Exame de Qualificação - Doutorado Álgebra Comutativa - 2º Sem/2003

Todos os anéis considerados nesta prova são comutativos com $1 \neq 0$.

- (3pts)(Anéis) Seja R um anel.
- a) Mostre que: Se R é noetheriano e $I \subset R$ é um ideal tal que $dim_{Krull}(\frac{R}{I}) = 0$ então existe apenas um número finito de ideais maximais de R que contém I.
- b) Supondo R noetheriano, enuncie o teorema para ideais principais de Krull. Usando tal teorema explique porque que um domínio noetheriano de dimensão de Krull n ≥ 2 tem infinitos ideais primos de altura 1.
- c) Mostre que: Se R é artiniano e $x \in R$ então: x é regular (ie, não divisor de zero) se e somente se x é uma unidade.
 - (3pts) (Módulos) Dado um anel R.
- a) Sejam M e N R-módulos finitamente gerados, $I \subseteq J(R)$ ideal de R, onde J(R) é o radical de Jacobson de R e $\sigma: M \to N$ um R-homomorfismo. Sabemos que $\overline{\sigma}: \frac{M}{IM} \to \frac{N}{IN}$ definida por $\overline{\sigma}(\overline{m}) = \overline{\sigma(m)}$ é um $\frac{R}{I}$ -homorfismo. Mostre que:

 σ é sobrejetora se e somente se $\overline{\sigma}$ é sobrejetora .

- b) Mostre que: Se M é um R-módulo não nulo tal que para todo $m \in M$, $m \neq 0$, tem-se que $\frac{M}{Rm}$ é R-módulo noetheriano então M é noetheriano.
- c) Dizemos que um R-módulo M é simples se os únicos submódulos de M são os triviais, ie, $\{0\}$ e M. Mostre que: Se M é um R-módulo simples não nulo então existe um ideal maximal M de R tal que M é isormofo como R-módulo ao corpo $\frac{R}{M}$. (Sugestão: Mostre primeiro que M é principal)
- 3.(4pts) Responda falso ou verdadeiro a cada uma das afirmações abaixo. Justifique suas respostas (respostas sem justificativas não serão consideradas).
- a) Se (R, M) é anel noetheriano local então a dimensão de Krull de R é finita.
- b) Se M e N são R-módulos e $M \otimes_R N = 0$ então M = 0 ou N = 0
- c) Se K é um corpo finito e M é um R-módulo finitamente gerado, onde R = K[X] é o anel de polinômios a uma variável sobre K, então o submódulo de torção, T(M), de M é finito. (Lembre que $T(M) = \{m \in M : \exists f \in R \setminus \{0\} \text{ tal que } fm = 0\}$).
- d) Se K é corpo, S=K[X,Y,Z] é o anel de polinômios a 3 variáveis sobre K e R é o subanel de S dado por $R=K[X^2-Z,Y^2-Z]$ então S/R é extensão integral.

BOA PROVA

DM-IMECC-UNICAMP, EXAME DE QUALIFICAÇÃO DE DOUTORADO Análise Funcional, 10/07/2003

Aluno:	RA:

FAÇA NO MÍNIMO 04 (QUATRO) QUESTÕES.

- 1. Considere os espaços $BC(I\!\!R^n) = \{f \in C(I\!\!R^n); \sup_{x \in I\!\!R^n} |f(x)| < \infty\},$ $C_c(I\!\!R^n) = \{f \in C(I\!\!R^n); \text{ spt.} f \text{ \'e compacto }\} \in C_0(I\!\!R^n) = \{f \in C(I\!\!R^n); f^{-1}(|x| \ge \epsilon) \text{ \'e compacto } \forall \epsilon > 0\}, \text{ munidos da norma do supremo } ||f||_{\sup} = \sup_{x \in I\!\!R^n} |f(x)|. \text{ Prove:}$
 - a) BC(IRⁿ) é um espaço de Banach;
 - b) $C_{\mathcal{C}}(I\!\!R^n)$ é o fecho do $C_{\mathcal{O}}(I\!\!R^n)$. Sugestão: Use o Lema de Urysohn.
- 2. Sejam E e F espaços de Banach e T : E → F uma aplicação linear. Provar a equivalência dos três teoremas básicos da Análise Funcional enunciados a seguir:

Teorema da Aplicação Inversa: Se T é uma bijeção contínua, então T^{-1} é contínua.

