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Introduction

This is a course on rings that are similar to the polynomial rings:
Ore extensions.

We begin by remembering results of classical invariant theory.

An interesting direction in noncommutative invariant theory,
generalizing the case of the polynomial algebra, is the invariant
theory for free and relatively free algebras. For these:

�: E. Formanek. Noncommutative invariant theory. Contemp.
Math., 43:87-119, 1985.
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Introduction

Pre-requisites:

Some commutative algebra, such as in Introduction to
Commutative Algebra by Atiyah, Macdonald.
Some algebraic geometry - such as Chapter I from The Red
Book of Varieties and Schemes by Mumford, Chapter I from
Algebraic Geometry by Hartshorne; and elementary aspects of
quotients of varieties, such as in Lectures in Invariant Theory
by Dolgachev.
Theory of Ore Extensions, Ore localizations and Noetherian
Rings, such as in Introduction to Noncommutative Noetherian
Rings by Goodearl and Warfield.
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Introduction

However, most of this course can be understood with a very
modest previous knowledge.
All theorems, even those proved during the course, will have
indicated the place where the proof was borrowed from.
The choice of topics followed three rules: importance in
general invariant theory; beauty; and personal interest of the
lecturer.
A detailed bibliography can be found in the end of these slides.
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Classical Invariant Theory: Symmetric Polynomials

We begin with a classical result, which contaitns the seed of great
generality.

Theorem
Let R be any unital ring, and call Pn(R) = R[x1, . . . , xn] the
polynomial algebra in n indeterminates over R . Consider the action
of the symmetric group Sn on Pn(R): σ ∈ Sn fix R and send xi to
xσ(i). Then Pn(R)Sn = R[p1, . . . , pn], where the pi are the
elementary symmetric polynomials; moreover, they are algebraically
independent.

Proof.
Jacobson, Basic Algebra I.
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Classical Invariant Theory: Finiteness of Generators

The base ring from now on is an infinite field k .

Definition
Let G be a finite group of automorphisms of k[x1, . . . , xn] that is
contained in GLn(k); that is, every xi is sent to a linear
combination of the indeterminates. Then G is called a finite group
of linear automorphisms. In an equivalent way: we have a
representation of G in a finite dimensional vector space V and
make G act as algebra automorphisms of S(V ∗).
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Classical Invariant Theory: Finiteness of Generators

� : is Pn(k)G a finitely generated algebra?

Hilbert considered the problem of finite generation of the
algebra of invariants for the action of SLn(C) in symmetric
powers of the natural representation. His proof implies the
finite generation of invariants for finite groups of linear
automorphisms acting on the polynomial algebra.
Noether later showed (char k = 0) that the degree of the
generators is at most |G |. So the number of generators can be
choosen to be at most

(n+|G |
n

)
These proofs can be found in Benson, Polynomial Invariants of
Finite Groups.
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Classical Invariant Theory: Finiteness of Generators

Theorem
(Noether) Let R be a commutative finitely generated k-algebra and
G a finite group of algebra automorphisms of R . Then RG is also a
finitely generated k-algebra, and moreover R is a finitely generated
RG module.

Proof.
Dolgachev, Lectures on Invariant Theory.
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Classical Invariant Theory: Chevalley-Shephard-Todd
Theorem

Definition
A linear automorphism g of a finite dimensional vector space V
which fixes pointwise a hyperplane and has finite order is called a
pseudo-reflection (if the order is 2, it is called a reflection). A finite
group of automorphisms of V is called a pseudo-reflection group
(reflection group) if it is generated by the pseudo-reflections
(reflections) it contains.

When k = C we have the unitary reflection groups of Shephard and
Todd. When k is R we can only have reflections, and the class
coincide with the finite Coxeter groups. When k is Q, we have the
Weyl groups.
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Classical Invariant Theory: Chevalley-Shephard-Todd
Theorem

Theorem
(Chevalley-Shephard-Todd) Let Pn(k) be the polynomial algebra
and G ⊂ GLn(k) a finite group o linear automorphisms of it, with
|G | coprime to char k . Then the following are equivalent:

Pn(k)G ∼= Pn(k) (geometrically: the varieties An/G and An

are isomorphic);
G is a pseudo-reflection group in its natural representation;
Pn(k)G is a regular ring (geometrically: the quotient variety
An/G is smooth);
Pn(k) is a free/projective/flat Pn(k)G module (geometrically:
the quotient map An → An/G is flat).

Proof.
Benson, Polynomial Invariants of Finite Groups.

J. F. Schwarz Invariant Theory of Ore Extensions



Noether’s Problem

And how about the question of when An/G is a rational variety?

