05l D psllsk

By
[ 3 it
!
' AGAIN ON THE MASS AND ENERGY
IN GENERAL MELATIVITY
,ur‘ “n 'l‘l”‘
andd
Waldyr N Roedeogues Je
Ahed LS T VR

INSTITUTO DE MATEMATICA

ESTATISTICA E CIENCIA DA COMPUTAGAD

%
e

UNIOA K

W

UNIVERSIDADE ESTADUAL DE CAMPINAS

(ol ot > e

I i A

S—

e ——

N ——



We consider the Denisov-Solov'ov example which shows that the inertial mass is
this is trne

ABSTRACT -

not well defined in General Relativity. It is shown that the mathematical reason why
15 a wrong application of the Stokes theor discuss the role of the order of asymptotically flatness
in the definition of the mass. In conclusion some comments on the eonzervation Jau« n General

Relativity are presented.

IMECC - UNICAMP
Universidade Estadual de Campinas

CP 6065
13081-970 Campinas SP

Brasil

O contetido do presente Relatério de Pesquisa ¢ de tinica responsabilidade dofs) autor(es)

Abril - 1995



Again On The Mass And Energy In
General Relativity

Yuri Bozhkov'? and Waldyr A. Rodrigues, Jr.!

! Instituto de Matematica, Estatistica ¢ Ciéncia de Computacio

IMECC - UNICAMP. CP 6063, Campinas, SP. Brasil

? Department of Mathematical Sciences. University of Trieste,
Piazzale Europa 1. 34127 Triestc. {taly

E-mail: walrod@ime.unicamp.br or 47596:: WALROD
bozhkov@uts340.univ.trieste.it -

April 17, 1995

Abstract
We consider the Denisov-Solov'ov example which shows that the inertial mass is
not well defined in General Relativity. It is shown that the mathematical reason why
this s true is a wrong application of the Stokes theor discuss the role of the order of
asymptotically flatness in the definition of the mass. In conclusion some comments on
the conservation laws in General Relativity are presented.
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In any physical theory the notions of mass and energy play an important role. The
related conservation laws are the corner stones of the theory. There is a huge number of
literature where authors describe

The equivalence principle states that the gravitational mass and the inertial mass
are equal. It is a fundamental law in physics. Logun that the gravitational mass is well

defined in GRT. However they point out that in GRT there is no satisfactory definition of

the inertial mass exposition is close to [5.4].

+

Let T"” be the energy-momentum tensor and G** - the Einstein tensor. The Ein.

stein equations read

G*" =T". (1)

Then fix a basis €, of 1-form fields and let J* = T**¢, and G* = G*“¢, be respectively
the energ and Einstein equations (1) imply

DeJV =ds JHF Wl AsJY =0, _ (2)

where (w!) is the matrix of the connection 1-forms of the Levi-Civita connection D and «

is the Hodge-star operator.

Now one looks for a “1-form™ 7# such that
dxr" =Wk AsJY. (3)
From equations (2) and (3) we have the following conservation laws:
de(J*+14)=0. (4)
From (4) one cggglgq?s that there is an exact 3-form —d + §* such that

2 JA G oart = =d e S*, (3)
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See [5]. The latter conclusion is not true for arbitrary 4-manifold since its third de Rham

cohomology group could not be zero. In particular, this invalidates Thirring-Wallner's

proof [5] that for a closed nniverse (with topology IR x §?) the total energy must be zero,

since A%(53) = R is non-trivial. However, we agree with eq.(5) if we are in R* where |

every closed differential form is actually exact.
Further one integrates eq. (5) over a “certain finite three-dimensional volnme”, say

a ball B, and then by the Stokes theorem

/{o.l" ++7") = —/ +5H.
B AR

If we express +5” in fq.(6) in the terms of a metric 9ij, the (inertial) mass is given

(6)

by
v A B

1m
167 F—m

m; = lim (7)

R—=nmo

d o
- - m[yng'zz!mﬂ' Nda,,

where B = S*R) is a 2-sphere of radins R. (=1)n, - its outward nnit normal and
da, = —R?’n,dA. If the metric g;; is asymptotically flat (see helow), then eq.(7) is

equivalent to

%‘—p) dm,. (%)

1 2 (dg
m; = =— lim / = =
! 167 R—m Js2(R) ‘wzzl ((’)r" drv
Logunov et al. claim that the inertial mass defined ahove depends on the spatial
co-ordinates and therefore has no physical meaning. Indeed, Denisov and Solov’ov [6] (see

also [4]) have found an explicit

-1
i = (1 - 2_"') a1 - (1 = 27'”) dr? — r?(d6® + sin 6%d?). (9)
r
Then introduce Cartesian co-ordinates z/.. The Schwarzschild metric becomes
ds? = goodt? + gopdz&ds?, (10)

13
|

where .
2m
1-122)

(\l+3;?)2'

Now make another change of the spatial co-ordinates

1
9a3 = —b, (l + 2—"') 5

ir

Jon = (1I)

1 =2y(1+ flrx)). 112y

where ra = ((£4)2 + (;7\.)7 + (1_1\.)2]'/7_ [ is an appropriate functiom snch that f and [

N
have good behavi infinity and the Jacohian is positive. In fact .
Xm 12
fly) = a? (T) (1 - exp[—y]). 018

where a is a non-zero constant. Clearly

fly) > 0. Jim f(y) =0, Jim 9/ (y) =0

and the Jacobian is greater than 1. After this change the metric has the form

- 2m )‘(“ 2m )-‘ ,
-“"'“‘( T arn(l+ f) Carn(l+ f) o

2m

! 2z
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Jas = — (l

and the inertial mass m! in the new spatial co-ordinates rf is
[ ‘
m, =m(l +a).

