r and s as in (III). Then the functional Φ is bounded below and the infimum is achieved.

Theorem 5. Assume $(F_2), (F_4), (F_8)$ and (F_3) with r and s as in (III). Suppose also that there are positive numbers R and ε , and $L^{\infty}(\Omega)$ functions b(x) and c(x) such that

$$(F_{10}) \hspace{1cm} \lambda_1(b) < 0, \ F(x,u,v) \geq b(x)G(u,v), \ |u|,|v| \geq R$$

$$(F_{11}) \qquad \lambda_1(c) > 0, \ F(x, u, v) \le c(x) \hat{G}(u, v), \ |u|, |v| \le \varepsilon,$$

where G and \dot{G} are functions satisfying the conditions (G1) and (G2). Then, the functional Φ possesses a non-trivial critical point.

2. Special classes of potentials F. (i) The following class of potentials F (and its perturbations) have been considered by [dT], [VT], [FMT]:

$$F(x, u, v) = c(x)|u|^{\beta}|v|^{\gamma}$$

where $c(x) \in L^{\infty}(\overline{\Omega})$ and $\beta, \gamma \geq 1$. Using Young's inequality

$$|u|^{\beta}|v|^{\gamma} \le \frac{1}{m}|u|^{\beta m} + \frac{1}{n}|v|^{\gamma n}$$

where 1/m + 1/n = 1. Let $r = \beta m$ and $s = \gamma n$. So $\frac{\beta}{r} + \frac{\gamma}{s} = 1$. Consequently, for this class the three cases are

$$(1), \qquad \frac{\beta}{n} + \frac{\gamma}{n} < 1.$$

(1),
$$\frac{\beta}{p} + \frac{\gamma}{q} < 1.$$
(II),
$$\frac{\beta}{p} + \frac{\gamma}{q} > 1 \quad \text{and} \quad \frac{\beta}{p^*} + \frac{\gamma}{q^*} < 1.$$
(III),
$$\frac{\beta}{p} + \frac{\gamma}{q} = 1.$$

(III),
$$\frac{\beta}{p} + \frac{\gamma}{q} = 1.$$

In this example, condition (F_5) is precisely the inequality in (I) above. Condition (F_6) holds if β and γ are such that

(2.1)
$$\theta_p \beta + \theta_q \gamma \ge 1.$$

Observe that, if (2.1) holds with θ_n and θ_n as in the Introduction, then we are necessarily in case (II). That is, the problem is "superlinear-like".

The theorems stated in the Introduction contain and extend some of the results of the above mentioned papers.

(ii) In [BFT] the following system was studied

$$-\Delta_p u = a(x)|u|^{\alpha-2}u + b(x)|v|^{\beta-2}v + f$$

-\Delta_q v = c(x)|u|^{\gamma-2}u + d(x)|v|^{\delta-2}v + g

subject to Dirichlet boundary conditions. In this generality, the system is not variational. However, if b(x) = c(x) and $\beta = \gamma = 2$, the above equations are the Euler Lagrange equations of a functional Φ as in (1.1) with

6

$$F(x,u,v) = a(x)|u|^{\alpha} + b(x)uv + d(x)|v|^{\delta} + fu + gv.$$

where we assume that $a,b,d\in L^{\infty}(\Omega), \alpha,\delta\geq 1$ and $f\in L^{(p^{\bullet})'}(\Omega), g\in L^{(\eta^{\bullet})'}(\Omega)$ Here $(p^*)' = \frac{pN}{p+N(p-1)}$ and a similar expression for $(q^*)'$. The fact that f and g are not necessarily in $L^{\infty}(\Omega)$ implies that the various pointwise estimates (F) cannot hold. However, since the terms where they appear are linear in u and v. their presence essentially do not change the proofs of the theorems. So, in this example, the three cases studied are:

(1)_{ii}
$$\alpha < p, \ \delta < q, \ \frac{1}{p} + \frac{1}{q} < 1.$$
(11)_{ii}
$$\alpha > p \text{ or } \delta > q \text{ or } \frac{1}{p} + \frac{1}{q} > 1.$$
(111)_{ii}
$$\alpha = p, \ \delta = q, \ \frac{1}{p} + \frac{1}{q} = 1.$$

(II)_{ii}
$$\alpha > p \text{ or } \delta > q \text{ or } \frac{1}{p} + \frac{1}{q} > 1$$

(III)_{ii}
$$\alpha = p, \ \delta = q, \ \frac{1}{p} + \frac{1}{q} = 1.$$

We remark that case (II); was not considered in [BFT]. Our results for case (III), extend the ones in [BFT].

