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ABSTRACT

It is well known that the I‘l estimators of the parameters of
the regression model asymptotically follow a normal distribution.
In this paper, using Monte Carlo approach, we determine the sam-
ple size at which we can use the normal distribution approxima-
tion to construct the confidence intervals and tests of hypo-

thesis on the parameters in the L., regression model.

1
1. INTRODUCTION

Consider the multiple linear regression model
Y =XB + € (1)

where y is an mnx1 vector of observations on a response vari-
able corresponding to X, an n x (k+l) matrix of observations on
the k regressor variables and a column of one's for the inter-
cept term, B is a  (k+l) x1 vector of the unknown parameters and
€ is an nx1 vector of observable random errors.

As an alternmative to the popular least squares procedure to
determine the unknown parameters of the model (1), one may use
the L1 criterion. The L, regression is a robust alternative to
the least squares regression and unlike other robust regression
procedures, it does not require a tuning constant. It is more re-

sistant to outliers than the least squares regression and as such



provides a good starting solution for one—step and iteratively
weighted multi-step least squares procedures.

A number of problems, for example, (i) the computatiomal dif-
ficulties associated with determining the L estimates of the
parameters, (ii) the lack of knowledge of statistical properties
of the L, estimators of the parameters, and (iii) non-availabil-
ity of the statistical inference procedures for the parameters
have prevented the use of the 'Ii..1 regression until recently. At
present the computational ‘difficulties’ no longer pose a problem
for the Ll regression. Charnes, Cooper and Ferguson (1955) for-
mulated sand solved the problem as a “1inéat programming pro-
blem. . Since then a number of efficient. algorithms and com-
puter progral-ns‘ hz;ve been depeloped. In o comparative study
of the ' available' ::'&mpu:ef programs, Geutle; Nasule and Spo-
sito - (1987) show ~ rhat ~ the ' computer program of Armstrong,
Frome and Kung (1979) is the most efficient. ' Furthermore, the
well known statistical packages, e.g., SAS (1983) and IMSL (1980)
have programs for the 1.1' régfésuicm

Just when the computational d:.ffu:ultles asaoc1ated with the
Ll regression were resolved, Bassett and Komke.r (1978) proved
“ihat in'd genéral ‘linear model m.th J.ndependent and 1dent11t:a11y
distributed errors, “the Ll estumtor 3 of ] 1s unbl.ased, consls-
“tent and asynptor_ically follmrs a mltmorml d1stnbu:wn with
variance-covariance matrix 3 (X'K) where A In -1s the vari-
ance of "the median of/a sample of size n from the error distri-
bution. An impqgfa.n_t i‘r_lnp_li:cation of this result.-.is. that the L
estimator has a strictly smaller confidence ellipsoid than the
least squares estimator for 3 for any error distribution for which
the sample median is-a morerefficient estimator of location than
the sample mean (Rosenberg'and * Carlson’ (1977) had Winted at ' this
result based on a Monte Carlo stiédy with ‘sample Sizes equal to 31
. and 59). Based onthese results; Dielman and Pfaffenberger (1982a)
gave formulas for confidence intervals and tests of hypothesis on
. the, parameters -of the model for "large” sample’ sizes.” In an effort
to determine how small is "large’ -, *"Dielman ~and  Pfaffenberger
(1982b), investigated the samplimg distributich of the L estimator
via a Monte Carlo study. They: concluded that the sampling distri-
bution appeared to be normal ' for sample siZes of 20 and 30 when

the errors followed a normal or a contaminated normal distribution,
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respectively. The Cauchy and the Laplace error distributions re-
quired much larger sample sizes before the hypothesis of normally
distributed sampling distributions was accepted. For the Cauchy
the acceptance at the 5 percent level ocurred far a sample size
100; and for the Laplace, acceptance at the 1 percent level occur-
red when the sample size was 150.

Although the study by Dielman and Pfaffenberger (1982b) pro—
vided some insight into the comvergence of the sampling distri-
butions of the Ll estimators to normality, it did not resolve the
problem of statistical inference about the parameters of the mod-
el. Our objective in this paper is to determine the smallest sam—
ple size for which the normal distribution can be used to draw in-
ferences about the parameters of the model (1) . The rest of the pa-
per is organized as follows: In the next section we describe the
Monte Carlo study followed by the results and their discussion in
Section 3. We conclude the paper with a few remarks in Sectiom 4.

