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ABSTRACT - For complex Banach spaces £ and F. A open <nbset of £ and an
analytic mapping f from A into L F: F) (=the Banach space of all rontinnmms linear
operators from E into F) it is natural to ask if there is g analvtic from A im0 F
such that dg(r) = f(r) for each r € A. where dg(r) denotes the Fréchet differential
of g at the point z. If dim(E) > 2 there are mappings having no primutive= in this
sense. In this article, first we characterize the polynomialg that have primitives and
then proceed to give a characterization result for the existence of local primitives of
analytic mappings. As an application of a Canchy type theorem we obtain a result

on existence of giobal primitives of analytic mappings.
I. INTRODUCTION

We use notations, concepts and resnlts of the theory of analvtic mappings
between Banach spaces as they appear, for instance, in (1] and [2]. Nevertheless we
start by fixing some notations, definitions and results that we are going to use in
this work.

If E and F are complex Banach spaces and n € N, we indicate by £(*E. £)
(respectively, £,(" £; F)) the Banach space of all continuous (respectively, symmettie

continuous) n-linear mappings from £" into F under the norm:
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T||:= sup [|IT(ry,..... )|
IJGRE
=1 "
(Here Bg denotes the closed unit ball of £ centered at 0). The corresponding Banach

space of the continuous n-homogeneors polynomials from £ into F is given by the

vector space
PE Y= {T:T € L("E: )}

(where f'(.r) = T(r.....r) for r € I) endowed with the norm

NPl = sup ([P (Ve PE:F)).
réRp

There is a topological isomorphism 2 € P("F; ) — PeL,("E:F) with

] n
I"(I1 ...... T "]=ﬁ Z E|...E,-.P Z:EJJ"J
”'2 =%l 1=1

forr, e Fj=1..... . In this case P = P and [1P]] < [IP]] € —|JI il. We denote
by PI°E: F) the Banach space of the constant mappings from I' into £ identihied

1o the Banach space I a natural way.
If A is an open subset of £ and @ € A, a mapping [ from A into £ is said 10

be analytic al aif there is a sequence (£,)7_, of elements 2, € P(" £ F) such that

fla+h)= z\: P.(h)

n=0

uniformly for b in some open ball B,(0) of center 0 and radins p > 0 with a4+ B,(0) =

B,(a) C A. There is unicity of representation of f by this series and it is usual to
]

denote P, and P, respectively by —r/"f(a) and —(f" fla) for all n € N U {0}. If
H

[ is analytic at every point of A. it is said thai jIIH analytic on A and we use the

notation H(A; F) to indicate the vector space of all such mappings.

[t is kwnow (see {2“ that. if g € H( A F') and dyt ry denotes the Freécher dn
feential of g at the point r € A then Ag is in HIALIFE; F)). Henee we have the

natural question:

PROBLEM - If f € H(A: L(E:F))is there g € HIA: F)) snch that dyg = [ on A7

We shall ser <oom that if dim(F) > 2 the answer is noon general Henee the
next natural aquestion is to characterize those analytie mappings having prootves

in the sense of the above problem.

II. PRIMITIVES OF POLYNOMIALS

[t is well known that the mapping
v L(E: LI F)) s— LM ELF)
given by
o )reay)

PPy oo Fiaq) = iry. ...

for r, € K.y = Lo...ok 4 10 s a linear tsometey. Next o exemple dows thae 7

dim(F) > 2 it is possible to have o L FC(E Fyg Ca' ' FF
A" we consider T from E e CE. 4 £ 4
l!"?l. L ] -

1. EXAMPLE - For I =
given by T((ry o)) (g1, 00)) =
bt wT & L(AF:4"). sinece

royy for all (ryory) (o) e 477
wT({ryeg) (. )} = ryy,
'a'"r“.'h-’h)-(ﬁ--’l)) Ty

Next proposition shows that the symmetry of (") has a strong relation with

the polynomials P having primitives.