Remark. For the special examples above, condition (F5) can be replaced by (F5)' there are positive constants c and ε such that

$$F(x, t^q, t^p) > ct^{pq}$$
 for all $x \in \overline{\Omega}$, $0 < t < \varepsilon$.

3. The eigenvalue problem. Let $G: \mathbb{R}^2 \to [0, \infty)$ be a \mathbb{C}^1 even function satisfying conditions (G1) and (G2) given in the Introduction

Lemma 3.1. Given $a \in L^{\infty}(\Omega)$, there are a real number $\lambda_1(a)$ and $(u_0, v_0) \in E$, such that

$$\begin{cases}
-\Delta_p u_0 - aG_u(u_0, v_0) = \lambda_1(a)u_0|u_0|^{p-2} \\
-\Delta_q v_0 - aG_v(u_0, v_0) = \lambda_1(a)v_0|v_0|^{q-2}
\end{cases}$$
(3.1)

and

$$(3.2) \qquad \frac{1}{2} \int |\nabla u|^p + \frac{1}{q} \int |\nabla v|^q - \int aG(u,v) \ge \lambda_1(a) \left[\frac{1}{p} \int |u|^p + \frac{1}{q} \int |v|^q \right]$$

for all $(u, v) \in E$, with equality for (u_0, v_0) .

Proof. Choose $M > k||a||_{L^{\infty}}$, where k is the constant in (G2). Then the functional

$$(3.3) \ J(u,v) = \frac{1}{p} \int |\nabla u|^p + \frac{1}{q} \int |\nabla v|^q - \int \sigma G(u,v) + M \left[\frac{1}{p} \int |u|^p + \frac{1}{q} \int |v|^q \right]$$

is non-negative for $(u,v) \in E$. Let

(3.4)
$$S = \left\{ (u, v) \in E : \frac{1}{p} \int |u|^p + \frac{1}{q} \int |v|^q = 1 \right\}$$

and let us look for $Inf\{J(u,v):(u,v)\in S\}$. Let us denote this infimum by μ , and let us take a minimizing sequence $(u_n,v_n)\in S$. It follows that $||u_n||_{W^{1,p}}$ and $||v_n||_{W^{1,p}}$ are bounded. So we may choose subsequences (denoted again by (u_n) and (v_n)) such that (u_n) converges to u_0 , weakly in $W_0^{1,p}$ and strongly in L^p . Similarly for (v_n) . Passing to the limit

$$\frac{1}{p} \int |\nabla u_0|^p + \frac{1}{q} \int |\nabla v_0|^q - \int \sigma + G(u_0, v_0) + M\left[\frac{1}{p} \int |u_0|^p + \frac{1}{q} \int |v_0|^q\right] \le \mu$$

which indeed is an equality because $(u_0, v_0) \in S$. So the above infimum is achieved. If follows then that

$$\begin{cases}
-\Delta_p u_0 - aG_u(u_0, v_0) + Mu_0|u_0|^{p-1} = \mu_M u_0|u_0|^{p-1} \\
-\Delta_q v_0 - aG_v(u_0, v_0) + Mv_0|v_0|^{q-1} = \mu_M v_0|v_0|^{p-1}
\end{cases}$$

where μ_M is the Lagrange multiplier. It follows from (G1) that

(3.6)
$$G(u,v) = \frac{1}{\rho} u G_u(u,v) + \frac{1}{q} v G_v(u,v)$$

8

for all $(u,v) \in \mathbb{R}^2$. From the minimization above we have:

$$(3.7) \quad \mu\left[\frac{1}{p}\int |u|^p + \frac{1}{q}\int |v|^q\right] \le \frac{1}{p}\int |\nabla u|^p + \frac{1}{q}\int |\nabla v|^q - \int aG(u,v) + M\left[\frac{1}{p}\int |u|^p + \frac{1}{q}\int |v|^q\right]$$

for all $(u,v) \in E$. It follows from (3.5), (3.6) and (3.7) that $\mu = \mu_M$. In this way we get (3.1) and (3.2) with $\lambda_1(a) = \mu - M$, and the eigenfunction pair (u_0, v_0) as obtained above.

