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ABSTRACT. The carriage of soil from one plane region to another, under some
physical and economical constraints, generates a functional transportation
problem. We solve the problem using a discretization scheme. A convergence
theorem is proved and we describe a pr:ctianl.app]imion.
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1. INTRODUCTION

The problem considered in this paper was motivated by an
engineering application,

let » and ¢ be nonnegative functions belonging to
12R%). We wish to find 2, the supremum of

v(£) = [ f(x,y)axdy, £ € 11R% x R?)

where f is taken among the functions  LY(R° x R2) satisfying
the following constraints: : ¢

f(x,y) » 0 for all =x,y € ® (0)
fi(x,y) =0 1ir I"TIZ >D (1)
[ fx,y)aycom for a11 x ¢ B2 (2)
yeR? ‘

and
f f(x,y)dx ¢« #(y) for all y ¢ R? , (3)
yeR2

The application concerns the transportation of soil from
a region J to a region A. In this application J and A are
disjoint sets and the supports of ® and § are contained in J
and A respectively. The element f(x,y)dxdy represents the
volume of soil which is being transported from the element dx
to the element dy. The transportation between points whose
distance is greater than D is considered too expensive and so,
1t 1s disregarded by the restriction (1). The restriction (2)
takes into account the meximum volume which can be taken from
each element dx, and the restriction (3) concerns the maximum
volume of soil which i admitted at each point of A.
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Throughout this paper the following notation is used:

I£] denotes the norm of £ 1in L'mz).
If A 1s a subset of Rz then A° and 1l denote its
complement and ite indicator function respectively.

All integrals are over Rz unlese otherwise specified
and by convention 8- = 0.

2. MAIN RESULTS

The numericel resolution of the problem presented in Sec-
tion 1 involves its approximation by a discrete, rather than con-
tinuous, optimization problem.

For each 53> 0, let us defime the partition of R- into
squares of sgide &:

Pyy= [(xqo%,) ERZ/18 € x) € (141)8, Josx, <(3+1)8) 1,3¢€ Z.
Moreover, define the muuing.'dilhmel' be tween l>ia and Pm:

d_:§=l1n{ﬂ!-rlz. x. € Plnl ¥ € Pl.ﬂl ’
age m{lm—ylz. X € Py ¥EPL)

Now consider the following auxiliary problems:
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" maximize P !f;
."J.L'.
s.t. ;f; 20 for all 4,j,,m and
im n
P ¢
i -
o £b b ¢ A
e 513 13 or a vd (5)
im
2.5t 0 for all i,m (6)
1,3 23 in
L

where bid = I ? (x)ax, e, = IP;."(,M,.

And P2, which is formulated in the same way as Pl,
substituting g;"; by 3:‘5. Sometimes, we are going to make
explicit the dependence of Pl and P2 in relation to 3,%,4%,

writing Pl(8,9,1) etec.

let us call z(8) and Z(8) to the values of the objetive
function at the solution of Pl, and P2 respectively. It is
easy to see that 2, 2(8), 2(3) < =, In fact, although the
supports of ® and 4 are not assumed to be compact, the
boundedness of z(8), 2(8) follows easily from LD, = lel,1<=
and Ty, = IO!LI € =, The main result of this paper is stated

in the following theorem.
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THEOREM 1., For all 8 > 0, z(8) » z a2 ¥(8). Moreover

ﬁ; z(8) = H; z(8) = 2.

The result of Theorem 1 sstisfies our original purposes.
Not only we have two finite dimensional problems whose solutions
approximate the original problem, but a useful estimate of the

error is available.
To prove Theorem 1, we need some previous lemmas.

let us call B the set of functions in I.Itllz x Rz)
which ut_llf! (0), (1), 2) and (3).

LEMMA 1. For all 8> O, z(8) = =.

PROOF. Suppose that f € B, and define
g3 = I [ £(x,y)dxdy.
Pig x Pu

It is easy to gee that gg satisfies (4), (5), (6) and
thet V(f) = ::;{“5. Therefore, the desired results follows
straight-forwardly. a

LEMMA 2. For all 8 > 0, Z(8) = =z.

PROOF. Suppose that (::3) satisfies the comstraints of P2 and

define, for each Xx € Pl-.‘l' y € Pua



't;"; o(x) ¢(y)

17 )dx> 0 and ? (y)ay>0
[ ®(x)ax [ t(y)ay ’13 v !&' e
fix,y)={ P13 Fin :

0 -otherwise

.