Problem
(Noether’s Problem, 1913) Given a finite group G acting linearly on
the rational function field k(x1, . . . , xn), when
k(x1, . . . , xn)G ∼= k(x1, . . . , xn)?
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Noether’s Problem

Related to rationality questions of many moduli spaces.
Related to the question of rationality of the center of the
division ring of generic matrices (Procesi).
Related to the Inverse Problem of Galois Theory — one of
Noether original motivations.
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Noether’s Problem

Here are some important cases of positive solution. In this slide,
char k = 0.

When n = 1 and 2; and when k is algebraically closed, for
n = 3 (Burnside).
When the natural representation of G decomposes as a direct
sum of one dimensional representations (Fischer).
For finite abelian groups acting by transitive permutations of
the variables x1, . . . , xn, the problem is settled by the work of
Lenstra.
For k(x1, . . . , xn, y1, . . . , yn) and the symmetric group Sn

permutes the variables yi , xi simultaneously (Mattuck).
For the alternating groups A3,A4, and A5 (Maeda). Open
question for n > 5.

J. F. Schwarz Invariant Theory of Ore Extensions



Noether’s Problem

When G is a psudo-reflections group (by
Chevalley-Shephard-Todd Theorem and †).

Counter-examples are also known.

†: Let D be a commutative domain with field of fractions F , and let
G be a finite group of automorphisms of D. Then Frac DG = FG .

This remains true in the noncommutative world but it is much more
difficult to prove as we shall see.
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Miyata’s Theorem

A key tool in the modern treatment of these questions is:

Theorem
(Miyata)
Let K be a field, S = K [x ] with F as field of fractions. Let G be a
subgroup of ring automorphisms of S , not necessarely finite, such
that G (K ) ⊆ K . Then two cases are possible:

SG ⊆ K , and then SG = FG = KG .
SG is not contained in K . In this case, let u be any element of
SG not belonging to K of minimal degree in x , among all the
invariants in SG not in K . Then SG = KG [u] and
FG = KG (u).

Proof.
T. Miyata, Invariants of certain groups I, Nagoya Math. J., 42:
68-73, 1971.
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Automorphisms of the Polynomial Algebra

We shall now discuss the structure of Autk Pn(k).

Definition
The set Affn(k) of affine automorphisms of Pn(k) = k[x1, . . . , xn]
consists of automorphisms g which acts in the following form:

g(xi ) =
n∑

j=1

aijxj + bi , i = 1, . . . , n,

(aij)i ,j=1,...,n ∈ GLn(k) ∈, bi ∈ k, i = 1, . . . , n.
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Automorphisms of the Polynomial Algebra

Definition
The set Jn(k) (from Jonqueries) consists of the automorphisms of
k[x1, . . . , xn] of the following form, called triangular:

g(xi ) = λixi + f (xi+1, . . . , xn), λi 6= 0 ∈ k ,

f ∈ k[xi+1, . . . , xn], i = 1, . . . , n − 1;

g(xn) = λnxn + fn, λn 6= 0 ∈ k , fn ∈ k .
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Automorphisms of the Polynomial Algebra

For n = 2 we have the celebrated Jung-van der Kulk Theorem,
that says that Autk P2(k) is the amalgamated free product of
Aff2(k) and J2(k) over their intersection. For a proof: A. van
der Essen, Polynomial automorphisms and the Jacobian
Conjecture.
In the general, the subgroup of Autk Pn(k) generated by
Affn(k) and Jn(k) is called the group of tame automorphisms.
That not all automorphisms are tame was conjectured by
Nagata, who suggested the following counterexample (for
n = 3), later confirmed by Urmibaev and Shestakov:

x1 7→ x1 − 2x2(x3x1 − x2
2 )− x3(x3x1 − x2

2 )2,

x2 7→ x2 + (x3x1 + x2)2, x3 7→ x3.
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Automorphisms of the Polynomial Algebra

Let char k = 0.

Theorem
Every finite group of automorphisms G of P2(k) is conjugated
inside Autk P2(k) to a group of linear automorphisms.

Proof.
F. Dumas, An introduction to noncommutative polynomial
invariants.
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Ore Extensions and Basic Facts about them

Heuristics: a good “noncommutative polynomial extension" of a
ring R , let’s say S , would be freely generated on the left as a
R-module by powers of a certain element x ∈ S : 1, x , . . . , xn, . . ..
We should have a well behaved notion of degree:

deg(R) = 0;
deg(xn) = n;
deg(ss ′) = deg(s) + deg(s ′), s, s ′ ∈ S ;
deg(s + s ′) ≤ max{deg(s), deg(s ′)}, s, s ′ ∈ S .
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Ore Extensions and Basic Facts about them

Definition
Let R be any ring, α a ring automorphism of R , and δ an
α-derivation: δ(rs) = α(r)δ(s) + δ(r)s. A ring S = R[x , α, δ],
containing R , being a free left R-module with basis
{1, x , . . . , xn, . . .} and such that xr = α(r)x + δ(r) always exists
and it is unique modulo isomorphism. Such a ring is called an Ore
extension of R.