Remark. From the minimization argument above, it follows that both u_0 and v_0 can be taken ≥ 0 in Ω . As in [dT] it can be proved that u_0, v_0 are $C^1(\overline{\Omega})$ as consequence of regularity results of [T]. Then by the Vasquez Maximum Principle [V] for the p-Laplacian, we conclude that u_0 and v_0 are indeed > 0 in Ω .

Lemma 3.2. $\lambda_1(a)$ is a continuous function of a in the L^{∞} norm.

Proof. Let us denote by J_a the functional defined in (3.3) and J_b the corresponding one with a replaced by b, where b is some other L^{∞} -function. Let $\lambda_1(b)$ be eigenvalue corresponding to b given in Lemma 3.1. We show that, given $\varepsilon > 0$ there is a $\delta > 0$ such that $|\lambda_1(a) - \lambda_1(b)| < \varepsilon$ provided $||a - b||_{L^{\infty}} \le \delta$.

Indeed, given $\varepsilon > 0$, choose $(u_{\varepsilon}, v_{\varepsilon}) \in S_1$ such that

(3.8)
$$J_a(u_{\varepsilon}, v_{\varepsilon}) \le \lambda_1(a) + \frac{\varepsilon}{2}.$$

. Next (G2) implies

(3.9)
$$G(u, v) \le K \left(\frac{1}{p}|u|^p + \frac{1}{q}|v|^q\right)$$

where $K \ge \max\{kp, kq\}$. Using (3.9) we obtain

$$(3.10) |J_b(u_{\epsilon}, v_{\epsilon}) - J_a(u_{\epsilon}, v_{\epsilon})| \le ||b - a||_{L^{\infty}}.K.$$

So. from (3.10) and (3.8)

$$\lambda_1(b) \leq J_b(u_{\varepsilon}, v_{\varepsilon}) \leq J_a(u_{\varepsilon}, v_{\varepsilon}) + K||b - a||_{L^{\infty}} \leq \lambda_1(a) + \frac{\varepsilon}{2} + K||b - a||_{L^{\infty}}$$

Choosing $\delta = \frac{\varepsilon}{2k}$ we have $\lambda_1(b) \le \lambda_1(a) + \varepsilon$. Reversing the roles of a and b, the result follows.

4. Compactness conditions. We say that $\Phi: E \to \mathbb{R}$ satisfies the (PS) condition if, all $(u_n, v_n) \in E$ such that

$$|\Phi(u_n, v_n)| \le const \qquad \Phi'(u_n, v_n) \to 0$$

contains a convergent subsequence in the norm of E.

Lemma 4.1. Suppose that F satisfies (F_2) , (F_6) and (F_3) as in (II). Then the functional Φ defined in the Introduction satisfies the (PS) condition.

Proof. It follows from (4.1) that

$$\left|\frac{1}{p}\int |\nabla u_n|^p + \frac{1}{q}\int |\nabla v_n|^q - \int F(u_n, v_n)\right| \le const,$$

$$\left|\int |\nabla u_n|^p - \int F_u(u_n, v_n)u_n\right| \le \varepsilon_n ||u_n||_{W^{1,p}}$$

and a similar one for v_n , where $\varepsilon_n \to 0$. Using these expressions we get .

$$\left(\frac{1}{p} - \theta_p\right) \int |\nabla u_n|^p + \left(\frac{1}{q} - \theta_q\right) \int |\nabla v_n|^q - \int (F(u_n, v_n) - \theta_p u_n F_u - \theta_q v_n F_v) \\
\leq c + c(||u_n||_{W^{1,p}} + ||v_n||_{W^{1,q}})$$

which implies, using (F6) that both $||u_n||_{W^{1,p}}$ and $||v_n||_{W^{1,q}}$ are bounded. The existence of convergent subsequences follows in a standard way, since the growth of F is below the critical exponents p^* and q^* .

We say that $\Phi: E \to \mathbb{R}$ satisfies the Cerami condition, (Ce) for short, if all $(u_n, v_n) \in E$ such that

10

 $|\Phi(u_n, v_n)| \le const$ $(1 + ||u_n||_{W^{1,p}} + ||v_n||_{W^{1,q}})\Phi'(u_n, v_n) \to 0$ (4.2) constains a convergent subsequence in the norm of E.

