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Abstract

In this paper we study the properties of the solutions of the minimal and
conformal coupled scalar fields in curved spacetime. We show that, contrary
to claims published in the literature, anomalous R-forces between two “scalar
charged” particles don’t exist for the conformal coupled scalar fields.

Even more, it is the minimal coupled scalar field that has a pathological
and unexpected behavior. The origin of the erroncous claim is investigated
due to its great methodological meaning.

As it is well known in field theory, in curved space-time we have an ambiguity
[1,2] concerning massless scalar particles. The Klein-Gordon equation in curved
space-time for these particles can be written in two different forms. The first results
from the principle of minimal coupling and is:

(ViVi)e(x) = 0, (1)

where V; is the Levi-Civita connection of the metric g;x which has the signature

(+,—,—, —) and @(x) is a scalar field. The second possible form results from con-
formal coupling and is:

(Vv + D) = 0. (2)

Here R is the scalar curvature of spacetime.
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I'his ambiguity is preserved for massive scalar particles, for which one can write

cither
(ViV' + m?)p(z) = 0, minimal conpling (3)

or

. R
(V.V' + i +m?*)p(x) =0, conformal coupling. (4)

a) Onc of the advantages of eq.(2) is thal it is conformally invarianl (invariant
under Weyl scale transformations). This means that if one changes the melric g,
into i = exp[—20(x)]git, and the function p(z) into @(x) = exp(a(z))p(z), then
@(x) is Lhe solution of eq.(2) in the metric gi.

2q.(1) doesnt share the property of conformal invariance with equalion (2).

IL is interesting to notice here, that the Dirac equalion for a massless particle
(for example a neulrino) in curved space-time is conformally invariant. The same
is true for Maxwell’s equations in curved space-time. But there is no conformal
invariance for the graviton, which is described by a massless Lensor field Az (z) with

spin 2 [2]. It satisfies the lincarized equation:
ViVihi(z) + 2Rk’ (z) = 0 (8)
with the gauge conditions
Vihk(z) =0,  h(z) = hilz) =0, (6)

where R;ii is the curvatlure tensor of the background space-time. Notations are the

same as in [2].

b) The other advantage of the eq.(2), and also of the eq.(4) for the massive case,
concerns the propertics of quasiilussical solutions. As shown by Chernikov and
Tagirov, [3] only for ¢q.(2) or eq.(1) we have in the quasiclassical limit particles
moving along geodesics of the corresponding space-time. This occurs if R is large
enough, so that it has the order R ~ m? in units & = ¢ = 1 and we can't neglect

this term using the quasiclassical approximation.

For massive vector bosons, when we use the Proca equation in the Riemannian

space-time we don’t have the /2/6 term. Instead we have
Vil *(z) + miH(z) =0 (7)
where [*(z) = Vigr — Vi = Oipr — Oppi, where g, is a vector field.

As shown in [4], the longitudinal component of a vector ficld behaves as some

minimally coupled scalar massive field.

From all this it seems that in nature one can have both kinds of fields and we
must investigate their different physical manifestalions.

In this paper we shall discuss carelully the scalar case. The minimally coupled
scalar field, as it is well known [5], plays an important role in inflation theory,
being popular in cosmology. If we choose the conformal coupling we don’t have the
properties necessary for inflation.

Lack of conformal invariance of eq. (1) can be interpreted in the sense that this
field is not really massless and has some scale, defined by the curved space-time. On
the opposite, eq. (2) describes really massless particles.

This is confirmed by the structure of the Green [unctions (7(z,z') for the scalar
fields for eqs. (1) and (2). Generally for an arbitrary coupling of the form £ER we

have [2] for the Green function the following equation:
V=9(ViV' + m? + ER)G(z,2") = 6(x — ), (8)

where ¢ = 0 corresponds to minimal coupling and € = l to conformal coupling.
Here ¢ is the determinant of the metrical tensor. The singularities of the Green
function can be obtained by the Schwinger-DeWill technigue [6. 7] and has the
following representation [1]:
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where o(z,z') = ni(z* — ') (z* — 2¥)/2] and ny = diag(l,—1,=1,~1) is the

metrical tensor of Minkowski spacelime:

PA) lotarola)

5 (10)

A(z,z") = —det (

Alz,z) =1

and

L= %ln{(%) m?a) +¢; (11)

where ¢ = 0,577, ... is the Euler constant, and

a(,7)=a = (5-€)R (12)
1 " n :
ax(z,z) =ax = E(Rr“meHm - R*Ry) - é(é — {) VAVLR
(13)