If α = id we write R[x , δ]; if δ = 0 we write R[x , α].
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Ore Extensions and Basic Facts about them

Let’s present our main examples; the base field allways having zero
characteristics.

Definition

A mutiplicatively antisymmetric matix over a field k is a n × n
matrix Q = (qij) with entries in k∗ such that qii = 1, qij = q−1

ji for
all i , j . Given such a matrix, the quantum affine space of dimension
n is the algebra OQ(kn) given by generators x1, . . . , xn and
relations xixj = qijxjxi , for all i , j .

Since the Gelfand-Kirillov dimension — or the global dimension —
of such algebras is n, the size of the matrix can be recovered.
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Ore Extensions and Basic Facts about them

Their realization as Ore extensions is a follows:

k[x1][x2, α2] . . . [xn, αn]; αi (xj) = qijxj , j < i .

We find useful to introduce a special notation for matrices of size
2× 2, parametrized by a scalar q 6= 1 ∈ k∗: kq[x , y ] have the
generators x , y and relation yx = qxy . This ring is called the
quantum plane.
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Ore Extensions and Basic Facts about them

char k = 0, allways, when discussing:

Definition
(Weyl Algebra) Call An(k) the iterated Ore extension
k[x1, . . . , xn][y1, ∂1] . . . [yn, ∂n], where ∂i is a derivation with
relation to xi which sends every yj with j < i to 0.

It is usefull to give two other characterizations of the Weyl Algebra.

It is the quotient of the free associative algebra in variables
x1, . . . , xn, y1, . . . , yn by the relations
[xi , xj ] = [yi , yj ] = 0, i , j = 1, . . . , n and
[yi , xj ] = δij , i , j = 1, . . . , n.
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Ore Extensions and Basic Facts about them

Definition
(Differential operator rings) Let A be a finitely generated
commutative k-algebra. Define, inductively,
D(A)0 = {d ∈ Endk(A)|[d , a] = 0,∀a ∈ A}, and for all i > 0,
D(A)i = {d ∈ Endk(A)|[d , a] ∈ D(A)i−1,∀a ∈ A}. Clearly we have
D(A)i ⊆ D(A)j if i < j and D(A)iD(A)j ⊆ D(A)i+j . We call
D(A) =

⋃∞
i=0 D(A)i , and the associative algebra thus obtained is

called the ring of differential operators on A.

An(k) = D(k[x1, . . . , xn]).

� : The Weyl Algebras An(k),Am(k), for m 6= n are pairwise
non-isomorphic: take any dimension you like.
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Ore Extensions and Basic Facts about them

Our last main example is the first quantum Weyl Algebra Aq
1(k),

given by generators x , y and relation yx − qxy = 1, q 6= 1 ∈ k∗. As
an Ore extension, it is k[x ][y , α, δ], where α(x) = qx , and δ a
α-derivation, the Jackson derivative:

δ(f (x)) =
f (qx)− f (x)

qx − x
, f ∈ k[x ].

The n-th quantum Weyl Algebra is Aq
n(k) = Aq

1(k)⊗ . . .⊗ Aq
1(k),

n times.
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Ore Extensions and Basic Facts about them

Lema
xnr = αn(r)xn + . . .+ δn(r), r ∈ R .

Proposition
If R is a domain and S is an Ore extension of it, then it is also a
domain; it have the same units as R .

Proposition
If R is a division ring and S is an Ore extension of it, then given
a, b ∈ S there exists unique q, r ∈ S with a = qb + r with
deg r < deg b; a right-hand version of the Euclidian algorithm also
holds.
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Ore Extensions and Basic Facts about them

Corollary

The Weyl Algebra An(k) has only k as units. In particular, it has
no inner automorphisms besides the identity. Recall also that the
Weyl Algebras are simple rings.

Proof.
Björk, Rings of Differential Operators.

One last important result to recall:

Theorem
(Extended Hilbert Basis Theorem) Let R be a ring, and
S = R[x , α, δ] be an Ore extension. If R is left (right) Noetherian,
then so is S .
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Skew Group Rings

We are now going to see a result of Montgomery and Small which
generalizes the Hilbert-Noether theorem in the noncommutative
setting — and in particular for Ore extensions. To do so, and for
many subsequent work, we need the notion of a skew group ring.