. PROPOSITION. - For P € P*E:C(E:F)) the following conditions -

equivaleni:
(HwP)eL, (FE:F)
(2) There s Q € P(H1E: F) such that dQ(r) = P{r)oreverrr € E.

PROOF - Iz order to show that (1) implies (2) we consider Q = *,—?;\P\ e
P1E: F) and evaluate its differential:

1

= iw’f’!(:‘.b} = P(z5)h) = Piry(h)

d‘Qﬂero::l‘-‘-l)

for all r.k € E (Here. when we write r* we are meaning r._... r E times).

Now 1o prove the other implication we assume (2). Hence it follows tha:

Piz*)h)=dQiz)hj=(E+1)Qiz*. k) (¥r.h€ E)

and e(Pzr. .. 7ian) = Pl o)z ) =
' | ) E
=ﬁ ‘.‘]-.-E{»P‘(Zfrrj’i)(tk_l_‘):
T e=2t =1
1 ' ok
= P 5:--4‘&“’*I)Q((ZE,:,)“.:g..I}:
= == ;=1
=(k=1/Qir..... Tg-Thpr)
fxre E.J=1...= E~1. Simer Q i symmetric. it follows that ©(P) is symmetric.
|

3. COROLLARY - The st of 2ll P € P(*E: L{E: F}) such that ©(P) is symmet-
fic is 2 closed vertor subspace of P(*E; LIE: F)).

PROOF - That the mentioned st is 2 vector subspace follows from the lineanty
of the differentizl and Proposition 2. Now we consider a sequence (P)7_, con-

vergent to P in P(*E:L(E: F)j with «(P,) svmmetric for every 3 € IN. Thus

i

_\h'f“rr "|P | .

Fme(P ) = eiP)in LOVEF)

—=

HAP)EL(*E:F).

svintmeirw lor every ) we hawve

4. DEFINITION - If P € PI*E:CiE. F1) = snch that o(P)  eymmetne (o

M

cquivalently: there is Q < (F=1E: F) ench that dQ = Pi. 12 = caflevi an o
.;"lf’yrv’.fmf on E

5. EXEMPLE - For fixed = € £ and 5 € F we conader 5 & 0 £ Fu b
by (- = BMr) = 2(ribh for each r € £ Hencr we have P o Ti°F (1 F

h_\' Piry = ._"In:-,_' . bhfor r e FE Thu I £ Fed = S1F &

and L"pi'rl ...... rysil = S48 SiTaay )b ¢ cymumetrwe.  Then

Jdiferential on £. As a ronw-quence of thic example and Corallary 1§

E and ... . b, € F fixedd

[

Sle) = " b, Yz & E}

defines an exact differential on F. Of ronise every b homogeneons =
E¥* into CIE:F) that is a imit m the norm of PIYE . OUE Fiiood & «

polynomaals of the form of ¥ 1s an exact diferential on E

II1 EXISTECE OF LOCAL PRIMITIVES FOR ANALYTIOC MAF
PINGS
In this section A is a pon cmnpty open snbaet of F

\\‘E tf'(ﬂ” '}ltlr .r".' f - H \ L. }‘ l" b and a i | we hiavw

- |

2 - JJ‘-"!J;-'M
Lty 4
L

(2]

[la + A}
uniformly for h € B,i0) with 0 < p < r,ia) whete

i
ria) = ”u“JJw’,L}, \ A). cmmmm———

| i f 1w |



1. THEOREM - If [ € H(A; L(E: F) and a € A are such that d* f(a) is an exact

differential on £ for every k € IN. then there is g € H(Blr,'ﬂ](a];[’) such that
dy(z) = f(z) for all r € Blr,(u)(")-

PROOF - We denote P = I]Tr?'f(n] for k € IN and consider

s —_

;n"([",;.)[r —a)

g(r) =
5 k41
Since
— p <_._._ A =2
| tPe (Pl A+1”P"“‘L'(k+l 17l
we have
. 3 e |
:(Il.m U‘ I/(Pk) < e limg_no| Prl|*

and it follows that g is well defined and analytic on Bi, (,)(a). Since, as we saw

before,

(Vk € IV)