Teorema da Aplicação Aberta: Se T é contínua e sobrejetiva, então T é uma aplicação aberta, i.e. T(G) é aberto (em F) para todo aberto G (em E).

Teorema do Gráfico Fechado: Se o gráfico de T é fechado (em $E \times F$), então T é contínua.

Dicas:

- a) Considere o diagrama ao lado; $P \xrightarrow{T} F$ N(T) denota o núcleo de T.
- b) A aplicação $S:G(T)\to E,\ (v,Tv)\mapsto v,$ é uma bijeção; G(T) denota o gráfico de T.
- 3. Sejam Ω um aberto limitado do Rⁿ e φ : R → R uma função de classe C² estritamente convexa (φ" ≥ c, para alguma constante c positiva). Dada uma seqüência (u_n) em L[∞](Ω) que converge para u ∈ L[∞](Ω) na topologia fraca-* do L[∞](Ω) (lembre-se que o L[∞](Ω) pode ser considerado como sendo o dual do L¹(Ω)), prove que (u_n) converge fortemente em L²(Ω)

- (na topologia da norma do $L^2(\Omega)$) se $\varphi \circ u_n$ converge fortemente para $\varphi \circ u$ em $L^1(\Omega)$. (Note que $\varphi \circ u_n$ e $\varphi \circ u$ estão bem definidas e pertencem ao $L^1(\Omega)$; de fato, elas pertencem ao $L^\infty(\Omega)$, logo ao $L^1(\Omega)$ já que Ω é limitado.)
- 4. Sejam E e F espaços de Banach e T_n e T operadores lineares e limitados de E em F. Dizemos que T_n converge fortemente para T ($T_n \to T$ fortemente) se $T_n x$ converge para T x na topologia da norma de F para todo x em E. Prove que se $x_n \to x$ em E (topologia da norma) e $T_n \to T$ fortemente, então $T_n x_n \to T x$ em F.
- 5. Prove que não existe norma em $C^{\infty}([0,1])$ que torne o operador derivação $\frac{d}{dx}f \text{ limitado. } Dica: f_{\lambda}(x) = \exp(\lambda x).$
- 6. Seja $K \in C([a,b] \times [a,b])$ e defina

$$S(f) = \int_{-b}^{b} K(x, y) f(y) \, dy.$$

Prove que $S: C([a,b]) \rightarrow C([a,b])$ é um operador compacto.

Sugestão: Use o teorema de Arzelá-Ascoli.

Exame de Qualificação - MM427 - 08/07/2003

Todos os anéis considerados nesta prova são comutativos com $1 \neq 0$.

- 1. (3pts)(Anéis) Seja R um anel. Mostre que:
- a) Se R é domínio que não é corpo e para todo elemento não nulo e não unidade x de R tem-se que é um anel finito, então R é noetheriano e dim_{Krull}(R) = 1. Dê um exemplo de um anel que satisfaz ta hipóteses.
- b) Se (R, \mathcal{M}) é local e noetheriano com Spec(R) infinito e existem $a, b \in R$ tal que $\mathcal{M} = \sqrt{(a, b)}$ ente $dim_{Krull}(R) = 2$
- c) Se R é um domínio noetheriano com $dim_{Krull}(R)=1$, todo ideal maximal de R é principal e I é u ideal radical e próprio (ie, $\sqrt{I}=I\subset R$) então I também é ideal principal.
 - 2. (3pts) (Módulos) Sejam A um anel e M um A-módulo.
- a) Mostre que: se $\varphi: M \longrightarrow M$ é um homomorfismo injetor de A-módulos e M é artiniano então φ isomorfismo. Dê um exemplo de que tal resultado não é verdadeiro se M não for artiniano.
- b) Mostre, usando a propriedade universal, que: Se $I \subset A$ é ideal enão $M \otimes_A \frac{A}{I} \simeq \frac{M}{IM}$. Conclua a part disto que se $I \subseteq J(A)$, onde J(A) é o radical de Jacobson de A e M é finitamente gerado então: M = 0 se
- somente se $M \otimes_A \frac{A}{I} = 0$. c) Dizemos que o A-módulo M é indecomponível se satisfaz: $M = M_1 \oplus M_2$, com M_1 e M_2 A-submódul se e somente se $M_1 = 0$ ou $M_2 = 0$. Se M é indecomponível e $\varphi : M \longrightarrow M$ é A-homomorfismo tal qu
- $\varphi^2 = \varphi$ então $\varphi = 0$ ou $\varphi = I_M$, onde $I_M(m) = m$ para todo $m \in M$.

