All Nachbin spaces $CV_\infty(X)$ of continuous scalar-valued functions have the approximation property.
§1. INTRODUCTION

Throughout this paper X is a Hausdorff space such that \(C_b(X;\mathbb{K}) \) (\(\mathbb{K} = \mathbb{R} \) or \(\mathbb{C} \)) separates the points of X, and E is a non-zero locally convex space. Our aim is to prove that certain function spaces \(L \subseteq C(X;E) \) have the approximation property as soon as E has the approximation property. We show this for the class of all Nachbin spaces \(C_{\infty}(X;E) \). Such spaces include \(C(X;E) \) with the compact-open topology; \(C_b(X;E) \) with the strict topology; \(C_0(X;E) \) with the uniform topology. When \(E = \mathbb{K} \), Bierstedt [1], using the technique of \(\varepsilon \)-products, had proved that \(C_{\infty}(X;\mathbb{K}) \) has the approximation property, under the hypothesis that X is a completely regular \(k_{\mathbb{R}} \)-space, and that the family \(V \) of weights is such that given a compact subset \(K \subseteq X \), one can find a weight \(v \in V \) such that \(v(x) \geq 1 \) for all \(x \in K \).

The technique we use here was suggested by the paper [5] of Gierz, who proved the analogue of Theorem 1 below for the case of X compact and bundles of Banach spaces. This technique of "localization" of the approximation property was used by Bierstedt, in the case of the partition by antisymmetric sets (Bierstedt [2]), but the main idea of representing the space of operators of \(L \) as another Nachbin space of cross sections is due to Gierz. However our presentation is much simpler, in particular we do not use the concept of a locally \(C(X) \)-convex \(C(X) \)-module. In the Introduction to his paper, Gierz said that his method could be applied to the vector fibrations in the sense of [8], and this led to our effort at simplifying his proof and adapting it to our context.

§2. THE APPROXIMATION PROPERTY FOR NACHBIN SPACES.

A vector fibration over a Hausdorff topological space X is a pair \((X,(F_x)_{x \in X}) \), where each \(F_x \) is a vector space over the field \(\mathbb{K} \) (where \(\mathbb{K} = \mathbb{R} \) or \(\mathbb{C} \)). A cross-section is then any element \(f \) of the Cartesian product of the spaces \(F_x \), i.e., \(f = (f(x))_{x \in X} \).
A weight on X is a function v on X such that $v(x)$ is a seminorm over F_x for each $x \in X$. A Nachbin space $L_{V_{\infty}}$ is a vector space L of cross-sections f such that the mapping

$$x \in X \mapsto v(x)[f(x)]$$

is upper semicontinuous and null at infinity on X for each weight v belonging to a directed set V of weights (directed means that, given $v_1, v_2 \in V$, there is some $v \in V$ and $\lambda > 0$ such that $v_i(x) \leq \lambda v(x)$ $(i = 1, 2)$ for all $x \in X$); the space L is then equipped with the topology defined by the directed set of seminorms

$$f \mapsto \| f \|_v = \sup\{v(x)[f(x)] : x \in X\},$$

and it is denoted by $L_{V_{\infty}}$.

Since only the subspace $L(x) = \{f(x) : f \in L\} \subset F_x$ is relevant, we may assume that $L(x) = F_x$ for each $x \in X$.

The cartesian product of the spaces F_x has the structure of a $C(X \mid X)$-module, where $C(X \mid X)$ denotes the ring of all continuous X-valued functions on X, if we define the product ϕf for each $\phi \in C(X \mid X)$ and each cross-section f by

$$(\phi f)(x) = \phi(x) f(x)$$

for all $x \in X$. If $W \subset L$ is a vector subspace and $B \subset C(X \mid X)$ is a subalgebra, we say that W is a B-module, if $BW = \{\phi f : \phi \in B, f \in W\} \subset W$.

We recall that a locally convex space E has the approximation property if the identity map e on E can be approximated, uniformly on every totally bounded set in E, by continuous linear maps of finite rank. This is equivalent to say that $E' \otimes E$ is dense in $L_c(E)$, the space $L(E)$ with the topology of uniform convergence on totally bounded sets of E. Let $cs(E)$ be the set of all continuous seminorms on E. For each seminorm $p \in cs(E)$, let E_p denote the
space E seminormed by p. If, for each $p \in cs(E)$, the space E_p has the approximation property, then E has the approximation property.

Theorem 1. Suppose that, for each $x \in X$, the space F_x equipped with the topology defined by the family of seminorms $\{v(x); v \in V\}$ has the approximation property. Let $B \subseteq C_b(X; \mathbb{K})$ be a self-adjoint and separating subalgebra. Then any Nachbin space LV_∞ which is a B-module has the approximation property.

