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1. Introduction. In this paper we study the functional

L 1
(L.1) dlu.r) = ;./n|‘7u]” L E.[]lv"]q_/ﬂf.('r‘“.”)'

where pp and ¢ are real numbers larger than 1, is some bounded domain in #Y, u
and o are real-valued functions defined in 1 and belonging to appropriate spaces

of functions and F (sometimes rcfered as a polential) is a real-valued differentiable

function with domain 51 x JRx [R. Our aim is to study the geometry of this functional
viewing to determining its critical points. Such critical points are the solutions of
associaled Euler-Lagrange equations, which in the present case is the system of
quasilinear elliptic equations below
(1.2) —i,u:Fu(I,u.v)

—Agw = F(z.u,v)
where F, designates the partial derivative of F' with respect to u and A, is the

so-called p-Laplacian operator
Apu = div(|VulP~?Vu).
The geometry of & is sort of similar to the one of the functional

%j]VuP—/F(I,u),

which corresponds to a single quasilinear equation. However, some interesting fea-
tures appear due 1o the conpling in the equations (1.2). Our theorems include
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and unify some previous tesults hy Baccardo - Fleckinger de Thelin [BFT] and de
Thélin-Vélin [VT).

Lei us introduce the precise assumptions under which our problem is stud-
ied. Onr functional @ is to be defned in the Cartesian product ol Sobolev spaces
1,1 7(0) x W), For that matter. the following assumption on F has to be made.

althongh stronger restriction will come timely:
(F) F:Ox Rx R — Ris C'and
|F(ryue)] < el + [uf + [2]7),

where p* = pN/{N — p) and ¢ is some positive constant. Similarly ¢°.

In this work. we assume that hoth p and g are less than N'. If this is so, we have
the continuous imbeddings Wo#(Q) € LP' () and Wa () € L7(9), which then
tell us that @ is well defined. In order to have it of class C'!, we require a stronger

condition than (F), namely: F is ' and

. =)
|Fu(z,u,0)| £ C (1 o 1 L o 1

(F2) -
|Flz,u,v)| £ C (l + v

-1 +FU|LL?"__JJ

It is easy to prove that. if (F3) is satisfied. then also is (F7). Under (£3), it follows
that the critical points of & are the weak solutions of system (1.2), subject to
Dirichlet boundary conditions. For easy reference. we summarize the aforesaid as
follows: ® under hypothesis (F3), with E = Wg*(f) x Wy ¥(R), we have

$:F — R isa C'-functional.

The geometry of ¢ depends strongly on the values of r and s in the estimate

below
(F3) |F(z,u,v)] € o1+ Ju]" + |v]*),

where ¢ is some positive constant, and r < p*,s < ¢". We discuss three distinct cases

(8]

(I) r < pand s <gq. (“sublinear-like™)
(I} r>pors>gq.andr<p.s<qg, (“supeclincar-like”)
(I11) r = pand = =q. ("of resonant-type”).

The expressions in parenthesis are to remind ns of similar terminology in the rase
p =g =2 Of course. there are several other sitnations, which could be of interest
to consider. Observe that we are considering only subcritical cases. The cases where
either r = p* or s = ¢~ or both equalities hold lead to a loss of compactness. and to
problems which should be investigated.

Next we state the main results of this paper.

Theorem 1 (The coercive case). Assume (F}) and (Fy) with r and s asin ()

Then ¢ achieves a global minimum at some (e, vy) € E. which is then a weak

solution of system (1.2).
If we are in the situation that
(Fy) F(z,0,0) = F,(r.0.0) = F.(£.0.0), for all 1 € {1,

then u = 0 and v = 0 are a trivial solution of system (1.2). In this case the relevant
question is obtaining a non-trivial solution of (1.2). This will be possible under

appropriate assumptions on the function F. as it is stated in the next results.

Theorem 2 (The coercive case, non-trivial solution). Assume (£3). (Fy) and (F5)
with r and s as in (/). Then ® achieves a global minimum at a point (u,. vg) # (0.0,
provided there exist positive constant R and # < 1, and a continuous function
K:Q x R x R — R such that

(F5) F(I.flﬁu.t!!'v) > t°K(z,u,v), for r € ﬁ.lu|.1|‘| < R, and small ¢ > 0.

In this case a Palais-Smale condition holds (see Lemma 4.1) if we assume that

there are numbers R > 0, 4, and 8, with



1 1 1
o <, < » ~ <y < -
sueh that
(Fy) 0 < Flroww) € 0uF,(x,u,0) 4+ 0,uF, (r.u,v)

for all + € @ and |ul. 0| > R.

