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THE HYPERBOLIC MODEL OF THE MEAN x
STANDARD DEVIATION “PLANE”

.

Introduction - Statisticians often assume a statistical model as a subset of the set of
all the possible probability distributions. It was C. Rao who first pointed out the im-
portance of the differential-geometrical approach in analysing statistical models. In an
early paper (1945), he introduced a Riemannian metric over the space of a parametric
family of probability distributions based on the Fisher information matrix. Since then,
several authors have considered metrics arising out of a variety of divergence measures
between probability distributions (references may be found in [1]). We consider here
the univariated normal distribution with the Fisher metric by means of a geometri-
cal approach. References dealing with this subject from a statistical view are [2] and
[7). Through a natural extension of our analysis, we could generalize this study to the
multivariated normal distributions, using a product metric. In such an extension. the
hyperbolic mean x standard deviation “plane”™ which is the model for the univariated
case, is replaced by a constant negative mean curvature space.

Normally distributed random variables are associated exactly or in an approxi-
mated way with several physical and biological phenomena. For instance, Maxwell’s
law asserts that under appropriate conditions, the components of the velocity of a
molecule of gas will be normally distributed with mean zero and standard deviation
depending on the gas peculiarities. Other examples are the quantity of DNA in certain
cells, measurement errors, variability of outputs from industrial production lines and
biological variabilities such as height and weight.

A mean p and a standard deviation o define wnivocally 2 normal probability



density function:

1) = piz 1, 0) = e[ -3 (25£)]

Graphically, we have a Gaussian curve (fig. 1):

7_ﬁ,_,-

A measure for the distance between two of these curves must reflect how much the
probability (ie. the integral of the density fanction) varies from ene distribution to the

other.

-fig. 2-

Comparing two normal distributions
with the same standard deviation o
and different means p and '
we can visualize, in an imterval, the
difference between them through the
hatched areas. By fixing the means
and increasing the standard deviation,
we can see that the distance between
the curves must be smaller because the
curves become flatter. (fig. 2)

In the half-plane mean x standard deviation defined by the pairs (4,0), o > 0,
we identify each point with its associated normal distribution. In this way, we have a
notion of distance in the half-plane that gives a measure of the “dissimilarity” between



In Figure 3 we translate the sitvation > c
illustrated by Figure 2 and we can ob- o—————
serve that such a metric in the hali- 1 i
plane cannot be Euclidean, as it must 1 :
vary with the inverse of the standard e .
deviation ¢ . The points C and D i '
are “pearer” than A and B, hence l :
the distributions associated with 4 am " "
B are more dissimilar:

d.(C, D) < d.(A, B). i b

The mean X standard deviation “plane” — One of the metrics which is often used
in statistical models is the one induced by the Fisher' information matrix. Its coeffi-
cients are calculated as the expectation of a product involving the partial derivatives
of the logarithm of the probability demsity fanction:
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In the univariated normally distributed case we have # = (6, #) = (p,0) and we
obtain the 2 x 2 Fisher information matrix
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'Ronald A. Fisher (1890 — 1962) made an enormous comtribution 1o the development of statistical
hinqnundﬂmmnhdvg He imtroduced the theory of statistical inference and his
of infor d in one of his articles in 1921.
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it follows that
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it follews that
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That is, the expression for the metric is:
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As we are going to see, the half plane mean X standard deviation (H?) provided
with this metric, is a model for hyperbolic geometry which can be related to the Poincaré
half-plane (HH?), the metric of which is given by the matrix

iye* 0
Hz(. l’..)-
Associated to a metric matrix G = (gi7), we have an immer product for vectors in

. the plane: ;
(w 2o = (g Illo = (w, w)™.

The distance between two points P, @ in JH? is given by the number which is the
minimum of the lengths of all the piecewise smooth paths 77 joining these two points
(see 5], §3). The length of a path 7(t) is calculated by using the inner product {. )a:
length of = [ ds= [ |licdt do(P.Q)=min {length of 7§}
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The Fisher distance is the one associated to the information matrix. In order to
express sach a notion of distance and to characterize the geometry in the mean x
standard deviation plane, we analyse its analogies with the Poincaré half-plane.

It can be shown (see [3]chapter 7) that in H?, the curves which minimize length
- geodesics — are vertical half-lines and balf—circles centered at o = 0. Furthermore,
the distance between two points is given by the logarithm of the cross-ratio between
these two points and the points at the infinite: dy(PQ) = log(P Q Poo Qo). It can
be expressed by the following formulae, considering P and Q as vertical lined or not
(fig. 4).



(fig. 4).
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dn(PQ) = hs(fz%) = tos(1752) 4n(PQ) =tog(22).
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‘«((!h’x)v(ﬂmﬂz)) = v‘iin((%v:),(%-.ﬁ))-
Therefore, the geodesics of JH? are the image of the geodesics of H? by means
of the transformation (m, o) — (%a) In fact, they are the vertical half-straight
lines and halfellipses centered in o = 0 and having excentricity 1/v/3.

