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Abstract

In this paper we extend the fixed point theorem of Banach to the furey
context and we prove a stability result for the fixed points set.

1. Introduction

The classic fixed point theorem of Banach establish that if (X, d) i a complete
metric space and f : X — X is a contractive function, then f hac a umique fixed
point.

In this work we present a “Banach Theorem™ type for a function I'- X » F(X),
where JF'(X) denote the metric space of fuzzy sets. Also, we prove a result of stability
of fixed points set.

We remark that the Theorem 3.5, in this paper, extend the pnonapal resnlt of

. 1 .
Heilpern' where he supposed that .X has a linear structure and the fuzzy mnltivalued
mapping have compact-convexes levels.



Also, we would like to say that the Theorem 3.5 was presented in®, and that

we gave the proof for completeness, since this result is fundamental to study the
stability of fixed poinls set.

The results given in this paper wild be interesting for the study of the differential
inclusions with right-hand side being fuzzy sets, and the stability of the solutions as
well as study control problems where the control is a fuzzy set. These questions are
being presently under investigation.

Finally, this paper is organized as follows: in Section 2 we state some prelimi-
narv results that will be useful for the rest of the paper. In Section 3 we give the
fixed point theorem and in Section 4 we give a result of stability for the fixed points

scl.

2. Preliminaries
Let (X,d) be a metric space, we consider

@(X)={AC X | A isclosed, bounded an nonempty},
IK(X)={AC X | A iscompact and nonempty},

N(A,r) ={z € X | d(z,a) <r for some a € A}.

The Hausdorfl metric on @'(X) is defined by
H(A,B)=inf{r >0 | BC N(A,r) and AC N(B,r)}

with A, B € @'(X).
As we know @'(X) form a metric space with the Hausdorff metric and I{(X) is a
metric subspace of @'(X). Now, following Nadler®, we define the notion of set-valued

contraclion:

Definition. Let (X,d) and (Y, d') be two metric spaces and f : X — €(Y) be a

sct-valued mapping (or multivalued function). The set-valued mapping f is said to
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be set-valued contraction if for all z,y € X there exist a constant A < 1 such that

H(f(z), f(y)) < AMd(z,y).

Remark 2.1. A set-valued contraction f is H-continuous, i.e., if d(z,,z) — 0 as

n — oo, then H(f(z.), f(z)) = 0 asn — oo.

.

Definition. Let f: X — €(X) be a set-valued mapping. We say that r € X

is a fixed point of f if z € f(z).
To prove the principal result of next section we need the following remark due

to Nadler®, p. 450.

Remark 2.2. Let A,B € €(X), a € A and n > 0. Then, there exist b€ B such
that
d(a,b) < H(A,B) + 1.

If A,B € I(X), then we can take 7 = 0.

Now, we recall the following concepts of fuzzy theory.
Let u: X — [0,1] a fuzzy set, we denote by L,u the a-level of u  (a € (0,1]),
defined by
Lou={z € X | u(z) > a}.
The closure of the set {z € X | u(z) > 0} is called the support of the fuzzy set
u and it’s denoted by Lou.
We observe that the family {L,u | @ € [0, 1]} satisfies the following propertics

LouD Lou 2D Lsu forall 0<a<3

and

u=v¢ Lu=Lyv for all a € [0.1].

We denote by F'(X) the following set

F(X)={u:X = [0,1]| Laue ¢(X) forall ae{0.1]}.
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We observe that Lou # ¢ for all a € [0,1] is equivalent to u(z) = 1 for some
r€ X.

Definition. Let u,v € IF(X) and a € [0,1]. We define

ho(u,v) = inf{d(z,y) | € Lau, y € Lav};
H,(u,v) = H(Lyu, L,v);

D(u,v) = sup H,(u,v).
a€l0,1]

We observe that h, is an increasing monotonically function in a and that D is
a metric on I'(X). Also, if X is a complete metric space, then the metric space
(I°(X), D) is also complete®.

The space (I°(X), D) is called a fuzzy metric space.

Morcover, we can define a partial order, Cf on IF(X) by setting

uCrv & u(z)<v(z), forall ze X

< LauC Lov, forall ae€(0,1].

Remark 2.3. It is easy to see that
(X,d) = (C(X), H) — (F(X), D)

arc isometrics embeddings.

In fact, we observe that for every A € @(X) we can associate the characteristic
function X4 : X — {0,1}, defined by X4(z) =0 if = ¢ A and X4(z) =1 if z € A;
then we have

D(X4,Xp) = H(A, B).
In particular, if A = {z} and B = {y},
D(X{z}vx{y}) = H({I}i {y}) = d(.’l:,y).

To easy the notation, we will denote X{z)(z) by X,.

Definition. Let X,Y two metric spaces. A fuzzy set-valued mapping or fuzzy-
multivalued mapping is an application [': X — [F(Y).

We say that I is a fuzzy set-valued contraction (D-contraction, for short) if for
all z,y € X there exists a constant A < 1 such that

D(I'(z),I(y)) < M(z,y).