Definition
Let R be a ring and G be a finite group that acts on R by
automorphisms. The skew group ring, R ∗ G , is freely generated as
left R-module by the elements of G , with multiplication of basis
elements defined as follows: rgsh = rg−1(s)gh, r , s ∈ R, g , h ∈ G .
For convenience, we write rg = grg .
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Skew Group Rings

Lema
Consider a skew group ring S = R ∗ G . Suppose |G | is invertible in
R , and let e = 1/|G |

∑
g∈G g . Then:

1 e2 = e

2 eg = e, g ∈ G .
3 eS = eR

4 eSe = eRG ∼= RG

Proof.
Montgomery, Fixed Rings of Finite Groups of Automorphisms of
Associative Rings.
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Montgomery-Small Theorem

Theorem
(Montgomery-Small) Let R be a finitely generated k-algebra, non
necessarely commutative, and let G be a finite group of algebra
automorphisms of R , with |G |−1 ∈ R . If R is left or right
Noetherian, RG is a finitely generated k-algebra.

Proof.
F. Dumas, An introduction to noncommutative polynomial
invariants.
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Some Morita Theory

We now specialize our discussion to invariants of the Weyl Algebra.
We begin by recalling some facts from Morita Theory.

Proposition
Two rings T and S are Morita equivalent if, and only if, there exists
n ≥ 1 and an indempotent e ∈ Mn(S), such that T ∼= eMn(S)e
and Mn(S)eMn(S) = Mn(S).

Proof.
Jacobson, Basic Algebra II.
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Some Morita Theory

Proposition

Let V be a right A-module, let B=EndA(V ), and consider V as a
left B-module in the natural way. Then the following are
equivalent:

V is a generator for ModA;
V is a finitely generated projective B-module and
A = EndB(V ).

Proof.
Montgomery, Fixed Rings of Finite Groups of Automorphisms of
Associative Rings.
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More on Skew Group Rings

Let S = R ∗ G be a skew group ring. Then R has a natural
structure of right S-module.

Proposition
1 EndS(R) ∼= RG ;
2 If R is simple and G consists of outer automorphisms, then S

is simple;
3 Under the same conditios as above, R is an S generator.
4 Under the conditions as above, and if |G |−1 ∈ R , then RG and

S are Morita Equivalent;

Proof.
Montgomery, Fixed Rings of Finite Groups of Automorphisms of
Associative Rings.
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Invariant Theory of The Weyl Algebra

Corollary
Let G be any finite group of automorphisms of the Weyl Algebra
An(k). Then:

1 An(k)G is finitely generated, simple, Noetherian algebra.
2 An(k) is a finitely generated projective An(k)G -module.
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Invariant Theory of The Weyl Algebra: Rigidity

The second item of last theorem resembles one of the equivalent
conditions of Chevalley-Shephard-Todd theorem for the polynomial
algebra. However, if we ask for groups G such that
An(k)G ∼= An(k), we find:

Theorem
(Alev-Polo) Suppose k algebraically closed. Let G be a finite group
of Autk An(k). If An(k)G ∼= An(k), then G is trivial.

Proof.
J. Alev, P. Polo, A Rigidity Theorem for Finite Group of
Automorphisms on Envelopping Algebras of Semissimple Lie
Algebras, Advances in Mathematics, 111:208-226, 1995.
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Invariant Theory of The Weyl Algebra: Rigidity

In fact even more is true:

Theorem
(Tikaradze) If Γ is a noncommutative C-domain and G a finite
subgroup of algebra automorphisms of it, then ΓG ∼= An(C) for
some Weyl Algebra implies G = id and Γ ∼= An(C).

Proof.
arXiv:1708.07923.
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Invariant Theory of The Weyl Algebra: Some Geometry

We are now going to see a geometric fact that gives us some
heuristics on why the Weyl Algebra is rigid.

Definition
Let G be a finite group of automorphisms of the polynomial algebra
Pn(k). It can be extended to a group of algebra automorphisms of
the Weyl Algebra An(k), seem as a ring of differential operators on
Pn(k); gD(f ) = g(D(g−1f )), f ∈ Pn(k), g ∈ G ,D ∈ An(k).
Groups of automorphisms of the Weyl Algebra that arise in such a
way from groups of linear automorphisms of the polynomial algebra
are again called linear.
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Invariant Theory of The Weyl Algebra: Some Geometry

Theorem
Suppose k algebraically closed, and let G be a finite group of linear
automorphisms of the Weyl Algebra An(k). The inclusion
Pn(k)G → Pn(k) induces, by restriction of domain, a map
An(k)G → D(Pn(k)G ) that is allways injective, and is an
isomorphism if, and only if, G contains no pseudo-reflections appart
from id .

Proof.
Levasseur, Anneaus d’operateurs differentiels, LNM 867.

Remark: g(D(f )) = gDg−1(gf ) = D(f ).
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Invariant Theory of The Weyl Algebra: Finding Generators
and Relations

We now move to the task of finding generators and relations for the
invariants of the Weyl Algebra. In case we are interested in a
minimal generating set, we have the following impressive result.