1 e

we have

dg(s)(1) = 3" Pulz —a)(t) = [()(1) (¥ € By, gula))

k=0

(Vi€ E). u

2. THEOREM - If f € H(A: L(E; F)) and a € A are such that there are r > 0
and g € H(B,(a); F) satislying B,(a) C A and dg(z) = f(z) for all r € B,(a), then
d* f(a) is an exact differential on £ for every k € IV.

PROOF - Of course we may take r = min{r,(a),r,(a)}. Thus we can write:

6

|

e T —

9(r) = f;)n],ff"q(a) (z—a) (VI € B,(a))
and - AR O
dolz) = i: (;J"g(rf)} (z —a)
inﬁmym (r—a)"™'.) (Y1 € Be(a))
Hence for # € E and £ € Bz (a) we have: ‘
do(r)(1) = ): ) (s =)0
. )Zj _d*“q(ﬂ)((r—aJ )
and
fiz)(t) = lgﬂ—d"f(anr—a) (1)
= E)w{d*ﬂanur —a)*.t)

By the nniqueness of the power series representation of dg(r)(t) = f(r)(1). it follows

that for k € IV

d* fla)(u*)(t) = v(d* fla))(u*.1) = " g(a)(u*. 1) [«

for all u,t € E (in fact we have it for all t € E and u in B,.(0), but. by -
homogeneity, our statement follows). Now, since d* f(a) and d*+'g(a) are symmetric.

we may write through the use of (*):

P(d* f(a))(m. ..., ye. t) = d* f(a)(ys,.. .. we)(t) =
1 k *
= —A.IQk Z L2 ..E"r/kf(q) (Z“)y’) (1) =
1,51! =1




k
k
l = e ¥t &y g =
= g o aesdTlalo) (Z. J.J)

c_,:il 1=
=1, ..n
- n'“'lg(ﬂ](m _____ Y ) (Vy_, € 1= Lo o ke E)

Hence ¢(d*f(a)) is symmetric and d*fla) is an exact differential on £ for 4]

k e J\J’. ]
Now it is natural to introduce the following

3. DEFINITION - It is said that [ € H(A: L(E: F)) is a local erar differential
al the point a € A if d* f(a) is an exact dilferential on £ for every £ € N (or eqniv-
alently. by 1. and 2..if there are r > 0 and g € H(B,(a): F') such that B.{a) C A4
and dg(r) = [(zr) for everv r € B,(a)).

4. THEOREM - If A is connected and [ € H(A; L(E£: F)) is a local exact differ-
ential at some point @ € A. then [ is a local exact differential at every point of A,

PROOF - We consider

B = {be A: [ is a local exact differential at b}.

By hypothesis B # @. By 1 and 2 il follows that if & € B. then Birr(b)”’) C B.
Thus B is open in A. Now we consider 5 € BN A and a sequence (b;)5%, in B such
that b = ]i_nolbj. Since K = {b} U {b;:7 € IN} is a compact subset of A and ry is
a stricl.l)'J[)osirive conlinuous function on A. there is p > 0 such that rp(t) > p for

every L € K. If 30 € IN is such that

izio = b=bli< Z,

since p < rs(b,, ). it follows that b € B%f:fﬁao)(hfﬂ) C B. Thus B is closed in A. Since
A is conpected, A = B. =

IV - A CAUCHY TYPE THEOREM AND THE EXISTENCE OF
GLOBAL PRIMITIVES FOR ANALYTIC MAPPINGS.

In this section A is a connected open subset of £.