The idea of the proof is to represent the space $L(W)$, where $W = LV_\infty$, as a Nachbin space of cross-sections over X, each fiber being $L(W; F_x)$, and then apply the solution of the Bernstein-Nachbin approximation problem in the separating and self-adjoint bounded case. Before proving theorem 1 let us state some corollaries.

Corollary 1. Let X be a Hausdorff space, and for each $x \in X$, let F_x be a normed space with the approximation property. Let $B \subseteq C_b(X; \mathbb{K})$ be a self-adjoint and separating subalgebra.

Let L be a vector space of cross-sections pertaining to $(X; (F_x)_{x \in X})$ such that

1. For every $f \in L$, the map $x \mapsto \|f(x)\|$ is upper semicontinuous and null at infinity;
2. L is a B-module;
3. $L(x) = F_x$ for each $x \in X$.

Then L equipped with norm $\|f\| = \sup \{\|f(x)\|; x \in X\}$ has the approximation property.

Proof. Consider the weight v on X defined by $v(x) = \text{norm of } F_x$, for each $x \in X$. Then LV_∞ is just L equipped with the norm.
\[\| f \| = \sup \{ \| f(x) \| ; x \in X \}. \]

REMARK. From Corollary 1 it follows that all "continuous sums", in the sense of Godement [6] or [7], of Banach spaces with the approximation property have the approximation property, if the "base space" \(X \) is compact and if such a "continuous sum" is a \(C_b(X; \mathbb{R}) \)-module. In particular, all "continuous sums" of Hilbert spaces and of \(C^* \)-algebras, in the sense of Dixmier and Douady [3] have the approximation property, if \(X \) is compact. Indeed, a "continuous sum" in the sense of [3] is a \(C(X; \mathbb{R}) \)-module.

COROLLARY 2. Let \(X \) be a Hausdorff space such that \(C_b(X; \mathbb{R}) \) is separating; let \(V \) be a directed set of real-valued, non-negative, upper semicontinuous functions on \(X \); and let \(E \) be a locally convex space with the approximation property. Then \(CV_\infty(X; E) \) has the approximation property.

PROOF. By definition, \(CV_\infty(X; E) = \{ f \in C(X; E); v \cdot f \) vanishes at infinity, for all \(v \in V \} \), equipped with the topology defined by the family of seminorms

\[\| f \|_{v,p} = \sup \{ v(x) \cdot p(f(x)) ; x \in X \} \]

where \(v \in V \) and \(p \in \text{cs}(E) \).

Let \(L_v \) denote \(CV_\infty(X; E) \) equipped with the topology defined by the above seminorms when \(v \in V \) is kept fixed. Then, for each \(x \in X \), either \(L_v(x) = 0 \) or \(L_v(x) = E \) equipped with the topology defined by the seminorms \(\{ v(x)\cdot p ; p \in \text{cs}(E) \} \). Hence in both cases, \(L_v(x) \) has the approximation property. It remains to notice that all Nachbin spaces are \(C_b(X; \mathbb{R}) \)-modules. Therefore \(L_v \) has the approximation property. Since \(v \in V \) was arbitrary, \(CV_\infty(X; E) \) has the approximation property.

COROLLARY 3. Let \(X \) and \(E \) be as in Corollary 2. Then
(a) \(C(X ; E) \) with the compact-open topology has the approximation property.

(b) \(C_0(X ; E) \) with the uniform topology has the approximation property.

REMARK. In (a) above, it is sufficient to assume that \(C(X ; \mathbb{K}) \) is separating.

COROLLARY 4. (Fontenot [4]) Let \(X \) be a locally compact Hausdorff space, and let \(E \) be a locally convex space with the approximation property. Then \(C_b(X ; E) \) with the strict topology \(\beta \) has the approximation property.

PROOF. Apply Corollary 2, with \(V = \{ v \in C_0(X ; \mathbb{R}) ; v \geq 0 \} \).

COROLLARY 5. All Nachbin spaces of continuous scalar-valued functions have the approximation property.

PROOF. In Corollary 2, take \(E = \mathbb{K} \).

§3. PROOF OF THEOREM 1

Let \(W = LV_\infty \) and let \(A \subseteq W \) be a totally bounded set.

Let \(v_0 \in V \) and \(\varepsilon > 0 \) be given.

For each \(T \in \mathcal{L}(W) \) consider the map

\[\varepsilon_x \circ T : W \longrightarrow F_x \]

for \(x \in X \), where \(\varepsilon_x : W \longrightarrow F_x \) is the evaluation map, i.e.,

\[\varepsilon_x(f) = f(x), \text{ for all } f \in W. \]

STEP 1. \(\varepsilon_x \circ T \in \mathcal{L}(W ; F_x) \).