Theorem

(Levasseur, Stafford) An(k)G , when G is a finite group of linear
automorphisms, is generated by k[x1, . . . , xn]G and k[y1, . . . , yn]G ,
which are invariants of two polynomial algebras sitting inside
An(k): the multiplication operators and constant coefficients
differential operators.

Proof.
Levasseur and Stafford, Invariant Differential Operators and an
homomorphism of Harish-Chandra, J. Am. Math. Soc.
8:365-372,1995.
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Invariant Theory of The Weyl Algebra: Finding Generators
and Relations

The Weyl Algebra An(k) have two natural associated filtrations: F ,
the filtration by order of differential operators, and B, the Bernstein
filtration.

The graded associated algebra, in both cases, is the
polynomial algebra in 2n indeterminates;
Let G be a finite group of linear automorphisms acting on
An(k). Then An(k)G inherits two natural filtrations from F
and B, and in both cases we have that with this induced
filtration, gr An(k)G ∼= (gr An(k))G .

By passing to graded associated algebra, generators and relations
can be found, and these can lifted to An(k)G to obtain generators
and relations for it. A detailed discussion of this can be found in:

�: W. N. Traves, Invariant Theory and Differential Operators,
Radon Series Comp. Appl. Math., 1:1-24, 2007.
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The Automorphism Group of the Weyl Algebra

A last proposition showing differences between invariants of the
polynomial algebra and the Weyl Algebra.

Proposition
Let G be any — non necessarely finite — group of linear
automorphisms of An(k). Then the element x =

∑n
i=1 xiyi is

always invariant.

Proof.
F. Dumas, An Introduction to Noncommutative Polynomial
Invariants.

We are now going to consider the group AutC A1(C).
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The Automorphism Group of the Weyl Algebra

Every element g ∈ SL2(C), g =

(
a b
c d

)
induces an C-algebra

automorphism of A1(C) = C[x ][y , ∂] by sending x → ax + by ,
y → cx + dy . Call S(C) the subgroup of C-automorphisms
obtained in this manner (called linear admissible), and call J(C) the
subgroup of triangular automorphisms of A1(C), which are of the
form: x → λ−1x + p(y), y → λy + µ, λ, µ ∈ C, λ 6= 0, p ∈ C[y ].

Theorem
Aut A1(C) is the amalgamated free product of J(C) and S(C) over
their intersection.

Proof.
Alev, Un Automorfisme non modéré de U(g3), Commun. Algebra,
14:1365-1378, 1985.
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The Automorphism Group of the Weyl Algebra

In a similar fashion to the polynomial algebra in two variables,
it can be shown that all finite subgroups of automorphisms of
A1(C) are conjugated to a finite subgroup of S(C).
The finite subgroups of SL2(C) are classified: they are the
binary dihedral groups. For a proof of the classification, T. A.
Springer, Invariant Theory, LNM 585.

We now proceed to the birational study of invariants of the Weyl
Algebra. As we shall see, despite the rigidity result, a plethora of
interesting phenomena happens.

J. F. Schwarz Invariant Theory of Ore Extensions



Ore Localization: Basic Facts

Definition
Let A be a noncommutative domain, X a multiplicatively closed
subset of A containing 1. AX is a right localization for A with
respect to X if there is an injection ι of A into AX (allowing the
identification of A with a subring of F ), such that every element of
X is invertible, and every element of AX is of the form rx−1, for
r ∈ A, x ∈ X . Symmetrically, one can define left localizations.

Definition
Let A be a domain, X a multiplicatively closed set (x , y ,∈ X
implies xy ∈ X ) containing 1. Then X satisfies the left (right) Ore
condition if for every r ∈ A, x ∈ X , Rx ∩ Xr 6= ∅ (xR ∩ Xr 6= ∅).
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Ore Localization: Basic Facts

Theorem
Let A be a domain, X a multiplicatively closed subset of A.
Then the left (right) localization AX exists if and only if X
satisfies the left (right) Ore condition. In case X = A− {0},
we call the localizations left (right) quotient ring, and we call
A a left (right) Ore domain. We omit the adjectives left in
right in case both apply.
A left (right) Noetherian A domain satisfies the left (right)
Ore condition for the set X = A− {0}.
If the left and right quotient rings exist, then they coincide.

�: The quotient ring of an Ore domain A will be denoted Frac A.
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Quotient Rings of Ore Extensions

Hence the Weyl Algebra An(k) has a quotient ring, called the Weyl
Field, and denoted by Fn(k).

Let’s focus on the case of Ore extensions in general. Let R be an
left and right Noetherian domain; let A = R[x , α, δ] be an Ore
extension. As we saw Frac A exists. Let K = Frac R : α extends to
an automorphism of K : α(xy−1) = α(x)(α(y))−1, x , y ∈ R , and δ
to an α-derivation of the same ring, using
δ(s−1) = −α(s)−1δ(s)s−1, for s 6= 0 ∈ R .
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Quotient Rings of Ore Extensions

Hence we can form the Ore extension K [x , α, δ] and we have:

Proposition

Frac A = Frac K [x , α, δ]. The common value of these skew-fields
will be denoted by K (x , α, δ).