 3.(4pts) Responda falso ou verdadeiro a cada uma das afirmações abaixo. Justifique suas respost (respostas sem justificativas não serão consideradas).
- a) Se M é um \mathbb{Z} -módulo finitamente gerado e infinito então existe um número natural n tal que nM \mathbb{Z} -módulo livre de posto ≥ 1 .
- b) Se M e N são A-módulos e $\varphi: M \longrightarrow N$ é um A-homomorfismo sobrejetor então: M é finitament gerado se e somente se $Ker(\varphi)$ e N são finitamente gerados.
- gerado se e somente se $Ker(\varphi)$ e N são finitamente gerados. c) Se $\alpha \in \mathbb{R}$ é transcendente sobre os números racionais e A é o subanel de \mathbb{R} dado por $A = \mathbb{Z}[\alpha, \sqrt{\alpha}]$
- então existe m ∈ max(A) tal que a altura de m é 2. d) Existe um domínio local e noetheriano (R, M) com dimensão de Krull 2 e tal que a dimensão o
- k-espaço vetorial $\frac{\mathcal{M}}{\mathcal{M}^2}$ é 1, onde $k = \frac{R}{\mathcal{M}}$ é o corpo de restos de R. e) Seja B/A é uma extensão de domínios tal que $A = K[y_1, \dots, y_m]$, $B = K[x_1, \dots, x_n]$ e K é corpo.
- e) Seja B/A é uma extensão de dominios tal que $A = K[y_1, \dots, y_m]$, $B = K[x_1, \dots, x_n]$ e K e corpo. Se m > n então $\{y_1, \dots, y_m\}$ é um conjunto algebricamente dependente sobre K.

INTRODUÇÃO À HOMOLOGIA, Exame de qualificação ao doutorado, 05/12/2003 Nome: RA:

Assinatura:

- 1. Seja Mⁿ variedade compacta sem bordo
- a) mostre que se né impar, então $\chi(M)=0$
- b) use a) para mostrar que se n=3 e M não é orientável, então $\pi_1(M)$ é infinito. c) a conclusão de a) vale se M não for compacta ou se $\partial(M) \neq \emptyset$?
- c) a conclusão de a) vale se M não for compacta ou se $\partial(M) \neq \emptyset$? 2. Seia $V_{n,2} = \lceil (e_1, e_2) = \delta_{i,i} \rceil$ e $p: V_{n,2} \to S^{n-1} \subset \mathbb{R}^n$, $p(e_1, e_2) = e_1$. Assume que p é um:
- ibração e que $p^{-1}(e_1) = S^{n-2}$ a) mostre que existe $s: S^{n-1} \to V_{n,2}$ com $p \circ s = id$ apenas no caso n par.
 - b) se *n* for par mostre que $\pi_k(V_{n,2}) \simeq \pi_k(S^{n-1}) \times \pi_k(S^{n-2})$.
 - c) calcule $H_k(V_{4,2}; \mathbb{Z})$.
 - 3. Considere $S^2 \vee S^3$ (o espaço obtido identificando um ponto do S^2 com um ponto do
 - a) mostre que $\pi_2(S^2 \vee S^3) \simeq \mathbb{Z}$.
 - b) calcule $H_k(S^2 \vee S^3)$. (Sugestão: use uma decomposição celular).
 - 4. Responder se cada uma das seguintes afirmações é verdadeira ou falsa fornecendo a curta justificativa.
- uma curta justificativa.

 a) $\mathbb{C}P^3$ é uma variedade real, diferenciável, de dimensão 6 com $\pi_2\mathbb{C}P^3 \simeq \mathbb{Z}$ e $\pi_7\mathbb{C}P^3 \simeq \mathbb{Z}$
 - b) O fibrado tangente de $\mathbb{C}P^3$ é trivial.

(Cada item valem um ponto).

Exame de Qualificação. Introdução à Homologia. Julho, 2003.