2. METHODOLOGY

In an effort to determine the smallest sample size for which
the normal distribution can be used to draw inferences about the
parameters of the model (1) we conducted a Monte Carlo study for
k=1 G2 the simple linear regression) and k = 2 regressor
variables. In the study the intercept term Bo and the slope
terms were assigned a value of 1.0. We decided to study the
sampling distribution of the L1 estimators and the inference for
the parameters for sample sizes n = 10, 15, 20, 30, 40, 50 e
and 100 and the following error distributions, viz., the stand-
ard normal distribntion: a4 contaminated normal distribution that
consisted of random variables drawn from the standard normal dis-
tribution with probability 0.85 and from a normal  distribution
with expected value Zero and variance 25 with pProbability 0.15;
the Laplace distribution with mean zero and variance 2; the Cauchy
distribution with median zero and scale parameter one.

The values of the regressor variable(s) were generated as
independent standard normal variates independent of the errors.
The uniform (0,1) random variables were generated using FOR o
RAN function from VAX11/785 library; the standard normal vari-
ates were generated using the polar method of Marsaglia (1962);

and the Laplace and the Cauchy random variates were generated
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using the inverse transformations. ¥ : 0

For each sample size = and the error dutubnnm, 5000 re-
gressions were mlﬁd with _xdeﬂtxcal valaes of the regressor
variables but with different pseudo-random realizations from the
error distri'bur.ian._ Fo-.r. each Monte Carlo trial, the I..l estimates
were obtained using the computer program of Armstrong, Frome and
Kung (19':_'9). The sampling distribution .of the -Ll estimator was
constructed from these estiup;es. To test‘,u}hethc_lf _the sampling
d1str1butmn follwed a uoi-ml distribution, the Kalmogorov. D-
statistic and the observed sxgm.flcance level were . computed . by
the SAS cumputar paclulge. b e S iAnh Lo Tl 5

For each sample size .and error dxstnimtlm, besides . testing
the uomlxty of the error d1s|:nbntum, (1-a) confidence inter-

vals were generated for each parameter usluxg

B' a/ 2 E ‘ 2 (?)
where 'éi'“ is thel.l sotdamty-of 5 & zu S (1 -a)loo per—
centile of the standard mé ] 'E&kérfbutxm and o3 is the

{ 3l agimreigh ol .‘5.""' ns ol
standard error of the estimator obtained from thé Monte Carlo
sampling distribution. The coverage probainhnea ‘were calculated
for each case for a'= 0.01, 0.5’5!&‘10.10. o

TESITL 4

3, RESULTS AND DISCUSSION -

The~ L1 estimator of the intercept term and :the slope " ‘terms
in the multiple linear regression model -(k = 2) performed similar
to the corresponding terms in the simple linear . regression ‘modely
as can be ~observed in Tables VI, VII, VIIT . and 'IX - in the = Ap=
pendur A. B

In table 1 we give the sample size and the ' cbserved signifi~
cance level for the hypothesis that the sampling distribution of
the L, estimators ﬁo ~and B, follow .a normal -distribution.
The sampling distribution of the estimators did not converge to
the normal distri ition even for sample size 100 when errors fol-
lowed aplace distribution. For . this reason we increased the sam=
ple size until we achieved the convergence. From table I, one can’
conclude that if the errors follow a normal distribution, the
sampling distriburion of the estimators follows a normal distribu~
tion for sample size as small as 10 (the smallest -=sample ‘size



TABLE I

Convergence of the Sampling Distribution of the Intercept
and the Slope L_ Estimator to Normality

i
error sample observed
distribution * size _significance level
Normal 10 >.15
Contaminated Normal 20 >.15
Laplace 200 .02
Cauchy 100 .10

considered in this study); for the contaminated normal distribu-
tion at sample size 20; for the Cauchy and Laplace distributions
at sample sizes 100 and 200, respectively.

For practical purposes, it is more important to determine the
sample size at which we can use the normal distribution approxi-
mation for statistical inference, e.g., confidence interval and
tests of hypothesis. As noted in methodology, the confidence in-

tervals on Bo and B, were constructed using (2) and the cover-

1
age percentage calculated for each sample size and error distri-
bution. The results of this part of the study are given in Tables
II, ITI, IV and V, for the normal, the contaminated normal, the

Laplace and the Cauchy distributions, respectively.