Proof.
F. Dumas, An Introduction to Noncommutative Polynomial
Invariants.
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The Weyl Fields

Call w = yx ∈ A1(k) and consider the subalgebra generated by it
and y . It is clear it has the same quotient ring as A1(k). Since
yw = wy + y , this subalgebra is the Ore extension k[w ][y , θ],
where θ is the automorphism w 7→ w + 1.

In general we have, calling wi = yixi , i = 1, . . . , n.

Proposition

Fn(k) ∼= k(w1, . . . ,wn)(y1; θ1) . . . (yn; θn), where θi (wj) = wj + δij
and it fix yj when j < i .
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The Weyl Fields

� : A canonical idea: we can embedd a the ring k(x , α) in a skew
Laurient series ring: k((x , α)).

Proposition

Let K be a division ring with center Z (K ). Let α be an
automorphism of K such that αk is not inner, k ∈ Z− {0};
Kα = {k ∈ K |α(k) = k}. Then the center of K (x , α) is
Z (K ) ∩ Kα.

Proof.
F. Dumas, An Introduction to Noncommutative Polynomial
Invariants.
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The Weyl Fields

Corollary

The center of Fn(k) is k .

� : The skew-fields Fn(k(x1, . . . , xl)) and Fm(k(x1, . . . , xt)) are
isomorphic if, and only if, m = n, l = t. Take the transcendence
degree of the center; then take the Gelfand-Kirillov transcendence
degree over the center.
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Noncommutative Birational equivalence; Gelfand-Kirillov
Conjecture

Definition
We say two Ore domains are birationally equivalent if the have
isomorphic quotient rings.

The research on noncommutative birationality began in the work of
Gelfand and Kirillov, who made the spetacular Conjecture that the
birational class of envelopping algebras of Lie algebras should be
parametrized by just two integers:

Conjecture

(Gelfand-Kirillov) Let k be an algebraically closed field of zero
characteristics, and let L be a finite dimensional algebraic Lie
algebra. Then the quotient ring of U(L) is isomorphic to a Weyl
Field Fn(k(x1, . . . , xl)).
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Noncommutative Birational equivalence; Gelfand-Kirillov
Conjecture

True for gln, sln: Gelfand-Kirillov, 1966;
Nilpotent Lie algebras: Gelfand-Kirillov, 1966;
Solvable Lie algebras: Joseph, Borho-Gabriel-Rentschler,
McConnell-Robson, 1973;
false for mixed types: Alev-Ooms-Van den Berg, 1996;
True for any Lie algebra of dimension at most 8:
Alev-Ooms-Van den Berg, 2000;
False for types B , D, F , E : Premet, 2010;
Open for type C , G ;
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Noncommutative Birational equivalence; Gelfand-Kirillov
Conjecture

It is true after some modifications:

All simple L after tensoring over the center with a suitable
finite field extension of its field of fractions - Gelfand, Kirillov,
1968; conjectured to be true for all algebraic Lie algebras
(Alev, Ooms, van den Berg, 2000);
For simple L and maximal primitive quotients (Conze, 1974).

�: Gelfand-Kirillov Philosophy says that the Weyl fields are
important non-commutative analogues of the field of rational
functions.

J. F. Schwarz Invariant Theory of Ore Extensions



A Result by Faith

Theorem
Let R be a left and right Ore domain with quotient ring F . Let G
be a finite group of automorphisms of R such that |G |−1 ∈ R .
Then RG is a left and right Ore domain and Frac RG = FG .

Proof.
F. Dumas, An Introduction to Noncommutative Polynomial
Invariants.

J. F. Schwarz Invariant Theory of Ore Extensions



Noncommutative Noether’s Problem

Given this, Jacques Alev and François Dumas introduced the
following:

Problem (J. Alev, F. Dumas, 2006)

(Noncommutative Noether’s Problem) Let G be a finite group of
linear automorphisms of the Weyl Algebra An(k), with action
extended to Fn(k). When we have Fn(k)G ∼= Fn(k)?
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Noncommutative Noether’s Problem

�: Important for the study of the quotient ring of many algebras: it
reproves the Gelfand-Kirillov Conjecture for gln in a novel way; it
implies the Gelfand-Kirillov Conjectue for spherical subalgebras of
rational Cherednik Algebras; it has many applications to the
important class of Galois algebras.
See Noncommutative Noether’s Problem for Complex Reflection
Groups, F. Eshmatov, V. Futorny, S. Ovsienko, J. Schwarz, Proc.
Amer. Math. Soc. 145 (2017), 5043-5052.
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Noncommutative Noether’s Problem