171 \2.,

3 (6 _5) -
Eq.(9) is written for terms up to 0(m2c) and 0((mp)~*) included, where Rjjx R* ~
pt.
So from eq.(9) it can be seen that, when z — =’ and m — 0, the structure of

the singularity for € = ~ (when a; = 0) is the same as in flat space-time. But if
£ = 0 we have an additional singularily, as if we had some mass due (o the curvature

R of the space-time.
Nevertheless, in the literature as, e.g., in [8], we can find claims that eq.(2) leads

to violation of the strong equivalence principle and to the appearence of anomalous
R-term forces between two “scalar charged” particles! In this paper we shall show
that the situation is quite the opposite! The argumentation of [8] is the following:
write eq.(2) in a locally Lorentz coordinate system (with origin in a given point Fy)

where a point source lives. We have

R
Op+ i 1 6(7)- (14)

Tlen we obtain a Yukawa's potential solution;

4

S — —

_ b [( r )] -
pe=— ep—ll —oE i (15)
where a = R-3.

It is easy to see, nevertheless, that, if we find an exact solution of eq.(2) with
the source term, we don’t arrive at the Yukawa solution. To see this. take the

most simple case of a conformally flat Friedmann quasieuclidean space-time with

the metric:
ds? = a¥(n)(dn® — d*) (16)

dl? = dr? + dy* + d=?,

where 7 is the conformal time.
Write eq.(2) as:

1 0 " t,a) R
— | V—g¢' —=0 1
\/—961'( 99 Gk +6{’$1 i)
or as
1 8 741 599) R
(e )+—p = I8)
at Oz (“ a? dz* 67 {
Here
" !'.’“
R = 6a"2 , A 19
g (a) dn? (19)
From eq.(18) we have
1 0 [ ,0p 1 R
— —_— ] - - —tp = (20
a*ﬂq(a Br}) a"f g 6" t20)
or ” 5
atdp 2 ,0p |
bl il s P B ) e 4+ —p =) 21)
a' dn? " dn 2 J 6" ‘
To find a solution of eq.(21) we make a conformal transformation of by
5 1. )
pr— g (=2)
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Then we gel from eq.(21):

1 d% 24’0y R, ,
Pl (e R s Tt R, — =0 2
ﬂ,[3”2+ D vt (el (23)
or for @
1 @H __ﬂ" R - l _
S |y iE—  —r —_— e __A = ;
a”[ a Ta T§% q #l=0 (24)

Using R from eq.(19) we see that due to compensation of terms we get

1
S18" - 28] =0 (25)

Now let us put the source on the right hand side of (2). Instead ol eq.(2) we
now have
;. R 5z
(Vi + 2ole) =
NS

Here é(Z) is the usual 8-function, but we must have /g3 where g is the determi-
73 = a®.

(26)

nant of the 3-metric, i.e.,
So, from (25) we have that eq.(26) can be wrilten,
| [ - 1 . o
18" = 89] = —ub(2), (27)

and the static solution of this equation is the usual Coulomb potential, but with a

conformal factor:

- J 1u
=—= d =—== 28
4 g SO P (28)

On the contrary, for minimal coupling instead of eq.(25) we get

1 ~1t ,,ﬂ” 1. _

a? (i —PaE EA(;J) =0 (29)
or

| R -

g(gﬂ = (p: — A(p) = U, (30)

so that, il there is a source, we have

l "
g (‘3'"— 7' - Atﬁ) = p(T)/\/ g™ (31)
a a

The situation is the same as if in flat space-time we had some mass term dne to

"
st # 0. This is the reason why, contrary to (8], it is here that we don’t have the

a :
usual massless behaviour.

For a dust-like Universe we have R # 0 and a(n) = agy?®. so that the term
"
a . i . " . »
— > 0 and for 7 = const it has properties of m?a? < 0, i.e., of “tachyonic mass™.

Now let us discuss for this case the quasiclassical behaviour. We write
1 s
= —pe'A (32)
P a'ﬂ
Then it is easy to see thal for eq.(2) and eq.(25) we have the [ollowing equations

(33) and (34), respectively, valid until the order %

3 S
8585 95 .95 o . (33)
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= e n
dr, Ox,, " (34)
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an On dze Oz

For the minimal coupling case we obtain from eq.(30)

which is just ¢

at G

Lyaoes By
dn dn 0z, 8z,

a=]
So, it is easy to see thal geodesics for these particles can’t live on light- cones.