TABLE II

Coverage Probabilities for the Intercept and Slope
Parameters for the Normal Error Distribution

1-a .90 <95 .99
B Bo 61 8cr a1 8o 81
10 .896 .903 .948 .949 .990 .987
15 -900 .897 .948 .949 -990 .989
20 .893 .902 .943 +953 .987 .990
30 .900 .899 <933 .946 -990 .990
40 .902 .901 .948 .954 .989 .991
50 .901 .898 . 949 .950 .991 .989
75 .898 .903 . 949 .949 .989 .989
100 .900 .900 .948 <951 .991 . 990




TABLE III

Coverage Probabilities for the Intercept and Slope Parameters
for the Contaminated Normal Error Distribution

1-a .90 <95 .99

n Bo Bl BD 81 Bo Bl
10 .903 .912 . 949 . 949 .987 .979
15 .907 .910 .950 .952 +985 .983
20 .900 .900 . 949 .950 .990 .987
30 .893 .902 <947 947 .988 .989
40 .899 .896 . 949 .948 .990 - 991
50 .895 .900 947 =95k <991 .989
75 .900 .895 .948 .945 .989 .988

100 .902 .898 - 952 . 946 .990 .989

TABLE 1V

Coverage Probabilities for the Intercept and Slope Parameters
for the Laplace Error Distribution

\i-a .90 .95 .99

£ o= _Bo B1 Bo a1 Bo 81
10 | .904 .900 946 .948 .982 .981
15 | .909 .900 .945 .942 .982 .982
20 | .89 .901 .943 .947 .986 .985
30 | .895 .903 .946 .946 .985 .984
40 |- .898 .899 -942 .985 .985 984
50 | .898 .899 -946 .942 .985 .984
15 | .89 .503 -944 .943 .986 .986

100 | .903 .898 .946 .945 .987 .985

The results in Tables II, III, IV and V are very encouraging.

For example, the difference between the nominal confidence level
and the percentage coverage (i) for the normal error distribution
is less then or equal to 0.007, (ii) for the contaminated normal
error distribution it is less than or equal to 0.012 for sample
size 10 and less then 0.007 for sample sizes greater then or equal
to 20, (iii) for the Laplace error distribution, it is less than
or equal to 0.009 and (iv) for the Cauchy error distributiom, it
is less than or egual to 0.015 for sample sizes greater tham or
equal to 15.



TABLE V

Cow:rage Probabilities for the Intercept and Slope Parameters
for the Cauchy Error Distributiom

O .90 .95 .99
4 B, N 5 B 6, CH
10 .918 .927 .951 950 .976 .971
15 J911 .915 .948 945 .980 -975
20 .894 ~908 “938 -945 -976 .978
30 .903 .901 .949 .943 .985 .980
40 -901 “901 .948 -943 .985 984
50 -901 .905 1944 -944 -986 ~983
75 -901 -904 -950 .947 .986 ~984
100 .895 889 .949 .941 .989 -984

-

4. CONCLUDING REMARKS

From the results of this study it seems that the sampling dis-—

¢ tribution of the L. estimators of the parameters of model (1)

converges to uvr-lity for very small sample sizes when the er—
rors either follow a normal or a contaminated normal error dis-
tributions. However, the convergence is slow when the errors fol-
low either the Laplace or the Cauchy distributions.

For all the error distributions, the difference between the
nominal confidence level and the coverage probabilities is very
small. This is a very useful result in that although the sam
pling distribution may not converge to normality, we can use
the normal distribution to construct confidence intervals and
test of hypothesis on the parameters of the model.
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APPENDIX A

TABLE V

Coverage Probabilities for B , B, and mn for the Normal Error Distribution

4] 1

1-a .90 ‘ .95 99
-l wo mp mm mo mp : mu mo ww mn
10 .898 .900 .897 948 »951 947 .989 .989 .991
15 .900 .901 .903 .950 ,949 951 .988 990 .989
20 .900 .905 904 .949 .954 951 .990 .988 .989
30 .908 .902 .896 <953 954 946 .988 991 .988
40 .900 .947 .989 .898 .950 .991 r.qu 949 .987
" 50 .904 .906 .898 957 951 949 .992 .989 .990
75 .898 .897 . 894 951 .950 944 .991 990 .988
100 .903 .894 .awmq 949 943 +952 +991 .989 +990