1. DEFINITION - A path 5 in A is a continnous mapping from [a.b]  [7 nto
A. with @ < b. The point %(a) is called the origin of 5 and +(h) the final pownt of
4. 10 v(a) = 5(b) then 7 is a closed path in A. [I",{[ﬂ.b]) = {rp}. 1t is sl that -
is a path reduecd to the point rqg of A. The path - given by ~_ () = «la =h—~1i
for 1 € [a.h] is called the opposite path 1o 5. I+ [h.e] — A is a path <nch tha
~1(B) = ~(b) anel =, is defined by +3(/) = 2(1) for € [a. 8], 32(t) = ) for 1 £ b

then the path 5, is called the justapositon of ~ and 5 and denoted by - v -0 The

is said 1o he reqular il there are M 20 and a Anite or denmmerable <ih<er [7

path =
M) < M

of [a.b] such that ' exists and is continuous on [a.b]\ D with —sup
el A\D

Two regular paths 7, : [a,.5;] = A.j = 1.2 are said to he equiralenf if there is
a bijection ¢ from [m,. ;] onto [ay. ba].(ay) = az. 2(b) = I sineh that = and =°
are regular paths and 73 = 72 0 . This gives an equivalence relation in the set of
the regular paths in A, Il 4 @ [ay. by] — A is a regular path and o, < by are given
in [R. then there is a regular path 55 : [05. by] — A equivalent to v, It is enoneh to
take @ : [ag. by] — [ay. by] of the form (1) = at + b with p(aq) = ay e 2(by] = b and

then define v, = 1, 0 .

2. DEFINITION -If ¢ : [a.b] — A is a regular path and [ : y([a.b]) — COFF

1s continuous, the Riemann integral

b
]ﬂ FOrA (1),

that exists and is in F, is called the integral of f over v and is denoted

L f(x)dx.




The following properties of this integral can be easily proved. PROOF - We consider 4, and 7, defined on [o.b] and the homotopy k from [a. ] x
[0,1] into A between 5, and 7. By the compacteness of I = h([a.b] x [0.1]). the
analyticity of f on A and the fact that f is a local exart differential at each point

(1) Lf(.r)d:r - Lf{.r)d;r for &xjuivalen. regilat Babiis i of A, it is possible to find 7y,..., 7, € L such that

(2) /f(:r}dr =—{ f(z)dr for every regular path «. | LcC kUI B,Lf/(n)('r*) cA
Bl - ! .

As we know [rom previons results there is g € H(BL,H”,(J,,]; F)snchthat dg, = J;
N Ifry=7V thn/f)rl.=/ i,+].a':. A
() &8 = Gy ¥ L A S »nﬂf)‘ ! "':\f‘r) ' on Bl,,[_r“(.rk).k 1) - n. If we take p = min {erf{f,,):K' S e n} > 0, then
E ¢
for each = € L. there is some k € {1..... n} snch that B,(z) C By, ,,,)(7x). Hence

f is the sum of its power series aronnd .r on B,(r) [or each + € L. By the uniform

continuity of A on [a,b] x [0, 1], there is = > 0 such that

(4) If 5 : [a.b] — Ajis a closed regular path and ¢ €]a.b[. then 7. : fe.c+(b—a)]—
A given by 4.(1) = 4(1) for t € [e. ] and 4.(1) = 4(f =b+a) for / € [b.c+b—a].
is a closed regular path with image equal to the image of 5 and

_ [t —#'| <z and |§—@|<ec = ||h(t.0) = h(t'.8)] < f.
[. Flaldr = [,j(m)d-r.

Now we can obtain partitions ap = a < 07 < --- < ap_; < a, = band f, =0 <
Ay << B, <8, =1suchthat Japs —op| <2, (0,41 —8,| <sfork=0..... p—1

3. DEFINITION - A homotopy of a closed path 4, : [a.b] — A into a closed and j =0,..., ¢ — 1. We define

path 72 : fa.b] — A is a continuous mapping b : [a.b] x [0.1] — A such that 1 — oy

_ _ _ 9 . 05(1) = h(ax.8,) + ————[h(ews1.8,) — h(aw.8,)]

h(t.0) = 3 (t). h(1.1) = 32(t) for 1 € [a.b] and h(a.8) = h(b.8) for each 8 € [0.1]. Tt Qppr — oy

is usual 1o sav that ~ i re h topic.