Ve see that f satisfies (0),(1),(2) and (3), and te wluve of

the objective function of P2 at ¢ is V(f). ™

LEMMA 3. Suppose that f € LY(R%) and t €R. Iet £, (x) =t?1(tx)
for .u x ERZ- m. tli: I!t-fl = 0, .

SKETCH OF PROOF: First prove the result for continuous functions
with compact support. Then apply Theorem 3,14 in [2] and proceed
as in the proof of Theorem 13.24 in [1].

We are finelly eble to prove the main result of this paper,

Proof of Theorem 1. First let’ t, € (0,1) be such that
o, ol <3 and o, ~¢] < £. The existence of such s t follows
t, i t, H e

from Lemma 3. Now let b Dbe strictly positive, but small enough
to satisfy

ty(D + zJi"bl} €D
and let 8, = 8, t,. This implies that for all 1,3,i,m €2,
™ o
313(52) £ D whenever -‘-1.1“1) £ D. (7)
We will now show that if 01 and ‘2 are as gbove then

z(8)) = i'(lz) + e . (8)



Suppose ;;‘; iz an optimal solutiom of nul). and let
boaten) o, 085)
e _ e anla, Al 2 Aa 270
13 = ™13 { bu(el)' cyal®y)
Note that

ta S1a(82)
o SR o e gy

i,m bl (‘2)

!: !1.1‘ l: !1.3 id “’u('z)

These inequalities and (7) 1mply that. Ij3 1s a feastdle
solution of P2(8,). To prove (8) it now suffices to show that

- 2 < (9)
i,m 1,J g !13 ;

To prove (9) first observe that the definition of !;';

implies that

0% £/~ TBe (13-by4(8,) / Byy(81)] + 1imeyg(8) / gy 13-

Therefore,

im _pim
T Tips=g €T T J(b,.(8,)=b,.(8,))/b,.(2 )
L,m 3,3 e 1,3 L,m 133 132 L 5 L Lo

im
+ :f. 1?3 e gq(8y) = epn(82)) /e (84) 18,4 &

! Ibld(‘l)-bu(‘z)l > ‘:. le'.(|1}-°h('2)| =

3 I ol 'l z.-‘" Wl -

Pyg(8y) u( ) Pral®2) Fias,)

=L “[ (o-9, )|+ T A

i,m ety ){ r

o

slo-w, 0 + Ie-t,l<s,
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where the last inequality follows from our choice of t,.
It follows from (8) that

n:l(')w z(s) = nzlaw z(s) + ¢

Ill”énf z(s) = ll:“l)nf z(8) + ¢ .

Since & is arbitrary we must have

ulzl%up z(s) = n:laup z(s) (10)

1im inf z(8) € lim inf Z(8). (11)
80 8} 0

However, Lemma 1 implies that

lim inf z(8) > 2 (12)
8)0

and Lemme 2 implies that

1im sup z(8) * z. (13)
8o :

It now follows from (10), (11), (12) and (13) that the five gquan-
tities involved in these inequalities must be equal and this pro-

ves the theorem. L

3. NUMERICAL RESULTS

The epproximation described in Section 2 was used to solve
an engineering problem. Soil had to be carried from area J +to
area A. The geometrical representation of the two regions and
their relative position is given by Figure 1. The mean values of
®#(x) and ¢(y) were 14.82 and 3.628 meters rnpoeﬁnly.
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FIGURE 1

The finite dimensional linear +ransportation problems (see
[3]) were solved using & = 50m. This gives 239 squares P,
which intersect J, and 328 squares Py, which intersect A.
For solving the problems Pl, P2 we used the MPSX linear
programming system of IEM. In Teble I, we show the numerical results
obtained. The matrix of the problems is very sparae. Only About
0.55% of its elements are nonzero.



Table 1

D' n B e It. | TIME z(s) z(s)
1200 | 551 45322 | 956 | 10.7' | 1911 1737
1090 | 529 35478 | 710 8.3' | 1458 1297
1040 | 518 31288 | 685 6.7' | 1288 1146
1000 | 505 27472 | 629 5.9' | 1163 1040

. D: Admitted distance, in meters
m: number of constraints
n: number of variables
It: Iterations used by the MPSX
TIME: CPU time used.
z(8) end Z(8) are measured in thousands of n.

We observe that the precision obtained for this value of
J 4is about 11%, and the problems which-needed to be solved are
quite manageable. I'he-ae features make the computational results
obtained satisfactory for mcﬂoal purposes.
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