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Abstract

[/}
We shown in this paper that the maximum of & (or ﬁ)order of har-

monic maps ¢ : §2 — Gx(€™) is equal to n—1 where G(€™) is the Grassmann
manifold of k-planes in €™ equipped with its natural Fubini-Study metric.

§0 Introduction

The study of harmonic maps of compact Riemann surfaces into homoge-
neous spaces is receiving a large attention in Geometry and Physics.

In the late 1960’s Chern [4] and Calabi [3] published several works on
minimal immersions into spheres or more generally real projective spaces,
which are in the spirit of this paper.

The problem was reexamined by physicists Din-Zakarewski [6] and Glaser
and Storal [9) which complexify it. Inspired by these ideas Eells and Wood [8]
gave a complete classification for harmonic 2-spheres in € P", and also some
important partial results for the higher genus cases in terms of holomorphic
data.

A number of related results have appeared including Burstall and Wood
[2], Chern and Wolfson (5] and Uhlenbeck [14]. These authors have studied
harmonic 2-spheres into complex Grassmannians and [14] also studies the
symmetric space case in general via the use of a Cartan’s theorem.
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We also want to mention that the study of critical points of the energy
functional (which are the harmonic maps!) is linked with the study of Yang-
Mills-Higgs fields in 3 dimensions, Yang-Mills in 4 dimensions or more gener-

ally with the Seiberg-Witten equations.
We will now state the main result in this paper (3.1 Theorem). Lel

Gx( @) the complex Grassmann manifold consisting of k-planes in @' and
k=0,1,...n — 1. We define Q0 as the set of harmonic 2-spheres in Gi(CT")
where §%(=~ @P') and G( ") are equipped with its natural Fubini-Study

n=1
metric. Let 2 = U Q.
= 9
We define the function 7 : @ — IV U {0} by 7(¢) = the &’ (or ﬁ) order
of ¢. Hence:
0.1. Theorem ([8)]):

a) Héaﬁ): r(¢)=n—-1

b) The set {¢ € Qy;7(¢) = n — 1} is equal to the set of full holomorphic
2-spheres in G;(€")(= € P""1).

We also have:

0.2. Theorem ([2], [3) and [14]:
() < 00, Vo € Q

From these very fundamental theorems two natural questions are raised:

0.3. Question: Is it true that

max 7(¢) < oo for k =2,3,...,n =1 ?
SES

0.4. Question: If 0.3 Question is true what is Hé?}’f 7(#) where k and n vary

=17
in such way that for a given n we have k=0,1,...n—1
Our main result answers both questions. It says the following:

3.1. Theorem: max 7(¢) = n — 1 where k=1,2,..,n=1
PEN
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It is a nice open question to describe the set {¢ € D:r(d) = n -1
for k = 2,3....,n = 1}. We know from 0.1. Theorem that the sat {o €
4;7(¢) = n — 1} is equal to the set of non-degenerate holomorphic 2-spheres
in Gi( @)= TP""') but we will show that this fact is not true for ¥ =
2,3,....n =1 because the u € Q0 such that r(u) = n — 1 which we will find in
the proof of 3.1 Theorem is neither holomorphic nor antiholomerphie.

The first author would like to thank Professor Weihun Chen for his en-
couragement and the second author wants to express his sincere gratitude to
Professor Karen Uhlenbeck for all her very fundamental support throughont

these years.
§1. Preliminaries

We recall that G(d™") is the set formed by &-dimensional complex sub-
spaces of ™. Then the tautologously k-dimensional vector bundle T defined
on Gi( @) has as fiber on V € G €") the same set V' seeing as a -
dimensional complex subspace of ™.