Theorem 3.  Assume (F3). (Fy). (F%) and (F3) with r and s as in (II). Assume also
that there are constants ¢ > 0 and : > 0 and numbers 7 > p, 5 > ¢. such that

(F7) |F(z,u.v)] < e(|ef + [oF). for |u],|v] < e, € 1.

Then @ has a non-trivial critical point.

Remark. Without loss of generality we may assume 7 < p* and 5 < ¢".

Next we study the situation when (F3) holds with r and s as in (III}, the case
we called “of resonant 1ype”. In this case, it is quite adequate to assume a condition
on F that implies that the functional & satisfies the so-called Cerami condition (see
Section 4 for the definition). The assumption on F is: there are positive numbers

c. R.p and v such that
1 1 : v
(Fe) —uF, + -vF, — F 2 c{fu]" + |v[")
r q

for |u].|¢v| > R.
This type of condition has been introduced by Costa-Magalhaes [CM1], [CM2].
In order to avoid resonance we shall assume a condition on F involving an eigenvalue

problem. which we introduce next. Let G : R? — [0,00) be a C* even function such

1hat

(Gh) G(!Jﬁu.f%t-) = 1G(u.v)
(G) Glu.v) < k(Jul” + [v]7).
1

Examples of such functions are
(i) (lu.r) = o lul” + c2fvl?
” : T
(11) (.(rt.l']:r|u|"||'['.\\'llh—+-= 1.
- r 1
where ;. ey and e are positive constants,
We shiall prove in Section 3 that the eigenvalue problem
Ay —ali, = AMulP=?u

-A,r —aG, = Ml e

subject 10 Dirichlet honndary conditions, with a € L™{{2). has an eingenvalue \(aj,

characterized variationally by

I—lj‘/|'\_|ri"+ é /IVN[' - j(:(r’(lr.n-) > A(a) (:—'/]ul‘" - 5]“")

for all (u.r) € E.
Now we introduce the following assumption:

(Fy) Ai(a) > 0. where limsup M

- <alr) e L™()
fulfui—ee Gluv)

and state the next results.

Theorem 4. Assume (), (Fs). (Fy) and (Fy) with r and s as in ([T]). Then the
functional @ is bonnded below and the infimum is achieved.

Theorem 5. Assume (), (Fy). (Fs) and (F) with r and s as in (I11). Suppose
also that there are positive numbers R and =z, and L™¥(f) linctions b r) and o r)

such that

R

Liel 2
llel £

(Fio) M(D) <0, F(rou,v) 2 b(2)Glue), |u
(Fu1) M(e) > 0, Flr,u.v) € e(2)Glu,v). |u

where i and (i are functions satisfying the conditions ((/1) and (G2). Then. the

functional ® possesses a non-trivial critical point.



2. Special classes of potentials F. (i) The following class of potentials
F (and its perturbations) have been considered by [dT]. [VT]. [FMT]:

Flrou) = ()|l
where e(r) € L™(T1) and 3.9 2 1. Using Young's inequality

; 1 1
|H|“1i'|“ S __Iulb'm + __h\l-\u
m n

where 1/fm 4+ 1/n = 1. Let r = din and s = 4n. So E + o 1. Consequently, for
this class the three cases are L
3 -
(1), —+L<.
I i
3 3
(1IN, Zqdni apd L )
fj’ q P q"
(1), R A
nr 9

In this example. condition (F3) is precisely the inequality in (I) above. Condition
(F5) holds if 3 and + are such that

(2.1) 0,3 + 0,y 2 1.

Observe that. if (2.1) holds with 8, and 6, as in the Introduction, then we are
necessarily in case (I1). That is, the problem is “superlinear-like”.

The theorems stated in the Introduction contain and extend some of the results
of the above mentioned papers.

(i1) In [BFT] the following system was studied

—Agu = a(r)|ul] P+ blz)|el® v+ f
—Auv = clx)|u]" P + ()] P + g
subject to Dirichlet houndary conditions. In this generality, the system is not vari-

ational. However. if 6(x) = ¢(x) and 3 = v = 2, the above equations are Lhe Euler

Lagrange equations of a functional ® as in (1.1) with

6

F(r.u.v) =a(O)|ul® + b(x)ur + d(z)]e|* + fu + ge.

where we assume that a.b.d € L=(0).a.8 > 1 and [ & L0 4 ¢ L.
IAY
p+Np=1)

g ave not necessarilv in L(0) implies that the various pointwise estimates (F)

Here (p7) = and a similar expression for (¢7)'. The fact that [ and
cannot holil, However. siuce the terms where they appear are linear in u and e,
their presence essentially do not change the proofs of the theorems. So. in this

example, the three cases studied are:

11
(M. n<pb<y —+-<1
P l"l 1
(11;, n>poré>qor—-+->1
1 ."l q
(I11);, o=p d=q. -+-=1
4 r q

We remark that case (I1);; was not considered in [BFT]. Our results for case (I11),,
extend the ones in [BFT).