-fig. 5-

Such a metric can be used to establish the concept of “average distribution” be-
tween two given distributions P and Q. This is determined by the point M on the
geodesic segment joining P and Q udwhﬂiqddinmtoti&pﬁm(ﬁg.&



We observe that by adopting the Fisher distance, thé shortest path between iwo
normal distributions 4 and B with the same standard deviation ¢ is a one-parameter
family which obviously does not preserve o (fig. 6).

~ fig. 6 = Shortest path between the normal distributions A and B with
the same standard deviation v =05 and messs py =0 and up=1.C in
the mesn distribution between A snd B.

This might be awkward for some purposes. In (7] and [2] this situation is consid-
ered separately, taking for the distance between these two points, the measure of the
horizontal m(———"“‘;“"),vﬁcth.pd-e" arc.

mnm(,,a)ﬂ(% jo0), which is s bomsothety between H? and H?,
is also an isometry from HH? to the half plane 3, where the metric is defined by
da’:%(du’+do’). This allows us to conclude that the curvature of H? is -é_
(See [4] for further references).

Multivariated Normal Distributions — A normal probability density function of p
variables is given by

J@m3) = (@ Ty el 3@ — w7 — ]
where z=(2,....5), HER i=l....%

p=(m,---pp), mER, i=1,...p (mean vector)



aad I = (o) isa symmetric positive definite p X p matrix.

We analyse here the independently distributed case, where I is diagonal,

£ = diag(o},...,00) F=(04,--..0,) & >0,i=1,....p
{standard deviation vector).

We first consider round gaussian distributions, that is, o; = 0, 1 = 1,...,p. The
set of all such distributions can be identified with the p + 1 dimensional upper hali-
w(ﬂf"‘“,p&metﬁwdhy‘:(n,...,hc), wmER, i=1,....,p, > 0. The
result obtained in the univariated case can be extended very naturally-to this situation:
the Fisher information metric will provide a geometry to this half-space
with constant (sectional) curvature equal to -3 The Fisher matrix for p-variated
distributions is given by

: B 5 T P )

Thus, for # = (11, p2, - - s Pips &) we calculate

1/ 0
1/o?

1/a*
0 2/o?

As in the bidimensional sitvation, we have a homothety between the ball space
H?*" and the Poincaré half space 7", Through this homothety, we can conclude
that 2% has constani sectional curvature equal to -% and its geodesics are “verti-
cal” half-Tines and half eflipses centered at o = 0 with excentricity 1/+/2.

Considering the general standard deviation vector, we have elliptic Gaussian distri-
by

0= (B, 01,002,021y, 0p), ;> 0, Vi

‘We make the calculations of the Fisher information matrix coefficients (*) explicit

here for p = 2, without loss of generality. For # = (p,, 0y, ji2, 03), we have:
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m = ;‘?-1 (from (1))
m = L5 RlE) =l
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g2 = 0 (from (ID)
w = [[L232 e -3(52) @]
913 = 0 (The integrand is skew—symmetric with respect to the line z, = 4;)
o o ) )
‘12_0;{‘_2_ ']}dz]d:g
§1a = 0 (Skew-symmetry again)
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o = % (from (1IT))
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0 (The integrand is the difference between two probability density functions).

?
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Using the analogies and symmetry. we can fill the Fisher information matrix asso-
ciated to the p-variated independent distributed mormal:

1/} ©
0 2fa? 0
(95) = sy
0 lo; 0
0 2/a}

We remark that associated with this matrix we have a product metric. That is. in
the polyhedron P = HZ? x H? x --- x [H?, the inner product is given by the sum of
the p inner products of each projection in the mean x standard deviation plane. This

P
means we can describe the Fisher metric as ¢ = 3 77(g2) (tensorial notation, see [6],

=1
chapter 3), where =; is the projection on the ith couple 7i(m, a1,...,6p,05) = (1, 0:),
and gy is the Fisher tensor metric on the u; x o7 half plane.

Using results on Riemannian product manifolds (see [6]. chapter 7), we remark
that the sectional curvature of a u; X o, plane is —1/2 and the curvature associated to
any other canonical 2-space is zero. Fherefore we can state that P, the Fisher model
for independent p-variated normal distributions, has constant scalar (mean) curvature

1
! to — ——— Moreover.
equa Nep—1) Joreover. a curve
aft) = (ay(l).....05(t) in P=H>xHx---x H?
is a geodesic if, and only if. a;(1) is a geodesic in If?. This means that the shortest

path between two p-variated normal distributions is a curve (one-parameter family),
the projections of which are half ellipses and vertical half lines.
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