Hence we identify a smooth map ¢ : M? — Gi(d™) with a subbundle 4

of §* = M? x € of rank & which has fibre at r € M given by ¢ = Ti(r)
ie. &= ¢"(T) and M? is an arbitrary compact Riemann surface without

boundary.
Any subbundle ¢ of €" inherits a metric denoted by ( . ), and connection
denoted by D, from the flat metric and connection @ on d™. More explicitly

we have: (V,W), = (V(z),W(z)) for any V, W € o .rE M? and (Dy)zW =
To(0zW) where Z € T(M)' = T(M)1®) and W c [(¢). Heremy: @™ — 8
denotes the Hermitian projection in the subbundle @ We will donmn ) hv
V" throught th_ls,paper

The & (or a—z-)-second fundamental form of gin 4™ is the vector bundle

morphism A/, : T(@") — [(¢*) where Ay=Vt, u‘i o V. Similarly wo define
~ g 2z
a2
A" = V'J' - BReve—] V
s 9z °
Given holomorphic vector bundles E, F over M?* and a holomorphic section

t
S E I‘(@(M“'U))' ® L(E, F)), they determine in a unique way holomorphic
subbundles of F and E such that: ([ms): = Im(s(z)) and (kers), = ker{s(z))
forr € M.



1.1. Definition: Let ¢ : M? — Gyx(@™) harmonic. ImAY is a holomorphic
subbundle of ¢* called the &-Gauss bundle of ¢ (we will denote it by G'(d)).

1.2. Theorem ([2], [5] or [14]) G'(¢)) is harmonic.
We can iterate the construction above, hence we have:

1.3. Definition Let ¢ : M? — G,(€™) harmonic we define ¢'(i € IV U {0})
by ¢° = 8,¢' = G'(¢'?).

1.4. Remark We of course can do the same with respect to &".

1.5. Definition We say that a harmonic map ¢ : M? = Gi( ") has
&'-order rif " £ 0 but ¢™ =0

Let @, the set formed by » x n matrices with complex coefficients. We
know that U(n) = {A € €., A} = A"} and its Lie algebra u(n) = {M €
Co M + 3 =0)

Let y € T(T=(U(n)) @ u(n)) be the Maurer-Cartan form of U(n) i.e. for
any X € T(U(n))a [w(X)]a =X

1.6.Lemma If u(n) 2 T(U(n)); then p(X) = o~' X for any X € (T(U(n)))e.

Proof: According to its definition we have: pu(X) = [p(X)1 =

(dLo=1)[#(X))a = (dLo1}(X). Then by the definition of the derivative we

can consider ¥ = 9(t) € U(n),7(0) = a and 7'(0) = X and so we have:

i dy
dt

=a'X.

t=0=10 =
1=0

W(X) = (@Lya )(X) = Say)

We know that the complex structure of M? determines a natural splitting
(T(M)")F = (T(MY) &(T(M)")". Soif ¥AM? — U(n)isan arbitrary smooth
map, o = ¥"u is equal 1o ¥~1dy by 1.6. Lemma and by making use of the this
natural splitting we have that o = a’ + a” where o' e T((T(CP)) ®u(n))
and o' € D((T(CP)")" @ u(n))

For each A € €~ = € — {0} we define

1
ay = %(1 -ahe' 4 5(1 —A)a”

then ay € T[((T(CP"))")® ® u(n)]. Since u(n)® = gé(n, ) then Un)® =

Ge(n, )

1.7. Definition Let ¥ : €= x M? — G(n, T). ¥ is called an extended
solution of ¥ if YA € €=¥y = ¥(3,): M? — Gl(n. €) satisfies ¥7d¥y = ay
for any ¥ : M? = U(n).

The fundamental observation of Uhlenbeck is:
1.8. Theorem ([14)] ¢ :§? — Gi(d7) is harmonic if and only if (V})req-

is integrable
Proof: See [14].
§2 On extended solutions

We will consider from now on the set ES(y) where ¥ € £5(¢) if and only
if U is an extended solution of ¥.

2.1. Theorem ([14]) Let v : §? — U(n) harmonic. Then there exists
¥ € ES(y) such that:

(i) ¥y = I (where I(z) =1 Vz € 5?)

(ii) ¥y = 3 TuA*,Tm # 0 where T, :S5? — gf(n) = End (@) or equiva-
u=0

lently T, : §*x € — €
(iii) span I'm(To) = €

(iV) 3. TuTusv = dvol,V = 0,21, ... 2m

u=0

and T, =0foru<Ooru>m.

Proof See [14]. We can also use Theorem 4.2 and 4.3 in [13) keeping in mind
that the definitions of harmonic and pluri-harmonic maps are equivaleat if
é: M? — (N™,h) is an arbitrary smooth map.