3. Fixed Point Theorem

To establish the principal result of this section, we recall the following Lemma's due
to Heilpern; We observe that the compact-convex levels is not requered to prove the

following results.

Lemma 3.1. Let z € X and u € F(X). Then X; Cr u & h,(X,u) = 0,
Y ae€(0,1].

Lemma 3.2. h,(X;,u) < d(z,y) + ha(Xy,u) for any z,y € X and u € F(.X).

Lemma 3.3. If X; Cr u, then
ha(Xzyv) € Ho(u,v) Va€(0,1], Yve F(X).
Definition. Let T': X — JF(X) a fuzzy-multivalued mapping, then z* € X is a

fixed point of T if Xz. Cp ['(z*).

Remark 3.4. The above definiton generalizes the correspondent definition of mul-

tivalued mapping,.

Now, we can give the fixed point theorem for the fuzzy multivalued case.




Theorem 3.5. Let (X,d) a complete metric space and I' : X — F(X) "

D-contraction. Then, I' has fixed points.

Proof. Let zo € X and we choose z; € L (o). This implies that X, Cp I(ay).
By using the Remark 2.2, we can to find z, € L,T'(z;) such that

d(Il,Ifg) < II](F(.T[)).,F(I]))-FA

< D(D(zo),T'(z1)) + A

therefore X, Cr I'(z,) and d(zy,z3) € Ad(zo,2,) + A
Analogously, we can find z3 € X such that X, Cp I'(z;) and

d(z3,23)

IA

I(T(x2), T(21)) + A?
M(z2,7,) + A
< )‘2d(1?0,.’r1) + 2)\2

IA

We can continue this process to obtain a sequence {z,} of points in X such that

Xz, Cr I(za41)
and
d(zg, Tp41) < Akﬁl’(Io, )+ k¥,

Now, exactly as in the proof of the Nadler' Theorem for contractive set-valued
function, we prove that {z;} is a Cauchy-sequence in X and, since X is a complete
metric space, there exists z* € X such that d(zg,z*) = 0 as k — co.

Let us now show that z* is a fixed point of T
Indeed, we have

ha(Xer, T(a"))

IA

d(-f‘,-'zk) + ha(xzur(z.))
d(z",24) + Ho(T(a4-1),T(2"))
d(z",24) + D(T'(24-,),T(z"))

< d(ztz) + M(zk-1,2*) = 0 as k — oo.

(by Lemma 3.2)
(by Lemma 3.3)

IA

IA
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Thus, ho(X.,T(z%)) = 0,
Xz* (_:F' F(zt)'

Ya € [0,1], and the Lemma 3.1 implies that

Example 1. Let X =[0,1],0 < A < 1 and we consider I : X — [(X) given by
I'(t)(z)

%HOS:SMJ#O
Lif M<z<1, t#0

a.nd F(O) = X[O.l]

Then, L,T(t) = [a)t, 1] for all @,t. Consequentely,
D(T(t1), I'(t2)) sup H(LoT(t1), LaT(12))
= sup H([a\ty, 1], [aMts, 1])

= supal|t; — |
o
= ’\Itl - !2'.

Therefore, T is D-contraction with constant A. We observe that all tis a fixed

point of T, since

M<t<1=T()(t)=1 forall t

Exemple 2. Let X =[0,1],0 < A < 1 and we consider I': X — F(.X] miven by

r(t)(z) = % il 0<z<AMLAD
=0 if M<zg,1#0
and ['(0) = Xqo)
Then,
L.T(t) = [aAt,Mt] forall a,t.
Consequentely,

D(T(t,),T(t;)) = sup H(L,U(ty), LoT(t:)
= H(laAy, Ay, [aNty, \])
Aty =ty

]

:



. : = tant A. We observe that if ¢ > 0 - —
So, I' is a D-contraction with constan and z = ¢ Proof. Let z € S,, then there exists a sequence (zx) C Sy such that d(xk,z) — 0
then 0 forall 150 as k — oo.
= > 0. . .
At < 1= T(t)(1) LR On the other hand, zx € S, imply & € Ta(zs), for all k. Since I'y is a H-

On the other hand T'(0)(0) = X{0)(0) = 1. Thercfore, t = 0 is a unique fixed contraction, by Proposition 4.1, we have

int of .
point o H(To(z1),Ta(z)) < Md(zk,7) — 0 as k — oo.

Consequently, d(zx,T'a(z)) — 0 as k — oo.