Therefore the inertial mass changes and depends on the spatial co-ordinates even 5 1he
case of the well known Schwarzschild metric. Of course, like the velocity dependence of

mass in SRT.




We have checked the above calculations and confirm their correctness. Here we

would like to point out the mathematical reason why they are right, what seems to be not
clear even to the authors that proposed this example. First let observe that the definition
of 7 and d+ S* ;= 0,1.2,3, as it can be seen from (3) and (5), depends upon a ch basis
{eoor =0,1,2,3) of 1-form fields. Hence it follows that 7 and f + St =0,1,2.3 are
not tensors. Above one applies the Stokes { Ostrogradskii-Gauss-Green) theorem to eacl
one of the ohjects d« §* 4 = 0,1,2.3. in order to express d + S" as [1p+S5". But the
Stokes thearem concerns differential forms. which are anti-symmetric tensors. Therefore it
can not be applied 10 non-tensorial quantities like d + ¥ jt=0.1. In particular to d % 5",

The sitnation can be also viewed in local co-ordinates, Indeed, one has a decompo-

sition of the energy-momentum tensor into two non-covariant guantities
THY aﬁhmm + [

where 1% is the so-called energy-momentnm pseudo-tensor of the gravitational field [1.4].
In our case the corresponding symmetric “object™ t*¥ is called Landau-Lifshitz pseudo-
tensor. In fact. there are many energy-momentum psendo-tens [1] or [4]), which we shall

not introduce here. Then the inertial mass

mi= lim [ K"dq,

R—x JsB

what is obtained by the Stokes theorem (as in eq.(6) and eq.(7)). Actually, (7) is a

consequence of the last formula. It is again clear that 70 = t°”¢, and d + 59, where

1 1
g S -r vt _pfl _ T v o A
0= 354" (905”7 9°" — 9" 9"") ge. Ae,

(see [5]). do not transform as tensors. Compare this with a paragraph in the Misner-
Thorne-Wheeler's book [1], where they make right comments on page 165, noting that all

Eallld

objects like 7 are co-ordinate dependent. Namely: “All the quantities ffuovit [y and

1" depend for their definition and existence on the choice of co-ordinates: they have no

existence independent Correspondingly, the equations (20.14) and (20.19) involving -HI”/
and M have no geomeltric, co-ordinate-free significan “rovariant tensor equations™ . "([1].
p. 465). However, the next comments are wrong. bhecanse they claim that the imm_:;;.f
given hy our eq co-ordinate independent. The Denisov-Solov ov-Logunov- Mest virishvili
example shows the apposite.

Anather purpose of the present paper is to disenss how the definition of the mass
notion is intimately related with the concept of asymptotically Aal metric. |t actnally
states two things: 1) existence of special co-ordinates and 2) the behavionr of the metric
at infinity is of the form

g=46+0(r %) (16)

In the earlier paper [7] by Schoen-Yan & = 2. while in the next one Rl k= L.

a weaker condition. Note that Schoen and Yan consider metrics on three-dimensional
manifolds. Therefore in (16) by g we mean the spatial part g,5 of a Lorentzian metric.,
which in the considered example is negative-definite. The latter resulted in the minns sign
in the definition of m;.

In all papers on the positive mass conjecture (e.g. [7,8]). the mass is defined for
asymptotically flat metrics and then it is shown that it is non-negative if the scalar cur-

vature is non-negative. However, Bando et al. [9) emphasize that it is not absolutely



tain that the mass (=inertial mass. our note) is not independent of the co-ordinates
certain ss (= .

They prove a sufficient condition for existence of asymptotically flat co-ordinates, They

also mention a p of the example above this is not true. And we would say. it should he

independent only of the asymptotically flat co-ordinates. in which it is considered example
F = 1/2 (see (14) and (15)) and therefore they are not the asymptotically flat co-ordinates
used by Schoen and Yaun. since they need co-ordinates in which metric has k¥ = 1. Hepee
we are not saving that Schoen-Yau result is not true. Simply. what they call mass js
not good for physics since it depends on the spati be avercome alsa by the looking glohal
definition of asymptotically flatness [2.11]. Indeed. the problem 2. p. 295 in [2] reduces 1},
satisfy (16) with & = 1. Then the definition of (inertial) mass. p. 293. is the same as that
given by the integral (R), up to t counter examplé [12] to the generalized positive action
conjectnre provides a good metric with negative mass. We think that this is quite
Before concInding this short note, we would like to comment briefly the conservation
laws in General Relativity (GR). In his paper [13] Dalton arrives at the right conclusion
that in GR we can have only conservation in infinitcsimal regions of the spacetime and that
this conservation is expressed by the vanis covariant derivative of the energy-momentumn
tensor. What surprises js that, according [13]. there is not a real problem in GR due to
the lack of integral conservation laws for energy-momentum and angular momentum in
this theory. This point has been emphasized hy Vargas and Torr [14] they use vector-
valued differential forms and- ct;rrpctly obtain the result that local conserva.tiox; of the
vector-valued differential forms Il = II*¢, is represented by the vanishing of the.exter]or
covariant derivative of the form II#, ie., DIT* = dII* + wli AT = 0. Another analysis

of the possibility for gennine conservation laws in a general field th

eory where gravitation
wid @ il g i LA '

6

(and possible other fields) are geometrized has been proposed by Benn [15]. However.
nsing the words of Ferraris and Francaviglia [16), the problems of conserved guantities are
“problems still to be satisfactorily solved in General Relativity™ [16]. In such attempts
one must always keep in mind that global conservation laws for energy. momentnm and
angnlar momentum depend on the existence of appropriate Killing vector fields in the
spacetime manifold. Snch vector fields in general do not exist in an arbitrary Lorentzian
(or Riemann-Cartan) manifold.
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