Lemma 4.2. Suppose that F satisfies (F_2) , (F_3) and (F_3) as in (III). Then the functional Φ satisfies the (Ce) condition.

Proof. Take a sequence pair $(u_n, v_n) \in E$ satisfying (4.2). It suffices to prove that $||u_n||_{W^{1,p}}$ and $||v_n||_{W^{1,q}}$ are bounded, as remarked in the proof of the previous lemma. It follows readily (4.2) that

$$C \geq \langle \Phi'(u_n, v_n), (\frac{1}{p}u_n, \frac{1}{q}v_n) \rangle - \Phi(u_n, v_n) = \int (\frac{1}{p}u_n F_u(u_n, v_n) + \frac{1}{q}v_n F_v(u_n, v_n) - F(u_n, v_n)).$$

Then using (F_8) we obtain

$$(4.3) \qquad \int |u_n|^{\mu} + \int |v_n|^{\nu} \le const.$$

Next we use the following interpolation inequality, see [CM2]: let 0 < a < b < c and suppose that for some measurable function $u:\Omega\to R$ we have that

$$\int |u|^a < \infty \quad \text{and} \quad \int |u|^c < \infty$$

then

$$(4.4) \qquad \int |u|^b \le \left(\int |u|^a\right)^{\frac{c-b}{c-a}} \cdot \left(\int |u|^c\right)^{\frac{b-a}{c-a}}$$

We use (4.4) for $0 < \mu < p < p^*$ and $0 < \nu < q < q^*$. So using (4.3) and (4.4) we

$$\int |u_n|^p \leq C \left(\int |u_n|^{p^*} \right)^{\frac{p-\mu}{p^*-\mu}}, \quad \int |v_n|^q \leq C \left(\int |v_n|^{q^*} \right)^{\frac{q-\nu}{q^*-\nu}},$$

which implies by Sobolev imbedding

(4.5)
$$\int |u_n|^p \le c||u_n||_{W^{1,p}}^{\tilde{p}}, \int |v_n|^q \le c||v_n||_{W^{1,q}}^{\tilde{q}}.$$

where

$$\tilde{p} = \frac{p - \mu}{p^* - \mu} p^*, \qquad \tilde{q} = \frac{q - \nu}{q^* - \nu} q^*$$

Using (F_3) as in (III) we get

$$\Phi(u_n, v_n) \ge \frac{1}{p} \int |\nabla u_n|^p + \frac{1}{q} \int |\nabla v_n|^q - c \int |u_n|^p - c \int |v_n|^q$$

Which estimate by (4.5) leads to

$$\Phi(u_n, v_n) \ge \frac{1}{p} ||u_n||_{W^{1,p}}^p + \frac{1}{q} ||v_n||_{W^{1,q}}^q - c||u_n||_{W^{1,p}}^p - c||v_n||_{W^{1,q}}^q$$

Since $\Phi(u_n, v_n)$ is bounded and $\hat{p} < p$ and $\hat{q} < q$, it follows the boundedness of $||u_n||_{W^{1,p}}$ and $||v_n||_{W^{1,p}}$.

5. Proofs of Theorems completed.

- i) Theorem 1. Condition (F_3) with r and s as in (I) implies that Φ is weakly lower semicontinuous and coercive in E. So, it assumes its infimum at a point $(u_0, v_0) \in E$. Condition (F_2) implies that this is a critical point Φ and consequently a weak solution of (1.2).
- ii) Theorem 2. As in Theorem 1, Φ assumes its infimum at a point $(u_0, v_0) \in E$. To prove that this is not (0,0) it is enough to show that there is $(u_1, v_1) \in E$ such that $\Phi(u_1, v_1) < 0$.