4. The Stability of Fixed Points Set W ohserve that

- e ———

In this Scction we define the fixed points fuzzy set associated with a fuzzy- 0 < d(z,Ta(z)) £ d(z,zi) + d(zk, Ta(z)) — 0

multivalued mapping. We study some of their properties and we will prove a t!
p heorem as k — oo. Since I'y(z) = LaI'(z) is closed, we obtain z € Ia(z). Thus, r € S,.

of stability.
Proposition 4.3 - Let [': X — F(X) a D-contraction. Then there exists a

Proposition 4.1 - Let I' : X — JF(X) a D-contraction with constant A. Tl
P . Then, for . -
cach a € [0,1], the multifunction ', : X — @'(X) given by [',(z) = L.I'(z) is also iigu: st S EIEHH Kt SaNF=Caifr SLEIS i
a H-contraction with constant .
Proof. It is clear that
Proof. We have
i) a<B= 53 <5,

H(Co(z1), Ta(z2)) = H(L.I(z1),LT(z3)
sng(LaF(mg),LaI‘(Il))

Now, we prove that

I

=D T ~
([(z1), T(z2)) l ii) if @nTa then S,= ()5, .
< Az, z3) . '! met
. ].f we denote by S, = { fixed points of T,} then the Nadler® Theorem 5, p. 479 In fact, we e Wit Sn¥hcns by sl 1) e e kB, S St
implies So # ¢ for all & € [0,1]. Being more explicit we have the following result: ", that is 5o & ,DISG".

(i

Conversely, il zy € ﬂSan, then zg € T, (z) for all n. But, I, (zy) hl“,.(ru)
. - n-=l . - . “=\
since the level-application is left continuity. So, o € [.(r0), and, consequently,

Tg € S,:,.

Pr iti 4 4
oposnt’mn 4.2 - Let T': X — JFF(X) a D-contraction with constant A. Then
Sa € €(X) for all « € [0, 1).




Moreover, the family (S,) satisfies the hypothesis of Representalion Theorem of
Negoita-Ralescu® (with So = M), therefore we conclude that there exists an unique

u € IP(X) such that Loyu = Sa-

Definition - The fuzzy set u of the proposition 4.3 we will call the fuzzy set of

fixed points associated with the fuzzy set-valued function T'.

This definition is in agreement to the one given in the above section so as to

show the following Proposition:

Proposition 4.4 - Let T': X — JF(X) and u € IF(z) such that L,u = S,,a € [0,1].
Then, u(z) = (['(2))(z) for all z € X.

Proof. Let u(xo) = ap. Then zo € Ly,u = S,,. Hence 9 € I'yy(7g) = Loy (20),
and consequently, I'(xq)(xo) > ag.

If we suppose that (I'(x0))(zo) > ao, then (I'(z0))(z0) = ag + € for some € > 0.
But, then zg € Tag4e(20) implies 7o € Sagte = Lagseu. Therefore u(zo) > ap+ ¢ ,
which is a contradiction. So, u(zg) = (I'(z))(zo).

Example 3 - If we consider I as in the example 1, we have that the fuzzy set of
fixed points associated with T is such that
u(t) =T(t)(t) =1, VYt € (0,1], since At <t < 1, for ¢ > 0, and
u(0) = T'(0)(0) = X[p,13(0) =1, for t = 0.

Thus, u = X(q,1}.

We can interpret this result, saying that all the elements ¢ € [0,1] are fixed
points of maximum degree and equal to 1.

Example 4 If we consider I as is example 2, then the fuzzy set of fixed points
associated with T' is such that
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u(t) =T(¢)(t) =0, VLt € (0,1], since At <t < I, for t > 0, and
u(0) = I'(0)(0) = X{0)(0) = 1, for L = 0.
Thus, u = X(o}-

We can interpret this fact saying that ¢t = 00 is a fixed point of maximum degree.

Lemma 4.5 - Let X be a complete metric space and we consider [, : X —
JF(X) two D-contractions with constant A and uy, u; the fuzzy sets of fixed points

associated with I'; and T';, respectively. Then

D(“la 1‘2) S

— i:?r D(Iy(x),Ta(r))

Proof. By using the Lemma 1 in Lim?, p. 436, we have that for each a € [0, 1],

H(Laty, Louz) = H(S1a,52a)

< " sup H(To(2), Faal))
1-A reX

= - sup H(LaU (), L, Ti(2))
1-") reX

< ——supsup H(L,Ty(z). L,T:(r))
] == /\ reX o

1 . g
== l—‘:-:\‘:lel‘]; D(l [(I)‘ll(r))’

Finally, taking the supremum on «a, we obtain

1



D(u1, up)

5 sup DT (2). ().

sup H(Lou1, Laua)

<

Now, we can establish the folowing result for the stability of the fixed points in

the fuzzy context.

Theorem 4.6 - Let X a complete metric space and I'; : X — JF(X) a sequence
of D-contractions with constant A, for all i € IN. If D(T';(z),To(2z)) — 0 as i — oo,

uniformly in z € X, then
D(u;,ug) = 0 as i — oo.
Proof. Let € > 0 and choose n € N such that
sup D(Ti(z),To(z)) < (1 — A)ex for all > n.

Then, by the Lemma 4.5 we have that for all : > n,

D(ui,ug) £ sup D(T;(z),To(z)) < €.

I_AIEX
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