Remark. For the special examples above, condition (F3) can be replaced by
(F3)’ there are positive constants c and ¢ such that

F(r, %, 1%) > ct™ forall ref 0<t<s.

3. The eigenvalue problem. Let ¢ : B? — [0,20) be a ! even function

satisfying conditions (G1) and (G2) given in the Introduction.

Lemma 3.1. Given ¢ € L®(2). there are a real number A (a) and (ug, o) € E.
such that

(3.1) —Auitg — Gy (g, vy) = Ay(a)ug|ug|?~?
’ —=A,ve — a6 (ua, vo) = Ay(a)volre|™™*

and



1 |
(32 5 [Ivul+ é/l\“"l‘ ~ [ aGiwe) 2 M) [;_/lw\w;_/lvl“]

for all (1w, ) € E.with equality for (ug. ).

Proof. Choose M > k|ja]|s~. where kis the constant in (G2). Then the functional

] 1 | 1
AN )y == [1oupr+= (190 = [aGlu.e)+ M |- rys e
(3.4 J(u.v) I'-/1 u| +q./| vf? }/ﬂ([lt.l]-{- \/ L)-/htl +~?—/|l]J

s non-negative for (v.e) € 2. Lel

1 1
30 N= D e L 1 =
( {{n r)E £ i’jl“l +q./|1| l}

and let us look for Inf{J(u.v) : (r.v) € S}. Let us denote this infimum by g,
and et us take a minimizing sequence (u,.v,) € S. It follows that [|u,||wre and
|le*a|lw1¢ are bonunded. So we may choose subsequences (denoted again by (u,) and
(v,)) snuch that (wv,) converges to ug. weakly in H'J“" and strongly in L. Similarly

for (v,). Passing to the limit

1 el : : 1 »y] .
- ; - - 7 — ) = = ) <
J,fl‘ al” rlfl"n.l fn+6(uo.to>+M [P]qul +qf|tu| <

which indeed is an equality because (wuq.15) € S. So the above infimum is achieved.

If follows then that

I —Aug — aGy(ug, vo) + Muig|uglP=" = prasuo|uol”™"

(3.5) 1 —Aro — aGl(up. vo) + Mup|vg|*™" = jeasvo|vol™™!

where pay is the Lagrange multiplier. It follows from (G1) that

(3.6) Glu.v) = =G (u.v) + sl'G',,(u.v)

d
P

o

for all (v.r) € /%, From the minimization above we have:

(A7 [%_[lulw éjw] <
i/|7u|"+ éijpf" _/rr(,’[n.l')+ M H/h,rv*_ 5/[,.11]

for all (v.e) € E. 1t follows from (3.5). (3.6) and (3.7) that y = jy;. In this way
we get (3.1) and (3.2) with A(a) = p — M. and the eigenfunction pair (ug. ) as
obtained ahove. =
Remark. From the minimization argument above. it follows that hoth u, and
o can he taken > 0in . As in [dT] it can be proved that wuy. o are CYOj as
conseqience of regularity results of [T]. Then by the Vasquez Maximum Principle
[V] for the p-Laplacian. we conclude that up and vy are indeed > 0 in Q2.

Lemma 3.2. A (u) is a continuous function of @ in the L™ norm.

Proof. Let us denole by .J, the functional defined in (3.3) and .J; the corresponding
one with e replaced by b, where b is some other L*=-function. Let A, (h) be eigenvalue
corresponding to b given in Lemma 3.1. We show that, given > 0 thereisa é >0
such that |Ay(a) — M (b)| < ¢ provided ||a — b||L~ < &.