22 {33)

Even worse, they can be space like (the meaning of this for gravitons and vectos
mesons for large 7 is still to be understood!).

And now in the end of our presentation we return to the question: what is
the error, when we naively (as it was done in [8]) write eq.(2) in a locally Lorents

coodinate system as




O - gcpz ns(r), (46)

or betler

” [

Op + —p = 8(7
Pt 5P o ()

The answer to this question has a greal metodological meaning.

(a7)

The operator ¥; ¥ in eq.(2) acling on the scalar field has only one Christollel
symbol, so it scems that al “the point” (i.e., in P, the origin of the locally Lorentz
coordinate system) we can write O as in Minkowski spacetime, Bul, as discussed
in [9] in order 1o find the solution of a given differential equalion al a given poinl
of the manifold, one must look for properties of this solution in the neighborhood
of this point taking the boundary conditions properly into account. Indeed, il {£")
are locally Lorenlz coordinates and (") are arbitrary coordinates and il (A"} are
the coordinates of Py (the origin of the locally Lorentz coordinate syslen), then as
is well known

g

£°(z) = a® 4+ B(a" — X*) + %bf{l‘" (X)(2" = X")(z" - X¥),

; o=
with a® = £%(2)|z=x ; % = a—; "
Also: =
o 3 1 o L o 2
P30€)], = =3 (BBa(€) + RS, (6)],

Then, for §" # £"(Fo) = &G, quantities T'g, (€”) are not null. This means that,
in order to get a solution for eq.(2) with a source term in the {é#) coordinates valid
for all spacetime and taking into account the boundary conditions, we can’l simply
solve eq.(36). What is necessary is to solve a very complicated equation in Lhese
coordinates. If this is done carelully we must obtain the right result founded above.

Before ending we find useful to discuss how to solve eq.(2) in a coordinate

system used by astronomers. To do this, besides the sinchronous reference frame

1
|

ds? = cdt? — a?(1)di® = Fdt* = @ (1)[dr? 4 1 (sin? Wdp? ¢ A0’ (18)

connected with the conlormal one [(16)] by edt = wly, we introdiuce another coor-

dinate system where the space distance is given by 1) = a(t)r, so, that

dD) = adr -+ rda (39)

and

i

dD? — D¥sin® 0dp? + d0?). “o)

" :
ds = (1 = D*—=)eAdt? 4 2D-=dDed -
oo

The advantage of the reference frame associated Lo these coordinates is that for an

a .
observer on Lhe Barth, when &€ = D— is small, one has a good approsimation to the
cit )
Minkowski metric, and only for large enough D one has curved spacetime. Really,

we can use Lhe parameler € as a small parameter, Leb us write equation ((7) in these

1 (D:‘:)"
ca
go1 = 2D - 19 =~ goo = = D3, )
] Y
\ ca
Ppp== == D gin* ¥

coordinales. Ifrom:

Il

Joo

and using the relations [9]

.‘f"r!}r() + y""_rmu = |
9 90+ 9" ho=0 (12)
zgru.{/ﬂr + yngrr == |

we obtain

Or 2!)'1
g = ——

= l+7(D£—l),-,. (I3
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Then, on the first approximation in € we have:

i a
§" =2D— = go, (44)
ca
Putting this into eq (17), noting that terms depending on €? after differentia-
tion still will contain €, we can pul them away when € — 0. The only term which

can’l be put away is the one containing derivatives in D of ¢°. So, taking for \/—g
the Minkowski value, we obtain the equation:

14 a R
[67375—&]¢+- ETARE —p=10 (45)

So, the nondiagonal components gg, lead to an extra term in the approximation

e — 0.
Butl in order to solve this equalion we must take

1.
R 46
o= (46)
which, as in the previous case of conformal, time, immediately leads to a cancellation

of the 5 term, so that we end with:
1 - 1

—o—-Ap=0. 17

2P~ AP (47)

Can we pul away the term 2—290 but retain the i term? TFrom Einstein’s
equations, we can sce !]mt for tfne usual cosmological models we must pul away the
term —¢ il we lake —, the Hubble's constant, equal to zero. Al Lhe modern epoch
of evolution of the universe, we can do this and use the Minkowski metric as a very
good approximation near the Earth.

Bul for 12 large enough in the early epochs one can’t do this. Bul, then, the
nondiagonal terms g% # 0 lead Lo Lhe impossibility of having a unique time and to
define space distance unambiguously. It follows that we can’t write the usual 6(7)-
function for the charge distribution and eq (36) doesn't have unambiguous sense.

10
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