PROOF. Just notice that \(\varepsilon_x \in \mathcal{L}(W ; F_x) \), since
\[v(x) \leq \| f \|_V, \text{ for any } v \in V. \]

For each \(T \in \mathcal{L}(W) \), consider the cross-section \(\hat{T} = (e_x \circ T) \in X \) and for each \(v \in V \) consider the weight \(\hat{\nu} \) on \(X \) defined by

\[\hat{\nu}(x)[U(x)] = \sup \{ v(x)[(U(x))(f)] : f \in A \} \]

for every \(U(x) \in \mathcal{L}(W ; F_X) \). Then

\[\hat{\nu}(x)[\hat{T}(x)] = \hat{\nu}(x)[e_x \circ T] = \sup \{ v(x)[(T f)(x)] : f \in A \} \]

for any \(T \in \mathcal{L}(W) \).

STEP 2. The map \(x \mapsto \hat{\nu}(x)[\hat{T}(x)] \) is upper semicontinuous and vanishes at infinity on \(X \), for each \(T \in \mathcal{L}(W) \).

PROOF. Let \(x_0 \in X \) and assume

\[\hat{\nu}(x_0)[\hat{T}(x_0)] < h. \]

Choose \(h'' \) and \(h' \) such that

1. \(\hat{\nu}(x_0)[\hat{T}(x_0)] < h' < h'' < h. \)

Let \(\delta = 2(h'' - h') \). Then \(\delta > 0 \). Since \(T(A) \) is totally bounded, there exist \(f_1, f_2, \ldots, f_m \in A \) such that, given \(f \in A \), there is \(i \in \{1,2,\ldots,m\} \) such that

2. \(\| T f - T f_i \|_V < \delta/4 \)

Since \(x \mapsto v(x)[(T f_i)(x)] \) is upper semicontinuous, there are \(V_1, V_2, \ldots, V_m \) neighborhoods of \(x_0 \) such that

3. \(v(x)[(T f_i)(x)] < v(x_0)[(T f_i)(x_0)] + \delta/4 \)
for all $x \in V_i$ ($i = 1, 2, \ldots, m$).

Let $U = V_1 \cap V_2 \cap \ldots \cap V_m$. Then U is a neighborhood of x_0 in X. Let $x \in U$ and let $f \in A$. Choose $i \in \{1, 2, \ldots, m\}$ such that (2) is true. Then

$$v(x)[(T f)(x)] \leq v(x)[(T f)(x) - (T f_i)(x)] + v(x)[(T f_i)(x)]$$

$$< \|T f - T f_i\|_v + v(x_0)[(T f_i)(x_0)] + \delta/4$$

$$< \delta/2 + v(x_0)[(T f_i)(x_0)]$$

$$= h'' - h' + v(x_0)[(T f_i)(x_0)].$$

On the other hand, by (1), we have

$$v(x_0)[(T f_i)(x_0)] \leq \hat{v}(x_0)[\hat{T}(x_0)] < h'.$$

Hence $v(x)[(T f)(x)] < h''$ for all $f \in A$, and $x \in U$.

Therefore $\hat{v}(x)[\hat{T}(x)] \leq h'' < h$, for all $x \in U$.

Let us now prove that the mapping $x \mapsto \hat{v}(x)[\hat{T}(x)]$ vanishes at infinity.

Let $\delta > 0$ be given and define

$$K_\delta = \{x \in X; \hat{v}(x)[\hat{T}(x)] \geq \delta\}.$$

Since $K_\delta = \emptyset$, if $\sup\{\|T f\|_v; f \in A\} < \delta$, we may assume $\sup\{\|T f\|_v; f \in A\} \geq \delta$.

Since $T(A)$ is totally bounded, there are $f_1, \ldots, f_m \in A$ such that, given $f \in A$, there is $i \in \{1, \ldots, m\}$ such that
(4) \[\| T f - T f_i \|_v < \delta / 4. \]

Let \(K = \bigcup_{i=1}^{m} \{ t \in X ; v(t)[(T f_i)(t)] > \delta / 2 \}. \)

Then \(K \) is compact, since each of the functions \(x \mapsto v(x)[(T f_i)(x)] \) vanishes at infinity. Let now \(x \in K_{\delta} \) and choose \(f \in A \) such that

(5) \[v(x)[(T f)(x)] > \frac{3\delta}{4}. \]

Choose \(f_i \in A \) satisfying (4). Then

(6) \[v(x)[(T f)(x)] < v(x)[(T f_i)(x)] + \delta / 4. \]

Therefore \(\delta / 2 < v(x)[(T f_i)(x)] \) and so \(x \in K_{\delta} \), i.e., \(K_{\delta} \subseteq K \). Since \(K_{\delta} \) is closed, this ends the proof.