Let φ be a first eigenfunction for the p-Laplacian

$$\left\{ \begin{array}{rcl} -\Delta_p \varphi & = & \lambda_1(p) |\varphi|^{p-2} \varphi, & \text{in} & \Omega \\ \varphi & = & 0 & \text{on} & \partial \Omega, \end{array} \right.$$

and ψ for the q-Laplacian. We know that $\varphi, \psi \in C^{1,\alpha}$, see [dB], [T]. So we can take $||\varphi||_{L^{\infty}}, ||\psi||_{L^{\infty}} \leq R$, where R is the constant in (F_5) . So

$$\Phi(t^{\frac{1}{p}}\varphi, t^{\frac{1}{q}}\psi) \leq t\left\{\frac{1}{p}\lambda_{1}(p)\int |\varphi|^{p} + \frac{1}{q}\lambda_{1}(q)\int |\psi|^{q}\right\} - t^{\theta}\int K(x, \varphi, \psi).$$

which is negative for t > 0 small.

iii) Theorem 3. It is easy to see that in this case Φ has the geometry of the Mountain Pass Theorem. Indeed, it follows from (F_3) and (F_7) that

$$|F(x, u, v)| \le c(|u|^{\overline{r}} + |v|^{\overline{s}} + |u|^r + |v|^s)$$

for all $x \in \overline{\Omega}$ and $(u,v) \in \mathbb{R}^2$, where $p < r, \overline{r} < p^*$ and $q < s, \overline{s} < q^*$. So by the Sobolev imbedding

$$\int F(x,u,v) \le c(||u||_{W^{1,p}}^r + ||v||_{W^{1,q}}^r + ||u||_{W^{1,p}}^{\frac{1}{r}} + ||v||_{W^{1,q}}^{\frac{1}{r}})$$

for all $(u,v) \in E$. So, we can estimate Φ by

$$\Phi(u,v) \geq \frac{1}{p} ||u||_{W^{1,p}}^p + \frac{1}{q} ||v||_{W^{1,q}}^q - \epsilon(||u||_{W^{1,p}}^r + ||v||_{W^{1,q}}^q + ||u||_{W^{1,p}}^{\frac{1}{p}} + ||v||_{W^{1,q}}^q)$$

which implies that there is an $\varepsilon > 0$ and $\rho > 0$ such that $\Phi(u, v) \ge \varepsilon$ for $||u||_{W^{1,p}} + ||v||_{W^{1,p}} = \rho$. On the other hand, using (F_6) we have

$$\frac{d}{dt}\left\{F(x,t^{\theta_p}u,t^{\theta_q}v)\right\} \ge \frac{1}{t}F(x,t^{\theta_p}u,t^{\theta_q}v)$$

which implies that $F(x, t^{\theta_p}u, t^{\theta_q}v) \geq tK(x, u, v)$ for some function K. Since

$$\frac{1}{p}\int |\nabla (t^{\theta_p}u)|^p + \frac{1}{q}\int |\nabla (t^{\theta_q}v)|^q = t^{\theta_p p}c_1 + t^{\theta_q q}c_2$$

and from the hypothesis (F_6) , $\theta_p p < 1$ and $\theta_q q < 1$, we conclude that for any fixed

$$(u,v) \neq (0,0), \quad \Phi(t^{\theta_p}u,t^{\theta_q}v) \to -\infty \quad \text{as} \quad t \to +\infty.$$

Since Φ satisfies the (PS) condition, as proved in Lemma 4.1, we may apply the Mountain Pass Theorem and conclude.

iv) Theorem 4. It follows from (F_9) that given $\varepsilon > 0$ there is a constant $C_* > 0$ such that

$$F(x, u, v) \le (a(x) + \varepsilon)G(u, v) + C_{\varepsilon}$$
, all $x \in \overline{\Omega}$, $(u, v) \in \mathbb{R}^2$.

Hence

$$(5.1) \qquad \Phi(u,v) \ge \frac{1}{p} \int |\nabla u|^p + \frac{1}{q} \int |\nabla v|^q - \int (a+\varepsilon)G(u,v) - C_{\varepsilon}|\Omega|.$$

Now let $0 < \delta < 1$ be a real number to be chosen later, and write (5.1) as follows

$$\begin{split} \Phi(u,v) & \geq \delta \left\{ \frac{1}{p} \int |\nabla u|^p + \frac{1}{q} \int |\nabla v|^q \right\} + \\ & (1-\delta) \left\{ \frac{1}{p} \int |\nabla u|^p + \frac{1}{q} \int |\nabla v|^q - \int \frac{a+\varepsilon}{1-\delta} G(u,v) \right\} - c_{\varepsilon} |\Omega| \end{split}$$