Original cases of positive solution:

n = 1, 2 (Alev, Dumas, 2006);
The natural representation of G decomposes as a direct sum
of one dimensional representations (Alev, Dumas, 2006);
The permutation action of Sn in An(k) over an algebraically
closed field (Futorny, Molev, Ovsienko, 2010);
All unitary reflection groups actions over the complex numbers
(Eshmatov, Futorny, Ovsienko, Schwarz, 2015).
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Miyata’s Theorem for Ore Extensions

Theorem
(Alev, Dumas) Let K be a field (commutative or not), α an
automorphism and δ a α-derivation of K . Let S = K [x , α, δ] be an
Ore extension, with quotient ring D. Let G be a subgroup of ring
automorphisms of S , not necesserely finite, such that G (K ) ⊆ K .
Then two cases are possible:

SG ⊆ K , and then DG = SG = KG .
SG is not contained in K . In this case, let u be any element of
SG not belonging to K of minimal degree in x, among all the
invariants in SG not in K . Then there is an automorphism α′

and an α′-derivation δ′ of KG such that SG = KG [u, α′, δ′]
and DG = FracSG . If K is commutative, then α′ = αdegxu.
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Miyata’s Theorem for Ore Extensions

Lema
Let K be a division ring and S = K [x , α, δ] an Ore extension of it.
Let u ∈ S with degree in x bigger than 0.

Let L be a sub division ring of K , and let U = {ui |i ∈ N}.
Then U is linearly independent on the left and on the right
over L.
Let T be the free left L-module generated by U ; and simililarly
T ′ on the right. Suppose T = T ′ and both equals a ring S ′.
Then there exists an α′ automorphism of L and an
α′-derivation δ′ of L such that S ′ = L[u, α′, δ′].
If K is commutative, then α′ = αdeg u.

Proof.
F. Dumas, An Introduction to Noncommutative Polynomial
Invariants.
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Noncommutative Noether’s Problem

We discovered a strong connection between Noether’s Problem and
its Noncommutative Version.

Theorem (V. Futorny, J. Schwarz, 2018)

Let G be a finite group that acts linearly on Pn(k) and hence on
the Weyl Algebra An(k). If Noether’s Problem has a positive
solution, then Fn(k)G ∼= Fn(k). In particular, all previous cases of
positive solution to Noncommutative Noether’s Problem are
reproved, and we obtain a positive solution for n = 3 (k = k) and
the alternating groups Ai , i = 3, 4, 5.
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Noncommutative Noether’s Problem

Lema
If A is an Ore domain and X a multiplicatively closed subset of
it such that AX exists, then they have the same quotient ring;
If A is a commutative domain finitely generated over k , and S
a multiplicatively closed subset of A, then D(A)S exists and is
isomorphic to D(AS).

Proof.
A. J. Muhasky. The differential operator ring of an affine curve.
Trans. of the American Math. Society, 307:705723, 1988.

J. F. Schwarz Invariant Theory of Ore Extensions



Noncommutative Noether’s Problem

Lema

Let B be the subalgebra of An(k)G generated by k[x1, . . . , xn]G and
k[y1, . . . , yn]G ; let S be the set of regular elements in
k[x1, . . . , xn]G , and F its field of fractions. Then
BS = An(k)GS = D(F ).

Proof.
Levasseur and Stafford, Invariant Differential Operators and an
homomorphism of Harish-Chandra, J. Am. Math. Soc.
8:365-372,1995.
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Conclusion on the Invariants of The Weyl Algebra

Lema
Let R ⊂ S be two Noetherian domains, with the same quotient
ring. Assume S is simple and that it is finitely generated as left and
right R-module. Then R = S .

Proof.
Levasseur, Stafford, Invariant Differential Operators and an
Homomorphism of Harish-Chandra, Journal of the American
Mathematical Society, 8:365-372.
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Conclusion on the Invariants of The Weyl Algebra

Theorem
Let G be any finite group of automorphisms of A1(C). Then
F1(C)G ∼= F1(C).

Proof.
F. Dumas, An Introduction to Noncommutative Polynomial
Invariants.
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Invariant Theory of The Quantum affine Space:
Chevalley-Shephard-Todd Theorem

Assume char k = 0 and k algebraically closed. Consider a quantum
affine space OQ(kn) with its canonical graduation: every xi has
degree 1.

Definition
Let g be a graded automorphism of OQ(kn). Then g is a
quasi-reflection if it has finite order and one of the following holds:

Let O1 the component of degree 1 of the quantum affine
space — it is an n-dimensional vector space. Then, g , in its
restriction to O1, is a pseudo-reflection.
g has order 4 and there is a basis {y1, . . . , yn} of O1 such that
g fix yj , j < n − 1 and g(yn−1) = iyn−1 e g(yn) = −iyn, where
i is such that i2 = −1. In this case g is called a mystic
relfection.