The above two steps show that the image \(L = \{ \tilde{T} ; T \in L(W) \} \) of \(L(W) \) under the map \(T \mapsto \tilde{T} \) is a Nachbin space \(L \mathcal{U}_{\infty} \) of cross sections over \(X \), pertaining to the vector fibration \((X ; (L(W ; F_x))_{x \in X}) \), if we take as family \(\mathcal{U} \) of weights the family \(\mathcal{V} = \{ \tilde{v} ; v \in V \} \)

STEP 3. For every \(T \in L(W) \),

\[\sup_{f \in A} \| T f \|_v \leq \sup_{x \in X} \tilde{v}(x)[\tilde{T}(x)]. \]

PROOF. Let \(f \in A \). Then

\[\| T f \|_v = \sup_{x \in X} v(x)[(T f)(x)] \]
\[
\sup_{x \in X} \varphi(x) \left((\varepsilon_x \circ T)(f) \right)
\]

\[
= \sup_{x \in X} \hat{\varphi}(x) \left(\hat{T}(x) \right) = \| \hat{T} \|_{\hat{\varphi}}.
\]

Let now \(\mathcal{F}' = \{ \hat{T} : T \in W' \otimes W \} \).

Our aim is to prove that we can find \(T \in W' \otimes W \) such that

\[
\sup_{f \in A} \| T f - f \|_{\varphi_0} < \varepsilon.
\]

Hence, by Step 3, it is enough to prove that

\[
\| \hat{T} - \hat{I} \|_{\hat{\varphi}_0} < \varepsilon,
\]

where \(\hat{I} = (\varepsilon_x)_{x \in X} \).

By the bounded case of the Bernstein-Nachbin approximation problem (Theorem 11, [8], pg. 314) it is enough to prove that

STEP 4. \(\mathcal{F} \) is a B-module.

STEP 5. For each \(x \in X \), \(\mathcal{F}(x) \) is dense in \(\mathcal{L}(W ; F_{x}) \), equipped with the topology defined by the seminorms \(\{ \hat{\varphi}(x) ; \varphi \in \mathcal{V} \} \).

PROOF. To prove that \(\mathcal{F} \) is a B-module, it is enough to prove that

\[
(M_{\phi} \circ T)^{\wedge} = \phi \hat{T}
\]

for all \(\hat{T} \in \mathcal{F} \), i.e., for all \(T \in W' \otimes W \) and for all \(\phi \in B \); and \(M_{\phi} : W + W \) is defined by \(M_{\phi}(f) = \phi f \), for all \(f \in W \).

Now to prove (7), one has to prove that

\[
(M_{\phi} \circ T)^{\wedge}(x) = (\phi \hat{T})(x)
\]

for all \(x \in X \). However,
\((M_\phi \circ T)^\sim (x) = \varepsilon_x \circ (M_\phi \circ T)\), and

\((\varphi^\sim T)(x) = \varphi(x) \; \hat{T}(x) = \varphi(x) (\varepsilon_x \circ T)\).

And, for all \(f \in W\) one has

\[
[\varepsilon_x \circ (M_\phi \circ T)](f) = \varepsilon_x ((M_\phi \circ T)(f))
= \varepsilon_x (\varphi(T \; f))
= \varphi(x) (T \; f)(x)
= \varphi(x) (\varepsilon_x \circ T)(f).
\]

This ends the proof of step 4.

To prove step 5, we first notice that, since each \(F_x\) equipped with the topology defined by \(\{v(x) \; ; \; v \in V\}\) has the approximation property, then \(W' \otimes F_x\) is dense in \(\mathcal{L}_c(W \; ; \; F_x)\), a fortiori in \(\mathcal{L}(W \; ; \; F_x)\) with the topology of the seminorms \(\{\hat{v}(x) \; ; \; v \in V\}\).

Hence, all we have to prove is that \(\mathcal{F}(x)\) contains \(W' \otimes F_{x'}\) for each \(x \in X\).

Let then \(T \in W' \otimes F_x\) be a continuous linear operator of finite rank, say

\[T = \sum_{i=1}^{n} \phi_i \otimes v_i\]

where \(\phi_i \in W'\) and \(v_i \in F_x\). Since \(W(x) = F_x\), choose \(f_i \in W\) such that
\[f_i(x) = v_i \]

for \(i = 1, 2, \ldots, n. \)

Define \(U = \sum_{i=1}^{n} \phi_i \otimes f_i. \)

Then \(U \in W' \otimes W; \) so \(\hat{U} \in \mathcal{F}. \) Now

\[\hat{U}(x) = \varepsilon_x \circ (\sum_{i=1}^{n} \phi_i \otimes f_i) \]

and therefore

\[\hat{U}(x)(f) = \sum_{i=1}^{n} \phi_i(f) f_i(x) = \sum_{i=1}^{n} \phi_i(f) v_i = T(f) \]

for all \(f \in W. \)

REFERENCES

JOÃO BOSCO PROLLA
Instituto de Matemática
Universidade Estadual de Campinas
Caixa Postal 1170
13100 Campinas, SP, Brasil