TABLE VI

\ W r AR 0 TR
iy maco‘.ﬂmmnx@nov,..rw:_wmwo-,“mnn 1w_,nn.. m_.n .mnn nm,o nmu,—.m.nswn_._.nnonrsroﬂwﬁ ,w.u.n.on_,c.._.nnﬂma:n.mou
1< .90 =, DL i TR
| mo ' G ] ke ] % ] ooha 9bp |
a0 4] <o20-{} 9181 | owes0 T .ezr | 976 | 978
15 .900 918 I a8 1] o085 4981 198
20 | .898 910 | 989 | - 987 ~983
{30 9031 9041 | T s89 | 987 | 986
" 40 [ 808 897 .988 | . ,989 .989
50 904 | .906 o ¢ LT G 992 | .98 | .990
75 887 .905 .900 940 | 950 .985 ,991 ,988
100 896 | .81 | .01 HINKT 58 | 986 | .988
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TABLE

VII

Coverage Probabilities for mo. mH and mn for the Laplace Error Distribution
L=a .90 .95 .99
n B By B, B, mw By mo mw mu
10 .907 .906 900 944 ,942 942 .977 .980 .98
15 .900 .902 .903 ,942 .942 .944 .982 .982 .983
20 .895 .895 .906 .938 .941 .950 .980 .982 .984
30 .899 .895 .B96 .943 .942 .942 .986 .982 .981
40 .901 .900 .899 .948 .943 .941 984 .985 .984
50 .892 . 894 .903 L9641 .941 951 984 .982 .986
15 .896 893 .908 L945 .942 .948 .989 ,984 983
100 .902 .902 .wwmw 953 944 .948 .993 .988 .987
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Qo<onunn N—.o_uuvu w%n;nﬁmsn m m
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2982 .981 .978
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g 777 .975 .974
g 978
.980
1 .983
8. 987 | .984
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989 | .988 988

L M.E. C.C.
BIBLIOTEGC

A



12

BIBLIOGRAPHY

Armstrong, R.D. Frome, E.L. and Kung, D.S5. (1979). A revised sim-
plex algorithm for the absolute deviation curve Ffitting pro-
blem. Communications in Statisties - Simulation and Computa-
tion, B8, 179-90.

Bassett, G.W. and Koenker, R. (1978). Asymptotic theory of least
absolute error regression. Jowrnal of the American Statistiecal
Association, 73, 618-22.

Charnes, A., Cooper, W.W. and Ferguson, R.0. (1955). Optimal esti-
mation of executive compensation by linear programming, Man-
agement Science, 1, 138-50.

Dielman, T. and Pfaffenberger, R. (1982a). LAV (least asbolute
value) estimation in the regression model: A review. TIMS
Studies in the Management Sciences, 19, 31-52.

Dielman, T. and Pfaffenberger, R. (1982b). On the rate of conver-
gence in distribution to normality of the least absolute value
estimator in the linear regression model. Working Paper No. 5,
Texas Christian University, Fort Worth, Texas.

Gentle, J.E., Narula, S.C. and Sposito, V.A. (1987). Algorithms
for unconstrained L linear regression. Statistical Data Anal-
ysis Based in the Ly=norm and Related Methods, edited by Yadolah
Dodge, North-Holland, 83-94.

International Mathematical and Statistical Libraries, Inc. (1980).
IMSL Library 3, Reference Manual, Houston, TX.

Marsaglia, G.. (1962). Random Variables and computers. Information
Theory Statistical Decision Functions. Random Processes: Tran—
sactions of the Third Prague Conf., edited by J. Kozesnik
Czechoslovak Academy of Sciences, Prague, 499-510.

Rosenberg, B. and Carlson, D. (1977). A simple approximation of
of the smhng distribution of least absolute residuals re-
gression estimates. Communications in Statisties — Simulation
and Computation, BE, 421-21.

SAS Institute, Inc.(1983). SUGI Supplememtal Library User's Guide,
1983 Edition, SAS Institute, Inc., Cary, N.C.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