J. F. Schwarz Invariant Theory of Ore Extensions



Invariant Theory of The Quantum affine Space:
Chevalley-Shephard-Todd Theorem

Theorem
Let G be a finite group of graded automorphisms of OQ(kn). Then
the following are equivalent:

OQ(kn)G ∼= OQ′(kn) for a possibly distinct n × n
multiplicatively antisymmetric matrix Q ′.
G is generated by the quasi-reflections it contains.
OQ(kn)G has finite global dimension.

Proof.
E. Kirkman, J. Kuzmanovich , J. Zhang. Shephard-Todd-Chevalley
theorem for skew polynomial rings. Algebras and Representation
Theory, 13:127-158, 2010.
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Mystic Reflections?

Let’s see what more can be said of the new guys here: the mystic
reflections.

Proposition
If a finite group G is generated by mystic reflections, then it
does not contain any element which acts as a pseudo-reflection
on O1.
There exists finite groups G generated by mystic reflections
which cannot be realized as a classical pseudo-reflection group.

Proof.
E. Kirkman, J. Kuzmanovich , J. Zhang. Shephard-Todd-Chevalley
theorem for skew polynomial rings. Algebras and Representation
Theory, 13:127-158, 2010.
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Group of Automorphisms of Some Quantum Groups

� : This topic is related on the study of yet another class of
noncommutative rings which resemble the polynomial algebra
(mainly it’s homological aspects); the Artin-Schelter regular
algebras. For more: E. E. Kirkman, Invariant Theory of
Artin-Schelter Regular Algebras: A survey, arXiv:1506.06121.

Theorem

The full automorphism group of Cq[x , y ] is (C∗)2 acting by
(a, b) sending x to ax and y to by .
The full automorphism group of Aq

1(C) is C∗, acting by a
sending x to ax , y to a−1y .

Proof.
F. Dumas, An Introduction to Noncommutative Polynomial
Invariants.
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q-Difference Noether’s Problem

Proposition

Frac kq[x , y ] ∼= Frac Aq
1(k).

Proof.
F. Dumas, An Introduction to Noncommutative Polynomial
Invariants; Brown, Goodearl, Lectures on Algebraic Quantum
Groups.

� : Let q = (q1, . . . , qn) ∈ kn be a n-uple which each entry is
non-null and a non-root of unity. We call Oq(k2n) the tensor
product kq1 [x1, y1]⊗ . . .⊗ kqn [xn, yn]; if every entry in q is the
same parameter q, we use the notation Oq(k2n).
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q-Difference Noether’s Problem

Problem (V. Futorny, J. Hartwig, 2014)

(q-Difference Noether’s Problem) Let G be a finite group of
automorphisms of Oq(k2n). When there exists
k = (k1, . . . , kn) ∈ Zn, with q = (qk1 , . . . , qkn) and
Frac Oq(k2n)G ∼= Frac Oq(k2n)?

� : Provides a novel proof, with aditional information, for the
Quantum Gelfand-Kirillov Conjecture for Uq(gln) and Uq(sln); also
proves a Quantum Gelfand-Kirillov Conjecture for many classes of
Galois Algebras.
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Unitary Reflection Groups

� : The groups A(m, p, n), m > 1, n ≥ 1, p|m, are a subset of G⊗nm ,
Gm ⊂ k the cyclic group in m elements. It consist of elements
(g1, . . . , gm) such that (

∏n
i=1 gi )

m/p = 1. G (m, p, n) is the
semidirect product of A(m, p, n) and Sn.

� : They are all the irreducible unitary reflection groups (except
G (1, 1, n) ∼= Sn in its natural representation; and G (2, 2, 2), the
Klein group), plus 34 exceptional groups.
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q-Difference Noether’s Problem

� : The groups G = G (m, p, n) act as follows on Oq(k2n):
h = (g , π) ∈ G , g = (g1, . . . , gn) ∈ G⊗nm , π ∈ Sn: h(xi ) = gixπ(i),
h(yi ) = yπ(i), i = 1, . . . , n.

Theorem

Frac Oq(k2n)G(m,p,n) ∼= Frac (kqm/p [x , y ]⊗ kqm [x , y ]⊗n−1).

Proof.
J. Hartwig, The q-difference Noether problem for complex reflection
groups and quantum OGZ algebras, Comm. Alg. 45, 1166-1176,
2017.
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q-Difference Noether’s Problem

Theorem
For every finite group G of automorphisms of Cq[x , y ], we have
Frac Cq[x , y ]G ∼= Frac Cq|G | [x , y ].

Proof.
F. Dumas, An Introduction to Noncommutative Polynomial
Invariants.
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