I a1 ey Rl o B, gy O HRDTBHED for t € [og,0p1],k =0.1,....,p—1and j = 1..... g—1, and oy = 3.7, = -

It is easy to show that homotopy is an equivalence relation in the set of all ; ' )
These 7,7 = 0,...,q, are closed regnlar paths and onr theotem will be proved if we

closed paths in A.
. show that
Now we are ready to state and prove the following Cauchy type theorem.
(+) f f(z)dr = / fle)dr for j=0.... .q—1
' ™ T+

4. THEOREM - If f € H(A; L(E: F)) is a local exact differential at one point
a € A (hence at every point A, by I11.4) and 7;,7; are homotopic closed regular  The choices of ; and i e ek U o T 05 i B B B, ) 6

[ax, axs1]. Now we consider 9k, € H(B,(h{ak,8,)); F) such that dg,, = [ on

paths in A, then
B,(h{a,8;)). Hence we can write:

[ tta)ds = [ Jiz)ds.
’ ’ P=1 o
[,) f(z)dr = Z/n. ! fla;()()(t))dt =

10 11



=! iyl g
PZ:/ d.‘“.)‘”;("”(”J“)]t’l =

[

-1
Tl (o,faren)) = ol (an)):

k=0

Thus (+) is equivalent to prove that

r=1
S lgws (7, (o)) = gu,(a,(00))] =

k=0
p=1
e Z[Flkﬂ”;u("ku” &= .’H.)‘”H-l‘”k))]
k=0
and this can be written
p=1
(++) Zlgk.;(”;("ku)) — gy lon ) = aula,(on)) + gr, (g, l0k))] =0
k=40

Now we note that B,(h(o,_,.0,)) N B,(h(0,0,)) # & and gx_y, — gs, is constant
on this set since its differential vanishes on it. As 7,(ny ). 7,4, (01) belong to this

sel. we can write:
gk.;(aj(n&)) = gkq(arfl(nkn == .q‘:—].;(”)[”k” - ﬂl--l,;(”;-pl(nk”'

llence (*4) may be written:

(' * ‘) ﬂp—I.)(”J(ﬂp)) - 9,:-1.,(”,“(”,')) - .'?I).)(g}(nﬂ)) + ,(jn_,.("f,-n(”n” . O

Since o, and 0,4, are closed paths, oq = a, a, = b we have (o) =
a,(a,).7,41(a0) = a,41(rr,) and these points are in B,(h(0o.8,)) N Ba(h(a,-1,0,))

where g,_y, — go, is constant, since its differential vanishes on it. Thus (+ « +) is

true and the theorem is proved. =

Of course the above proof of Theorem 4 is an adaptation of the usual proof of

the Canchy Theorem for analytic functions of one variable.

5. DEFIN]TION T}l" Open cofre h-vf -ul:-v'l Vof F s .rrn,ufrf connerlod [ rach

closed path in s homotaopic ta a closed path reduced to a point of A

6. THEOREM - If A is simply connected and f e HiALUE F))ie s loeal evaes
differential at some point of A. then ix g € H( A F) such that dy = [ on 1
PROOF By HL{ [ 15 a local rxact differential at each poant of 1 W

a € A. For each = € A we consider two regnlar paths 5y and v, m U mith angin g
ih fre e i?')r!‘vi' MLEve ¥

and final point . Thus 5y V 95_ 15 a closed regular path n A

a path reduced 10 a point of A. By theorem | we have

/ flr)de =0

and then

/f(udr :/ [(r)dr.
n ]

Therefore h : A — F given by

Az) = / flr)dr.

where 4. is a regnlar path in A with origin a and final point =i well debned o

does not depene on the particular 3. considered We want to whow that /5
and b is analytic on A. It is enongh shaw that for cach -