The expression in the second bracket is estimated from below by

$$\lambda_1 \left(\frac{n+\varepsilon}{1-\delta} \right) \left(\frac{1}{p} |u|^p + \frac{1}{q} \int |v|^q \right).$$

Now choose ε and δ such that $\lambda_1\left(\frac{a+\varepsilon}{1-\delta}\right) > 0$, which is possible in view of the continuity of $\lambda_1(a)$ with respect to a (Lemma 3.2), in the L^{∞} -norm. So

$$\Phi(u,v) \ge \delta \left\{ \frac{1}{p} \int \nabla u|^p + \frac{1}{q} \int |\nabla v|^q \right\} - C_{\epsilon} |\Omega|$$

which shows that Φ is coercive. Since Φ is weakly lower semicontinuous, the result follows.

v) Theorem 5. It suffices to show that Φ in this case has the geometry of the Mountain Pass Theorem. The compactness condition $(C\epsilon)$ has already been proved in Lemma 4.2. First we prove that (0,0) is a local minimum. Indeed, it follows from (F_{11}) and (F_3) that there is a constant $\epsilon > 0$ such that

(5.2)
$$F(x, u, v) \le c(x)\tilde{G}(u, v) + c(|u|^{\tilde{r}} + |v|^{\tilde{s}})$$

for all $x \in \overline{\Omega}$, $(u, v) \in \mathbb{R}^2$, and $\hat{r} > p, \hat{s} > q$. Next using (5.2) and a $\delta \in (0, 1)$ to be chosen later we have

$$\Phi(u,v) \geq \delta\left(\frac{1}{p}\int |\nabla u|^p + \frac{1}{q}\int |\nabla v|^q\right) +$$

14

$$(1 - \delta) \left\{ \frac{1}{p} \int |\nabla u|^p + \frac{1}{q} \int |\nabla u|^q - \int \frac{c(x)}{1 - \delta} G(u, v) \right\} - c||u||_{W^{1, p}}^{\frac{r}{r}} - c||v||_{W^{1, q}}^{\frac{r}{r}}$$

Choosing δ such that the expression in the bracket is positive, as a consequence of (F_{11}) , we get

$$\Phi(u,v) \ge c_1 ||u||_{W^{1,\rho}}^{\rho} + c_2 ||v||_{W^{1,\rho}}^{q} - C||u||_{W^{1,\rho}}^{\tilde{r}} - c||v||_{W^{1,\rho}}^{\tilde{s}}$$

which shows that there are positive numbers ρ and ε such that $\Phi(u,v) > \varepsilon$ for $||u||_{W^{1,p}} + ||v||_{W^{1,p}} = \rho$. Finally we use (F_{10}) to estimate

(5.3)
$$\Phi(u,v) \le \frac{1}{\rho} \int |\nabla u|^{\rho} + \frac{1}{q} \int |\nabla v|^{q} - \int b(x)G(u,v) + C$$

Choosing $u = t^{1/p}u_0$ and $v = t^{1/q}v_0$, where (u_0, v_0) is the eigenfunction pair corresponding to $\lambda_1(b)$ and using Lemma 3.1 we get from

$$\Phi(t^{1/p}u_0, t^{1/q}v_0) \leq \frac{t}{p} \int |\nabla u_0|^p + \frac{t}{q} \int |\nabla v_0|^q - t \int bG(u_0, v_0) + C$$

$$= t\lambda_1(b) \left\{ \frac{1}{p} \int |u_0|^p + \frac{1}{q} \int |v_0|^q \right\} + C,$$

which goes to $-\infty$ as $t \to +\infty$, in view of (F_{10}) .

- 6. Final Comments. There are many open problems connected with the study of the functional Φ depending on other assumptions on the potential F.
- (i) Suppose that the growth of F with respect to u is like $|u|^{p^*}$ as $|u| \to \infty$. A similar question with respect to v. The scalar case has been studied by several people, Guedda-Veron [GV], Egnell [E]
- (ii) Problems with Ω replaced by \mathbb{R}^N . For example, in the scalar case see [0] and references there in.