Indeed, given : > 0. choose (u..v.) € S, such that

(38) Jaluev”:] S A](ﬂ) +

| m

. Next (G2) implies

: (1 1

(3.9) Glu.v) < K (_|u1p+ -w)
P q

where &' > max{kp, kq}. Using (3.9) we obtain

(3.10) (bt ) = Jaltesve)] < 1B = allLs K.
So. from (3.10) and (3.8)

4



MB) < Blar,) € Lluer) + Kb =ally= € A{a) + 5 + K|lb=allL=
Choosing & = .)‘; we have \j(h) < Aj(a)+ <.
Reversing the roles of a and b the result follows. o

4. Compactness conditions. We say that ® : £ — I? satisfies the (PS)
condhon il. all (u,.v,) € E such that

(4.1} | (1, 1) < const ' (up.vy,) =0

contains a convergent subsequence in the norm of E.

Lemma 4.1. Suppose that F satisfies (F3), (Fs) and (F3) as in (11). Then the
functional & defined in the Introduction satisfies the (IPS) condition.

Proof. Tt follows from (4.1) that

\:—,‘/1vzln|"+%j|vunr* )
l[]Y’u,J" ~ [ Fulun,va)un

and a similar one for v,. where £, — 0. Using these expressions we get ..

1 1 g oy _
(5-8) [190r+ (£ =0) f1900 = [(Flawsta) =P, = P
< e+ el ||unllwie + |[vallwis)

< const,

< epl|tnllwis

which implies. using (F6) that both ||un|lws.»and |[va|w:.c are bounded. The exis-
tence of convergent subsequences follows in a standard way, since the growth of F

is below the critical exponents p™ and g¢°. D

We sav that ¢ : E — IR satisfies the Cerami condition, (Ce) for short, if all
(t,.7,) € E sucl: that

10

(4.2) |®(1,. 1) < const (1 + ||unllwre + |loallus 1 )® (1n 00) — 0

constains a convergent subsequence in the norm of E.

Lemma 4.2. Suppose that F satisfies (F3). (F3) and (F3) as in (1), Then the

functional ® satisfies the (Ce) condition.

Proof. Take a sequence pair (u,.t,) € E satisfying (4.2). It suffices to prove
that |Ju,||swrs and |[eg|[wro ave bounded. as remarked in the proof of the previous

lemma. 1l follows readily (4.2) that
[ 1
> (P (u,. t',,].(-l-u,,. lr,,))—C[J[ Upsy) = /(’—_‘u,,f'u(u,.. Ua l+‘{;l.‘,,F,.(H.,_ va)=Flu,.v,)).
r 4

Then using (F3) we obtain

(4.3) /}u..,|“ + /!v,.l" < consl.
Next we use the following interpolation inequality. see [CM2]: let 0 < a < b < c and
suppose that for some measurable function u: Q@ — R we have that

/|ui" < oc and -/|u|r < oo

then

(44) | Jur < (/lul)s—(jml)J

We use (4.4) for0< p < p<p and 0 < » < g < ¢". So using (1.3) and (1.4) we

get
Jwrsc U'”“‘p.)ﬁ- flalr<c (jlz-nr")ﬁ.

which implies by Sobolev imbedding

(45) J el < elluallyons [ 1eal” < elleallipns

11




where

Using () as in (111) we get

| 1
ORI | T 1 PR T y_ al?
(u,.v,) 2 » /l “-ll o 7 [l ”n1 C|/|“n| f/l‘ |

Which estimate by (1.3) leads 10
1 , 1 5 ;
q’(”ﬂ' ‘.li} 2 ;H""“:‘" » + {—I”P"”?l'l-ﬂ - r”‘”"”"l’t"‘F - C”""”‘I’-I"‘-V

Since @{u,.1,) is hounded and j < p and § < q. it [ollows the houndedness of
[feraTr e and [[ea il o o

5. Proofs of Theorems completed.

i) Theorem 1. Condition (F3) with r and s as in (I) implies that @ is weakly
lower semicontinuous and coercive in E. So. it assumes its infimum at a point
(ttp.va) € E. Condition (F,) implies that this is a critical point ¢ and consequently
a weak solution of (1.2).

ii) Theorem 2. Asin Theorem 1, ¢ assumes its infimum at a point (ug, ve) € E.
To prove that this is not (0,0) it is enough to show that there is (u;,v,) € E such
that d(uy. vy) < 0.

Let ;» be a first eigenfunction for the p-Laplacian

—Aye = APl e, in Q
s = 0 on 89,

and v for the ¢-Laplacian. We know that 5,1 € C', see [dB], [T]. So we can take
lelle=.|18|c~ < R. where R is the constant in (F3). So

1 :
b(trp tov) < r{%h(p)flsal'w Ehtq)]lwl“} -
f"/h’(r.:,o,t,"-).

which is negative for # > 0 small.