We also have:
2.2. Lema Suppose ¢ : §7 — U(n) is harmonic and ¥ € ES(w)

Then there exists ¢ : §% — U(n)harmonic and ¥\ € ES(v') where
v, = ATV (V4 AV = W(VE = V). (As usual V' ostands for [mA]

(<1}



Proof: Using [14] we can show that V' is an instanton (or a flag factor) of ¥.
Therefore
Via'V =0

and VA3V 4 2a"V) =0
where 8V = dV|y,s2

Therefore by using again [14] we have that ¥_(V — V1) : 52 — Ui(n) is
harmonic then ¥, = ay: hence —¢* : §7 — U(n) is harmonic (up 1o a constant
a € U(n)) and A¥Y € ES(V_y(V - V1)) = ES(-¢)

Therefore if we fix A € 4'" we have:

(V)10 = (AW)1(ARY). But (¢) "y = (=) "td(—v) so ¢ :
§% — U(r) is harmonic and ¥, € ES(¢').

Our next result is the following:

2.3. Lemma: Let ¢: M? — U/(n) be a harmonic map. Then:
a) A_'QAE.,M =0
b) kerAL & G'(¢t) =6

Proof: a) Let { € T(G'(¢)) such that Ag, ,)({) = 0.

Hence 0 = (7, Ag’{él(o) = _(A;-';'(él*n‘ ¢) for any 5 € T(G'(¢)*) therefore
?C G’(C&)J' and (AL’J» Q= (A’G-w];’?.C) =0forany n€ r(?)-

If we chaose 1o € T'(¢) such that Ajmo = ( then we have that { = 0

b) Let ¢ € T(g) such that A§(() =0and n € T(G'(¢1)) that is there exists
e 1—-(91) such that A:qL +8=n

Hence (n,() = (A},. +6,() = (8, A3(()) = 0. Therefore ker AL + G'(o1)

But A} = —(A}.)" therefore rank (G"(¢)) = rank G'(¢1). Then finally
we have: rank (!ﬂAgGBG'(t#"‘)) = rank (kerAf)+ rank (G'(¢%)) = rank (&-
rank (G"(¢))+ rank (G'(ot)) = rank (¢).

We will denote by ¢ : G (@) — U(n) (V —V - V4) which is predicted
by Cartan's theorem. Let ¢/ = Y(¥'L = V) the map whose existence is pre-
dicted in 2.2 Lemma. We have:

2.4. Lemma Let ¢ € @ and ¢ = ca¢. If ker 4} = 0 then Y =cod

— y
Proof. Let a = v~ ldy = Ag + A;LdZ where as usual A; = u’-“g—;

-

—_ 44! = - hoch.
(6-¢7) %9z % 9z %oz *

Z i[o’+(ol)’]—¢*g;—-o%°;= % %(l;-u;ha;*):
(A} + AL} (remember that we are idetifying & with &}

But by hypothesis kerAY =050 according to the previous lemma Glet) =
oso V = ImAy = G'(0) G (or)=Go) S0
" Therefore ¢/ = ¢{VE - V) = (6— 6L )(VE =03 G(e)) = —* V4 -7+
G'(¢)=0—(¢') =cod.

See [10], [11] or [12] for related material.

d6-o") _ 1 f086) @t ae 09 3wt
9z~ ~=%)\37-3z)=%z %oz %ozt

L8t 1

§3 Proof of Main theorem
We will prove in this section the following result:
3.1. Theorem max7(¢)=n— 1 where k = 1,2.....n — 1.
€M

Proof: If ¢ € 2 is constant then G'(@) = 0 so 7(¢) = 0.

Then without loss of generality we can assume that o is not constant
¢: Gi(EC") — U(n) the Cartan’s embbeding is known to be totally geodesic
and an embbedding. Therefore ¢ = ¢ o @ i3 non-constant and a harmonic map
from 52 to U(n). Then according to 2.1 Theorem there exists ¥ & ES(w)
such that (i)-(iv) of this Theorem are true.

Case 1. We will suppose that kerAy =0

By combining 2.2 Lemma with 2.1 Lemma we have: ¥\ = A™'®y(V +
AVL)e ES(v') = ES(co¢) (1), hence ¥ € ES(v).
Hence ¥7'd¥, = ax = %(l - A Na' + %(1 — AMa" (2), therefore g¥, =

%(1-,\-1)%' (3) and J¥, = %(1-,\)»»\"" (4).