References

- [CM1] D.G. Costa and C.A. Magalhães, Variational elliptic problems which are non-quadratic at infinity, Nonl. Anal. TMA 23 (1994), 1401-1412.
- [FMT] P. Felmer, R.F. Manásevich and F. de Thélin. Existence and uniqueness of positive solutions for certain quasilinear elliptic systems. Comm. Part. Dif. Eq. 17(1992), 2013-2029.
- [V] J.L. Vasquez. A strong maximum principle for some quasilinear elliptic equations, Appl. Math and Optimization 12 (1984), 191-202.
- [dT] F. de Thélin. Première valeur propre d'un système elliptique non linéaire. C.R. Acad. Sci. paris 311 (1990), 603-606.
- [BFT] L. Boccardo, J. Fleckinger and F. de Thélin, Elliptic systems with various growths, preprint.
- [VT] J. Vélin and F. de Thélin, Existence and non existence of nontrivial solutions for some nonlinear elliptic systems, Rev. Mat. Univ. Compl. Madrid 6 (1993), 153-194.
- [O] J.M.B. do Ó. Nontrivial solutions for perturbations of p-Laplacian in \mathbb{R}^N interacting with the first eigenvalue, preprint.
- [T] P. Tolksdorf. Regularity for a more general class of quasilinear elliptic equations J. Dif. Eq. 51 (1984) 126-150.
- [CM2] D.G. Costa and C.A. Magalhães, A variational approach to noncooperative elliptic systems, Nonl. Anal. TMA 25 (1995) 699-715.
- [GV] M. Guedda and L. Véron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonl. Anal. TMA 13 (1989) 879-902.
- [E] H. Egnell. Elliptic boundary value problems with singular coefficients and critical nonlinearities, Indiana Univ. Math. J. 38 (1989), 235-251.

16

RELATÓRIOS DE PESQUISA — 1997

01/97 Solving Complementarity Problems by Means of a New Smooth Constrained Nonlinear Solver - Roberto Andreani and José Mario Martinez.

02/97 Riemannian Submersions of Open Manifolds which are Flat at Infinity

— Valery Marcnich.

- 03/97 Comparing the Numerical Performance of Two Trust-Region Algorithms for Large-Scale Bound-Constrained Minimization Maria A. Diniz-Ehrhardt. Marcia A. Gomes-Ruggiero and Sandra A. Santos.
- 04/97 Finsler speaes with constant flag curvature Xiaohuan Mo.
- 05/97 Symmetric Singularities of Reversible Vector Fields in Dimension Three

 João Carlos da Rocha Medrado and Marco Antonio Teixeira.
- 06/97 Nonsmooth Nonconvex Alternative Theorem and Applications A. J. V. Brandão and M. A. Rojas-Medar.
- 07/97 On the Klein-Gordon and Dirac Equations E.A. Notte Cuello and E. Capelas de Oliveira.
- 08/97 Augmented Lagrangians and Sphere Packing Problems José Mario Martínez.
- 09/97 História da Tangente Eduardo Sebastiani Ferreira.
- 10/97 Exact Penalty Methods With Constrained Subproblems Silvia M. H. Janesch and Lucio Tunes Santos.
- 11/97 Relato de Experiência: O Computador no Ensino de Cálculo, O Problema do Lixo na Unicamp e Outras Aplicações — Vera L. X. Figueiredo e Sandra A. Santos.
- 12/97 Harmonic Sequences of Harmonic 2-Spheres in Grassmann Manifolds
 Xiaohuan Mo and Caio J. C. Negreiros.
- 13/97 Open Problems on Regularization of Discontinuous Vector Fields —
 Marco Antonio Teixeira.