Nome:

RA:

Assinatura:

- 1. Seja $X = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\} \cup \{(x, y, z) \in \mathbb{R}^3 : x = 0 = y, -1 \le z \le 1\}$. Calcule o grupo fundamental e a homologia de X.
- Prove que o produto de duas variedades compactas sem bordo é orientável se e s se ambas são oriantáveis.
- 3. Seja CP^3 o espaço projetivo complexo. Considere as fibrações de Hopf $S^1 \rightarrow S^7 \rightarrow CP^3$ e $S^1 \rightarrow S^3 \rightarrow S^2$.
 - a. A partir delas calcule o terceiro grupo de homotopia de \mathbb{CP}^3 e \mathbb{S}^2 .
- b. Considere a decomposição celular de $CP^3 = e^0 \cup e^2 \cup e^4 \cup e^6$. A partir dela calcule homologia de CP^3 com coeficientes inteiros.
- c. Mostre que as homologias com coeficientes inteiros de CP^3 e de $S^2 \times S^4$ mas que duas variedades não são homotopicamente equivalentes.
- 4. Seja $S^3 = \{(z, w) \in C^2 : |z|^2 + |w|^2 = 1\}$ e o grupo das sétimas raízes da unidade $G = \{\alpha \in C : \alpha^7 = 1\}$. Considere a ação $G \times S^3 \to S^3$, com $a(z, w) = (\alpha z, aw)$.
 - a. Mostre que o quociente S^3/G é uma variedade e calcule o $\pi_1(S^3/G)$.
- b. Mostre que qualquer função contínua de S^3/G no toro T^2 é homotópica à uma constante.
 - c. Mostre que qualquer função $f: RP^2 \to S^3/G$ é homotópica à uma constante.
 - d. Mostre que S^3/G é orientável.
 - e. Calcule a homologia de S^3/G com coeficientes inteiros.

Todo item vale um ponto. Total: 10 pontos.

Exame de Qualificação - Doutorado Curvas Algébricas - 2º Sem/2003

Cada uma das questões vale 1 ponto.

- 1) Sejam K um corpo, $P \in \mathbb{A}^n(K)$ e $V = \{P\}$. Mostre que o ideal de V é maximal.
- 2) Mostre que o conjunto $\{(t, \sin t) : t \in \mathbb{R}\}$ não é algébrico.
- 3) Para $I = (Y^2 X^2, Y^2 + X^2) \subseteq \mathbb{R}[X, Y]$, achar $V(I) \in dim_{\mathbb{R}} \frac{\mathbb{R}[X, Y]}{I}$.
- 4) Mostre que a curva $\mathcal{V}(Y^2 X(X-1)(X-\lambda)) \subseteq \mathbb{A}^2(\mathbb{C})$ é irredutível para todo $\lambda \in \mathbb{C}$.
- 5) Sejam $V=\mathcal{V}(Y^2-X^3)\subseteq \mathbb{A}^2(\mathbb{C})$ e $\varphi:\mathbb{A}^1(\mathbb{C})\longrightarrow V$ definida por $\varphi(t)=(t^2,t^3)$. Mostre que φ é bijetora mas não é um isomorfismo.
- 6) Calcular $I(P, E \cap F)$ onde:

$$E = (X^{2} + Y^{2})^{2} + 3X^{2}Y - Y^{3},$$

$$F = (X^{2} + Y^{2})^{3} - 4X^{2}Y^{2}$$
 e

$$P = (0,0)$$

- 7) Suponha que P é um ponto duplo para uma curva $F \in K[X,Y]$. Seja l uma tangente em P. Mostre que $I(P,l\cap F)\geq 3$.
- 8) Achar o gênero da curva sobre C dada pela equação:

$$(X^2 + Y^2)^2 + 3X^2Y - Y^3 = 0$$

- 9) Dado D um divisor sobre uma curva \mathcal{X} projetiva e não singular sobre \mathbb{C} . Seja g= gênero de \mathcal{X} . Mostre que: se deg(D)=2g-2 e l(D)=g, então D é um divisor canônico.
- 10) Sejam \mathcal{X} como em 9) e D um divisor. Considere D' := W D onde W é um divisor canônico. Mostrar que: $l(D) l(D') = \frac{1}{2}(deg(D) deg(D'))$

BRIEF CASE

Exame de Qualificação de Geometria Riemanniana 05/12/2003.