Bizo) C Avdh = [ on B.zy) and b analvric on H.( =)
atvl a g 6 M{B.{:n) FLooaeh

e A there e v« ) with

H\ g ?\\’\4-\'3." 5 e

know that we can find r > 0. such that H.(zy) © .,
that dg = [ on B,(zs). By adding a constant if necorssary we may cappose
g(za) = h(zg). For each z € B,(zq) we consmder o, (L) 2y ¥ 8o 2g) for 1o 10

Hence

I
[ f(x)dz :/ﬂ Sz + 1z = 20))(2 ~ 7g)dl =

]
= A/J dl}(i‘u + 1z — gz - :,,}lff « glz) — zo) = gl2) LY




 origin a and final point o we have that o, v Vi 18 &

If 5. is regular path in A witl
e nd final point z. Thus

regular path in A with origin a a

]

[ gtevde= [ ftxdr s [ fyds =

0

h(z)

I

g(:) - h(:o) + h(:n) = q(:)

for each z € B,(z0)- (]

1 thank Flavio R. Andrade for the typing of this manuscript

REFERENCES

(1] MUJICA. J. - Complex :\n..a]ysis in Banach spaces. North-Holland Mathemat-
ics Studies. vol. 120. North-Holland. Amsterdam. 1986

[2) NACHBIN. L. - Topology on spaces of holomorphic mappings. Ergebn. Math.
Grenzgeb. 47. Springer-Verlag. New York. 1969

14

01/95
02/95
03/95

04/95
05/95

05/95

06/95
07/95

08/95

09/95
10/95
11/95
12/95
13/95

14/95

15/95
16/95
17/95

18/95

19/95

RELATORIOS DE PESQUISA — 1995

Modelo de Regressaio Weibnll Dependeante para Testes Acelerados em Riscos
Competitivos - Silira Emiko Shimakura and Ciciba Yuko Wada

Semilinear Elliptic Equations with Exponential Nonlinearities — Jodo Mareos
Brzorra do 0.

Some inequalities for immersed surfaces - Valery Marenich and Irwen Valle
Cuadalnpe

Geometria e Topologia de Fluxos de Anosov em 3-variedades  Sirgio R Fenley
Tangent Cones at Infinity Under Quadratic Sectional Curvature Decay ()
Pacelly Bessa and UValery Varonich

Tangent Cones at Infinity Under Quadratic Sectional Cuarvature Deeay )
Pacelly Bessa and Valery Marenich.

The Holonomy in Open Manifolds of Nonnegative Carvature  alerg Yareaich
The Log Gamma Model and the Choice of a Parametric Lifetune Model  Dione
Marwe Valenga and Jonathan Brele

Shock Indicator for Adaptive Schemes for Conservation Laws — (Cristina Canha
and Sonia M. Gomes.

Singularities of Reversible Vector Fields - Marco Antonie Tewreirn

On the Homology of Manifolds Ricarda X' Cru:

Submersions of Open Manifolds of Nonnegative Curvature Valery Marnnh
Topological Gap-Phenomenon Valery Marenich
Cobomogeneity one Manifolds and Hypersurfaces of Revolution Vmloarn (Car.

los Asperti. Francesco Mercurs and Mara Helena Noronha

Low Codiumensional Submanifolds of Euclidean Space with Nonnegative
Isotropic Curvature - Francesco Morenrs and Maria Helema Voronha

Creation of Particles in the Early Fricdmann Universe { 4 Gnd
EPR. Paradox. Bell's Inequalities and Telepathic Communication T

O Grupo das Rotagées com Dez Parametros - G.C Ducatr E Capelac de Olverrn
and G. Arcidiacono.

Again On The Mass And Energy In General Relativity — Yori Bozhbor and
Waldyr A. Rodrigues Jr.

On The Question of Coincidence Between Spaces of Multilinear Absolutely
Summing Mappings and Hilbert-Schmidt Mappings Warie ¢ MWatos




	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10