- 14/97 Can the Klein-Gordon Equation Describe Superluminal Processes? J. E. Majorino.
- 15/97 Nonsmooth Continuous-Time Optimization Problems: Sufficient Conditions Marko A. Rojas-Medar. Adilson J. Vicina-Brand ao and Geraldo N. Silva.
- 16/97 The Symmetric Tensor Product of a Direct Sum of Locally Convex Spaces — José M. Ansemil and Klaus Floret.
- 17/97 Optimality Conditions for Pareto Nonsmooth Nonconvex Programming in a Banach Spaces A. J. V. Brandão, M. A. Rojas-Medar and G. N. Silva.
- 18/97 Pontrjagin Classes and the Homology of an Orientable Manifold Ricardo N. Cruz.
- 19/97 Weierstrass Formula for Minimal Surfaces in Heisenberg Group Christiam B. Figueroa.
- 20/97 On the Global Convergence of Newton-Like Methods for Nonsmooth Systems — Márcia A. Gomes-Ruggiero, Vera Lúcia Rocha Lopes and José Mario Martinez.
- 21/97 The Retrieval of the Optical Constants and the Thickness of thin Films from Transmission Spectra — I. Chambouleyron, J. M. Martínez, A. C. Moretti and M. Mulato.
- 22/97 Generic Bifurcation of Reversible Vector Fields on a 2-Dimensional Manifold Marco Antonio Teixeira.
- 23/97 On the Convergence Rate for an Iterational Method for the Equations of Nonhomogeneous Incompressible Fluids Elva E. Ortega-Torres and Marko A. Rojas-Medar.
- 24/97 Some Results on Partitions with Difference Conditions José Plinio O. Santos and Paulo Mondek.
- 25/97 Sobre o Cálculo dos Índices de Ramificação Caio J. C. Negreiros.
- 26/97 Homogeneous Spaces Admitting Transitive Semigroups Luiz A. B. San Martin.
- 27/97 A Unified Born-Kirchhoff Approximation for Acoustic Media Maria A. Novais. Lucio T. Santos. Martin Tygel and Bjørn Ursin.

- 28/97 2.5D True-Amplitude Offset Continuation Lucio T. Santos. Jörg Schleicher and Martin Tygel.
- 29/97 2.5D True-Amplitude Migration and Demigration João L. Martins, Jörg Schleicher and Martin Tygel.
- 30/97 On a Generalized Mean Curvature Problem Sebastian A. Lorca and Pedro Ubilla.
- 31/97 Solution of contact problems using subroutine BOX-QUACAN Z. Dostál. A. Friedlander and Sandra A. Santos.
- 32/97 A Family of Partitions Identities José Plínio O. Santos and Paulo Mondek.
- 33/97 On Global Extrema for Calculus and Analysis Students Ricardo N. Cruz.
- 34/97 Launching of Non-Dispersive Superluminal Beams V. S. Barashenkov and Waldyr A. Rodrigues Jr.
- 35/97 Integrality Results for Pontrjagin Classes and the Homology of Manifolds Ricardo N. Cruz.
- 36/97 Quaternionic Quantum Mechanics: From Complex to Complexified Quaternions Stefano De Leo and Waldyr A. Rodrigues Jr.
- 37/97 Hypercomplex Group Theory Stefano De Leo.
- 38/97 Local Hypercomplex Analiticity Stefano De Leo and Pietro Rotelli.
- 39/97 A New Definition of Hypercomplex Analiticity Stefano De Leo and Pietro Rotelli.
- 40/97 A Multiplicative Seasonal Growth for Multivariate Time Series Analysis and Forescating Emanuel Pimentel Barbosa and Regina Sadownik.
- 41/97 Um Processo de Newton para Encontrar a Tangente à uma Cônica Eduardo Sebastiani.
- 42/97 The Equations of a Viscous Asymmetric Fluids: An Iterational Approach Elva E. Ortega-Torres and Marko A. Rojas-Medar.
- 43/97 Ten Years of General Statistical Analysis. (The main G-estimators of general statistical analysis) — V. Girko.

- 44/97 On a System of Evolution Equations of Magnetohydrodynamic Type:

 An Iterational Approach E. A. Notte-Cuello and Marko A. Rojas-Medar.
- 45/97 A Mathematical Model for Pathogenics Fungi growth and the Effects of Alernating and Mixing Fungicide Laércio Luis Vendite and Claudia Galarda Varassin.
- 46/97 Simple Proof of the Strong Circular Law V. L. Girko.
- 47/97 Order and Domains of Attraction of Control Sets in Flag Manifolds Luiz A. B. Sau Martin.
- 48/97 Kähler-Einstein Metrics Yuri Bozhkov.
- 49/97 On the local convergence of quasi-newton methods for nonlinear complementarity problems Vera Lucia Rocha Lopes, José Mario Martínez and Rosana Pérez.
- 50/97 El uso de las Ecuaciones Diferenciales Algebraicas (EDAs) para la Solucion Numerica de Algunas Ecuaciones Diferenciales Parciales (EDPs).
 Lilliam Alvarez and Ignacio J. Sánchez.