Nome:

Assinatura

BRIEF CASE

Responder se cada uma das seguintes afirmações é verdadeira ou falsa, dando uma curta justificativa e/ou um contraexemplo.

- O conceito de transporte paralelo é equivalente ao conceito de conexão no fibrado tangente de uma variedade diferenciável.
- 2. Em uma variedade Riemanniana M a aplicação \exp_p restrita à uma bola suficientemente pequena de T_pM é uma isometria.
- Se um diffeomorfismo entre variedades Riemannianas preserva a curvatura secional então é uma isometria.
- 4. Seja $S^2 = \{(x,y,z) \in \mathbb{R}^3, x^2 + y^2 + z^2 = 1\}, \ \gamma : [0,2\pi] \to S^2, \ \gamma(t) = (\cos t, \sin t, 0) \in \xi(t) = (0,0,1) \text{ o campo "vertical" ao longo de } \gamma.$
 - a) & é paralelo
 - b) & é Jacobi
 - c) ξ é Killing.
 - 5. Seja $f:M\to \overline{M}$ imersão isométrica e α a sua segunda forma fundamental
 - a) α é um tensor (i.é., linear em relação às funções)
- b) se $\alpha_p = 0$ para um $p \in M$ e $\gamma : (-\varepsilon, \varepsilon) \to M$ é uma geodésica com $\gamma(0) = p$, então $f \circ \gamma$ é uma geodésica em \overline{M} .
 - c) se $\alpha \equiv 0$ e γ : $(-\epsilon, \epsilon) \rightarrow M$ é uma geodésica, então $f \circ \gamma$ é geodésica.
- 6. Seja M uma variedade Riemanniana simplesmente conexa e localmente simétrica (i.é., $\nabla_X R \equiv 0$)

então M é completa.

- 7. Seja M uma variedade Riemanniana
- a) Se M é completa, $\forall p,q \in M$ existe uma geodésica minimizante entre p e q
- b) Se $\forall p,q \in M$ existe uma geodésica minimizante entre p e q, então M é completa.
- 8. Seja M variedade Riemanniana simétrica. Então o "cut locus " coincide com o "conjugate locus ".

Exame de qualificação ao doutorado. **Geometria Riemanniana**. Semestre I 2003.

Nome: RA:

Assinatura:

Responder se cada uma das seguintes afirmações é **Verdadeira** ou **Falsa** com uma curta (menor ou igual a 5 linhas) justificativa. Respostas sem justificativa valem zero. Em todas as perguntas, *M* é uma variedade Riemanniana completa.

- 1. Se M não é compacta então $\forall p \in M$, existe geodésica $\gamma: [0,\infty) \to M$, com $\gamma(0) = p$, tal que $\gamma(t)$ é minimizante para todo t.
- 2. Existem dois mergulhos diferenciaveis, T_1 e T_2 do toro $S^1 \times S^1$ em R^3 tal que $T_1 \cap T_2 = \emptyset$ e existe $p_1 \in T_1$ com a seguinte propriedade: o plano tangente de T_1 no ponto p_1 nunca é paralelo ao plano tangente de T_2 em p_2 , para qualquer $p_2 \in T_2$.
- Um diffeomorfismo entre superfícies compactas, simplesmente conexas que preserva a curvatura de Gauss, é sempre uma isometria.
- 4. Seja $\alpha:[0,1]\to M$ tal que a energia $E(\alpha)$ é mínima para toda variação própria de α , então α minimiza o comprimento.
- 5. (Contin.) Se α minimiza o comprimento então $E(\alpha)$ é mínima para toda variação própria de α .
 - 6. Se o campo X é Killing em M e $\gamma(t)$ é uma geodésica em M então $X(\gamma(t))$ é Jacobi.
 - 7. Se para toda geodésica γ de M o campo $X(\gamma(t))$ é Jacobi, então X é Killing.
 - 8. Se a curvatura secional de M é não positiva então M não tem " cut points ".
- Se a curvatura secional de M é sempre maior que 2, então M é compacta e
 1-conexa.
- 10. Se a curvatura secional de M é maior que 2, $\pi_1(M) = \{0\}$, $\dim(M) \ge 6$, então M é difeomorfa à esfera.