——

iii) Theorem 3. It is easy to see that in this case ® has the geometry of the

Mountain Pass Theorem. Indeed. it follows from (Fy) and (F7) that .
[Flr.u.r)| < :'([u|'- P Pl L T

for all ¥ € Q and (u.v) € IR?. where p < r.7 < p° and g < <.3 < ¢". So by the

Sohalev imbedding
[ Fra) S clllullivs s + il + ol = el o)
for all (u.r) € £. So. we can estimate ® by
blu.r) 2 %“””fw p T rl",”'“:n o= cllullivr e + ellivr e + Hulls + el o)

which implies that there is an = > 0 and p > 0 such that ®(u.v) > = for || u)wi» +

[lellrs = p. On the other hand. using (Fy) we have
d Op, 48 L C—
—{F(r.%u, t%0)} > =F(z. 7 utr)
dt t
which implies that F(z. t%u, t%0) > tK(r.u,v) for some function K. Since

lf|V’(f""u)l” L f V(%) = t%7ey + e,
r q
and from the hypothesis (F3).0,p < 1 and 8,4 < L. we conclude that for any hixed

(u.0) # (0.0), ®(utbv) — -0 as | — +x.

Since @ satisfies the (PS) condition, as proved in Lemma 1.1. we may apply the
Mountain Pass Theorem and conclude.

iv) Theorem 4. It follows from (F%) that given £ > 0 there is a constant (, > 0

such that

Flroue) < (u(e)+)G(u. )+ C,. all re 0 (u.v) E B

13



!If'ﬂl’f‘

(5.1) Biwas :-’/ ISu]” + 3—7 / T — f(n + €)Glu,v) - C.J9.

Now let 0 < ¢ < 1 he a real number to be chasen later, and write (5.1) as follows

1 |
LI r')%?‘{'- Tl + - Vi"'}-é—
: = J 1l r,./||

(- .s){%]mqu j;]m-p —/Tt:(x‘(u,l']} ST

The expression in the second bracket is estimated from below by

() (o o).

Now choose £ and & such that A (:+;

contimity of Aj(a) with respect 1o a (Lemma 3.2). in the L™-norm. So

) > 0. which is possible in view of the

1 1
dlu.v) > .n{; /vuzr b [mv} - C.|0|

which shows that @ is coercive. Since ¢ is weakly lower semicontinuous, the result

fu”u\\'s.

v) Theorem 5. It suffices ta show that ¢ in this case has the geometry of the
Mountain Pass Theorem, The compactness condition (C'¢) has already been proved
in Lemmia 1.2, First we prove that (0,0) is a lecal minimum. Indeed, it follows from
(F1y) and (F3) that there is a constant ¢ > 0 such that

(5.2) Flrouv) < o(n)Glucre) + el[ul” + o))

for all # € T, (u.v) € B and # > p, & > ¢. Next using (5.2) and a 4 € (0,1) 1o be

chiosen later we have

\ : PR It
Plu.r) 2 5(]}/]\7"[ +q/|Vr|)+

4

i 1 o)
(1-46) {;/|"7u|”+ ;/[VUP- . _66'(!1.0)}

_‘('”"“I;V' a f”l'H:w-w
C'hoosing & snel that the expression in the bracket is positive. as a consequence of
(I)). we get v
d(u.r) 2 e llullip, + eallelli e = Cllulliy, = cllulliye

which shows that there are positive numbers p and & such that ®(u.v} > £ for

e [iw1 0 + ||0]|wr.0 = p. Finally we use (Fio) to estimate

1 1
3 Dlu.o) < - V-u"’-i——fpr[’ —fb(.r)c(u.uuc
(3.9 w.o) < < fIvul +2
(hoosing v = 1"7ug and v = 1'%y, where (ug, vo) is the eigenfunction pair corre-

sponding 1o A (b) and using Lemma 3.1 we get from

{ t
Ot Pun. 1M0y) < .-/|Vu0|"+-r;/|'\7u0[" -t/bG(Uo. v) +C
P

1 1
ot {3 [luap+ 3 [l + .

which goes to —co as t — 400, in view of (Fjp)-

6. Final Comments. There are many open problems connected with the
study of the functional ¢ depending on other assumptions on the potential F.

(i) Suppose that the growth of F with respect to u is like |u|*" as |u| — oc. A simi-
lar question with respect to v. The scalar case has been studied by several people.
Guedda-Veron [GV], Egnell [E]

(ii) Problems with Q replaced by RV. For example, in the scalar case see [0] and
references there in.
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