By above S (OT)A' = %(1 SATY YT (5). Similady

u=0 u=0

5 u 1 - u,
'?;O(BT,)A = 5(1-A)Z_:T.,A " (6).

u=0
Comparing coefficients in the above expressions we obtain:
L' Q0 (1), 02 Lm-Tia’ (3). T 31" (00



Therefore:

W= AT Y TNV AV = Y TV 4

u=0 u=1
m m-1 m
+ T = 3 TV + ) TV =
u=0 u=0 u=0

m
=Y Tix* (10)
u=0
where T/ = T,Vt + Tusa V,Tms1 =0 (11).

Hence TIVL = (ToVE 4+ TiV)VE = TVt Drvis v =T (12).
Therefore Im (To) = Im (T4V+) € Im (T§) (13) (so rank (To) < rank
(To)):

We now consider Tp : §2 x " — €™ (14). We know according 2.1
Theorem, that @ = span Im Ty (13).

Let tg = xrneaﬁ:'! rank (Tp); and 15 = ;nea;% rank (Tg)r

Let X = {z € §%; rank (To): = to and rank (T7): = t5}. Then for exam-
ple arguing like in the proof of Lemma 6.3 of [13] we can show that X is a
connected, open and dense subset of T P(= 5%)

Claim 0 < tg < tg

Proof: if {o = 0 then Vz € §2, rank Tp = 0 i.e. (To)» = O Therefore span Im
(To) = 0 which contradicts (15).
On the other hand if tg = t§ then on X Im (Tg) 3 1y (T3). Therefore

(13)
Im (T}V) w) Im (Tj—toV) € Im (Tp). Then if we apply (8) we see that Im
(Tolx) S X x " is anti-holomorphic. By (9) there exists a subspace W of &
such that Im (To|x) = X x V. Then we see that | (z, Im (Ta)z) C STxwW.
zeS?
Hence @™ = span Im (Tp) = W then tp = n. Since ¥ is not constant, there
exists m > 0 such that ToT; = 0 then T, = 0 on X then 7,, = 0 which is

impossible.
Suppose now 7(¢) = r. Then G)(¢) #0,...,G"(¢) # 0 but Glrl)(g) =0

We have following diagram:

& = ¢ = o7 o .. = ¢H
| l l

v = ¢ - ¥ = = T

1 l |

v - ¥ = ¥ - =

l | l
0<te < th < B < ... < gt ‘

Therefore t5+! = m?z((T.-_',""l): <n.Sor+2< nthenr<n-2(")
zE

Case 2 We will suppase that ker A% #0

By (1) we know that ker Az, =0 Hence if we apply (*) we have that
7(G'(¢)) € n — 2. Therefore 7(0) = r(G(s)+1<n-1

It only remains now to find u € 2 such that 7(u) = n — 1. For this
purpose we can take any fi: 52 . ¢ P! holomorphic and non-degenerate
(for example we can consider the Veronese maps h : €U {x}= 5% — P!
where A(Z) = 1,2, ..., Z""!] and A(c0) =[(0,0,..0,1)]

We can now apply the notation and results in [2] and [16].

Let the harmonic sequence A = h® A',... in the notation of [16] can be

written:

e—e—0 ...

— &
KO = h X h? }:n-2 pn—1

We define:
Hk = hO =) hn—l’+l 5..0 hn—l

Accordihg to [1] we have that Ay, = (H%)L o (;;’2 o HY = (A + .+
A" %) ai a(RO4+ AP L R = % oh = Aj.
Therefore G'(H*) = A, and in general GUN(H*) = h/ hence H*) =n-1

Sou= H*:5%— Gi((€™) it is the wanted map in 2 such that 7(u) =n-1
since u is harmonic according for example the results in [2] or [16].

3.2. Remark a) The u € i above founded is not holomorphic since
G"(u) = G"(H*) = h"~%. Such u is usually called a mixed pair
b) Combining 0.1 Theorem and the result showed in this paper we have:

] ‘ ) if k=1
[r 1(n_1)nnk]-Hol(.S2,Gk(d7 ))={ ;; for £>1



The remark above suggest us naturally the following question:

3.3. Question: Describe precisely the set {6 € Qp;7(¢) = n—1fork =

2,3,...,n— 1}.
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